Sample records for fgd equipment transferring

  1. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31T23:59:59.000Z

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  2. Utility FGD survey, Janurary--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01T23:59:59.000Z

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW. 2 figs., 9 tabs.

  3. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01T23:59:59.000Z

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, systems designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  4. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01T23:59:59.000Z

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  5. Utility FGD survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    This is Volume 2 part 2, of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. This volume particularly contains basic design and performance data.

  6. Utility FGD Survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  7. Utility FGD survey: January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M.

    1992-03-01T23:59:59.000Z

    This is Volume 1 of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  8. Utility FGD survey, January--December 1989. Volume 2, Design performance data for operating FGD systems: Part 2

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)] [IT Corp., Cincinnati, OH (United States)

    1992-03-01T23:59:59.000Z

    This is Volume 2 part 2, of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. This volume particularly contains basic design and performance data.

  9. Utility FGD Survey, January--December 1989. Volume 2, Design performance data for operating FGD systems, Part 1

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

    1992-03-01T23:59:59.000Z

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  10. Utility FGD survey: January--December 1989. Volume 1, Categorical summaries of FGD systems

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M.

    1992-03-01T23:59:59.000Z

    This is Volume 1 of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  11. Corrosive environments experienced in FGD applications

    SciTech Connect (OSTI)

    Wess, T.J. [Seminole Electric Cooperative, Inc., Tampa, FL (United States); Crum, J.R.; Shoemaker, L.E. [Inco Alloys International, Inc., Huntington, WV (United States)

    1994-12-31T23:59:59.000Z

    A variety of corrosive environments are encountered in flue gas desulfurization (FGD) systems. Some are intentional, such as the limestone slurry used in the absorber to remove SO{sub 2} gas, and others are unintentional, such as acid condensate in the outlet ducting and chimney. These acid condensate solutions are by far the most corrosive and most unpredictable. Condensate samples have been taken from various locations in an operating FGD unit and associated equipment. Actual samples have been taken from a low point in the bypass duct, the main outlet duct and the chimney flue drain sump. These samples were analyzed for pH, chloride and other constituents to determine the corrosivity of the fluids. These results were then related to performance of various alloy components in the system and to test samples exposed at representative locations in the Seminole Generating Station.

  12. NNSA Y-12 National Security Complex Transfers $8M of Equipment...

    National Nuclear Security Administration (NNSA)

    Y-12 National Security Complex Transfers 8M of Equipment to DoD for Reapplication | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  13. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    SciTech Connect (OSTI)

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07T23:59:59.000Z

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  14. Technology transfer equipment qualification methodology for shelf life determination

    SciTech Connect (OSTI)

    Anderson, J.W. [Wyle Labs., Huntsville, AL (United States)] [Wyle Labs., Huntsville, AL (United States)

    1995-08-01T23:59:59.000Z

    Discussions with a number of Nuclear Utilities revealed that equipment qualified for 10 to 40 years in the harsh environment of the plant was being assigned shelf lives of only 5 to 10 years in the benign environment of the warehouse, and then the materials were being trashed. One safety-related equipment supplier was assigning a 10-year qualified life, from date of shipment, with no recognition of the difference in the aging rate in the plant vs. that in the warehouse. Many suppliers assign shelf lives based on product warranty considerations rather than actual product degradation. An EPRI program was initiated to evaluate the methods used to assign shelf lives and to adapt the Arrhenius methodology, used in equipment qualification, to assign technically justifiable shelf lives. Temperature is the main factor controlling shelf life; however, atmospheric pressure, humidity, ultraviolet light, ozone and other atmospheric contaminants were also considered. A list of 70 representative materials was addressed in the program. All of these were found to have shelf lives of 14 years to greater than 60 years, except for 19 items. For 18 of these items, there was no data available except for the manufacturer`s recommendation.

  15. FGD gypsum's place in American agriculture

    SciTech Connect (OSTI)

    Haynes, C. [US Department of Agriculture (United States). Agricultural Research Service

    2007-07-01T23:59:59.000Z

    Surface cracks and soil clumps form when saline-sodic, high-clay soil dries out. Treatment with FGD gypsum and irrigation water flowing into these cracks leaches salts until the aggregates swell and the cracks close up. The article describes research projects to develop agricultural uses of FGD gypsum from coal-fired power plants that have been conducted by university researchers and USDA-Agricultural Research Service scientists.

  16. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-04T23:59:59.000Z

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  17. Utility FGD survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    The FGD survey report is prepared annually by International Technology (IT) Corporation (formerly PEI Associates, Inc.) for the US Department of Energy. The current issue (and preceding issues from 1974 to 1981 and October 1984 to the present) of the utility FGD survey are available only through the National Technical Information Service (NTIS). Preceding issues covering January 1982 through September 1984 may be purchased from the Research Reports Center of the Electric Power Research institute (EPRI). The information in this report is generated by a computerized data base system known as the Flue Gas Desulfurization Information System (FGDIS). The design information contained in the FGDIS encompasses the entire emission control system and the power generating unit to which it is applied. Performance data for operational FGD systems include monthly dependability parameters, service time, and descriptions of operational problems and solutions.

  18. acid fgd additives: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of sulfur dioxide into the atmosphere. Efforts to curb damage to the environment by acid rain has necessitated the construction of flue gas desulfurization (FGD) systems...

  19. Improved FGD dewatering process cuts solid wastes

    SciTech Connect (OSTI)

    Moer, C.; Fernandez, J.; Carraro, B. [Duke Energy (United States)

    2009-08-15T23:59:59.000Z

    In 2007, Duke Energy's W.H. Zimmer Station set out to advance the overall performance of its flue gas desulfurization (FGD) dewatering process. The plant implemented a variety of measures, including upgrading water-solids separation, improving polymer program effectiveness and reliability, optimizing treatment costs, reducing solid waste sent to the landfill, decreasing labor requirements, and maintaining septic-free conditions in clarifiers. The changes succeeded in greatly reducing solid waste generation and achieving total annual savings of over half a million dollars per year. 8 figs., 1 tab.

  20. Economics of dry FGD by sorbent injection

    SciTech Connect (OSTI)

    Naulty, D.J.; Hooper, R.G.; McDowell, D.A.; Scheck, R.W.

    1983-06-01T23:59:59.000Z

    The body of information in this paper is directed to engineers involved in desulfurization of boiler flue gas. The problems of wet scrubbing SO/sub 2/ from power plant flue gases have been well documented. The utility industry has been interested in developing new processes that would overcome problems associated with wet slurry systems. While spray dryer technology for FGD may alleviate many of these problems, this concept has problems as well. Dry injection FGD takes the development process one step further to a totally dry system, thus eliminating the difficulties of wet slurry handling. The concept of using the fabric filter as a chemical contactor for the SO/sub 2/ absorption was proposed in the late 1960s by Chaffee and Hill. In the early 1970s, Superior Oil Company, Wheelabrator Frye, Carborundum, and others investigated the use of nahcolite for SO/sub 2/ removal. Nahcolite is a natural occurring sodium bicarbonate found in great quantities in the oil shale regions of Colorado. In general, these developments were found viable in certain circumstances, but commercialization was hampered by the lack of nahcolite suppliers.

  1. Land application uses for dry FGD by-products

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. (Ohio State Univ., Columbus, OH (United States)); Haefner, R. (Geological Survey, Columbus, OH (United States). Water Resources Div.)

    1993-04-01T23:59:59.000Z

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  2. Avoid stainless steel failures in FGD systems

    SciTech Connect (OSTI)

    Mills, J.P.; Schillmoller, C.M.

    1995-11-01T23:59:59.000Z

    Preventing pitting and localized corrosion is the key to success where low maintenance and high reliability are rime considerations in flue-gas desulfurization (FGD) designs. Knowing when to use a stainless steel, and when not to, is crucial. Operating parameters and environmental factors greatly affect alloy performance, especially pH, temperature, and chloride and oxygen levels. Failures of stainless steels can be avoided by understanding their limits in light of these variables. This article will focus on the capabilities of Types 316L, 317L, 317LM, 317LMN, 904L, and 6% Mo stainless steels and their applications, as well as provide details on unique combination of mechanical properties and corrosion resistance of the 22% Cr duplex and 25% Cr super-duplex stainless steels in acid chloride systems. Guidelines will be presented on methods to prevent intergranular corrosion, stress corrosion cracking, and pitting and crevice corrosion, and what process steps can be taken to assure reasonable performance of marginal alloy selections. Emphasis will be on the lime/limestone wet scrubbing process and the quencher/absorber.

  3. Utility FGD survey, January--December 1989. Project summary

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

    1992-03-01T23:59:59.000Z

    The FGD survey report is prepared annually by International Technology (IT) Corporation (formerly PEI Associates, Inc.) for the US Department of Energy. The current issue (and preceding issues from 1974 to 1981 and October 1984 to the present) of the utility FGD survey are available only through the National Technical Information Service (NTIS). Preceding issues covering January 1982 through September 1984 may be purchased from the Research Reports Center of the Electric Power Research institute (EPRI). The information in this report is generated by a computerized data base system known as the Flue Gas Desulfurization Information System (FGDIS). The design information contained in the FGDIS encompasses the entire emission control system and the power generating unit to which it is applied. Performance data for operational FGD systems include monthly dependability parameters, service time, and descriptions of operational problems and solutions.

  4. High volume - high value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The amount of dry FGD materials produced in the U.S. has not been increasing at the high rate originally anticipated. This has been due to a number of economic factors affecting the utility industry. Technologies for the disposal of large amounts of materials are not going to be implemented in the near term. In light of this development the target application for this project is being changed from highwall adit filling to the filling of auger holes to allow for highwall mining. This application focuses on using the dry FGD material to recover coal isolated by excessive augering. It produces 10 or more times the amount of coal per ton of dry FGD utilized than the originally proposed methodology. It also does not require extensive equipment development and, if applied to abandoned mine lands, may have substantially more significant environmental benefit. We also propose to use a spray dryer material for the demonstration instead of the fluidized bed material originally proposed. The spray dryer material is already slacked eliminating problems associated with heat generation at the mine site. Auger hole grouting with FGD material is also best performed by hydraulic emplacement methods.

  5. Development of a safety analysis system for the offshore personnel and equipment transfer process

    E-Print Network [OSTI]

    McKenna, Michael George

    1988-01-01T23:59:59.000Z

    and Effect Analysis (FMEA) was performed. With the FMEA the question "What if?" is asked for each component. For example, "What if the lifting cable fails' ?". Each component was evaluated for failure mode, failure effects on other components... swell or waves stood out as primary factors in the safety of the transfer process. Failure Mode and Effect Anal sis With component failure a recognized factor in the safety of the transfer process, more in-depth analysis was merited. The FMEA...

  6. Selenium Speciation and Management in Wet FGD Systems

    SciTech Connect (OSTI)

    Searcy, K; Richardson, M; Blythe, G; Wallschlaeger, D; Chu, P; Dene, C

    2012-02-29T23:59:59.000Z

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, trace metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project�¢����s target of 50 ���µg/L during pilot testing, some trends observed in bench-scale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all �¢����new�¢��� selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as migh

  7. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect (OSTI)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31T23:59:59.000Z

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  8. Land application uses for dry FGD by-products. Phase 2 report

    SciTech Connect (OSTI)

    Stehouwer, R.; Dick, W.; Bigham, J. [Ohio State Univ., Columbus, OH (United States)] [and others

    1996-03-01T23:59:59.000Z

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  9. Construction and startup experience for Milliken FGD Retrofit Project

    SciTech Connect (OSTI)

    Harvilla, J.; Mahlmeister, M. [New York State Electric and Gas Corp., Binghamton, NY (United States); Buchanan, T.; Jackson, C. [Parsons Power Group, Inc., Reading, PA (United States); Watts, J. [USDOE, Pittsburgh Energy Technology Center, PA (United States)

    1996-12-01T23:59:59.000Z

    Under Round 4 of the U.S. Department of Energy`s Clean Coal Technology program, New York State Electric & Gas Corp. (NYSEG), in partnership with Saarbereg-Stebbins Engineering and Manufacturing Company, has retrofitted a formic acid enhanced forced oxidation wet limestone scrubber on Units 1 & 2 at the Milliken Steam Electric Station. Units 1 & 2 are 1950`s vintage Combustion Engineering tangentially fired pulverized coal units which are rated at nominal 150 MW each and operate in balanced draft mode. The FGD system for Unit 2 was placed into operation in January 1995 and the Unit 1 system in June, 1995. The project incorporates several unique aspects including low pH operation, a ceramic tile-lined cocurrent/countercurrent, split module absorber, a wet stack supported on the roof of the FGD building, and closed loop, zero liquid discharge operation producing commercial grade gypsum, and calcium chloride brine. The project objectives include 98% SO{sub 2} removal efficiency while burning high sulfur coal, the production of marketable byproducts to minimize solid waste disposal, zero wastewater discharge and space-saving design. The paper provides a brief overview of the project design, discusses construction and startup issues and presents early operating results. Process capital cost and economics of this design, procure and construct approach are reviewed relative to competing technologies.

  10. Land application uses for dry FGD by-products, Phase 1 report

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

    1993-04-01T23:59:59.000Z

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  11. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  12. Applications and experiences with super duplex stainless steel in wet FGD scrubber systems

    SciTech Connect (OSTI)

    Francis, R.; Byrne, G.; Warburton, G.; Hebdon, S. [Weir Materials Ltd., Manchester (United Kingdom)

    1998-12-31T23:59:59.000Z

    The paper presents the properties of the author`s company`s proprietary super duplex stainless steel. Work is presented showing the development of a more realistic laboratory solution representing typical limestone slurries found in real flue gas desulfurization (FGD) systems. The importance of additions of metal ions such as Fe{sup 3+} and Mn{sup 2+} as well as partially oxidized sulfur species is demonstrated. Results are presented comparing the crevice corrosion resistance of super duplex stainless steel in these slurries with other commonly used wrought and cast stainless steels, for both simulated anthracite and lignite type slurries. Data from loop tests on the erosion resistance of a range of alloys in simulated FGD slurries is presented. The results clearly show the superior resistance of super duplex stainless steel to both crevice corrosion and erosion in FGD slurries. Finally the experiences in UK FGD systems with both cast and wrought super duplex stainless steel are presented.

  13. Seminole Electric FGD study reveals corrosion mechanisms, duct material performance

    SciTech Connect (OSTI)

    Wess, T.J.; Crum, J.R.; Shoemaker, L.E.

    1994-12-01T23:59:59.000Z

    This article describes how once the corrosion rates of the materials used in the construction of scrubbers are known, specifying for longevity becomes an easier task. To properly evaluate the corrosion resistance of the materials used to fabricate the ducts, dampers, structural supports and other elements of a particular system, a testing scheme that systematically exposes material samples to the many environments representing areas of varying corrosivity is ideal. Because the exact composition, pH, and temperature of liquids and vapors in these areas are usually not known, gathering and analyzing samples of these elements is a prudent part of a systems' evaluation. Field testing of this type was conducted at the Seminole Generating Station which consists of two 650-MW coal-fired electric generating units that typically burn western Kentucky and eastern Illinois sub-bituminous coal with a sulfur content up to 3% and a 0.2%--0.3% chloride content. The plant has a typical wet limestone FGD system that sprays a solution of crushed limestone downward in a vertical rubber-lined scrubber module against a rising flue gas flow stream. There are five parallel scrubber modules available and a direct chimney bypass line that is used only during start up or during emergency conditions. Specially-welded test panels containing four different alloys and two weld filler metals were used in the field tests.

  14. Design, maintenance extend FGD system slurry valve life

    SciTech Connect (OSTI)

    LeMay, B. [St. John`s River Power Park, Jacksonville, FL (United States); Willyard, B. [Grand River Dam Authority, Chouteau, OK (United States); Polasek, S. [Lower Colorado River Authority, Austin, TX (United States); Clarkson, C.W. [Clarkson Co., Sparks, NV (United States)

    1995-08-01T23:59:59.000Z

    This article describes how power plants in Florida, Oklahoma and Texas adopted improved maintenance techniques and sought better design criteria to gain greater slurry valve reliability. Slurry valves, a vital part of a flue gas desulfurization (FGD) system, are critical to a power plant`s ability to meet or exceed acid rain emission requirements. The performance and reliability of these valves can significantly affect unit operation and load capacity. For example, slurry valves installed on the suction and discharge ends of scrubber tower pumps are a main point of isolation. When these valves malfunction, the scrubber tower must be shut down. Problems with valves that control the feed system and reaction tank alter slurry pH and density, and also affect unit load. In addition, a single valve that serves dual-pumping systems from the slurry storage tank to the reaction tank can cause a system outage. Because of their key role in system operation, specific maintenance approaches were developed at several power plants to improve slurry valve reliability and run times.

  15. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    SciTech Connect (OSTI)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28T23:59:59.000Z

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  16. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-31T23:59:59.000Z

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

  17. Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Chou, M.I.M.; Rostam-Abadi, M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Hoeft, R. [Illinois Univ., Urbana, IL (United States); Blevins, F.Z. [Allied-Signal, Inc., Morristown, NJ (United States); Achron, F. [Southeast Marketing Chemical Process, Inc. (United States)

    1994-12-31T23:59:59.000Z

    The overall goal of this project is to assess the technical and economic feasibility for producing commercial-grade ammonium sulfate fertilizer from gypsum produced as part of limestone flue gas desulfurization (FGD) processes. This is a cooperative effort among the ISGS, the UIUC, AlliedSignal, SE-ME, Henry Fertilizer, Illinois Power Co. (IP), and Central Illinois Public Services (CIPS). Bench-scale experiments will be conducted to obtain process engineering data for manufacture of ammonium sulfate from FGD-gypsum and to help evaluate technical and economical feasibility of the process. Controlled greenhouse experiments will be conducted at UIUC to evaluate the chemical impact of the produced ammonium sulfate on soil properties. A process flow sheet will be proposed and market demand for the products will be established. An engineering team at IP will provide an independent review of the economics of the process. AlliedSignal will be involved in testing and quality evaluation of ammonium sulfate samples and is interested in an agreement to market the finished product. CIPS will provide technical assistance and samples of FGD-gypsum for the project. In this quarter, a literature study that should give detailed insight into the chemistry, process schemes, and costs of producing ammonium sulfate from gypsum is in progress at the ISGS. Acquisition of a high quality FGD-gypsum sample was completed. Collecting of the other lower grade sample was scheduled to be conducted in December. Characterization of these feed materials is in progress.

  18. Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Chou, M.I.M.; Rostam-Abadi, Ml; Lytle, J.M.; Bruinius, J.A.; Li, Y.C. [Illinois State Geological Survey, Urbana, IL (United States); Hoeft, R. [Illinois Univ., Urbana, IL (United States); Dewey, S. [AlliedSignal-Chemicals (United States); Achorn, F. [Southeast Marketing Chem. Process INc. (SE-ME) (United States)

    1995-12-31T23:59:59.000Z

    Goal is to assess technical and economic feasibility for producing fertilizer-grade ammonium sulfate from gypsum produced in limestone flue gas desulfurization (FGD). This is the 1st year of a 2-year program among Illinois State Geological Survey, University of Illinois (Urbana-Champaign), Allied-Signal, Marketing Chem. Process Inc., Henry Fertilizer, Illinois Power Co., and Central Illinois Public Services. In previous quarter, chemistry and process conditions were reviewed and a reactor system set up and used to conduct laboratory tests. FGD-gypsum from Abbott power plant was used. The scrubber, a Chiyoda Thoroughbred 121 FGD, produced a filter cake (98.36% gypsum and < 0.01% CaSO{sub 3}). Conversion of FGD- gypsum to ammonium sulfate was tested at 60-70{degree}C for 5-6 hr. Yield up to 82% and purity up to 95% were achieved for the ammonium sulfate production. During this quarter, more bench-scale experiments including a mass balance analysis were conducted; a yield up to 83% and up to 99% purity were achieved. A literature survey was completed and a preliminary process flow sheet was developed. Economics of the process is being estimated.

  19. Land application uses of dry FGD by-products. [Quarterly] report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Dick, W.A.; Beeghly, J.H.

    1993-12-31T23:59:59.000Z

    Reclamation of mine-sites with acid overburden requires the use of alkaline amendments and represents a potential high-volume use of alkaline dry flue gas desulfurization (FGD) by products. In a greenhouse study, 25-cm columns of acid mine spoil were amended with two FGD by-products; lime injection multistage burners (LIMB) fly ash or pressurized fluidized bed (PFBC) fly ash at rates of 0, 4, 8, 16, and 32% by weight (0, 40, 80, 160, and 320 tons/acre). Amended spoil was covered with 20 cm of acid topsoil amended with the corresponding FGD by-product to pH 7. Column leachate pH increased with FGD amendment rate while leachate Fe, Mn, and Zn decreased, Leachate Ca, S, and Mg decreased with LIMB amendment rate and increased with PFBC amendment. Leachate concentrations of regulated metals were decreased or unaffected by FGD amendment except for Se which was increased by PFBC. Spoil pH was increased up to 8.9 by PFBC, and up to 9.2 by LIMB amendment. Spoil pH also increased with depth with FGD amendments of 16 and 32%, Yield of fescue was increased by FGD amendment of 4 to 8%. Plant tissue content of most elements was unaffected by FGD amendment rate, and no toxicity symptoms were observed. Plant Ca and Mg were increased by LIMB and PFBC respectively, while plant S, Mn and Sr were decreased. Plant Ca and B was increased by LIMB, and plant Mg and S by PFBC amendment. These results indicate dry FGD by-products are effective in ameliorating acid, spoils and have a low potential for creating adverse environmental impacts.

  20. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31T23:59:59.000Z

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

  1. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe

    2007-05-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  2. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-10-04T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  3. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-07-17T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

  4. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-01-21T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  5. Land application uses for dry FGD by-products. Phase 1, [Annual report], December 1, 1991--November 30, 1992

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. [Ohio State Univ., Columbus, OH (United States); Haefner, R. [Geological Survey, Columbus, OH (United States). Water Resources Div.

    1993-04-01T23:59:59.000Z

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  6. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-31T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

  7. Logging Equipment and Loren Kellogg

    E-Print Network [OSTI]

    and the control is passed on Automatic inhaul starts and the control is transferred again Photo Credit: KollerLogging Equipment and Systems Loren Kellogg Forest Engineering Resources and Management Oregon Equipment and Systems Presentation Outline · Overview of equipment and systems for thinning · Costs

  8. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    SciTech Connect (OSTI)

    Gary Blythe; Jennifer Paradis

    2010-06-30T23:59:59.000Z

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the demonstration early, during a planned unit outage. On October 2, 2009, Unit 3 was taken out of service for a fall outage and the catalyst upstream of Absorber C was removed. This ended the demonstration after approximately 17 months of the planned 24 months of operation. This report discusses reasons for the pressure drop increase and potential measures to mitigate such problems in any future application of this technology. Mercury oxidation and capture measurements were made on Unit 3 four times during the 17-month demonstration. Measurements were performed across the catalyst and Absorber C and 'baseline' measurements were performed across Absorber A or B, which did not have a catalyst upstream. Results are presented in the report from all four sets of measurements during the demonstration period. These results include elemental mercury oxidation across the catalyst, mercury capture across Absorber C downstream of the catalyst, baseline mercury capture across Absorber A or B, and mercury re-emissions across both absorbers in service. Also presented in the report are estimates of the average mercury control performance of the oxidation catalyst technology over the 17-month demonstration period and the resulting mercury control costs.

  9. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-05-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

  10. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-07-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

  11. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-02-22T23:59:59.000Z

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

  12. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    SciTech Connect (OSTI)

    Vivak Malhotra

    2010-01-31T23:59:59.000Z

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  13. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-26T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period January 1, 2002 through March 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE) and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the second full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to pilot unit design and conducting laboratory runs to help select candidate catalysts. This technical progress report provides an update on these two efforts. A Test Plan for the upcoming pilot-scale evaluations was also prepared and submitted to NETL for review and comment. Since this document was already submitted under separate cover, this information is not repeated here.

  14. Control of acid mist emissions from FGD systems

    SciTech Connect (OSTI)

    Dahlin, R S [Southern Research Inst., Birmingham, AL (United States)] [Southern Research Inst., Birmingham, AL (United States); Brown, T D [USDOE Pittsburgh Energy Technology Center, PA (United States)] [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1991-01-01T23:59:59.000Z

    Improved control of acid mist emissions can be achieved by replacing or augmenting the conventional mist eliminators with a wet electrostatic precipitator (WESP). This paper describes a two-phased study performed to determine the degree of control that can be achieved with this approach. Phase I was a study of the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  15. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  16. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

  17. Zevenhoven & Kilpinen SULPHUR 6.1.2004 3-25 3.10 Costs related to FGD

    E-Print Network [OSTI]

    Zevenhoven, Ron

    ;Zevenhoven & Kilpinen SULPHUR 6.1.2004 3-26 3.11 High temperature SO2 capture during fluidised bed combustion One of the great benefits of fluidised bed combustion (FBC, 7 Chapter 2) is the option of in-situ SO2 of any of the above-mentioned FGD processes can be broken down into fixed and variable operation

  18. Zevenhoven & Kilpinen SULPHUR 13.6.2001 3-24 3.10 Costs related to FGD

    E-Print Network [OSTI]

    Laughlin, Robert B.

    combustion One of the great benefits of fluidised bed combustion (FBC, 7 Chapter 2) is the option of in of any of the above-mentioned FGD processes can be broken down into fixed and variable operation & maintenance (O & M) costs and fixed capital charge costs (see e.g. Coulson and Richardson, 1993). For a few

  19. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    SciTech Connect (OSTI)

    Vivak M. Malhotra

    2006-09-30T23:59:59.000Z

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  20. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Richard Rhudy

    2006-06-30T23:59:59.000Z

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

  1. ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION

    E-Print Network [OSTI]

    Karsai, Istvan

    ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION FOR ETSU ORGANIZATIONS Name ID BUC$. ETSU account transfer or a check requested? o ETSU Account

  2. Energy Audit Equipment

    E-Print Network [OSTI]

    Phillips, J.

    2012-01-01T23:59:59.000Z

    The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

  3. High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

  4. HIGEE Mass Transfer

    E-Print Network [OSTI]

    Mohr, R. J.; Fowler, R.

    HIGEE MASS TRANSFER R.J. Mohr and R. Fowler GLITSCH, INC. Dallas, Texas ABSTRACT Distillation, absorption, and gas stripping have traditionally been performed in tall columns utilizing trays or packing. Columns perform satisfactorily... transfer system which utilizes a rotating bed of packing to achieve high efficiency separations, and consequent reduction in size and weight. INTRODUCTION HIGEE is probably one of the most interesting developments in mass transfer equipment made...

  5. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled: Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    SciTech Connect (OSTI)

    none,

    1998-06-30T23:59:59.000Z

    Control of S02 emission from coal combustion requires desulfurization of coal before its combustion to produce coal refuse. Alternatively, gaseous emissions from coal combustion may be scrubbed to yield flue gas desulfurization (FGD) by-products that include calcium sulfite (CaSO3?0.5H2O or simply CaS03). Acid production in coal refuse due to pyrite oxidation and disposal of large amounts of FGD can cause environmental degradation. Addition of CaS03 and CaS03-containing FGD to coal refuse may reduce the amounts of oxygen and ferric ion available to oxidize pyrite because the sulfite moiety in CaS03 is a strong reductant and thus may mitigate acid production in coal refuse. In Chapter 1, it was shown that CaS03 efficiently scavenged dissolved oxygen and ferric ion in water under the conditions commonly encountered in a coal refuse disposal environment. In the presence ofCaS03, the concentration of dissolved oxygen in water exposed to the atmosphere declined to below 0.01 mg L"1 at pH <8.0. In Chapter 2, it was demonstrated that CaS03 prevented a pH drop in coal refuse slurry when 0.2 gCaS03 was added to a 2% fresh coal refuse slurry every three days. Calcium sulfite also inhibited acid leaching from fresh coal refuse in bench-scale columns under controlled conditions. During the initial 13 weeks of leaching, the total amounts of titratable acidity, soluble H\\ Fe, and Al from CaS03-treated refuse (6.4 gin 50 g fresh coal refuse) were only 26%,10%, 32%, and 39% of those of the control columns, respectively. A combination of CaS03 with CaC03 or fly ash enhanced the inhibitory effect of CaS03 on acid leaching. Calcium sulfite-containing FGD which combined CaS03, CaC03, fly ash, and gypsum showed a much stronger inhibitory effect on acid leaching than CaS03 alone. This combination effect was partially due to the positive interaction of CaS03 with CaC03 and fly ash on inhibition of acid leaching. In Chapter 3, CaS03-containing FGD was found to inhibit acid leaching from both fresh and aged coal refuse in large scale columns under simulated field conditions. During 39 weeks of leaching, the reduction of leachate acidity and Fe concentration and the increase ofleachate pH were significant (p <0.05) for the 22% FGD treatment with a linear response to increasing FGD rates (0%, 5.5%, 11%, and 22%). I conclude that CaS03 and CaS03-containing FGD have the ability to inhibit acid production in coal refuse and the inhibitory effect shown in this experiment is likely to occur under field conditions. Thus, the research results present a potential new method for mitigation of acid production in coal refuse and another beneficial utilization of FGD by-products.

  6. Sector 1 - Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS detector pool has a number of additional detectors Furnaces Powder diffraction furnace Infrared furnace Plate furnace Mechanical Testing Equipment The following mechanical...

  7. Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

    SciTech Connect (OSTI)

    V. M. Malhotra; Y. P. Chugh

    2003-08-31T23:59:59.000Z

    The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our moisture sensitivity test suggested that our materials were non-water wettable and did not disintegrate on submerging the product in water for at least two months. Countertop polishing techniques were also established.

  8. Production of ammonium sulfate fertilizer from FGD waste liquors. Quarterly technical report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Randolph, A.D.; Mukhopadhyay, S.; Unrau, E.

    1994-12-31T23:59:59.000Z

    During this quarterly period, an experimental investigation was performed to study the precipitation kinetics and hydrolysis characteristics of calcium imido disulfonate crystals (CaADS). The CaADS crystals were precipitated by a metathetical reaction of lime, supplied by Dravo Lime Co., with flue gas desulfurization (FGD) scrubber waste liquor. Before approaching for the continuous Double Draw-Off (DDO) crystallization studies, the influence of a Dravo lime slurry on the precipitation characteristics of N-S compounds will be established. A series of N-S compound batch crystallization studies were completed in a wide range of pH (7.0--9.0), and the influence of pH on the amount of lime required, as well as the amount of precipitate obtained, was investigated. Although the amount of precipitate increased with increase in solution pH, the safe or optimum pH for the precipitation of CaADS lies in the vicinity of 8.2 to 8.3. For studying the crystallization characteristics of CaADS crystals, a bench scale 7.0 liter DDO crystallizer was built. DDO crystallizer is found to be superior compared to Mixed Suspension Mixed Product Removal (MSMPR) crystallizer. The precipitated crystals were analyzed for elemental composition by chemical analysis. The crystals were also examined under optical microscope for their morphological features. The present studies confirmed our prediction that N-S compounds in the waste liquor can be precipitated by a reaction with lime slurry. The precipitated crystals were mostly calcium imido disulfonate.

  9. field_equipment.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FIELD EQUIPMENT INVENTORY Trucks * Five vacpressure trucks, 60-90 bbl, up to 5 bpm at 5,000 lb. * Waterfi re truck, 110 bbl * Two dump trucks: 5-yard and 12-yard * Belly dump...

  10. Energy spectra and dissipation Mikel Indurain, Equipe Planto

    E-Print Network [OSTI]

    Madeleine, Jean-Baptiste

    Energy spectra and dissipation Mikel Indurain, Equipe Planéto LMD LMDZ.EARTH LMDZ.GENERIC LMDZ.MARS #12;Dissipation : introduction Energy transfer from large scales to small scales. Problem : energy : introduction Energy transfer from large scales to small scales. Problem : energy accumulation if dissipative

  11. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11T23:59:59.000Z

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  12. Early Equipment Management

    E-Print Network [OSTI]

    Schlie, Michelle

    2007-05-18T23:59:59.000Z

    the quality, flexibility, reliability, safety, and life-time cost of equipment. This paper will give an introduction to the basics of TPM, discuss the major parts of EEM, and evaluate the lessons learned from the team’s first effort to execute the structured...

  13. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  14. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation EquipmentHydrogen

  15. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation EquipmentHydrogenPhilips

  16. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price0 - 194Equipment

  17. Maersk Line Equipment guide

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk Line Equipment

  18. Electrical Equipment Inventory and Inspection Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Equipment Inventory and Inspection Information APS Non-NRTL Electrical Equipment Inventory Spreadsheet ANL Recognized Reputable Electrical Equipment Manufacturer List as...

  19. Refrigerated Equipment Decontamination Checklist If this is not possible, or if the equipment is beyond its useful life, then it must be disposed via the University appointed supplier for the disposal of WEEE

    E-Print Network [OSTI]

    Guo, Zaoyang

    Refrigerated Equipment Decontamination Checklist If this is not possible, or if the equipment & decontaminated prior to transfer or disposal Upon decomissioning & decontamination a 'Safe for disposal' notice. Equipment has been completely decontaminated and presents no chemical/biological/radiological or other

  20. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  1. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  2. Information technology equipment cooling system

    SciTech Connect (OSTI)

    Schultz, Mark D.

    2014-06-10T23:59:59.000Z

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  3. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  4. Design Criteria for Bagless Transfer System (BTS) Packaging System

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-04-26T23:59:59.000Z

    This document provides the criteria for the design and installation of a Bagless Transfer System (BTS); Blend, Sieve and Balance Equipment; and Supercritical Fluid Extraction System (SFE). The project consists of 3 major modules: (1) Bagless Transfer System (BTS) Module; (2) Blend, Sieve and Balance Equipment; and (3) Supercritical Fluid Extraction (SFE) Module.

  5. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN AND REFRIGERATION EQUIPMENT By Charles Butler (Section 1), Joseph W. Slavin (Sections 1, 2, and 3), Max Patashnik

  6. NREL: Technology Transfer - NREL's ESIF Offers Equipment Testing on Grand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport Available forVoucher PilotFuture

  7. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn [Director, Sponsored Programs] [Director, Sponsored Programs

    2014-05-16T23:59:59.000Z

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  8. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel 

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01T23:59:59.000Z

    With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer ...

  9. EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type

    E-Print Network [OSTI]

    EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type Size Category (Btu/h) Size.ahridirectory.org/ceedirectory/pages/ac/cee/defaultSearch.aspx 12,000 Btu/h = 1 ton Less than 65,000 Btu/h Air Conditioners, Air Cooled Air Conditioners, Water completed by the California Energy Commission at a rate of 12,000 Btu/h per ton of air conditioning Source

  10. Commonwealth's Master Equipment Leasing Program

    Broader source: Energy.gov [DOE]

    The [http://www.trs.virginia.gov/debt/MELP%20Guides.aspx Master Equipment Leasing Program] (MELP) ensures that all Commonwealth agencies, authorities and institutions obtain consistent and...

  11. Wind Measurement Equipment: Registration (Nebraska)

    Broader source: Energy.gov [DOE]

    All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

  12. VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of a license/permit for each piece of equipment, an Operator Equipment Qualification Record (DA Form 348EM 385-1-1 XX Sep 13 i Section 18 VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents Section: Page...................................................................18-16 18.G Machinery And Mechanized Equipment.........................18-16 18.H Drilling Equipment

  13. Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 6, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The project`s objective is to demonstrate innovative applications of technology for cost reduction for the Chiyoda Thoroughbred-121 (CT-121) process. The CT-121 process is a wet FGD process that removes SO{sub 2}, can achieve simultaneous particulate control, and can produce a salable by-product gypsum thereby reducing or even eliminating solid waste disposal problems. Figure 1 shows a flow schematic of the process. CT-121 removes SO{sub 2} and particulate matter in a unique limestone-based scrubber called the Jet Bubbling Reactor (JBR). IN the JBR, flue gas bubbles beneath the slurry, SO{sub 2} is absorbed, and particulate matter is removed from the gas. The agitator circulates limestone slurry to ensure that fresh reactant is always available in the bubbling or froth zone sot that SO{sub 2} removal can proceed at a rapid rate. Air is introduced into the bottom of the JBR to oxidize the absorbed SO{sub 2} to sulfate, and limestone is added continuously to neutralize the acid slurry and form gypsum. The JBR is designed to allow ample time for complete oxidation of the SO{sub 2}, for complete reaction of the limestone, and for growth of large gypsum crystals. The gypsum slurry is continuously withdrawn from the JBR and is to be dewatered in a gypsum stack. The stacking technique involves filing a diked area with gypsum slurry, allowing the gypsum solids to settle, and removing clear liquid from the top of the stack for recycle back to the process.

  14. Summary of Construction Equipment Tests and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Equipment Tests and Activities Bruce Glagola - Sept 2013 Construction Equipment Tests A series of tests were conducted by the APS Construction Vibration...

  15. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  16. Materials Selection Considerations for Thermal Process Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

  17. Corrosion indicating equipment UK-1

    SciTech Connect (OSTI)

    Gerasimenko, Y.S.; Abrosimov, V.S.; Rudenko, A.K.; Sorokin, V.I.

    1986-11-01T23:59:59.000Z

    UK-1, developed and introduced into oil industry corrosion-indicating equipment, has been developed on the basis of the principle of measurements of polarization resistance. It is designed for determining the corrosion activity of effluents of oil fields. The technical data and design of the equipment is discussed. The investigations were carried out on 08kp steel in simulation effluents of oil fields in the presence of corrosion inhibitors used in the oil industry at various temperatures (25-50 C) and liquid flow rate.

  18. Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility: Building 382 Rev. 1, 021100 Training: (1) ESH114 LockoutTagout ASD125 APS LOTO ESH371 Electrical Safety - General ESH195 PPE ESH141 Hand and Power Tools (2) ESH707...

  19. Covered Product Category: Imaging Equipment

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including imaging equipment, which is covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. Heating and Cooling Equipment Selection

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

  1. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  2. Assessment of HYGAS mechanical equipment

    SciTech Connect (OSTI)

    Albrecht, P.R.; Kramberger, F.E.; Recupero, R.M.; Verden, M.L.; Rees, K.

    1980-10-01T23:59:59.000Z

    The HYGAS process, which converts coal to substitute natural gas, is being developed by the Institute of Gas Technology (IGT) using an 80 ton per day pilot plant located in Chicago, Illinois. Plant design started in 1967 and testing began in October 1971. Since then, 18,000 tons of both Eastern and Western coal have been gasified. Assessment of the mechanical equipment was made by Mechanical Technology Incorporated (MTI) in collaboration with a DOE on-site representative and a representative from IGT, the operating contractor. Data for the assessment were obtained by reviewing all available maintenance records, by interviewing key personnel from maintenance and operations, and by observing repairs and maintenance procedures where possible. While operating the plant, a variety of equipment problems were addressed, many of which are generic to HYGAS as well as other coal conversion processes. Some problems were solved completely while others were solved to suit the limited needs of the pilot plant. Accordingly, the emphasis of this study is on the degree of success in dealing with equipment failures, the unresolved problems and the implication to future coal conversion plants.

  3. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01T23:59:59.000Z

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  4. Canister Transfer System Description Document

    SciTech Connect (OSTI)

    NONE

    2000-10-12T23:59:59.000Z

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  5. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-23T23:59:59.000Z

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  6. Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  7. Machinery and Equipment Expensing Deduction (Kansas)

    Broader source: Energy.gov [DOE]

    Machinery and Equipment Expensing Deduction allows Kansas taxpayers to claim an expense deduction for business machinery and equipment, placed in service in Kansas during the tax year. The one-time...

  8. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    Asset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have the refrigerant recovered in accordance with EPA's requirements for servicing. However, equipment that typically

  9. Operations and Maintenance for Major Equipment Types

    Broader source: Energy.gov [DOE]

    Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

  10. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation Equipment Listing

  11. Equipment Loans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation Equipment ListingLoans

  12. Equipment Pool | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation Equipment

  13. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMissionEquipment

  14. MPC Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love YouTokamak |MPC Equipment The MPC

  15. Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference

    SciTech Connect (OSTI)

    None

    2002-06-01T23:59:59.000Z

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  16. Proceedings: Substation Equipment Diagnostics Conference IX

    SciTech Connect (OSTI)

    None

    2001-09-01T23:59:59.000Z

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  17. Changing nature of equipment and parts qualification

    SciTech Connect (OSTI)

    Bucci, R.M.

    1988-01-01T23:59:59.000Z

    Ideally, the original supplier of a piece of nuclear safety-related equipment has performed a qualification program and will continue to support that equipment throughout the lifetime of the nuclear power plants in which in equipment is installed. The supplier's nuclear quality assurance program will be maintained and he will continue to offer all necessary replacement parts. These parts will be identical to the original parts, certified to the original purchase order requirements, and the parts will be offered at competitive prices. Due to the changing nature of the nuclear plant equipment market, however, one or more of those ideal features are frequently unavailable when safety-related replacement equipment or parts are required. Thus, the process of equipment and parts qualification has had to adjust in order to ensure obtaining qualified replacements when needed. This paper presents some new directions taken in the qualification of replacement equipment and parts to meet changes in the marketplace.

  18. Sandia National Laboratories: Earth Science: Facilities and Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementEarth ScienceEarth Science: Facilities and Equipment Earth Science: Facilities and Equipment Geoscience Facilities and Equipment High-pressure thermalmechanical...

  19. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  20. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  1. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  2. Reduce Radiation Losses from Heating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

  3. Electrical Equipment Inspection Program Electrical Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    recognized hazards and meets code requirements Labeled. A nationally recognized testing laboratory (NRTL equipment as listed unless it is also labeled. Nationally recognized testing laboratory (NRTL

  4. assemblies equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capital equipment manufacturing plant : component level and assembly level inventory management MIT - DSpace Summary: Semiconductor capital equipment is manufactured in...

  5. University of California Policy Personal Protective Equipment

    E-Print Network [OSTI]

    Aluwihare, Lihini

    /technical area is a location where the use or storage of hazardous materials occurs or where equipment may hazardous materials, adjacent to or in proximity to a hazard or in areas where there is a reasonable risk performs work functions with hazardous materials or equipment in a laboratory/technical area. A "worker

  6. Universal null DTE (data terminal equipment)

    DOE Patents [OSTI]

    George, M.; Pierson, L.G.; Wilkins, M.E.

    1987-11-09T23:59:59.000Z

    A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

  7. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14T23:59:59.000Z

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  8. Generic seismic ruggedness of power plant equipment

    SciTech Connect (OSTI)

    Merz, K.L. (Anco Engineers, Inc., Culver City, CA (United States))

    1991-08-01T23:59:59.000Z

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  9. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  10. Solar and Wind Energy Equipment Exemption

    Broader source: Energy.gov [DOE]

    In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then...

  11. Heavy Mobile Equipment Mechanic (One Mechanic Shop)

    Broader source: Energy.gov [DOE]

    The position is a Heavy Mobile Equipment Mechanic (One Mechanic Shop) located in Kent, Washington, and will be responsible for the safe and efficient operation of a field garage performing...

  12. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  13. Clark Public Utilities- Solar Energy Equipment Loan

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and...

  14. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06T23:59:59.000Z

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  15. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  16. Biomass Equipment and Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

  17. Tax Credit for Renewable Energy Equipment Manufacturers

    Broader source: Energy.gov [DOE]

    The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of HB 3201. The ...

  18. Property Tax Assessment for Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    HB 2403 of 2014 clarified that depreciation should be determined using straight-line depreciation over the useful life of the equipment. The taxable original cost equals the original cost of the...

  19. Equipment Energy Models Using Spreadsheet Programs

    E-Print Network [OSTI]

    Gilbert, J. S.

    EQUIPMENT ENERGY MODELS USING SPREADSHEET PROGRAMS Joel S. Gilbert, Dames & Moore, Bethesda, Maryland Engineering calculations on PC's are undergoing a revolution with the advent of spreadsheet programs. The author has found that virtually all...

  20. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  1. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect (OSTI)

    Becker, D.L.

    1998-09-02T23:59:59.000Z

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  2. Dairy Manure Handling Systems and Equipment.

    E-Print Network [OSTI]

    Sweeten, John M.

    1983-01-01T23:59:59.000Z

    The Texas A&M University System ? Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station 8?1446 DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT John M. Sweeten, Ph....D., P.E.* A manure management system for a modern dairy should be capable of controlling solid or liquid manure and wastewater from the open corrals (manure and rainfall runoff), free stall barn , feeding barn , holding lot or holding shed , milking...

  3. Experience gained from equipment qualification inspections

    SciTech Connect (OSTI)

    Jacobus, M.J.

    1986-01-01T23:59:59.000Z

    This paper describes issues which have been identified during equipment qualification inspections. Generic qualification information is discussed first, such as qualification bases, utility/supplier interfaces, file auditability, and generic environmental qualification. Next, technical strategies with specific examples are discussed. Issues covered include functional performance requirements, post accident qualification, similarity, installation and interfaces, maintenance, aging, and testing. Finally, additions and deletions to equipment qualification master lists and environmental enveloping are discussed.

  4. Thermal analysis of the failed equipment storage vault system

    SciTech Connect (OSTI)

    Jerrell, J.; Lee, S.Y.; Shadday, A.

    1995-07-01T23:59:59.000Z

    A storage facility for failed glass melters is required for radioactive operation of the Defense Waste Processing Facility (DWPF). It is currently proposed that the failed melters be stored in the Failed Equipment Storage Vaults (FESV`s) in S area. The FESV`s are underground reinforced concrete structures constructed in pairs, with adjacent vaults sharing a common wall. A failed melter is to be placed in a steel Melter Storage Box (MSB), sealed, and lowered into the vault. A concrete lid is then placed over the top of the FESV. Two melters will be placed within the FESV/MSB system, separated by the common wall. There is no forced ventilation within the vault so that the melter is passively cooled. Temperature profiles in the Failed Equipment Storage Vault Structures have been generated using the FLOW3D software to model heat conduction and convection within the FESV/MSB system. Due to complexities in modeling radiation with FLOW3D, P/THERMAL software has been used to model radiation using the conduction/convection temperature results from FLOW3D. The final conjugate model includes heat transfer by conduction, convection, and radiation to predict steady-state temperatures. Also, the FLOW3D software has been validated as required by the technical task request.

  5. Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices

    E-Print Network [OSTI]

    LBNL-45917 Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report..............................................................................................46 #12;#12;1 Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto and network equipment, there has been no recent study that estimates in detail how much electricity

  6. michael smith ornlradioactive beams: equipment & techniques recoil separators

    E-Print Network [OSTI]

    michael smith ornlradioactive beams: equipment & techniques recoil separators approach! · directly Smith, Rolfs, Barnes NIMA306 (1991) 233 #12;michael smith ornlradioactive beams: equipment & techniques;michael smith ornlradioactive beams: equipment & techniques recoil separators proof of concept with 12C

  7. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  8. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  9. Abatement of Air Pollution: Air Pollution Control Equipment and...

    Broader source: Energy.gov (indexed) [DOE]

    These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown,...

  10. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Energy Savers [EERE]

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  11. advanced electronic equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    common equipment through predetermined global ... Chouinard, Natalie, 1979- 2009-01-01 85 Logging Equipment and Loren Kellogg Renewable Energy Websites Summary: and the control is...

  12. Southwest Gas Corporation- Commercial Energy Efficient Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water...

  13. Southwest Gas Corporation- Commercial High-Efficiency Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Arizona who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless...

  14. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  15. Master equipment list -- Phase 1. Revision 1

    SciTech Connect (OSTI)

    Jech, J.B.

    1995-04-28T23:59:59.000Z

    The purpose of this document is to define the system requirements for the Master Equipment List (MEL) Phase 1 project. The intended audience for this document includes Data Automation Engineering (DAE), Configuration Management Improvement and Control Engineering (CMI and CE), Data Administration Council (DAC), and Tank Waste Remedial System (TWRS) personnel. The intent of Phase 1 is to develop a user-friendly system to support the immediate needs of the TWRS labeling program. Phase 1 will provide CMI and CE the ability to administrate, distribute, and maintain key information generated by the labeling program. CMI and CE is assigning new Equipment Identification Numbers (EINs) to selected equipment in Tank Farms per the TWRS Data Standard ``Tank Farm Equipment Identification Number``. The MEL Phase 1 system will be a multi-user system available through the HLAN network. It will provide basic functions such as view, query, and report, edit, data entry, password access control, administration and change control. The scope of Phase 1 data will encompass all Tank Farm Equipment identified by the labeling program. The data will consist of fields from the labeling program`s working database, relational key references and pointers, safety class information, and field verification data.

  16. Transferring Data at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

  17. Security Equipment and Systems Certification Program (SESCP)

    SciTech Connect (OSTI)

    Steele, B.J. [Sandia National Labs., Albuquerque, NM (United States); Papier, I.I. [Underwriters Labs., Inc., Northbrook, IL (United States)

    1996-06-20T23:59:59.000Z

    Sandia National Laboratories (SNL) and Underwriters Laboratories, Inc., (UL) have jointly established the Security Equipment and Systems Certification Program (SESCP). The goal of this program is to enhance industrial and national security by providing a nationally recognized method for making informed selection and use decisions when buying security equipment and systems. The SESCP will provide a coordinated structure for private and governmental security standardization review. Members will participate in meetings to identify security problems, develop ad-hoc subcommittees (as needed) to address these identified problems, and to maintain a communications network that encourages a meaningful exchange of ideas. This program will enhance national security by providing improved security equipment and security systems based on consistent, reliable standards and certification programs.

  18. dieSel/heAvy equipMent College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    907-455-2809 www.ctc.uaf.edu/programs/diesel/ certificate Minimum Requirements for Certificate: 36 credits The diesel and heavy equipment mechanics program offers the student training in the maintenance and equipment overhauls. Students work on large truck fuel, electrical and air systems, diesel engines

  19. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect (OSTI)

    NONE

    1990-04-13T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  20. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    E-Print Network [OSTI]

    Shehabi, Arman

    2009-01-01T23:59:59.000Z

    by potential equipment reliability concerns associated withblack carbon; equipment reliability; energy efficiency 1.potential equipment reliability concerns associated with

  1. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    by potential equipment reliability concerns associated withblack carbon; equipment reliability; energy efficiency 1.potential equipment reliability concerns associated with

  2. On Storage Operators LAMA -Equipe de Logique

    E-Print Network [OSTI]

    Nour, Karim

    On Storage Operators Karim NOUR LAMA - Equipe de Logique Universit´e de Savoie 73376 Le Bourget du Lac e-mail nour@univ-savoie.fr Abstract In 1990 Krivine (1990b) introduced the notion of storage shown that there is a very simple type in the AF2 type system for storage operators using Godel

  3. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  4. Right-Size Heating and Cooling Equipment

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment size for heating and cooling to improve comfort and reduce costs, maintenance, and energy use.

  5. Right-Sizing Laboratory Equipment Loads

    SciTech Connect (OSTI)

    Frenze, David; Greenberg, Steve; Mathew, Paul; Sartor, Dale; Starr, William

    2005-11-29T23:59:59.000Z

    Laboratory equipment such as autoclaves, glass washers, refrigerators, and computers account for a significant portion of the energy use in laboratories. However, because of the general lack of measured equipment load data for laboratories, designers often use estimates based on 'nameplate' rated data, or design assumptions from prior projects. Consequently, peak equipment loads are frequently overestimated. This results in oversized HVAC systems, increased initial construction costs, and increased energy use due to inefficiencies at low part-load operation. This best-practice guide first presents the problem of over-sizing in typical practice, and then describes how best-practice strategies obtain better estimates of equipment loads and right-size HVAC systems, saving initial construction costs as well as life-cycle energy costs. This guide is one in a series created by the Laboratories for the 21st Century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  6. An Approach to Evaluating Equipment Efficiency Policies 

    E-Print Network [OSTI]

    Newsom, D. E.; Evans, A. R.

    1980-01-01T23:59:59.000Z

    of several types of industr~al equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy effic~ency standards. An approach to the evaluation of these and related policy options is under development. Th~ approach...

  7. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 3 JUNE 1974 NOTE: Discussions of closed problems COMPOSITION EXPERIMENT ZERO OFFSET . . . . . . . . . . . . . 3.6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA. 3.7 APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT NOISY DATA

  8. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 18 SEPTEMBER 1973 NOTE: Discussions of closed-14 4-18 4-19 ZERO OFFSET. . . · . . . . . . . · . . . . . . . 4-20 4. 6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA 4. ? APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT

  9. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 1 DECEMBER 1973 NOTE: Discussions of closed problems. · · · . · · . · · . · . . · . . CLOSED 4.6 APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA · . · CLOSED 4.7 APOLLO 15 ALSEP COLD CATHODE ION GAUGE EXPERIMENT NOISY DATA AND INTERMITTENT AUTOMATIC ZERO

  10. APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO PROGRAM LUNAR SURFACE EQUIPMENT STATUS 1 MARCH 1974 NOTE: Discussions of closed problems. . . . . . . . . . · . . . APOLLO 14 ALSEP COLD CATHODE ION GAUGE EXPERIMENT INTERMITTENT SCIENCE DATA · . APOLLO 15 ALSEP COLD . . . . 0 . . . . . APOLLO 15 LUNAR SURFACE MAGNETOMETER LOSS OF SCIENTIFIC AND ENGINEERING DATA. APOLLO 14

  11. Equipment Policy for Federal Sponsored Effective Date

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Property Manager I. Background Division of Research Florida Atlantic University is required to comply. Equipment shall be defined as an article of nonexpendable tangible personal property. Florida Atlantic and a useful life of more than one year. III. General Statement Research Accounting and Property Management

  12. Electrical Equipment Replacement: Energy Efficiency versus System Compatibility

    E-Print Network [OSTI]

    Massey, G. W.

    2005-01-01T23:59:59.000Z

    upgrading electrical equipment to energy efficient models, including conductor sizing, overcurrent protective devices, grounding, and harmonics. The pages that follow provide guidance in the decision-making process when replacing electrical equipment... equipment. Several areas of compatibility must be addressed for equipment to work properly. Critical areas of concern are conductor sizing, overcurrent protection devices, grounding, and harmonics. Conductor Sizing Conductors are sized...

  13. THE GAME, FIELD, PLAYERS AND EQUIPMENT General Rules

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    metal cleats are permitted. (See illegal player equipment) Game and Player Equipment (Illegal) 1. A player wearing illegal equipment shall not be permitted to play. This applies to any equipment, which be declared illegal include: A. Headgear containing any hard, unyielding, or stiff material, including billed

  14. Heat exchanger for power generation equipment

    DOE Patents [OSTI]

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14T23:59:59.000Z

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  15. West Valley transfer cart control system design description

    SciTech Connect (OSTI)

    Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

    1993-01-01T23:59:59.000Z

    Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

  16. Importance of energy efficiency in office equipment

    SciTech Connect (OSTI)

    Blatt, M.H.

    1995-12-01T23:59:59.000Z

    Energy-Efficient Office Technology 1994: An International Seminar has been organized and funded by the Office Technology Efficiency Consortium, a group of utilities, government agencies, and other energy efficiency advocates that has been aggressively championing the need for more efficient computers, displays, printers, faxes, and copiers. The Consortium, organized in late 1992, currently consists of 10 cofunders and numerous other participants. The cofunders are: The Electric Power Research Institute, New York State Energy Research and Development Authority, Consolidated Edison Company of New York, the Swedish National Board for Industrial and Technical Development (NUTEK), Ontario Hydro, Pacific Gas and Electric Company, U.S. Department of Energy, U.S. Environmental Protection Agency, and the Wisconsin Center for Demand-Side Research. The Consortium has been striving to achieve multiple objectives. These objectives are to: (1) Improve office technology user energy efficiency end operating cost (2) Improve end-use equipment`s power quality characteristics (3) Increase equipment immunity to power line disturbances (4) Avoid the need for wiring overloads and upgrades (5) Reduce utility`s peak demand (6) Improve utility load factor. The growth in electricity use in the United States and the need for additional utility capacity has been driven to a great extent by the U.S. shift to a service economy and the coincident increase in the use of office equipment in these service establishments. The initial efforts of the Consortium, which consisted of the cofunders, included holding a workshop in June 1992 to heighten awareness of the importance of the need for more efficient office equipment. The workshop was documented in {open_quotes}Proceedings: Energy-Efficient Office Technologies,{close_quotes} TR-101945, in December 1992.

  17. Indoor Pollutants Emitted by Electronic Office Equipment

    SciTech Connect (OSTI)

    Maddalena, Randy L.; Destaillats, Hugo; Russell, Marion L.; Hodgson, Alfred T.; McKone, Thomas E.

    2008-07-01T23:59:59.000Z

    The last few decades have seen major changes in how people collect and process information at work and in their homes. More people are spending significant amounts of time in close proximity to computers, video display units, printers, fax machines and photocopiers. At the same time, efforts to improve energy efficiency in buildings by reducing leaks in building envelopes are resulting in tighter (i.e., less ventilated) indoor environments. Therefore, it is critical to understand pollutant emission rates for office equipment because even low emissions in areas that are under-ventilated or where individuals are in close proximity to the pollutant source can result in important indoor exposures. We reviewed existing literature reports on pollutant emission by office equipment, and measured emission factors of equipment with significant market share in California. We determined emission factors for a range of chemical classes including volatile and semivolatile organic compounds (VOCs and SVOCs), ozone and particulates. The measured SVOCs include phthalate esters, brominated and organophosphate flame retardants and polycyclic aromatic hydrocarbons. Measurements were carried out in large and small exposure chambers for several different categories of office equipment. Screening experiments using specific duty cycles in a large test chamber ({approx}20 m{sup 3}) allowed for the assessment of emissions for a range of pollutants. Results from the screening experiments identified pollutants and conditions that were relevant for each category of office equipment. In the second phase of the study, we used a smaller test chamber ({approx}1 m{sup 3}) to measure pollutant specific emission factors for individual devices and explored the influence of a range of environmental and operational factors on emission rates. The measured emission factors provide a data set for estimating indoor pollutant concentrations and for exploring the importance of user proximity when estimating exposure concentrations.

  18. Viewing device for electron-beam equipment

    SciTech Connect (OSTI)

    Nasyrov, R.S.

    1985-06-01T23:59:59.000Z

    Viewing devices are used to observe melting, welding, and so on in vacuum systems, an it is necessary to protect the windows from droplets and vapor. A viewing device for electron-beam equipment is described in which the viewing tube and mounting flange are made as a tubular ball joint enclosed in a steel bellows, which render the viewing device flexible. Bending the viewing tube in the intervals between observations protects the viewing window from sputtering and from drops of molten metal.

  19. A lessee's guide to leasing industrial equipment

    E-Print Network [OSTI]

    Johnson, Jones Eugene

    1959-01-01T23:59:59.000Z

    is included in the agree- ment, the lessee is treading on dangerous ground, The Internal Reve- nue Service will examine such agreements closely and may decide the original transaction was a sale and not a lease. Regardless, whether the lessee actually...A LESSEE'S GUIDE TO LEASING INDUSTRIAL EQUIPMENT A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requirements for the degree of Master of Business Administration...

  20. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12T23:59:59.000Z

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  1. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26T23:59:59.000Z

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  2. An upgraded heat transfer fluid eliminates odors and leaks

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    At Morton, persistent leakage of an aromatics-based heat transfer fluid left its mark--a black, oxidized residue at flange and valve locations. By switching to a high-purity fluid from a paraffinic hydrocarbon base stock, the firm eliminated odors and sticky residue, and improved heat transfer. After four years of operation with the paraffinic heat transfer fluid, Morton continues to have no odor problems and virtually no flange or packing leakage. As an added bonus, the heat transfer coefficient of the new fluid allows Morton to operate the systems 10--15 F cooler than when the company used the traditional, aromatic fluid. This has cut fuel use and reduced the potential for thermal damage to the heat transfer fluid, process fluid and process equipment.

  3. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01T23:59:59.000Z

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  4. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  5. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  6. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  7. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-11-04T23:59:59.000Z

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology (16 second flow cone value) from 0.25 cubic feet to 4.3 cubic feet. (Ten 0.43 cubic batches were produced because full-scale equipment was not available for the Tier 1A test.); (5) Demonstrating continuous gravity filling of the ADMP mock up test form; (6) Demonstrating continuous gravity filling of 1 inch and 2 inch schedule 40 pipe; and (7) Demonstrating filling of 1 inch and 2 inch schedule 40 pipe from the bottom up by discharging through a tube inserted into the pipes. The Tier 1A mock-up test focused on the ADMP and pipes at least one inch in diameter. The ADMP which is located in center riser of Tank 18-F is a concern because the column for this long-shaft (55 ft) pump is unique and modification to the pump prior to placing it in service limited the flow path options for filling by creating a single flow path for filling and venting the ADMP support column. The large size, vertical orientation, and complicated flow path in the ADMP warrants a detailed description of this piece of ancillary equipment.

  8. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-12-15T23:59:59.000Z

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.

  9. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Broader source: Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  10. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credit

    Broader source: Energy.gov [DOE]

    This is a one-time credit from county property taxes on residential structures that use solar and geothermal energy equipment for heating and cooling and solar energy equipment for water heating...

  11. Training Room Equipment Instructions Projector and TV Display

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

  12. Property Tax Exemption for Machinery, Equipment, Materials, and Supplies (Kansas)

    Broader source: Energy.gov [DOE]

    The Property Tax Exemption for Machinery, Equipment, Materials, and Supplies exists for low-dollar items of machinery, equipment, materials and supplies used for business purposes, or in activities...

  13. New web page lists excess equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New web page lists excess equipment If you need a piece of equipment or office furniture, you can now go online to see if there's something at the Ames Laboratory warehouse that...

  14. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

  15. Reducing variability in equipment availability at Intel using systems optimization

    E-Print Network [OSTI]

    Kwong, William W. M

    2004-01-01T23:59:59.000Z

    Equipment management is an important driver behind operational efficiency, since capital equipment makes up about 40% of the average semiconductor manufacturer's total assets. The main goal of this project is to reduce ...

  16. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  17. Home and Farm Security Machinery and Equipment Identification. 

    E-Print Network [OSTI]

    Nelson, Gary S.

    1982-01-01T23:59:59.000Z

    73 Fibme and Farm Security -m Machinery and Equipment identification Home and Farm Security chinery and Equipment Identification *Gary S. Nelson is no longer just an urban problem. d burglaries in rural communities have to an alarming...

  18. Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1986-01-01T23:59:59.000Z

    A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence...

  19. An Approach to Evaluating Equipment Efficiency Policies

    E-Print Network [OSTI]

    Newsom, D. E.; Evans, A. R.

    1980-01-01T23:59:59.000Z

    AN APPROACH TO EVALUATING EQUIPMENT EFFICIENCY POLICIES Donald E. Newsom, Ph.D. and Allan R. Evans, Ph.D., P.E. Argonne National Laboratory, Argonne, Illinois ABSTRACT The National Energy Conservation Policy Act of 1978 authorized studies... odology to be used in performing the studies. i In response to the requirements of NECPA, 4r gonne National Laboratory has been engaged in t~e development of an approach to the evaluation of!pos i sible governmental policy options that would en~our- I...

  20. Transportation Equipment (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003ToolsearchTransportation Equipment (2010 MECS)

  1. Smart Buildings Equipment Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready, Set,Buildings Equipment Initiative Smart

  2. Zhongneng Windpower Equipments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang SwisselectronicXianEquipments Jump to: navigation,

  3. Appliances and Commercial Equipment Standards: Guidance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance and Equipment Standards Fact

  4. Equipment-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation100 tonEquipment

  5. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE89 002669 RF and^Equipment

  6. Equipment Certification Requirements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMissionEquipment Certification

  7. INL Equipment to Aid Regional Response Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in HallLeo282INL Equipment to

  8. Commercial Cooking Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:Cooking Equipment Incentives

  9. Commercial Refrigeration Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:Cooking Equipment

  10. Equips Nucleares SA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation Incentives Retrieved fromEquips

  11. BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341

    SciTech Connect (OSTI)

    Stefanko, D.; Herbert, J.

    2012-01-10T23:59:59.000Z

    Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely collected during pre-installation tests and screened for: Critical speeds or resonance, Imbalance of rotating parts, Shaft misalignment, Fluid whirl or lubrication break down, Bearing damages, and Other component abnormalities. Examples of previous changes in operating parameters and fabrication tolerances and extension of equipment life resulting from the SRS vibration analysis program include: (1) Limiting operational speeds for some pumps to extend service life without design or part changes; (2) Modifying manufacturing methods (tightening tolerances) for impellers on slurry mixing pumps based on vibration data that indicated hydraulic imbalance; (3) Identifying rolling element mounting defects and replacing those components in pump seals before installation; and (4) Identifying the need for bearing design modification for SRS long-shaft mixing pump designs to eliminate fluid whirl and critical speeds which significantly increased the equipment service life. In addition, vibration analyses and related analyses have been used during new equipment scale-up tests to identify the need for design improvements for full-scale operation / deployment of the equipment in the full size tanks. For example, vibration analyses were recently included in the rotary micro-filtration scale-up test program at SRNL.

  12. Safe Operating Procedure LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT

    E-Print Network [OSTI]

    Farritor, Shane

    Safe Operating Procedure (5/11) LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT: SPECIAL CIRCUMSTANCES://ehs.unl.edu/) Introduction This SOP is intended to work in tandem with other EHS SOPs related to Lockout/Tagout (LO/TO): · Lockout/Tagout for Machines & Equipment: Program Overview · Lockout/Tagout for Machines & Equipment

  13. Transfer of Excess Computer and IT Equipment to the Northern Arapaho Tribe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopoCarbon| Department of Energy

  14. NNSA Y-12 National Security Complex Transfers $8M of Equipment to DoD for

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L

  15. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    SciTech Connect (OSTI)

    Yapuncich, F.; Ross, A. [AREVA Federal Services (AFS), Tacoma WA (United States); Clark, R.H. [Shaw AREVA MOX Services, Savannah River Site, Aiken, SC (United States); Ammerman, D. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01T23:59:59.000Z

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It was necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)

  16. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    SciTech Connect (OSTI)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01T23:59:59.000Z

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  17. Space and Movable Equipment Inventory Revision: July 31, 2014 CERTIFICATION OF SPACE AND MOVABLE EQUIPMENT INVENTORY -FISCAL YEAR 2014

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Space and Movable Equipment Inventory Revision: July 31, 2014 CERTIFICATION OF SPACE AND MOVABLE EQUIPMENT INVENTORY - FISCAL YEAR 2014 TO BE USED FOR IBB PLANNING FOR FISCAL YEAR 2016 I acknowledge that the space and movable equipment inventory results conducted for this fiscal year will be used for IBB

  18. Emergency sacrificial sealing method in filters, equipment, or systems

    DOE Patents [OSTI]

    Brown, Erik P

    2014-09-30T23:59:59.000Z

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  19. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01T23:59:59.000Z

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  20. Utility FGD survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    Experimental data for 120 flue gas desulfurization systems of fossil-fuel power plants of US electrical utilities with information on the design and performance. No text--all data.

  1. Tenneco upgrades system with equipment conversion

    SciTech Connect (OSTI)

    Wright, K. [Ariel Corp., Mt. Vernon, OH (United States)

    1995-10-01T23:59:59.000Z

    Tenneco Gas, Inc., Houston, recently completed the successful conversion of over 14,300 horsepower compression equipment at its transmission in Catlettsburg, KY. The system consists of three identical Ariel JGC/6 compressors, driven by three matching Ansaldo electric motors, capable of running between 450 and 900 rpm. These variable speed, synchronous electric motors allow for greater flexibility, without the use of traditional cylinder unloaders. If desired Eureka Energy Systems, Richardson, TX designed the compressor package. One of Tenneco`s objectives when selecting a package to upgrade existing compression capabilities was to ensure compliance with future regulations promulgated pursuant to the Clean Air Act Amendments of 1990. Initially, Tenneco considered separable compressors because of the availability of the newer, clean burning, gas ignited drivers in the 5,000 horsepower range, such as the Caterpillar 3612 and 3616. This paper reviews the design, performance and comparative operating cost of these compressor units.

  2. Positive materials identification of existing equipment

    SciTech Connect (OSTI)

    Wolf, H.A. [Exxon Research and Engineering Co., Florham Park, NJ (United States)

    1996-07-01T23:59:59.000Z

    Considerable engineering effort and expertise are expended for materials selection at refining and petrochemical facilities. However, the benefits of this effort are undermined if there is an inadvertent material substitution during construction. Although procedures have always been in place to reduce the chance of such substitutions, it is known that these errors have occurred. Accordingly, over the years the industry has periodically reviewed and improved quality control in this effort. However, many older facilities that did not benefit from today`s procedures are still in operation. As a consequence, some companies have conducted positive material identification (PMI) verification of existing equipment. This process is further complicated by the fact that the most susceptible components are typically insulated and must be located. Once located, accessibility and operating temperatures are complicating issues. This paper describes prioritization issues and hardware tradeoffs for conducting a PMI verification program.

  3. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  4. Tunable transfer | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 29, 2013 Scientists gain first quantitative insights into electron transfer from minerals to microbes Scientists have gained the first quantitative insights into electron...

  5. Technology Transfer Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

  6. Bus transfer analysis

    SciTech Connect (OSTI)

    Weronick, R.; Hassan, I.D. [Raytheon Engineers and Constructors, Lyndhurst, NJ (United States)

    1996-11-01T23:59:59.000Z

    This paper discusses bus transfer schemes and the methodology used in modeling and analysis. Due to the unavailability of generic acceptance criteria, simulations were performed to analyze the actual fast bus transfer operations at four operating nuclear power generating stations. Sample simulation results illustrating the transient variations in motors currents and torques are included. The analyses were performed to ensure that motors and other rotating parts are not subjected to excessive or accumulated stresses caused by bus transfer operations. A summary of the experience gained in the process of performing this work and suggested bus transfer acceptance criteria are also presented.

  7. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  8. Brief scales to assess physical activity and sedentary equipment in the home

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    assess test- retest reliability of equipment counts for eachhigher test-retest reliability for all equipment scales thanreliability of report- ing portable electronic equipment and

  9. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  10. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  11. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    E-Print Network [OSTI]

    P. Thuiner; R. Hall-Wilton; R. B. Jackman; H. Müller; T. T. Nguyen; E. Oliveri; D. Pfeiffer; F. Resnati; L. Ropelewski; J. A. Smith; M. van Stenis; R. Veenhof

    2015-03-23T23:59:59.000Z

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  12. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    E-Print Network [OSTI]

    Thuiner, P; Jackman, R B; Müller, H; Nguyen, T T; Oliveri, E; Pfeiffer, D; Resnati, F; Ropelewski, L; Smith, J A; van Stenis, M; Veenhof, R

    2015-01-01T23:59:59.000Z

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  13. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    SciTech Connect (OSTI)

    Wu Dianliang; Zhu Hongmin [Shanghai Jiao Tong University (China); Shanghai Key Laboratory of Advance Manufacturing Environment (China)

    2010-05-21T23:59:59.000Z

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  14. POSITION DESCRIPTION 2012 TRANSFER MENTOR

    E-Print Network [OSTI]

    POSITION DESCRIPTION 2012 TRANSFER MENTOR TRANSFER MENTOR AS A STAFF MEMBER Thank you for your interest in the Transfer Mentor position with Orientation and Transition Programs' (OTP) Transfer Mentoring Program. The Transfer Mentor (TM) is a member of the Orientation and Transition Programs' staff

  15. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  16. Home and Farm Security Machinery and Equipment Identification.

    E-Print Network [OSTI]

    Nelson, Gary S.

    1982-01-01T23:59:59.000Z

    73 Fibme and Farm Security -m Machinery and Equipment identification Home and Farm Security chinery and Equipment Identification *Gary S. Nelson is no longer just an urban problem. d burglaries in rural communities have to an alarming... insurance y equipment replacement, lost work urs and so forth. mers can discourage and minimize y theft from their farms is by providing a law enforcement officers to easily identify Mark all machinery and tools with a tification number (ID). Use...

  17. Workshop on environmental qualification of electric equipment

    SciTech Connect (OSTI)

    Lofaro, R.; Gunther, W.; Villaran, M.; Lee, B.S.; Taylor, J. [comps.] [Brookhaven National Lab., Upton, NY (United States)

    1994-05-01T23:59:59.000Z

    Questions concerning the Environmental Qualification (EQ) of electrical equipment used in commercial nuclear power plants have recently become the subject of significant interest to the US Nuclear Regulatory Commission (NRC). Initial questions centered on whether compliance with the EQ requirements for older plants were adequate to support plant operation beyond 40 years. After subsequent investigation, the NRC Staff concluded that questions related to the differences in EQ requirements between older and newer plants constitute a potential generic issue which should be evaluated for backfit, independent of license renewal activities. EQ testing of electric cables was performed by Sandia National Laboratories (SNL) under contract to the NRC in support of license renewal activities. Results showed that some of the environmentally qualified cables either failed or exhibited marginal insulation resistance after a simulated plant life of 20 years during accident simulation. This indicated that the EQ process for some electric cables may be non-conservative. These results raised questions regarding the EQ process including the bases for conclusions about the qualified life of components based upon artificial aging prior to testing.

  18. Surveillance Guide - OSS 19.1 Personal Protective Equipment

    Broader source: Energy.gov (indexed) [DOE]

    Date: Facility Representative RL Facility Representative Program May 23, 1995 Surveillance Guide OSS 19.1 Revision 0 Personal Protective Equipment Page 5 of 5...

  19. Research Study - Global Enterprise VoIP Equipment Market Forecasts...

    Open Energy Info (EERE)

    policy and plan, Enterprise VoIP Equipment product specification, manufacturing process, cost structure etc. Then we deeply analyzed the world's main region market conditions that...

  20. Equipment and capabilities at Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos instruments Equipment and capabilities at Los Alamos National Laboratory's Lujan Neutron Scattering Center enabled a geologist to determine that a dazzling 217.78-gram...

  1. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources City of Eagan Civic Ice Arena Renovation Hybrid and Advanced Air Cooling...

  2. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources City of Eagan Civic Ice Arena Renovation Canby Cascaded Geothermal Project Phase 1 Feasibility...

  3. Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment

    Broader source: Energy.gov (indexed) [DOE]

    pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

  4. Applications of Artificial Neural Networks (ANNs) to Rotating Equipment

    E-Print Network [OSTI]

    Sainudiin, Raazesh

    , engines), driven equipment (compressors, pumps, mixers, fans, extruders), transmission devices (gears diagnosis, trouble shooting, maintenance, sensor validation, and control. Artificial Neural Network (ANN

  5. automated accounting equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the renewal of two blanket purchase contracts with SCHNEIDER ELECTRIC (FR) and SIEMENS SUISSE (CH) for the supply of automation systems and fieldbus equipment for a...

  6. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees OrganizationAttendees DOE - John Cymbalsky - Ashley Armstrong - Johanna...

  7. Microsoft Word - CX-SnohomishPUD Equipment Purchase_140521

    Broader source: Energy.gov (indexed) [DOE]

    data acquisition equipment (including kilowatt hour quantity) Bay 15: three current transformers Bay 15: three voltage transformers Bay 2: SCADA 5 systems, plus Snohomish data...

  8. FACT SHEET: SUPER-EFFICIENT EQUIPMENT AND APPLICANCE DEPLOYMENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and other energy-using equipment - cutting energy waste, creating jobs, reducing pollution, and saving money for consumers around the world. The ministers launched the...

  9. Analysis Procedure And Equipment For Deep Geoelectrical Soundings...

    Open Energy Info (EERE)

    Soundings In Noisy Areas Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Analysis Procedure And Equipment For Deep Geoelectrical Soundings...

  10. Technical Meeting: Physical Characterization of Connected Buildings Equipment

    Broader source: Energy.gov [DOE]

    On January 28-29, 2015, BTO hosted a technical meeting on the Physical Characterization of Connected Buildings Equipment at the Chicago, IL Courtyard Downtown Hotel.

  11. Jefferson Lab Tech Associate Invents Lockout Device for Equipment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tech Associate Invents Lockout Device for Equipment with Removable Power Cords April 22, 2002 It was the early 1990s and building Jefferson Lab's Continuous Electron Beam...

  12. Collecting Construction Equipment Activity Data from Caltrans Project Records

    E-Print Network [OSTI]

    Kable, Justin M

    2008-01-01T23:59:59.000Z

    Niemeier, D. , (2002). Construction Emissions Review Memo.Documents/June_2002_TO8_construction_memo_for_mjb.pdf Pope,s Fleet Remains Strong. Construction Equipment Magazine,

  13. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find another use for the single-pass effluent in boiler make-up supply or landscape irrigation and implement. Some equipment effluent, such as degreasers and hydraulic...

  14. Sales and Use Tax Exemption for Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    The statute defines the components of a system eligible for the exemption; these include trackers, generating equipment, supporting structures or racks, inverters, towers and foundations, balance...

  15. Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Equipment rebates are available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food...

  16. Puget Sound Energy- Commercial Energy Efficient Equipment Rebate Programs

    Broader source: Energy.gov [DOE]

    Puget Sound Energy's (PSE) Energy Efficient Equipment Rebate Programs offer a variety of incentives to non-residential customers. Eligible technologies include lighting measures, air conditioners,...

  17. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  18. Cold test data for equipment acceptance into 105-KE Basin

    SciTech Connect (OSTI)

    Packer, M.J.

    1994-11-09T23:59:59.000Z

    This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

  19. Appendix D: Facility Process Data and Appendix E: Equipment Calibratio...

    Broader source: Energy.gov (indexed) [DOE]

    D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria,...

  20. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

  1. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  2. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  3. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29T23:59:59.000Z

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  4. Transfer reactions at ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    64 Ni+ 64 Ni Strong entrance-channel dependence of fusion enhancement Beckerman et al., PRL 45, 1472 (1980), PRC 25, 837 (1982) Coupling of transfer channels, in addition to...

  5. automatic test equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automatic test equipment First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Test and Test Equipment Joshua...

  6. Safe Operating Procedure LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT

    E-Print Network [OSTI]

    Farritor, Shane

    Safe Operating Procedure (5/11) LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT: TRAINING AND INSPECTIONS during maintenance and repair operations. In these situations, a Lockout/Tagout (LO/TO) program must "Control of Hazardous Energy: Lockout/Tagout (LO/TO) for Machines and Equipment." This course is available

  7. Radio-telemetry equipment and applications for carnivores

    E-Print Network [OSTI]

    Schweik, Charles M.

    7 Radio-telemetry equipment and applications for carnivores Mark R. Fuller and Todd K. Fuller Radio goals for this chapter are to provide basic information about radio-telemetry equipment and procedures's (2001) comprehensive book, A manual of wildlife radio tagging for persons who are unfamiliar with radio

  8. SANTA CRUZ: EQUIPMENT ADMINISTRATION UCSC PHYSICAL INVENTORY PROCEDURE

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    SANTA CRUZ: EQUIPMENT ADMINISTRATION UCSC PHYSICAL INVENTORY PROCEDURE Rev. 03/01/07 1 DUE: APRIL 1, 2014 Attached is a copy of the 2013 EQ920 report of physical inventory of equipment in your care of steps in completing the physical inventory. It is recommended that you begin the process as early

  9. NEW CHARACTERISATION METHOD OF ELECTRICAL AND ELECTRONIC EQUIPMENT WASTES (WEEE)

    E-Print Network [OSTI]

    Boyer, Edmond

    NEW CHARACTERISATION METHOD OF ELECTRICAL AND ELECTRONIC EQUIPMENT WASTES (WEEE) N. Menad*, , S encountered in Electrical and Electronic Equipment Wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterization of WEEE was conducted in an attempt to evaluate

  10. 2006 Haulage & Loading Conference: big equipment, big crowd

    SciTech Connect (OSTI)

    NONE

    2006-06-15T23:59:59.000Z

    The theme of this year's Haulage and Loading Conference was 'Is better still better?' Most of the presenters either considered the effectiveness of bigger equipment or examined other strategies from various perspectives, based on their experiences. Papers were presented on trucks, shovels, loaders, excavators, haul road design and maintenance, and incorporating IT equipment. 5 photos.

  11. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect (OSTI)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09T23:59:59.000Z

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  12. Space and Movable Equipment On-line Inventory

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Space and Movable Equipment On-line Inventory FY14 (July 2013 - June 2014) CAS ­ Cost Accounting and Michael Richards #12;Learning Objectives · Gain understanding of the Importance of Space & Equipment Inventory. · Understand the entire Inventory Process. · How to classify functional space. · How to inventory

  13. A rubber mount model. Application to automotive equipment suspension

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A rubber mount model. Application to automotive equipment suspension B. Thomas1, 2 , L. Manin1.manin@insa-lyon.fr Abstract In order to predict the nonlinear dynamic response of automotive equipment supported by rubber identification of the model. The application concerns the suspension of an automotive engine cooling module. 1

  14. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect (OSTI)

    Hemphill, Kevin P [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  15. Resources, framing, and transfer p. 1 Resources, framing, and transfer

    E-Print Network [OSTI]

    Hammer, David

    Resources, framing, and transfer p. 1 Resources, framing, and transfer David Hammer Departments. #12;Resources, framing, and transfer p. 2 Resources, framing, and transfer David Hammer, Andrew Elby of activating resources, a language with an explicitly manifold view of cognitive structure. In this chapter, we

  16. Attachment 2 UC Berkeley EI-LOTO "Equipment Specific" Procedure Equip. Name: _______________________________ Building: __________________________________ Location/Room Number: _____________________

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Attachment 2 ­ UC Berkeley ­ EI-LOTO "Equipment Specific" Procedure Equip. Name BARRICADES CHAINS PRESSURE: BLEEDERS LOCKED OPEN & TAGGED SHIELDS: ARC CURTAIN HEAT BLANKET STEAM: LINES piping or tanks must be bled, drained, and/or brought to atmospheric pressure and locked "open" to assure

  17. Unwanted Materials and Equipment All unwanted materials and equipment must go through Salvage (x2329) for disposal or reuse.

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Unwanted Materials and Equipment All unwanted materials and equipment must go through Salvage (x.stanford.edu/main/propertyforms.asp) Some items may require a Radiation Survey or handling by Waste Management. Follow the directions with collecting empty moving boxes, and taking materials to trash or recycling containers. Submit a Service

  18. Energetics and Dynamics of Electron Transfer and Proton Transfer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and MnIII(salen)+ with several angiotensin peptide analogs was studied using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially equipped to...

  19. West Valley transfer cart control system design description. Environmental Restoration and Waste Management Program

    SciTech Connect (OSTI)

    Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

    1993-01-01T23:59:59.000Z

    Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

  20. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  1. FINANCE PROCEDURES MANUAL PROPERTY, PLANT, EQUIPMENT AND INTANGIBLES

    E-Print Network [OSTI]

    University of Technology, Sydney

    .2 Capitalisation Policy 10 6.3 Capital Expenditure types (Capex) 11 6.4 Acquisitions ­ process and account coding Verification Report Capex Capital expenditure and includes major refurbishments. Capitalised equipment Items

  2. Fact #708: January 2, 2012 Amenities, Safety and Emissions Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2, 2012 Amenities, Safety and Emissions Equipment Make Up an Increasing Share of the Cost of a Car While the overall price of a new car has not increased greatly from 1967 to...

  3. Our August Sale of Equipment and Materials is Underway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sale runs for two weeks to Friday, August 29th. The August sale includes hundreds of oilfield equipment and materials, being sold in 60+ sale lots. Sale information and details on...

  4. Best Management Practice #12: Laboratory and Medical Equipment

    Broader source: Energy.gov [DOE]

    Equipment used in hospitals and laboratories can use significant amounts of water, but also offer the opportunity for substantial water savings by making a few small changes to how and when the...

  5. Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...

    Broader source: Energy.gov (indexed) [DOE]

    VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

  6. Improving reuse of semiconductor equipment through benchmarking, standardization, and automation

    E-Print Network [OSTI]

    Silber, Jacob B. (Jacob Bradley)

    2006-01-01T23:59:59.000Z

    The 6D program at Intel® Corporation was set up to improve operations around capital equipment reuse, primarily in their semiconductor manufacturing facilities. The company was faced with a number of challenges, including ...

  7. Best Management Practice #12: Laboratory and Medical Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    designed to recirculate water or that allows the flow to be turned off when the unit is not in use, or both. If purchasing new equipment is not feasible, consider...

  8. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  9. Design of an underwater vertical glider for subsea equipment delivery

    E-Print Network [OSTI]

    Ambler, Charles Kirby

    2010-01-01T23:59:59.000Z

    Delivery of subsea equipment and sensors is generally accomplished with unguided sinking platforms or powered autonomous underwater vehicles (AUVs). An alternative would be to augment existing platforms with navigation and ...

  10. Field Labeling to Ensure the Electrical Safety of Production Equipment

    E-Print Network [OSTI]

    Mills, Todd

    2012-05-11T23:59:59.000Z

    The Occupational Safety and Health Administration (OSHA) requires that all equipment that uses electrical power be certified as electrically safe by a Nationally Recognized Testing Lab (NRTL) or Authority Having Jurisdiction (AHJ) prior to being...

  11. 1997 Housing Characteristics Tables Home Office Equipment Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1997 Home Office Equipment RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than 10,000...

  12. Analysis and Evaluation For Equipment Performance by Surface Measurement

    E-Print Network [OSTI]

    Ishizuka, K.; Aizawa, N.; Shibata, K.; Yonezawa, H.; Yamada, S.

    2006-01-01T23:59:59.000Z

    and performance assessment of chiller (turbo type) after installation of new facility (industrial plant applica- tions) was completed. 3.1 Need for Finding the Actual Performance Recently built facilities include many en- ergy-saving devices such as high...-efficiency chiller [4]. These were incorporated at the planning design stage as an investment giving priority to effects on the equipment life cycle. The correct type of opera- tion and sophisticated management is needed to make this type of equipment exhibit its...

  13. Security officer tactical training issues involving ESS equipment

    SciTech Connect (OSTI)

    Rountree, S.L.K.

    1984-01-01T23:59:59.000Z

    Security officer tactical training issues are discussed in relation to the possible implementation of the Tactical Improvement Package (TIP), utilizing the Engagement Simulation System (ESS) equipment, by nuclear power plant licensees for security officer tactical training. The ESS equipment provides the capability to simulate engagement conditions between adversaries armed with weapons which have harmless laser transmitters. A brief discussion of the TIP is presented, along with some concerns and considerations in the use of the TIP.

  14. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09T23:59:59.000Z

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  15. Development of unique ISI equipment for an RPV

    SciTech Connect (OSTI)

    Tokunaga, Katsumi; Aoki, Takayuki (Japan Atomic Power Co., Tsuruga-shi, Fukui (Japan)); Sasaki, Tsukasa (Hitachi Works, Ibaraki (Japan))

    1992-01-01T23:59:59.000Z

    A cooperative effort involving the Japan Atomic Power Company (JAPC) and Hitachi Ltd. has provided unique automated ultrasonic testing equipment for the reactor pressure vessel (RPV) of JAPC's Tsuruga unit 1, which is a 357-MW (electric) non-jet-pumped boiling water reactor. Using this equipment package at the 20th scheduled outage of Tsuruga unit 1, the in-service inspection (ISI) performed in accordance with Japanese ISI standard JEAC 4205 (similar to ASME Sec. XI) was successfully completed. Through this field application, the capability and reliability of this equipment have been verified. Tsuruga unit 1 has an RPV that cannot be reached from the outside because of the limited space between the RPV and a biological shield. Therefore, it must be inspected with ID inspection equipment such as that for pressurized water reactors. A major consideration in the design of this new equipment was that it pass an ultrasonic testing head and arm through a very narrow gap between reactor internals and allow precise control from a great distance below the RPV flange (the maximum is {approximately}12m below). The design philosophy focused on how to avoid interference between any reactor internals and the equipment during the operation.

  16. Tensiometer, drive probe for use with environmental testing equipment, and methods of inserting environmental testing equipment into a sample

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2005-07-26T23:59:59.000Z

    A method of inserting a tensiometer into a sample, comprises providing a drive probe configured to be engaged by direct push equipment; supporting a porous member from the drive probe; and driving the drive probe into the sample using a cone penetrometer. A tensiometer comprises a drive probe configured to be engaged by direct push equipment or a cone penetrometer; a porous member supported by the drive probe; and a pressure sensor in pressure sensing relation to the porous member.

  17. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  18. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer 

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  19. UC SANTA BARBARA POLICY AND PROCEDURE Reporting the Loss or Theft of Inventorial Equipment

    E-Print Network [OSTI]

    Bigelow, Stephen

    UC SANTA BARBARA POLICY AND PROCEDURE Reporting the Loss or Theft of Inventorial Equipment Contact OF INVENTORIAL EQUIPMENT Table of Contents Sections Page I Scope....................................................................................... ..3 V. Procedure for Reporting Theft of Inventorial Equipment ............................. ..3 VI

  20. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  1. QER- Comment of Energy Transfer

    Broader source: Energy.gov [DOE]

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  2. Plastic container bagless transfer

    DOE Patents [OSTI]

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18T23:59:59.000Z

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  3. Mass transfer andMass transfer and Mass transfer andMass transfer and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    't be determined A correlation for Sherwood number (Sh) based on di i l l i b d l i Sh diff idimensional analysis for mass transfer with convection: I l f d fl d b (l b l )­ Internal forced flow: inside a tube (laminar A in fluid medium B in a flow with characteristic velocity and size characteristic d: kA = f(d, w, (= fluid

  4. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Estimating the Market for Home Heating and Cooling EquipmentBIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLINGESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

  5. An MILP approach to Multi-location, Multi-Period Equipment ...

    E-Print Network [OSTI]

    2013-06-24T23:59:59.000Z

    Jun 24, 2013 ... to consider both the purchase and salvage of the equipment, since equipment ..... Since A comes from the power set of E ? , the compatibility ...

  6. Puerto Rico- Property Tax Exemption for Solar and Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    Puerto Rico provides a property tax exemption for all "solar powered material, equipment or accessory and renewable energy collection, storage, generation, distribution, and application equipment."...

  7. Interstate Power and Light (Alliant Energy)- Farm Equipment Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Alliant Energy offers prescriptive rebates for a variety of energy efficient products for agricultural customers. These include irrigation equipment, dairy equipment, ventilation systems,...

  8. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Estimating the Market for Home Heating and Cooling EquipmentFuel and Technology Choice in Home Heating and Cooling," LBLTHE MARKET FOR HOME HEATING AND COOLING EQUIPMENT* David

  9. Defect Prevention and Detection in Software for Automated Test Equipment

    SciTech Connect (OSTI)

    E. Bean

    2006-11-30T23:59:59.000Z

    Software for automated test equipment can be tedious and monotonous making it just as error-prone as other software. Active defect prevention and detection are also important for test applications. Incomplete or unclear requirements, a cryptic syntax used for some test applications—especially script-based test sets, variability in syntax or structure, and changing requirements are among the problems encountered in one tester. Such problems are common to all software but can be particularly problematic in test equipment software intended to test another product. Each of these issues increases the probability of error injection during test application development. This report describes a test application development tool designed to address these issues and others for a particular piece of test equipment. By addressing these problems in the development environment, the tool has powerful built-in defect prevention and detection capabilities. Regular expressions are widely used in the development tool as a means of formally defining test equipment requirements for the test application and verifying conformance to those requirements. A novel means of using regular expressions to perform range checking was developed. A reduction in rework and increased productivity are the results. These capabilities are described along with lessons learned and their applicability to other test equipment software. The test application development tool, or “application builder”, is known as the PT3800 AM Creation, Revision and Archiving Tool (PACRAT).

  10. Real Compton Scattering at High Transverse Momentum Transfer

    E-Print Network [OSTI]

    Alan M. Nathan

    1998-07-16T23:59:59.000Z

    We discuss the physics motivation for a program of Real Compton Scattering on the proton in the regime where both the incident energy and the transverse momentum transfer are large. It is shown that such a program can test which of the various hard scattering mechanisms is dominant and can allow a measurement of a new generalized form factor that is sensitive to both the flavor and spin structure of the proton. It is further shown that the measurements are experimentally feasible using existing or already planned equipment up to incident energies of 12 GeV.

  11. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01T23:59:59.000Z

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  12. Load Component Database of Household Appliances and Small Office Equipment

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

    2008-07-24T23:59:59.000Z

    This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

  13. Equipment decontamination: A brief survey of the DOE complex

    SciTech Connect (OSTI)

    Conner, C.; Chamberlain, D.B; Chen, L.; Vandegrift, G.F.

    1995-03-01T23:59:59.000Z

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes.

  14. Seismic analyses of equipment in 2736-Z complex. Revision 1

    SciTech Connect (OSTI)

    Ocoma, E.C.

    1995-04-01T23:59:59.000Z

    This report documents the structural qualification for the existing equipment when subjected to seismic loading in the Plutonium Storage Complex. It replaces in entirety Revision 0 and reconciles the U.S. Department of Energy (DOE) comments on Revision 0. The Complex consists of 2736-Z Building (plutonium storage vault), 2736-ZA Building (vault ventilation equipment building), and 2736-ZB Building (shipping/receiving, repackaging activities). The existing equipment structurally qualified in this report are the metal storage racks for 7 inch and lard cans in room 2 of Building 2736-Z; the cubicles, can holders and pedestals in rooms 1, 3, and 4 of Building 2736-Z; the ventilation duct including exhaust fans/motors, emergency diesel generator, and HEPA filter housing in Building 2736-ZA; the repackaging glovebox in Building 2736-ZB; and the interface duct between Buildings 2736-Z and 2736-ZA.

  15. Nuclear fuel post-irradiation examination equipment package

    SciTech Connect (OSTI)

    DeCooman, W.J. [AREVA NP Inc., Lynchburg, VA (United States); Spellman, D.J. [UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    Hot cell capabilities in the U.S. are being reviewed and revived to meet today's demand for fuel reliability, tomorrow's demands for higher burnup fuel and future demand for fuel recycling. Fuel reliability, zero tolerance for failure, is more than an industry buzz. It is becoming a requirement to meet the rapidly escalating demands for the impending renaissance of nuclear power generation, fuel development, and management of new waste forms that will need to be dealt with from programs such as the Global Nuclear Energy Partnership (GNEP). Fuel performance data is required to license fuel for higher burnup; to verify recycled fuel performance, such as MOX, for wide-scale use in commercial reactors; and, possibly, to license fuel for a new generation of fast reactors. Additionally, fuel isotopic analysis and recycling technologies will be critical factors in the goal to eventually close the fuel cycle. This focus on fuel reliability coupled with the renewed interest in recycling puts a major spotlight on existing hot cell capabilities in the U.S. and their ability to provide the baseline analysis to achieve a closed fuel cycle. Hot cell examination equipment is necessary to determine the characteristics and performance of irradiated materials that are subjected to nuclear reactor environments. The equipment within the hot cells is typically operated via master-slave manipulators and is typically manually operated. The Oak Ridge National Laboratory is modernizing their hot cell nuclear fuel examination equipment, installing automated examination equipment and data gathering capabilities. Currently, the equipment has the capability to perform fuel rod visual examinations, length and diametrical measurements, eddy current examination, profilometry, gamma scanning, fission gas collection and void fraction measurement, and fuel rod segmentation. The used fuel postirradiation examination equipment was designed to examine full-length fuel rods for both Boiling Water Reactors and Pressurized Water Reactors. (authors)

  16. Recovering the Heat Dissipated by the Digital Switching Equipment

    E-Print Network [OSTI]

    Karasseferian, V. V.; Desjardins, R.

    1983-01-01T23:59:59.000Z

    irrespective of its usage capa city. For example, a digital switcher dissipa tes heat at a rate of 25 to 35 watts per sq. ft. as compared to 3 or 4 watts per sq. ft. for the electro mechanical switching equipment. This type of equipment is being installed... to the atrrosphere by the cool ing plant servicing the digital switcher, to heat other parts of the building. Energy prices have not, in the past, diffe red considerably from the average inflation rate of the economy as a whole. This situation crea ted little...

  17. The SLAC Comparator for the Calibration of Digital Leveling Equipment

    SciTech Connect (OSTI)

    Gassner, G.L.; Ruland, R.E.; /SLAC

    2006-11-07T23:59:59.000Z

    At SLAC digital levels are used for precise leveling, both for setting out and monitoring. A very high precision of 30 {micro}m is required, which can only be achieved by regularly calibrating the leveling equipment. The calibration facility is also used for detailed investigations to refine the SLAC leveling procedure. In this paper the setup of the SLAC vertical comparator is described. In order to also perform traditional staff calibration a CCD camera was integrated into the SLAC comparator. Finally an overview of further investigations of our leveling equipment is presented.

  18. Studies and research concerning BNFP: cask handling equipment standardization

    SciTech Connect (OSTI)

    McCreery, Paul N.

    1980-10-01T23:59:59.000Z

    This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time.

  19. Equipment qualification issues research and resolution: Status report

    SciTech Connect (OSTI)

    Bonzon, L.L.; Wyant, F.J.; Bustard, L.D.; Gillen, K.T.

    1986-11-01T23:59:59.000Z

    Since its inception in 1975, the Qualification Testing Evaluation (QTE) Program has produced numerous results pertinent to equipment qualification issues. Many have been incorporated into Regulatory Guides, Rules, and industry practices and standards. This report summarizes the numerous reports and findings to date. Thirty separate issues are discussed encompassing three generic areas: accident simulation methods, aging simulation methods, and special topics related to equipment qualification. Each issue-specific section contains (1) a brief description of the issue, (2) a summary of the applicable research effort, and (3) a summary of the findings to date.

  20. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19T23:59:59.000Z

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  1. Wireless Power Transfer

    SciTech Connect (OSTI)

    None

    2013-07-22T23:59:59.000Z

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  2. Manipulator mounted transfer platform

    DOE Patents [OSTI]

    Dobbins, James C. (Idaho Falls, ID); Hoover, Mark A. (Idaho Falls, ID); May, Kay W. (Idaho Falls, ID); Ross, Maurice J. (Pocatello, ID)

    1990-01-01T23:59:59.000Z

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  3. Data Transfer and Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDanielDTN Data Transfer Nodes

  4. Technology Transfer Reporting Form

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon |1999Energy-Technology TransferThis

  5. After-hours power status of office equipment and energy use of miscellaneous plug-load equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

    2004-05-27T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  6. Can Computer Simulations Replace Real Equipment in Undergraduate Laboratories?

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Can Computer Simulations Replace Real Equipment in Undergraduate Laboratories? N. D. Finkelstein, K, Boulder Abstract. This paper examines the effects of substituting computer simulations in place of real (DC) circuit laboratory was modified to compare the effects of using computer simulations

  7. automated test equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test equipment First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Test Automation Test Automation Computer...

  8. PROVISION, USE, AND MAINTENANCE OF EMERGENCY DRENCH EQUIPMENT IN

    E-Print Network [OSTI]

    Jia, Songtao

    to provide fluid to irrigate and flush the eyes, face and body areas. 6. Hazardous Material: A chemical the effects of personal exposures to hazardous materials and is integral to emergency response efforts where hazardous materials are used or stored. This policy ensures that emergency drench equipment is provided

  9. UF{sub 6} cylinder lifting equipment enhancements

    SciTech Connect (OSTI)

    Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31T23:59:59.000Z

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  10. Predicting the Operational Effectiveness of Aircraft Survivability Equipment Suite

    E-Print Network [OSTI]

    Noh, Sanguk

    , and experiment with their autonomous decision-making against threats in various electronic warfare settings. We: Autonomous Decision-Making, Electronic Warfare Settings, Aircraft Survivability Equipment Suite, Operational Effectiveness 1. Introduction In order to counter threats in electronic warfare environments, a command

  11. Directional drilling and equipment for hot granite wells

    SciTech Connect (OSTI)

    Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

    1981-01-01T23:59:59.000Z

    The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

  12. Informe de gesti de l'equip de govern

    E-Print Network [OSTI]

    Verschure, Paul

    Informe de gestió de l'equip de govern de la UPF Claustre 5 de juny del 2014 #12;2 Índex Presentació p.3 Eix I. Projecció de la UPF p.6 1. Rellevŕncia i reconeixement dins la societat 2. La UPF i els promoció de la Universitat 7. L'estratčgia de responsabilitat social de la UPF 8. Universitat i cultura Eix

  13. Long-length contaminated equipment burial containers fabrication process procedures

    SciTech Connect (OSTI)

    McCormick, W.A., Fluor Daniel Hanford

    1997-03-11T23:59:59.000Z

    These special process procedures cover the detailed step-by-step procedures required by the supplier who will manufacture the Long-Length Contaminated Equipment (LLCE) Burial Container design. Also included are detailed step-by-step procedures required by the disposal process for completion of the LLCE Burial Containers at Hanford.

  14. Qualification Testing Evaluation (QTE) program for safety-related equipment

    SciTech Connect (OSTI)

    Bonzon, L.L.; Gillen, K.T.; Clough, R.L.; Salazar, E.A.; Buckalew, W.H.; Thome, F.V.; Stuetzer, O.M.; Feit, R.

    1980-01-01T23:59:59.000Z

    The nuclear power industry is required to demonstrate that certain safety-related equipment is ''qualified'' and will function even in the event of a severe reactor accident. Demonstration of qualification by testing is the preferred approach. International interest in equipment qualification, and its recognition as being paramount to safety, is rapidly increasing, with most major supplier-countries developing sophisticated qualification testing facilities. An aspect of the demonstration of qualification is to assure that the qualification testing applied to safety-related equipment is both realistic and conservative; that is, a program of qualification methodology assessment and improvement is imperative. In the United States, the Nuclear Regulatory Commission (NRC) is sponsoring the Qualification Testing Evaluation Program with the goal of obtaining data that will confirm or improve the technical bases for equipment qualification programs. This multi-task Program has long-term, continuing objectives, but recent new results have been obtained and these results are being incorporated into NRC regulations with attendant impact on the nuclear industry. 19 refs. (JDB)

  15. DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

  16. Environmental and Resource Studies Program Equipment Available For Use in ERS Courses

    E-Print Network [OSTI]

    Fox, Michael

    (battery tester) power inverter solar panel and solar charge controller Audio-Visual Equipment camera

  17. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect (OSTI)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15T23:59:59.000Z

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASAT’s manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.

  18. Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto, Jonathan G. Koomey, Bruce Nordman,

    E-Print Network [OSTI]

    on Energy Efficiency in Buildings, Asilomar, CA. http://enduse.lbl.gov/Projects/InfoTech.html August 2000 consumption for residential, commercial and industrial use by combining estimates of stock, power requirements than 70% of this energy use is dedicated to office equipment for commercial use. We also found

  19. Technology transfer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology transfer Technology Development and Commercialization at Argonne Read more about Technology Development and Commercialization at Argonne New Director to lead Technology...

  20. Technology Transfer Plan

    SciTech Connect (OSTI)

    None

    1998-12-31T23:59:59.000Z

    BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

  1. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  2. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  3. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30T23:59:59.000Z

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  4. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-09-09T23:59:59.000Z

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  5. Equipment compatibility and logistics assessment for containment foam deployment.

    SciTech Connect (OSTI)

    McRoberts, Vincent M.; Martell, Mary-Alena; Jones, Joseph A.

    2005-09-01T23:59:59.000Z

    The deployment of the Joint Technical Operations Team (JTOT) is evolving toward a lean and mobile response team. As a result, opportunities to support more rapid mobilization are being investigated. This study investigates three specific opportunities including: (1) the potential of using standard firefighting equipment to support deployment of the aqueous foam concentrate (AFC-380); (2) determining the feasibility and needs for regional staging of equipment to reduce the inventory currently mobilized during a JTOT response; and (3) determining the feasibility and needs for development of the next generation AFC-380 to reduce the volume of foam concentrate required for a response. This study supports the need to ensure that requirements for alternative deployment schemes are understood and in place to support improved response activities.

  6. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect (OSTI)

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. (Walter Reed Army Medical Center, Washington, DC (United States))

    1993-04-01T23:59:59.000Z

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  7. Directory of manufacturers of small hydropower equipment. Third edition

    SciTech Connect (OSTI)

    Inversin, A.R.

    1984-01-01T23:59:59.000Z

    Basic information on manufacturers of hydraulic turbines in the 1-100 kW power range and on their product lines is provided in this two-section directory. An introduction makes general comments on cost trends in relation both to the magnitude of the operating head and to unit capacity, although no specific cost figures are given for equipment packages. The section also describes various cost-reduction techniques (the use of load control, the use of pumps as turbines, and the integration of turbine equipment with other functions). The second section comprises the bulk of the document and is composed of 28 entries on turbine manufacturers, 20 of them in the United States, the others in Nepal (2), the Philippines, Colombia, Indonesia, India, Canada, and Puerto Rico.

  8. Limited Personal Use of Government Office Equipment including Information Technology

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-07T23:59:59.000Z

    The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

  9. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    SciTech Connect (OSTI)

    Leah Glameyer

    2012-07-12T23:59:59.000Z

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

  10. Explosion Clad for Upstream Oil and Gas Equipment

    SciTech Connect (OSTI)

    Banker, John G. [Dynamic Materials Corp., 5405 Spine Rd., Boulder, CO 80301 (United States); Massarello, Jack [Global Metallix, Consultant to DMC, 5405 Spine Rd., Boulder, CO 80301 (United States); Pauly, Stephane [DMC., Nobelclad Business Unit, 1 Allee Alfred NOBEL, 66600 Rivesaltes (France)

    2011-01-17T23:59:59.000Z

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  11. Page 1 DePaul/Cinespace Equipment Reservation Sheet

    E-Print Network [OSTI]

    Schaefer, Marcus

    head travel case 150.00$ 4 1x1 AB Gold Mount Adapter Plate 155.00$ 4 Anton Bauer Dionic 90 Battery 412.25$ 1 Anton Bauer TWQ 4-Battery Charger 1,156.00$ #12;Page 2 DePaul/Cinespace Equipment Reservation-D4-120 1,205.00$ 2 Diva-Lite 201 KIT-D2-120 881.00$ 6 Extra 25' 4 Bank Extensions 108.00$ 6 Extra 25

  12. Adaptive Optimization of Central Chiller Plant Equipment Sequencing

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    and outside air conditions and it insures that the central refrigeration system operates with the lowest possible energy cost at all times. PROBLEM BACKGROUND The specific industrial plant for which the control algorithm was developed is the Texas... was developed to select the optimal sequence of central refrigeration equipment (chillers, cooling towers, pumps) to operate in an industrial plant. The control algorithm adapts the optimal equipaent sequence to reflect changes in the plant's cooling load...

  13. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  14. Source Recertification, Refurbishment, and Transfer Logistics

    SciTech Connect (OSTI)

    Gastelum, Zoe N.; Duckworth, Leesa L.; Greenfield, Bryce A.; Doll, Stephanie R.

    2013-09-01T23:59:59.000Z

    The 2012 Gap Analysis of Department of Energy Radiological Sealed Sources, Standards, and Materials for Safeguards Technology Development [1] report, and the subsequent Reconciliation of Source Needs and Surpluses across the U.S. Department of Energy National Laboratory Complex [2] report, resulted in the identification of 33 requests for nuclear or radiological sealed sources for which there was potentially available, suitable material from within the U.S. Department of Energy (DOE) complex to fill the source need. Available, suitable material was defined by DOE laboratories as material slated for excess, or that required recertification or refurbishment before being used for safeguards technology development. This report begins by outlining the logistical considerations required for the shipment of nuclear and radiological materials between DOE laboratories. Then, because of the limited need for transfer of matching sources, the report also offers considerations for an alternative approach – the shipment of safeguards equipment between DOE laboratories or technology testing centers. Finally, this report addresses repackaging needs for the two source requests for which there was available, suitable material within the DOE complex.

  15. Thermal response of process equipment to hydrocarbon fires

    SciTech Connect (OSTI)

    Solberg, D.M.; Borgnes, O.

    1983-01-01T23:59:59.000Z

    Requirements for active fire-fighting equipment such as fixed and portable powder extinguishers, foam generators, water guns, and deluge systems, are given in various codes and standards. However, very little is to be found about fire design conditions and passive fire protection. For safety verification of process plants and for designing adequate passive fire protection it is necessary to know the total incident heat fluxes which can occur under realistic conditions and the effects that such heat fluxes may have on process equipment and structures. During the last few years, Det Norske Veritas has been invloved in investigations aimed at estimating realistic fire loads from different types of hydrocarbon fires and the thermal response of process equipment and structures exposed to such fires. These investigations are still in progress and are especially focused on the conditions on off-shore oil and gas production platforms. However, many fire problems will be the same in the land-based process industry. The present paper concentrates on the thermal response of pipes and vessels exposed to a severe hydrocarbon fire with a defined thermal load. (JMT)

  16. Proton-Coupled Electron Transfer

    SciTech Connect (OSTI)

    Weinberg, Dave; Gagliardi, Christopher J.; Hull, Jonathan F; Murphy, Christine Fecenko; Kent, Caleb A.; Westlake, Brittany C.; Paul, Amit; Ess, Daniel H; McCafferty, Dewey Granville; Meyer, Thomas J

    2012-01-01T23:59:59.000Z

    Proton-Coupled Electron Transfer (PCET) describes reactions in which there is a change in both electron and proton content between reactants and products. It originates from the influence of changes in electron content on acid?base properties and provides a molecular-level basis for energy transduction between proton transfer and electron transfer. Coupled electron?proton transfer or EPT is defined as an elementary step in which electrons and protons transfer from different orbitals on the donor to different orbitals on the acceptor. There is (usually) a clear distinction between EPT and H-atom transfer (HAT) or hydride transfer, in which the transferring electrons and proton come from the same bond. Hybrid mechanisms exist in which the elementary steps are different for the reaction partners. EPT pathways such as PhO•/PhOH exchange have much in common with HAT pathways in that electronic coupling is significant, comparable to the reorganization energy with H{sub DA} ~ ?. Multiple-Site Electron?Proton Transfer (MS-EPT) is an elementary step in which an electron?proton donor transfers electrons and protons to different acceptors, or an electron?proton acceptor accepts electrons and protons from different donors. It exploits the long-range nature of electron transfer while providing for the short-range nature of proton transfer. A variety of EPT pathways exist, creating a taxonomy based on what is transferred, e.g., 1e{sup -}/2H{sup +} MS-EPT. PCET achieves “redox potential leveling” between sequential couples and the buildup of multiple redox equivalents, which is of importance in multielectron catalysis. There are many examples of PCET and pH-dependent redox behavior in metal complexes, in organic and biological molecules, in excited states, and on surfaces. Changes in pH can be used to induce electron transfer through films and over long distances in molecules. Changes in pH, induced by local electron transfer, create pH gradients and a driving force for long-range proton transfer in Photosysem II and through other biological membranes. In EPT, simultaneous transfer of electrons and protons occurs on time scales short compared to the periods of coupled vibrations and solvent modes. A theory for EPT has been developed which rationalizes rate constants and activation barriers, includes temperature- and driving force (?G)-dependences implicitly, and explains kinetic isotope effects. The distance-dependence of EPT is dominated by the short-range nature of proton transfer, with electron transfer being far less demanding.Changes in external pH do not affect an EPT elementary step. Solvent molecules or buffer components can act as proton donor acceptors, but individual H2O molecules are neither good bases (pK{sub a}(H{sub 3}O{sup +}) = ?1.74) nor good acids (pK{sub a}(H{sub 2}O) = 15.7). There are many examples of mechanisms in chemistry, in biology, on surfaces, and in the gas phase which utilize EPT. PCET and EPT play critical roles in the oxygen evolving complex (OEC) of Photosystem II and other biological reactions by decreasing driving force and avoiding high-energy intermediates.

  17. adoptively transferred indium-111: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Afshin J. 140 Mass transfer andMass transfer and Mass transfer andMass transfer and Fossil Fuels Websites Summary: eknik Mass transfer andMass transfer and arationste Mass...

  18. ELEVATED TEMPERATURE SENSORS FOR ON-LINE CRITICAL EQUIPMENT HEALTH MONITORING

    SciTech Connect (OSTI)

    James Sebastian

    2005-03-01T23:59:59.000Z

    The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates in the first year of the program, and additional substrates were evaluated. In the second year of the program, additional substrate research was performed with the goal of improving the performance of using SiC substrates. While greatly improved bandwidth was achieved, sensor survival at elevated temperature remains problematic. The elevated temperature coupling work continued with significant experimentation. Molten glasses were found to work within a limited temperature range, but metal foils applied with heat and pressure were found to have superior performance overall. The final year of the program will be dedicated to making further advances in AlN/ substrate behavior, and the design and implementation of a sensor demonstration experiment at very high temperature in a simulated industrial application.

  19. Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring

    SciTech Connect (OSTI)

    James Sebastian

    2006-03-31T23:59:59.000Z

    The objective of the program was to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. Improvements were aimed primarily at extending the useful temperature range of the sensor from approximately 700 C to above 1000 C, and investigating ultrasonic coupling to objects at these temperatures and tailoring high temperature coupling for use with the sensor. During the project, the chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Film adhesion under thermal cycling was found to be poor, and additional substrate materials and surface preparations were evaluated. A new, porous SiC substrate improved the performance but not to the point of making the films useful for sensors. Near the end of the program, a new family of high temperature piezoelectric materials came to the attention of the program. Samples of langasite, the most promising member of this family, were obtained and experimental data showed promise for use up to the 1000 C target temperature. In parallel, research successfully determined that metal foil under moderate pressure provided a practical method of coupling ultrasound at high temperature. A conceptual sensor was designed based upon these methods and was tested in the laboratory.

  20. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    SciTech Connect (OSTI)

    David P. Colton

    2007-02-28T23:59:59.000Z

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  1. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01T23:59:59.000Z

    online: www.eia.doe.gov/cneaf/electricity/esr/esr_sum.html.Miscellaneous Equipment Electricity Use in New Homes RichardMiscellaneous Equipment Electricity Use in New Homes Richard

  2. MAS 10.2 Control of Measuring and Test Equipment, 3/9/95 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2 Control of Measuring and Test Equipment, 3995 MAS 10.2 Control of Measuring and Test Equipment, 3995 The objective of this surveillance is to verify that the contractor...

  3. Program management systems for the semiconductor processing capital equipment supply chain

    E-Print Network [OSTI]

    Chandler, Thomas B. (Thomas Brian), 1970-

    2004-01-01T23:59:59.000Z

    The Capital Equipment Procurement group of Intel Corporation is responsible for developing and procuring the semiconductor processing capital equipment that is used throughout all of the company's development and manufacturing ...

  4. GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd...

    Open Energy Info (EERE)

    GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd Kvaerner Hangfa Jump to: navigation, search Name: GE Hydro Asia Co Ltd (formerly Kvaerner Power Equipment Co., Ltd...

  5. Valuation of procurement flexibility in the machinery and equipment industry using the real option approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Valuation of procurement flexibility in the machinery and equipment industry using the real option situation of production networks of machine tool and equipment manufacturers will be described. Secondly reliability, flexibility, procurement, real options. 1 Introduction Besides the general market fluctuations

  6. Permit Regulations for the Construction and, or Operation of Air Emissions Equipment (Mississippi)

    Broader source: Energy.gov [DOE]

    The Permit Board will issue two types of air pollution control permits, a permit to construct air emissions equipment and a State Permit to Operate such equipment. A State Permit to Operate is...

  7. MULTI-SENSOR MONITORING FOR REAL-TIME 3D VISUALIZATION OF CONSTRUCTION EQUIPMENT

    E-Print Network [OSTI]

    Kamat, Vineet R.

    to workers and equipment operators due to their dynamic and unstructured nature. Narrow haul roads, crowded with the inherent poor visibility that operators of equipment such as dump trucks, loaders and excavators deal

  8. Analysis and sourcing of the mechanical equipment required for a ceramic pot filter production facility

    E-Print Network [OSTI]

    Getachew, Julian (Julian B.)

    2011-01-01T23:59:59.000Z

    Research was done into identifying and sourcing the mechanical equipment required for manufacturing ceramic pot filters, specifically for use in the Pure Home Water factory in Northern Ghana. The pieces of equipment ...

  9. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

  10. DOE/EH-0545, Seismic Evaluation Procedure for Equipment in U...

    Office of Environmental Management (EM)

    DOEEH-0545, Seismic Evaluation Procedure for Equipment in U.S. Department of Energy Facilities, 1997 DOEEH-0545, Seismic Evaluation Procedure for Equipment in U.S. Department of...

  11. Operations improvement in a semiconductor capital equipment manufacturing plant : component level and assembly level inventory management

    E-Print Network [OSTI]

    Wu, Yiming, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Semiconductor capital equipment is manufactured in a high-mix and low-volume environment at Varian Semiconductor Equipment business unit of Applied Materials. Due to the demand growth over the past years, Varian has been ...

  12. Equipment Availability in the Home and School Environment: Its Relationship on Physical Activity in Children

    E-Print Network [OSTI]

    Montandon, Kristi

    2013-01-14T23:59:59.000Z

    activity behavior of children; availability of equipment is one of these factors. The overall purpose of this dissertation was to examine availability of equipment as an environmental influence on a child’s physical activity behavior. The two environments...

  13. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01T23:59:59.000Z

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF[sub 6]), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF[sub 3]) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF[sub 6] and other gases are evacuated. The UF[sub 6] is recovered by chemical trapping. The lab results demonstrated that ClF[sub 3] gas at subatmospheric pressure and at [approx] 75[degree]F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  14. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01T23:59:59.000Z

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  15. Technology Transfer for Brownfields Redevelopment Project | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to...

  16. Remote control of off-shore oil field production equipment

    E-Print Network [OSTI]

    Sissom, Alton Wayne

    1949-01-01T23:59:59.000Z

    sion on the subJect. II OhIGII4AL IDEAS AND BECONlyiKA1'IOgS The problem ss outlined in parts A and 8 of Appendix h'o. 2 was received by the writer in June of 1948, The engineering division of the California Company asked that ocean cable... the manufacturers of control equipment, an oral report wss made to the engineering division of the California Company on September ~, 1948. This report included the following recommendations. l. Consideration of the original control system ss outlined...

  17. Vapor cooled current lead for cryogenic electrical equipment

    DOE Patents [OSTI]

    Vansant, James H. (Tracy, CA)

    1983-01-01T23:59:59.000Z

    Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

  18. Weather data handbook for HVAC and cooling equipment design

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Data included detailed tabulations of wet bulb temperature frequencies for the summer months, tabulations in multiple frequency for winter and summer conditions, various weather parameters useful in estimating performance for heat exchange equipment and other applications. Other data provided are: 12-month dry bulb temperatures and 12-month wet bulb temperatures vs relative humidity; combination of wet bulb temperatures, wind speed, and relative humidity; wind direction with high relative humidities; hourly observations for relative humidity 93% or greater; coincident high wet bulb and dry bulb temperature, seasonal cloud cover, and heat islands. (MHR)

  19. 1999 Commercial Buildings Characteristics--End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility PlantsEnd-Use Equipment

  20. Microsoft Word - Equipment Use Policy Oct2710.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO 2Dances done atReducedEquipment

  1. Geothermal-well completions: a survey and technical evaluation of existing equipment and needs

    SciTech Connect (OSTI)

    Nicholson, J.E.; Snyder, R.E.

    1982-07-01T23:59:59.000Z

    The geothermal environment and associated well completion problems are reviewed. Existing well completion equipment is surveyed and limitations are identified. A technical evaluation of selected completion equipment is presented. The technical evaluation concentrates on well cementing equipment and identifies potential failure mechanisms which limit the effectiveness of these tools. Equipment employed in sand control, perforating, and corrosion control are identified as potential subjects for future technical evaluation.

  2. Comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

  3. Advancing Equipment Reliability via a Natural Disaster Opportunities for Thinking Outside the Box

    E-Print Network [OSTI]

    Stephens, R.

    2006-01-01T23:59:59.000Z

    Advancing Equipment Reliability via a Natural Disaster, Opportunities for Thinking Outside the Box Robert Stephens, Senior Electrical Engineer, ExxonMobil, Chalmette Abstract As the equipment assessments came in after hurricane Katrina... was driven by the desire to harden equipment against future hurricanes, not just replace the equipment in kind. Pre-Katrina reliability teams had defined the architecture of the future. The devastation provided an opportunity for the vision to become...

  4. Used Computer Equipment Sales Agreement By acknowledgement of this Sale Agreement, _____________________________________ (Purchaser) agrees to

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Used Computer Equipment Sales Agreement By acknowledgement of this Sale Agreement be in the State of Wisconsin. _________________________________________ _________________ Acknowledged

  5. Knowledge Capture and Transfer Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development is working with Heads of Departmental Elements, DOE senior leaders and subject-matter-experts to capture and transfer the knowledge and experiences...

  6. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Environmental Engineering Game Design Industrial Systems & Information Technology Information Science MaterialsPreparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering

  7. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  8. Reliability of Manufacturing Equipment in Complex Environments Jeffrey P. Kharoufeh1

    E-Print Network [OSTI]

    Kharoufeh, Jeffrey P.

    Reliability of Manufacturing Equipment in Complex Environments Jeffrey P. Kharoufeh1 Department stochastic failure models for the reliability evaluation of manufacturing equipment that degrades due to its environment of the manufacturing equipment can significantly impact the rate at which tools (or other critical

  9. Risk-based Maintenance Allocation and Scheduling for Bulk Electric Power Transmission System Equipment

    E-Print Network [OSTI]

    equipment, maintenance, reliability, risk, security, optimization 1.Introduction Maintenance of bulk Equipment Yong Jiang, Ming Ni, James D. McCalley, Tim Van Voorhis {jiangy for bulk transmission equipment that is based on the cumulative long-term risk caused by each piece

  10. GLOVEBOX DISMANTLEMENT AND EQUIPMENT PROTECTION IN CONTAMINATED ENVIRONMENTS

    SciTech Connect (OSTI)

    Kitamura, Akihiro; Stallings, Ellen; Wilburn, Dianne W.

    2003-02-27T23:59:59.000Z

    It has been revealed from the experiences of Decontamination and Decommissioning (D&D) activities that even a small improvement in performance can result in significant risk reduction and cost savings. For example, Race Scan Ear Mic System, which was originally developed for communications between racecar drivers and crews in loud environments, has been successfully applied to D&D work and proved to enhance worker safety and communications. Glovebox dismantlement is an important and costly process in D&D activities of nuclear facilities. Adequate decontamination and size reduction of the gloveboxes are especially important in this activity because they have the potential to reduce risks and costs significantly. This paper presents some simple approaches to support D&D tasks and discusses their potential advantages. Examples discussed include: Repeated shear wiping of large pipes and ducts; Application of thin layers on radiological counters for uninterrupted use; and Partial use of robotics for glovebox dismantling. The paper also discusses schematics for protecting equipment interiors and/or glovebox inner surfaces from contamination, which may result in significant savings and waste minimization upon future dismantlement. Examples discussed include: Smart coating for contamination prevention; and Protecting equipment by geometrically simple cover.

  11. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  12. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01T23:59:59.000Z

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  13. Markets for rice husk-to-energy systems and equipment

    SciTech Connect (OSTI)

    Velupillai, L. [LSU Agricultural Center, Baton Rouge, LA (United States); Mahin, D.B. [International Energy Projects, Charlotte, NC (United States)

    1996-12-31T23:59:59.000Z

    A worldwide study of markets for U.S. equipment and systems for the production of energy from rice husks was conducted in 1995-96 by a team based at the Louisiana State University (LSU) Agricultural Center in Baton Rouge, Louisiana. The project was carried out in cooperation with Agrilectric Power Inc. and Riceland Foods, Inc., and funded by the U.S. Department of Energy through the National Renewable Energy Laboratory. The study included: (a) a global overview of the rice industry, rice husk availability and utilization, and husk-to-energy technologies, and (b) case studies of husk utilization and potential markets for husk-to-energy systems and equipment in five countries - the United States, Italy, China, Thailand, and Sri Lanka. The case studies in Italy, China, and Thailand were based in each case on a field trip to the country by a member of the project team. The study covered the following husk-to-energy technologies: furnace and boiler systems, steam engine systems, steam turbine systems, and gasifier/engine systems.

  14. Seismic equipment qualification at Rocky Flats Plant: Lessons learned

    SciTech Connect (OSTI)

    Peregoy, W.; Herring, K.

    1993-08-01T23:59:59.000Z

    Seismic equipment qualification is being evaluated as a part of the Systematic Evaluation Program (SEP) at Rocky Flats Plant (RFP). Initially it was believed that the experience database developed by the Seismic Qualification Utility Group (SQUG) for commercial nuclear power plants, as outlined in their Generic Implementation Procedure (GIP), would provide a substantial benefit for the seismic adequacy verification of equipment at RFP. However, further review of the simplified guidelines contained in the GIP with respect to the specific RFP structures and components revealed substantial differences from the GIP criteria. Therefore, the number of ``outliers`` from the experience database defined in the GIP is greater than was initially anticipated. This paper presents details of the differences found between the RFP structures and components and those represented in the GIP, and the challenges presented for their evaluation at RFP. Approaches necessary to develop seismic verification data are also discussed. The discussions focus on experience with one of the nuclear facilities at RFP, Building 707. However, the conclusions are generally applicable to other similar facilities that typically comprise the RFP nuclear facilities.

  15. Correctly specify insulation for process equipment and piping

    SciTech Connect (OSTI)

    Allen, C. [Raytheon Engineers and Constructors, Birmingham, AL (United States)

    1997-05-01T23:59:59.000Z

    Insulation serves as a thermal barrier to resist the flow of heat. When insulation is installed over piping or equipment to minimize heat losses, the insulation is categorized as heat conservation. Software programs for determining heat losses are based on ASTM C 680. If heat conservation insulation is calculated to determine the most cost-effective thickness for piping or equipment, then the insulation is categorized as economic insulation. Methods for manually determining economic thicknesses using various graphs and precalculated charts are given in Turner and Malloy. However, modern software programs available from industrial associations calculate economic thicknesses based on after-tax annual costs. Costs associated with owning insulation are expressed on an equivalent uniform annual cost basis. The thickness with the lowest annual cost is reported as the economic thickness. Some of the economic data needed to calculate economic thicknesses are fuel cost, depreciation period, annual fuel inflation rate, annual hours of operation, return on investment, effective income tax rate, annual insulation maintenance costs, and installed costs. To obtain accurate economical thicknesses, it is best to solicit installed costs from a local contractor likely to bid on the work. This paper covers the most suitable insulation materials for certain applications, the most economic material and thickness to use, and how the total insulation system should be designed.

  16. Criticality safety concerns of uranium deposits in cascade equipment

    SciTech Connect (OSTI)

    Plaster, M.J. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States)

    1996-12-31T23:59:59.000Z

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the {sup 235}U isotope by diffusing gaseous uranium hexafluoride (UF{sub 6}) through a porous barrier. The UF{sub 6} gaseous diffusion cascade utilized several thousand {open_quotes}stages{close_quotes} of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant`s product (typically 1.8 wt% {sup 235}U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF{sub 6}, particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF{sub 6} reactions with oil, UF{sub 6} reactions with the metallic surfaces of equipment, and desublimation of UF{sub 6}. The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition.

  17. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect (OSTI)

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30T23:59:59.000Z

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  18. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    SciTech Connect (OSTI)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01T23:59:59.000Z

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  19. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09T23:59:59.000Z

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  20. hESC Equipment Certification Process The following process is to be followed before capital equipment can be used for human

    E-Print Network [OSTI]

    Kim, Duck O.

    Management. 3. Materials Management will research the FRS account(s) used to purchase the equipment and distribute copies of the completed form to the PI, Materials Management, and Isolde Bates. If further review the disposition of the equipment and forward copies of the completed form to the PI, Materials Management

  1. Models, Calculation and Optimization of Gas Networks, Equipment and Contracts for Design, Operation, Booking and Accounting

    E-Print Network [OSTI]

    Ostromuhov, Leonid A

    2011-01-01T23:59:59.000Z

    There are proposed models of contracts, technological equipment and gas networks and methods of their optimization. The flow in network undergoes restrictions of contracts and equipment to be operated. The values of sources and sinks are provided by contracts. The contract models represent (sub-) networks. The simplest contracts represent either nodes or edges. Equipment is modeled by edges. More sophisticated equipment is represented by sub-networks. Examples of such equipment are multi-poles and compressor stations with many entries and exits. The edges can be of different types corresponding to equipment and contracts. On such edges, there are given systems of equation and inequalities simulating the contracts and equipment. On this base, the methods proposed that allow: calculation and control of contract values for booking on future days and for accounting of sales and purchases; simulation and optimization of design and of operation of gas networks. These models and methods are realized in software syst...

  2. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  3. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect (OSTI)

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01T23:59:59.000Z

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

  4. Directional Drilling and Equipment for Hot Granite Wells

    SciTech Connect (OSTI)

    Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

    1981-01-01T23:59:59.000Z

    Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

  5. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect (OSTI)

    David Hamilton

    2004-12-31T23:59:59.000Z

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  6. Long-length contaminated equipment disposal process path document

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-30T23:59:59.000Z

    The first objective of the LLCE Process Path Document is to guide future users of this system on how to accomplish the cradle-to-grave process for the disposal of long-length equipment. Information will be provided describing the function and approach to each step in the process. Pertinent documentation, prerequisites, drawings, procedures, hardware, software, and key interfacing organizations will be identified. The second objective is related to the decision to lay up the program until funding is made available to complete it or until a need arises due to failure of an important component in a waste tank. To this end, the document will identify work remaining to be completed for each step of the process and open items or issues that remain to be resolved.

  7. New developments for high power electron beam equipment

    SciTech Connect (OSTI)

    Melde, C.; Jaesch, G.; Maedler, E. [Von Ardenne Anlagentechnnik GmbH, Dresden (Germany)

    1994-12-31T23:59:59.000Z

    High power electron guns for industrial use work in the range of power of more than 10 kW up to 1200 kW. The only suitable principle for this purpose is that used in axial guns. Elements necessary for these EB guns and their design are described. The outstanding properties required for applications in production and R & D can only be achieved if the equipment is supplemented by a high voltage supply, beam guidance supply, vacuum generator and the various devices for observation, measurement and control. Standard rules for both the technical demands in application and dimensioning of some of the necessary components are explained. Special developments, such as high speed deflection, observation by BSE-camera and arc-free electron beam systems are also presented.

  8. Instrumentation and Equipment for Three Independent Research Labs

    SciTech Connect (OSTI)

    Darlene Roth

    2012-03-29T23:59:59.000Z

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The tw

  9. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J. [Mobil E and P Technology Co., Dallas, TX (United States)

    1998-03-09T23:59:59.000Z

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  10. Novel Carbon Films for Next Generation Rotating Equipment Applications

    SciTech Connect (OSTI)

    Michael McNallan; Ali Erdemir; Yury Gogotsi

    2006-02-20T23:59:59.000Z

    This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularly attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.

  11. DEVELOPMENT OF PERSONAL PROTECTIVE EQUIPMENT FOR DECONTAMINATION AND DECOMMISSIONING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01T23:59:59.000Z

    The purpose of this one-year investigation is to perform a technology integration/search, thereby ensuring that the safest and most cost-effective options are developed and subsequently used during the deactivation and decommissioning (D&D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Issues of worker health and safety are the main concern, followed by cost. Two lines of action were explored: innovative Personal Cooling Systems (PCS) and Personal Monitoring Equipment (PME). PME refers to sensors affixed to the worker that warn of an approaching heat stress condition, thereby preventing it. Three types of cooling systems were investigated: Pre-Chilled or Forced-Air System (PCFA), Umbilical Fluid-Chilled System (UFCS), and Passive Vest System (PVS). Of these, the UFCS leads the way. The PVS or Gel pack vest lagged due to a limited cooling duration. And the PCFA or chilled liquid air supply was cumbersome and required an expensive and complex recharge system. The UFCS in the form of the Personal Ice Cooling System (PICS) performed exceptionally. The technology uses a chilled liquid circulating undergarment and a Personal Protective Equipment (PPE) external pump and ice reservoir. The system is moderately expensive, but the recharge is low-tech and inexpensive enough to offset the cost. There are commercially available PME that can be augmented to meet the DOE's heat stress alleviation need. The technology is costly, in excess of $4,000 per unit. Workers easily ignore the alarm. The benefit to health & safety is indirect so can be overlooked. A PCS is a more justifiable expenditure.

  12. Journal of Heat Transfer1999 JHT Heat Transfer Gallery Department of Mechanical 8. Aerospace Engineering

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju

  13. Radiative transfer in molecular lines

    E-Print Network [OSTI]

    A. Asensio Ramos; J. Trujillo Bueno; J. Cernicharo

    2001-02-15T23:59:59.000Z

    The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.

  14. Energy Transfer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 at Iowa WindUnion7Transfer Energy Transfer Below

  15. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  16. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect (OSTI)

    Berry, Jan [ORNL] [ORNL; Ferrada, Juan J [ORNL] [ORNL; Curd, Warren [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Dell Orco, Dr. Giovanni [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Kim, Seokho H [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  17. Automated Operating Procedures for Transfer Limits

    E-Print Network [OSTI]

    conditions, and incomplete, as studies cannot analyze all combinations of equipment out a particular area. The required margins are generally mandated by the regional reliability organizations

  18. Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring

    SciTech Connect (OSTI)

    James Sebastian

    2003-09-29T23:59:59.000Z

    The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Further evaluation of the piezoelectric films on titanium caused it to be discarded as a candidate material due to an excessive thermal expansion coefficient mismatch, causing film failure upon reheating from room temperature. Deposition on SiC is proceeding well, with a highly conductive grade of silicon carbide required for practical use. Additional substrate materials, including refractory metals and conductive ceramics, have been considered but are generally not promising in light of the experience with titanium. Pulsed laser deposition (PLD) was investigated as an alternate means of creating the films as an alternative to CVD. A concurrent effort has focused on investigation of means of coupling ultrasound from the sensor into the test object at high temperature. A literature search combined with preliminary experimentation has resulted in the selection of two methods for coupling: low melting point glasses and metal foil- pressure couplant. The work in the next two years of the program will include continued improvement of the CVD deposition process, experimental testing of films and coupling at high temperatures, and a laboratory demonstration of the sensor in a simulated industrial application

  19. Mass Transfer from Giant Donors

    E-Print Network [OSTI]

    Pavlovskii, K

    2014-01-01T23:59:59.000Z

    The stability of mass transfer in binaries with convective giant donors remains an open question in modern astrophysics. There is a significant discrepancy between what the existing methods predict for a response to mass loss of the giant itself, as well as for the mass transfer rate during the Roche lobe overflow. Here we show that the recombination energy in the superadiabatic layer plays an important and hitherto unaccounted-for role in he donor's response to mass loss, in particular on its luminosity and effective temperature. Our improved optically thick nozzle method to calculate the mass transfer rate via $L_1$ allows us to evolve binary systems for a substantial Roche lobe overflow. We propose a new, strengthened criterion for the mass transfer instability, basing it on whether the donor experiences overflow through its outer Lagrangian point. We find that with the new criterion, if the donor has a well-developed outer convective envelope, the critical initial mass ratio for which a binary would evolv...

  20. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df the fuel rod, and the volumetric generation rate is known to vary sinusoidally with distance along the rod to exist between the surface of the rod and the water. Axial conduction can be neglected in rod and fluid

  1. Entrepreneurial separation to transfer technology.

    SciTech Connect (OSTI)

    Fairbanks, Richard R.

    2010-09-01T23:59:59.000Z

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  2. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

    1997-01-01T23:59:59.000Z

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  3. Rubber lining for FGD scrubbers for waste incinerator plants

    SciTech Connect (OSTI)

    Rullmann, H.E. [Smith Corrosion Services, Inc., Houston, TX (United States)

    1999-11-01T23:59:59.000Z

    Flue gas desulfurization scrubbers for waste incineration plants can be lined with soft rubber or hard rubber for corrosion protection. Hard rubber is cured under high temperature and pressure in an autoclave. The advantage of hard rubber is the excellent temperature and chemical resistance. The authors have experience with hard rubber lined scrubbers that are in service without failures for over 20 years.

  4. Successful corrosion protection in FGD plants utilizing rubber lining

    SciTech Connect (OSTI)

    Fenner, J. [Keramchemie GmbH, Siershahn (Germany); Peavy, M. [Smith Corrosion Services, Inc., Houston, TX (United States)

    1997-09-01T23:59:59.000Z

    In the late 1970`s--and predominantly in the mid-1980`s--when the construction of flue gas desulfurization plants in Germany was still in its early stages, both the US and Japan had already accumulated several years of experience in the operation of such plants. Whereas Japan adopted the almost exclusive use of synthetic resin coatings--usually as flake coatings--applied on carbon steel as structural material, all three corrosion protection materials mentioned here (rubber linings, synthetic resin coatings, and stainless steel coatings) were applied in the US--in addition, stainless steel was also utilized as structural material. On the other hand, in Germany the use of soft rubber linings was much more widespread. The paper discusses rubber linings as corrosion protection and the experience gained with rubber linings in flue gas desulfurization plants.

  5. Geo energy research and development: technology transfer

    SciTech Connect (OSTI)

    Traeger, R.K.

    1982-03-01T23:59:59.000Z

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  6. Safety equipment list for the light duty utility arm system

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-02T23:59:59.000Z

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

  7. Fluid flow and heat transfer modeling for castings

    SciTech Connect (OSTI)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01T23:59:59.000Z

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs.

  8. Base closure: Environmental concerns for transfer of a ``GOCO`` facility

    SciTech Connect (OSTI)

    Henderson, M.R.; Dent, M.J.; McLaurin, E.S.

    1994-12-31T23:59:59.000Z

    Faced with funding restrictions, cutbacks and fiscal restraints, the United States Department of Defense (DOD), over the next few years will be required to downsize its military personnel and equipment and divest or transfer some of its facilities. A program of procedures used to assess the environmental conditions of a government facility for transfer to non-federal ownership is required. An environmental site assessment or an Environmental Baseline Survey (EBS) is a program that can be used to evaluate the environmental conditions at a facility and whether it is in compliance with existing environmental regulations. An EBS will be required at both the large military bases and the smaller Government Owned Contractor Operated (GOCO) facilities. This presentation focuses on a case study of an EBS conducted at a GOCO facility in the upper midwest. The unique challenge offered at this site, as opposed to other military bases, is that the property consisted primarily of manufacturing areas. The use of hazardous substances and petroleum products by several defense contractors over the years resulted in environmental concerns that may have affected soil and ground water. Since this site is one of the first divestitures of a GOCO facility, the data collection process, environmental findings, recommendations and unique problems associated with a GOCO facility can serve as a model for future GOCO divestitures.

  9. Group transfer and electron transfer reactions of organometallic complexes

    SciTech Connect (OSTI)

    Atwood, J.D.

    1994-12-01T23:59:59.000Z

    During 1994, despite the disruptions, the authors have made progress in several aspects of their research on electron transfer reactions between organometallic complexes. This summary covers three areas that are relatively complete: (1) reactions between metal carbonyl anions and metal carbonyl halides, (2) reactions of hydrido- and alkyl-containing anions (RFe(CO){sup {minus}}{sub 4} and RW (CO){sub 5}{sup {minus}}) with metal carbonyl cations and (3) reactions of a seventeen-electron complex (Cp{asterisk}Cr(CO){sub 3}{lg_bullet}) with metal carbonyl derivatives. Two areas of examination that have just begun (possible carbene transfer and the possible role of metal carbonyl anions in carbon-hydrogen bond activation) will also be described.

  10. Analog Video Authentication and Seal Verification Equipment Development

    SciTech Connect (OSTI)

    Gregory Lancaster

    2012-09-01T23:59:59.000Z

    Under contract to the US Department of Energy in support of arms control treaty verification activities, the Savannah River National Laboratory in conjunction with the Pacific Northwest National Laboratory, the Idaho National Laboratory and Milagro Consulting, LLC developed equipment for use within a chain of custody regime. This paper discussed two specific devices, the Authentication Through the Lens (ATL) analog video authentication system and a photographic multi-seal reader. Both of these devices have been demonstrated in a field trial, and the experience gained throughout will also be discussed. Typically, cryptographic methods are used to prove the authenticity of digital images and video used in arms control chain of custody applications. However, in some applications analog cameras are used. Since cryptographic authentication methods will not work on analog video streams, a simple method of authenticating analog video was developed and tested. A photographic multi-seal reader was developed to image different types of visual unique identifiers for use in chain of custody and authentication activities. This seal reader is unique in its ability to image various types of seals including the Cobra Seal, Reflective Particle Tags, and adhesive seals. Flicker comparison is used to compare before and after images collected with the seal reader in order to detect tampering and verify the integrity of the seal.

  11. An MILP approach to Multi-location, Multi-Period Equipment ...

    E-Print Network [OSTI]

    2014-12-01T23:59:59.000Z

    Dec 1, 2014 ... case studies provided by our industry partner. We develop a mixed-integer linear programming model for heterogeneous equipment selection ...

  12. UGA Computer Equipment, Software or Services (CESS) Request Form Individual Responsible for CESS Resource and Location

    E-Print Network [OSTI]

    Arnold, Jonathan

    UGA Computer Equipment, Software or Services (CESS) Request Form Individual Responsible for CESS to install and utilize these resources in a manner consistent with established University Computer Security

  13. michael smith ornlradioactive beams: equipment & techniques p-induced reaction measurements

    E-Print Network [OSTI]

    measurements · Measure low cross section reactions with low RIB intensities in fine energy steps! · Use each, 128 channels Commissioned ~ 1995 #12;michael smith ornlradioactive beams: equipment & techniques

  14. Surveillance Guide - MAS 10.2 Control of Measuring and Test Equipment

    Broader source: Energy.gov (indexed) [DOE]

    CONTROL OF MEASURING AND TEST EQUIPMENT 1.0 Objective The objective of this surveillance is to verify that the contractor maintains adequate control of tools, gauges, instruments,...

  15. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect (OSTI)

    Mitchell, Zane Windsor [University of Southern Indiana; Gordon, Scott Allen [University of Southern Indiana

    2014-08-04T23:59:59.000Z

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  16. Facilities and Equipment for Genomics/Comparative Functional Genomics at New York University

    SciTech Connect (OSTI)

    Lennie, Peter

    2006-06-29T23:59:59.000Z

    This award was for partial support for the renovation of space to house research laboratories and moveable scientific equipment for genomics/functional geonomics at New York University.

  17. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    E-Print Network [OSTI]

    McMahon, James E.; Wiel, Stephen

    2001-01-01T23:59:59.000Z

    commercial-package air-conditioning and heating equipment, packaged terminal air condi- tioners and heat pumps, warm-air furnaces, packaged boilers, storage water heaters,

  18. OSS 19.1 Personal Protective Equipment 5/23/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the use of personal protection equipment to mitigate hazards that workers encounter in performing their jobs.  The surveillance activities provide...

  19. Possibility of Contamination of Subcontractor-Owned Materials and Equipment UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Pennycook, Steve

    Possibility of Contamination of Subcontractor-Owned Materials and Equipment UT-B Contracts Div Jul 2005 Page 1 of 1 contamination-matl-equip-ext-jul05.doc POSSIBILITY OF CONTAMINATION OF SUBCONTRACTOR-OWNED MATERIALS AND EQUIPMENT AT ORNL (Jul 2005) (a) Seller's equipment may become contaminated with residual

  20. DEPARTMENT OWNED EQUIPMENT INFORMATION Use this form to provide the required information for your department owned equipment to University of Michigan

    E-Print Network [OSTI]

    Kirschner, Denise

    information for your department owned equipment to University of Michigan (U-M) Parking and Transportation Plate Parking and Transportation Services (PTS) · 1213 Kipke Drive · Ann Arbor, Michigan 48109

  1. Utility FGD survey, January--December 1989. Volume 2, Design performance data for operating FGD systems: Part 3

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

    1992-03-01T23:59:59.000Z

    Experimental data for 120 flue gas desulfurization systems of fossil-fuel power plants of US electrical utilities with information on the design and performance. No text--all data.

  2. Attn Technology Transfer Questions.txt - Notepad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

  3. Data Communication Principles Reliable Data Transfer

    E-Print Network [OSTI]

    Ramkumar, Mahalingam

    Data Communication Principles Switching Reliable Data Transfer Data Communication Basics Mahalingam Ramkumar Mississippi State University, MS September 8, 2014 Ramkumar CSE 4153 / 6153 #12;Data Communication Principles Switching Reliable Data Transfer 1 Data Communication Principles Data Rate of a Communication

  4. Direct transfer of graphene onto flexible substrates

    E-Print Network [OSTI]

    Araujo, P. T.

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate ...

  5. Power transfer through strongly coupled resonances

    E-Print Network [OSTI]

    Kurs, André

    2007-01-01T23:59:59.000Z

    Using self-resonant coils in a strongly coupled regime, we experimentally demonstrate efficient non-radiative power transfer over distances of up to eight times the radius of the coils. We use this system to transfer 60W ...

  6. Engineering nanocarbon interfaces for electron transfer

    E-Print Network [OSTI]

    Hilmer, Andrew J. (Andrew Joseph)

    2013-01-01T23:59:59.000Z

    Electron-transfer reactions at nanometer-scale interfaces, such as those presented by single-walled carbon nanotubes (SWCNTs), are important for emerging optoelectronic and photovoltaic technologies. Electron transfer also ...

  7. Waste Feed Delivery Transfer System Analysis

    SciTech Connect (OSTI)

    JULYK, L.J.

    2000-05-05T23:59:59.000Z

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  8. Academic Knowledge Transfer in Social Networks

    E-Print Network [OSTI]

    Slater, Mark David

    2013-01-01T23:59:59.000Z

    4.3 Digital Library Requirements . . . . . . . . . . . 4.43.1.1 Digital Libraries . . . . . . . . . . . .A Prototype Personal Digital Library Knowledge Transfer

  9. AN EXPERIMENTAL INVESTIGATION OF THE HEAT TRANSFER FROM A BUOYANT GAS PLUME TO A

    E-Print Network [OSTI]

    Winfree, Erik

    Temperature E. Heat Transfer Model 1. Determining the Ceiling Heat Transfer 2. Ceiling Heat Transfer

  10. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  11. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01T23:59:59.000Z

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  12. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19T23:59:59.000Z

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  13. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01T23:59:59.000Z

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  14. Alterna(ve Roadmap For Transfer Students

    E-Print Network [OSTI]

    Ravikumar, B.

    Alterna(ve Roadmap For Transfer Students 8/11/14 EE Program #12;Transfer with the roadmap · NEXT STEP: ­ Share this with all other transfer students and make 1 (LACKING ES220) SEE THE ROADMAP: h`p://www.sonoma.edu/engineering/bsee/bsee_roadmap

  15. Technology Transfer from the University of Oxford

    E-Print Network [OSTI]

    Paxton, Anthony T.

    Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

  16. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2007 ­ 2009 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  17. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2009 ­ 2011 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  18. Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies

    E-Print Network [OSTI]

    Camci, Cengiz

    AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

  19. PLEASE READ ALL INSTRUCTIONS BEFORE BEGINNING INVENTORY Procedures for Completing Annual Capital Equipment Inventory

    E-Print Network [OSTI]

    Provancher, William

    PLEASE READ ALL INSTRUCTIONS BEFORE BEGINNING INVENTORY Procedures for Completing Annual Capital Equipment Inventory 1. Check off each item on the inventory report, as it is located. Place one of the small white inventory FY 2011 stickers on the equipment, as it is located. This will eliminate counting

  20. Review of Pre- and Post-1980 Buildings in CBECS - HVAC Equipment

    SciTech Connect (OSTI)

    Winiarski, David W.; Jiang, Wei; Halverson, Mark A.

    2006-12-01T23:59:59.000Z

    PNNL was tasked by DOE to look at HVAC systems and equipment for Benchmark buildings based on 2003 CBECS data. This white paper summarizes the results of PNNL’s analysis of 2003 CBECS data and provides PNNL’s recommendations for HVAC systems and equipment for use in the Benchmark buildings.

  1. FFaacciilliittiieess MMaannaaggeemmeenntt//EEnnvviirroonnmmeennttaall HHeeaalltthh && SSaaffeettyy Hazardous Work Area/Equipment Repair Form

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Hazardous Work Area/Equipment Repair Form Form Instructions: Client is responsible for completing this form to assure that equipment and/or immediate work areas are not contaminated with any hazardous materials, tissue, etc.) Do Safety Hazards exist in the work area? N ___ Y ___ (Electrical, burn, or trip hazards

  2. Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks value to existing assets Improving plant reliability 1 J.M. Wassick and J. Ferrio. Extending A batch plant with existing equipment A time horizon to make products Dynamic models of process operations

  3. About Genco Energy Services Genco Energy Services has been servicing the rental equipment needs

    E-Print Network [OSTI]

    Fisher, Kathleen

    About Genco Energy Services Genco Energy Services has been servicing the rental equipment needs of the oil business since 1996. The company leases more than 2,000 pieces of equipment like light towers. Situation Working in the fast-paced oil industry, Genco Energy Services could not track its large inventory

  4. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01T23:59:59.000Z

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  5. Available transfer capability and first order sensitivity

    SciTech Connect (OSTI)

    Gravener, M.H. [PJM Interconnection, L.L.C., Valley Forge, PA (United States)] [PJM Interconnection, L.L.C., Valley Forge, PA (United States); Nwankpa, C. [Drexel Univ., Philadelphia, PA (United States)] [Drexel Univ., Philadelphia, PA (United States)

    1999-05-01T23:59:59.000Z

    A method of calculating Available Transfer Capability and the exploration of the first order effects of certain power system network variables are described. The Federal Energy Regulatory Commission has ordered that bulk electrical control areas must provide to market participants a ``commercially viable`` network transfer capability for the import, export, and through-put of energy. A practical method for deriving this transfer capability utilizing both linear and non-linear power flow analysis methods is developed that acknowledges both thermal and voltage system limitations. The Available Transfer Capability is the incremental transfer capability derived by the method reduced by margins. A procedure for quantifying the first order effect of network uncertainties such as load forecast error and simultaneous transfers on the calculated transfer capability of a power system snapshot are explored. The quantification of these network uncertainties can provide information necessary for system operation, planning, and energy market participation.

  6. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect (OSTI)

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09T23:59:59.000Z

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

  7. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  8. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    SciTech Connect (OSTI)

    Haire, M.J.

    2003-06-30T23:59:59.000Z

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this early design stage. The ring and transfer lines are being designed for hands-on maintenance. The SNS beam loss criteria, which determine radiation dose design, are a factor of {approx}30 lower than the lowest that has been achieved at any existing proton synchrotron and accumulator rings. This demonstrates that ALARA considerations are an important part of SNS design. A noteworthy example of the ALARA principal being incorporated into the SNS is the hybrid ring lattice design recently approved by the SNS change control process. The new lattice design increases calculated acceptance by about 50% and improves the expected collimator efficiency from 80 to 95%. As a result, the expected calculated beam loss rate, and resulting radiation dose rates, are significantly improved. Another major design change with ALARA implications was the change from an alpha to an omega configuration for the high-energy beam transport (HEBT) system, ring, and ring-to-target beam transport (RTBT) system. Because of this change, the ring and transfer lines will have crane coverage, eliminating the need for personnel to be near activated equipment for repair and removal. By using the crane, extensive shielding can be placed around highly radioactive equipment (e.g., collimators), and the equipment can be moved by remote control. As part of the change from an alpha to omega configuration, the tunnel width was increased by 2 ft. This increased width will allow easier access to failed equipment, reducing radiation exposure time to workers during maintenance and repair. In addition, a personnel entrance was added to the ring between the HEBT and RTBT so that personnel will not have to enter this area directly through the HEBT or RTBT. This addition will shorten the travel distance, and therefore the time, that personnel performing maintenance work on radioactive equipment will need to be in the area, reducing potential dose. In the RTBT beam line, a hatchway will be placed above the collimators and quad doublet magnets near the target to facilitate their removal. This design was chosen in lieu

  9. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  10. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputer SimulationsConcentrating SolarAboutTransfers

  11. Data Transfer Nodes Yield Results!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDanielDTN Data Transfer Nodes

  12. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, a highlyTransfers Historical

  13. Aggregate Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, a highlyTransfers

  14. Heat Transfer Analysis for a Fixed CST Column

    SciTech Connect (OSTI)

    Lee, S.Y.

    2004-02-19T23:59:59.000Z

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant impact on maximum and wall temperatures of the column. In addition, the results computed by the present model were verified by the theoretical results. The analysis results will provide quantitative information associated with the process heat control and management of the CST base design. For example, transient responses of the CST system under a loss-of-flow accident condition will provide safety design information for an emergency cooling system of the column.

  15. MassMass transfer andtransfer and arationstearationste

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Equilibrium determined by thermodynamics 4 erföringo cH2O,eq Massöve cH2O in liq Rate determined by transport processes and equipment design cH2O equipment design RoNzĹbo Akademi - kemiteknik ­ Värme- och tel. 3223 ; ron.zevenhoven@abo.fi RoNz eknikarationste 24302 ochSepa 2.1 Fick's Law,2.1 Fick's Law, 4

  16. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  17. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    SciTech Connect (OSTI)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06T23:59:59.000Z

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.

  18. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    SciTech Connect (OSTI)

    J. Cunningham and J. Shank

    2004-11-01T23:59:59.000Z

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I&C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner.

  19. Solar Resources Measurements in Houston, TX -- Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-06-204

    SciTech Connect (OSTI)

    Stoffel, T.

    2012-09-01T23:59:59.000Z

    Loaning Texas Southern University equipment in order to perform site-specific, long-term, continuous, and high-resolution measurements of solar irradiance is important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: (1) establish a national 30-year climatological database of measured solar irradiances; (2) provide high quality ground-truth data for satellite remote sensing validation; (3) support development of radiative transfer models for estimating solar irradiance from available meteorological observations; (4) provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center - MIDC (http://www.nrel.gov/midc) Or the Renewable Resource Data Center - RReDC (http://rredc.nrel.gov). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

  20. Guidelines for using Multimedia Equipment This documents purpose is to provide guidelines for the standard use of the multimedia

    E-Print Network [OSTI]

    Militzer, Burkhard

    Guidelines for using Multimedia Equipment 7 Sep 2001 Purpose This documents purpose is to provide guidelines for the standard use of the multimedia equipment available for use in Campbell Hall rooms 501

  1. A literature Review on Radioactivity Transfer to

    E-Print Network [OSTI]

    as possible. Suggestions for further research have also been given. INIS descriptors; CESIUM 137; DEPOSITION be exposed by ingestion of contaminated terrestial foodstuffs. Even though the intermediate transfer

  2. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for "Outstanding Commercialization Success" from the Federal Laboratory Consortium for Technology Transfer. On October 4, 2012, the NETL team who developed this alloy received...

  3. Heat Transfer Fluids Containing Nanoparticles | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal increase in...

  4. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07T23:59:59.000Z

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  5. Miniature mechanical transfer optical coupler

    SciTech Connect (OSTI)

    Abel, Philip (Overland Park, KS); Watterson, Carl (Kansas City, MO)

    2011-02-15T23:59:59.000Z

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  6. The transfer from nuclear development

    SciTech Connect (OSTI)

    Smith, L.

    1993-12-31T23:59:59.000Z

    The Department of Energy`s task of cleaning up the extensive nuclear weapons complex is of such enormous proportions that there can be no definitive solution that can be adjusted to a predictable cost. The cleanup and disposition of hazardous wastes in many cases will take thirty or more years. In the near term, the economic impact affecting the communities and large number of displaced workers is a significant concern to the Department and the nation. However, before a useful transfer of DOE land, facilities, and sites to the public for economic development can be realized, a consistent and comprehensive process of compliance with regulatory requirements needs to be established. The simultaneous pursuit of these goals creates an unprecedented challenge to the Department of Energy and the US.

  7. EA-1774: Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the adoption of amended energy conservation standards as required by The Energy Policy and Conservation Act, as amended) for direct heating equipment,...

  8. Equipment Availability in the Home and School Environment: Its Relationship on Physical Activity in Children 

    E-Print Network [OSTI]

    Montandon, Kristi

    2013-01-14T23:59:59.000Z

    where children spend the major of time, home and school, were evaluated for equipment availability and increased physical activity. Three studies were conducted to complete this purpose. In Manuscript 1, a systematic literature review was conducted...

  9. The design and manufacture of mass production equipment for a pencil with a seed

    E-Print Network [OSTI]

    Del Castillo, Eric A. (Eric Anthony)

    2013-01-01T23:59:59.000Z

    Autosprout is the mass manufacturing equipment envisioned to produce Sprout, a pencil with a seed. This pencil concept was developed by MIT students a successful round of funding and first production run through Kickstarter. ...

  10. Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report

    SciTech Connect (OSTI)

    Boyce, K.; Chapin, J. T.

    2010-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  11. Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility

    Broader source: Energy.gov [DOE]

    WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

  12. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Peters, M.

    2014-06-01T23:59:59.000Z

    This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the fourth quarter of 2013.

  13. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

    2013-11-01T23:59:59.000Z

    This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the second quarter of 2013.

  14. The 21264 is the third generation Alpha microprocessor from Compaq Computer (formerly Digital Equipment)

    E-Print Network [OSTI]

    Jesshope, Chris

    Abstract The 21264 is the third generation Alpha microprocessor from Compaq Computer (formerly Digital Equipment) Corporation. This microprocessor achieves the industry- leading performance levels Microprocessor has been the performance leader since its introduction in 1992. An unequalled cycle time

  15. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

    2013-05-01T23:59:59.000Z

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

  16. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-10-01T23:59:59.000Z

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

  17. A regression approach to infer electricity consumption of legacy telecom equipment

    E-Print Network [OSTI]

    Fisher, Kathleen

    A regression approach to infer electricity consumption of legacy telecom equipment [Extended and communications technology accounts for a significant fraction of worldwide electricity consumption. Given inferring the electricity consumption of different components of the installed base of telecommu- nications

  18. Evaluating Equipment Performance Using SCADA/PMS Data for Thermal Utility Plants - Case Studies

    E-Print Network [OSTI]

    Deng, X.; Chen, Q.; Xu, C.

    2007-01-01T23:59:59.000Z

    The equipment in cogeneration plants and thermal energy plants such as gas tubing generators, boilers, steam turbine generators, chillers and cooling towers are often critical to satisfying building needs. Their actual energy performance is very...

  19. Seismic qualification of equipment by means of probabilistic risk assessment. [PWR

    SciTech Connect (OSTI)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01T23:59:59.000Z

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor (PWR).

  20. UCDHS GUIDELINES FOR ALLOCATING SHARED (MULTI-INVESTIGATOR) EQUIPMENT GRANT MATCHES

    E-Print Network [OSTI]

    Carmichael, Owen

    , 2007) MATCHING FUNDS FOR SHARED EQUIPMENT GRANTS Premise: NIH, through the S10 grant mechanism, water, and heating/cooling/ ventilation utilities, ongoing maintenance costs, or the training /hiring