Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-Wet FGD  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control for Plants firing Mercury control for Plants firing texas lignite and equiPPed with esP-wet fgd Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. One promising mercury control technology involves the use of sorbents such as powdered activated carbon. Full-scale sorbent injection tests conducted for various combinations of fuel and plant air pollution control devices have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance, and data gaps remain for specific plant configurations. Sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite coal, which are responsible for about 10 percent of annual U.S. power plant

2

Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD  

Science Conference Proceedings (OSTI)

This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

Katherine Dombrowski

2009-12-31T23:59:59.000Z

3

Multimedia Mercury Fate at Coal-Fired Power Plants Equipped With SCR and Wet FGD Controls  

Science Conference Proceedings (OSTI)

Given the current regulatory climate in the United States, a number of selective catalytic reduction (SCR) and flue gas desulfurization (FGD) systems will be installed at new and existing coal-fired power plants to remove nitrogen oxide (NOx), sulfur dioxide (SO2), and mercury. The multimedia fate of trace metal species, especially mercury, in SCR/wet FGD systems is not well understood. Understanding and quantifying the amount of mercury removed from the flue gas and distributed to the solid and aqueous ...

2008-03-19T23:59:59.000Z

4

Multimedia Fate of Selenium and Boron at Coal-Fired Power Plants Equipped with Particulate and Wet FGD Controls  

Science Conference Proceedings (OSTI)

Given the current regulatory climate in the United States, a number of flue gas desulfurization (FGD) systemsas well as selective catalytic reduction (SCR) systemswill be installed at new and existing coal-fired power plants to remove sulfur dioxide (SO2) and nitrogen oxide (NOx). The multimedia fate of trace metals species in SCR/wet FGD systems is not well understood. Understanding and quantifying the amount of trace elements removed from the flue gas and distributed to the solid and aqueous streams is...

2008-12-19T23:59:59.000Z

5

Utility FGD survey, Janurary--December 1988  

SciTech Connect

The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW. 2 figs., 9 tabs.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States)) [IT Corp., Cincinnati, OH (United States)

1991-09-01T23:59:59.000Z

6

Utility FGD survey, January--December 1988  

Science Conference Proceedings (OSTI)

The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States)) [IT Corp., Cincinnati, OH (United States)

1991-09-01T23:59:59.000Z

7

Utility FGD Survey, January--December 1989  

Science Conference Proceedings (OSTI)

The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

1992-03-01T23:59:59.000Z

8

FGD Optimization Workbook  

Science Conference Proceedings (OSTI)

Because flue gas desulfurization (FGD) systems represent a significant operating and maintenance (O&M) expense for coal-fired power plants, identification and implementation of cost reduction options are important. This workbook contains information to assist utilities in assessing FGD O&M cost reduction options through a series of worksheets that describe and cost most of the options that can be considered.

1998-08-22T23:59:59.000Z

9

Utility FGD survey: January--December 1989  

Science Conference Proceedings (OSTI)

This is Volume 1 of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

Hance, S.L.; McKibben, R.S.; Jones, F.M.

1992-03-01T23:59:59.000Z

10

Composition and Leaching of FGD Gypsum and Mined Gypsum  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) equipment on new and existing coal-fired power plants controls sulfur dioxide (SO2) emissions, and produces a solid that is removed in either slurry or dry form. EPRI sponsored an investigation to characterize FGD gypsum8212the solid produced by wet FGD systems with forced air oxidation8212from a representative sampling of U.S. power plants. A single contractor collected 32 samples from 29 power plants in 13 states. In addition, 11 natural gypsum samples from mines in the U...

2011-11-03T23:59:59.000Z

11

Utility FGD Survey, January--December 1989. Volume 2, Design performance data for operating FGD systems, Part 1  

Science Conference Proceedings (OSTI)

The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

1992-03-01T23:59:59.000Z

12

Utility FGD survey: January--December 1989. Volume 1, Categorical summaries of FGD systems  

SciTech Connect

This is Volume 1 of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

Hance, S.L.; McKibben, R.S.; Jones, F.M.

1992-03-01T23:59:59.000Z

13

Mercury in FGD Byproducts  

Science Conference Proceedings (OSTI)

This report provides interim results from two EPRI co-funded projects that pertain to what happens to mercury in flue gas from coal-fired power boilers when the scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and by USG Corporation under Cooperative Agreement DE-FC26-04NT42080, "Fate of Mercury in Synthetic Gypsum Used for Wallboard Production." The second project is being co-sponsore...

2005-12-07T23:59:59.000Z

14

Equipment concepts for dry intercask transfer of spent fuel  

SciTech Connect

This report documents the results of a study of preconceptual design and analysis of four intercask transfer concepts. The four concepts are: a large shielded cylindrical turntable that contains an integral fuel handling machine (turntable concept); a shielded fuel handling machine under which shipping and storage casks are moved horizontally (shuttle concept); a small hot cell containing equipment for transferring fuel between shipping and storage casks (that enter and leave the cell on carts) in a bifurcated trench (trench concept); and a large hot cell, shielded by an earthen berm, that houses equipment for handling fuel between casks that enter and leave the cell on a single cart (igloo concept). The casks considered in this study are most of the transport casks currently operable in the USA, and the storage casks designated REA-2023 and GNS Castor-V. Exclusive of basic services assumed to be provided at the host site, the design and capital costs are estimated to range from $9 to $13 million. The portion of capital costs for portable equipment (for potential later use at another site) was estimated to range from 70% to 98%, depending on the concept. Increasing portability from a range of 70 to 90% to 98% adds $2 to 4 million to the capital costs. Operating costs are estimated at about $2 million/year for all concepts. Implementation times range from about 18 months for the more conventional systems to 40 months for the more unique systems. Times and costs for relocation to another site are 10 to 14 months and about $1 million, plus shipping costs and costs of new construction at the new site. All concepts have estimated capacities for fuel transfer at least equal to the criterion set for this study. Only the hot cell concepts have capability for recanning or repair of canisters. Some development is believed to be required for the turntable and shuttle concepts, but none for the other two concepts.

Schneider, K.J.

1983-07-01T23:59:59.000Z

15

Mercury Stability in FGD Byproducts  

Science Conference Proceedings (OSTI)

A significant fraction of the mercury in coals fired for power generation currently is removed by wet flue gas desulfurization (FGD) systems and incorporated in the byproducts from those systems. This report summarizes the results of an EPRI-sponsored project to measure the stability of mercury in FGD byproducts from coal-fired generating plants under simulated landfill and reuse conditions. The current effort repeated portions of a 2003 project, documented in EPRI report 1004254, to determine whether th...

2004-03-24T23:59:59.000Z

16

FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS  

SciTech Connect

Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

2003-05-07T23:59:59.000Z

17

Equipment  

Science Conference Proceedings (OSTI)

...Manual gas cutting equipment consists of gas regulators, gas hoses, cutting torches, cutting tips, and multipurpose wrenches. Auxiliary equipment may include a hand truck, tip cleaners, torch ignitors, and protective goggles. Machine cutting

18

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Four sampling tests were performed in August 2004 during ozone season with the SCR operating; flue gas mercury speciation and concentrations were determined at the SCR inlet, SCR outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Three sampling tests were also performed in November 2004 during non-ozone season with the SCR bypassed; flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet). Process samples for material balances were collected during the flue gas measurements. The results show that, at the point where the flue gas enters the FGD, a greater percentage of the mercury was in the oxidized form when the SCR was operating compared to when the SCR was bypassed (97% vs 91%). This higher level of oxidation resulted in higher mercury removals in the FGD because the FGD removed 90-94% of the oxidized mercury in both cases. Total coal-to-stack mercury removal was 86% with the SCR operating, and 73% with the SCR bypassed. The average mercury mass balance closure was 81% during the ozone season tests and 87% during the non-ozone season tests.

J. A. Withum; S. C. Tseng; J. E. Locke

2006-01-31T23:59:59.000Z

19

2011 Update on Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three EPRI-funded flue gas desulfurization (FGD) research and development projects. The three projects are focused on understanding and enhancing how mercury is captured by FGD systems; on how it partitions between the FGD liquor, fine solids, and bulk FGD solid byproduct; and/or on factors that may affect beneficial use of FGD gypsum. The first project is collecting data at bench scale to determine the reactions that control the changes oxidized mercury can und...

2011-12-21T23:59:59.000Z

20

FGD Chemistry and Analytical Methods Handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide a comprehensive guide to sampling, analytical, and physical test methods essential to the operation, maintenance, and understanding of flue gas desulfurization (FGD) system chemistry. EPRI sponsored the preparation of the first version of this multi-volume report in the mid-1980s in response to the needs of electric utility personnel responsible for establishing and operating FGD analytical laboratories. Prompted by the results of research into various nonstanda...

2007-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report  

SciTech Connect

Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

NONE

1996-03-04T23:59:59.000Z

22

Mercury Emissions Control in Wet FGD Systems  

E-Print Network (OSTI)

The Babcock & Wilcox Company (B&W) and McDermott Technology, Inc. (MTI) have had a continuing program over the past decade for characterizing and optimizing mercury control in flue gas desulfurization (FGD) systems. These efforts have led to the characterization of mercury emissions control at two utility installations and full-scale demonstration (55 MW and 1300 MW) of the effect of a mercury control performance enhancement additive for wet FGD systems. This paper presents the results of the mercury emissions control testing conducted at these two sites. The performance is related to EPA Information Collection Request (ICR) data from an FGD system supplier’s perspective, highlighting the need to consider the effects of system design and operation when evaluating mercury emissions control performance.

Paul S. Nolan; Babcock Wilcox; Kevin E. Redinger; Babcock Wilcox; Gerald T. Amrhein; Gregory A. Kudlac

2002-01-01T23:59:59.000Z

23

Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility: Building 382 Rev. 1, 02/11/00 Facility: Building 382 Rev. 1, 02/11/00 Training: (1) ESH114 Lockout/Tagout ASD125 APS LOTO ESH371 Electrical Safety - General ESH195 PPE ESH141 Hand and Power Tools (2) ESH707 Accelerator Worker ESH738 GERT (3) ESH196 Hazard Communication ESH376 or 456 Chemical Waste (4) ASDSF6 (5) ESH170 OSHA Lead Standard ESH196 Hazard Communication ESH195 PPE ESH141 Hand and Power Tools (6) ESH195 PPE ESH141 Hand and Power Tools (7) Informal OJT (8) Formal OJT Management Tools: (A) ANL-E ESH Manual SMART (B) APS-SAD APS-CO (C) Waste Handling Procedure Manual Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical

24

Enhanced Mercury Removal by Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report provides results from testing conducted in 2005 as part of three EPRI co-funded projects that are aimed at enhancing the capture of mercury in flue gas from coal-fired power boilers when scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) under Cooperative Agreement DE-FC26-01NT41185, "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD," as well as by two...

2006-03-07T23:59:59.000Z

25

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal-to-stack basis, was 53%. The average Hg concentration in the stack flue gas was 4.09 {micro}g/m{sup 3}. The average stack mercury emission was 3.47 Ib/TBtu. The mercury material balance closures ranged from 87% to 108%, with an average of 97%. A sampling program similar to this one was performed on a similar unit (at the same plant) that was equipped with an SCR for NOx control. Comparison of the results from the two units show that the SCR increases the percentage of mercury that is in the oxidized form, which, in turn, lends to more of the total mercury being removed in the wet scrubber. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal.

J.A. Withum; S.C. Tseng; J.E. Locke

2005-11-01T23:59:59.000Z

26

Economics of dry FGD by sorbent injection  

SciTech Connect

Increasingly stringent pollution control requirements for new power plants have nearly doubled the cost of producing electricity. The capital, operating and maintenance costs of wet flue gas desulfurization (FGD) systems are major, and considerable interest is currently being given to less expensive dry systems. One attractive alternative to wet scrubbing for FGD is to inject a dry, powdered reagent into the duct work between a coal-fired boiler and a FF (baghouse). The reagent (and fly ash) are collected on the fabric surface where the SO/sub 2//reagent contact occurs. The technical aspects of SO/sub 2/ removal using nahcolite and trona as sorbents have been investigated at laboratory-scale, demonstrated at full-scale, and are reported on briefly. These results indicate that injection of sodium based reagents is technically an attractive alternative to the many steps and processes involved in wet scrubbing. This paper summarizes a project to examine the economics of nahcolite/trona and furnace limestone injection FGD and compare them to those of the more advanced spray dryer FGD systems. Uncertainties in material handling, pulverization, and waste disposal were investigated and designs were produced as a basis for cost estimating.

Naulty, D.J.; Hooper, R.; Keeth, R.J.; McDowell, D.A.; Muzio, L.J.; Scheck, R.W.

1983-11-01T23:59:59.000Z

27

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

J. A. Withum; J. E. Locke

2006-02-01T23:59:59.000Z

28

Guidelines for Flue Gas Desulfurization (FGD) Water Sampling and Analysis  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are being installed on coal-fired power plants in response to federal and state air pollution regulations limiting sulfur dioxide emissions. FGD scrubbers produce an aqueous waste stream that contains metals adsorbed from flue gas. At the same time, the U.S. Environmental Protection Agency (EPA) is reviewing, and may tighten, water discharge limits on trace metals. Collection of accurate data on the trace metal composition of FGD water discharges is therefore esse...

2009-03-27T23:59:59.000Z

29

'Bugs' used to treat FGD wastewater  

SciTech Connect

Tough regulation of heavy metals may justify a bioreactor approach in addition to chemical treatment of FGD wastewater. Two of Duke Energy' coal-fired plants, Belews Creek and Allen (in North Carolina) have installed new biological reactor systems to increase selenium removal to levels not achievable by existing scrubber waste water systems. The ABMet system removes nitrate and selenium in a single step. Progress Energy has installed the system at Roxboro and Mayo Stations, also in North Carolina. 1 fig., 2 photos.

Blankinship, S.

2009-09-15T23:59:59.000Z

30

NETL: Control Technology - Field Testing of a Wet FGD Additive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Mercury Control URS Corporation will demonstrate the use of an additive in wet lime or limestone flue gas desulfurization (FGD) systems to prevent oxidized mercury that...

31

Carbon Dioxide Sequestration with Flue Gas Desulfurization (FGD) Gypsum  

Science Conference Proceedings (OSTI)

Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, alkaline Ca-rich flue gas desulfurization (FGD) gypsum samples were carbonated to a varying extent. These materials ... Keywords: FGD gypsum, carbonation, carbon dioxide

Hongqi Wang; Ningning Sun; Rona J. Donahoe

2009-07-01T23:59:59.000Z

32

FGD By-Product Disposal Manual, Fourth Edition  

Science Conference Proceedings (OSTI)

This manual presents an objective, systematic methodology for evaluating potential flue gas desulfurization (FGD) sludge disposal sites and design approaches. A completely updated edition, the manual provides new information and references on existing industry disposal practices, regulatory constraints and trends, FGD sludge properties, and waste management system costs.

1995-08-11T23:59:59.000Z

33

FGD Chemistry and Analytical Methods Handbook, Volumes 1-3  

Science Conference Proceedings (OSTI)

Designers and operators of flue gas desulfurization (FGD) systems need information about the chemistry of the SO2 removal process to evaluate process performance. This authoritative handbook of FGD chemistry can assist utilities in selecting, designing, starting up, and operating SO2 wet scrubbing systems.

1984-07-01T23:59:59.000Z

34

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

35

Improved FGD dewatering process cuts solid wastes  

Science Conference Proceedings (OSTI)

In 2007, Duke Energy's W.H. Zimmer Station set out to advance the overall performance of its flue gas desulfurization (FGD) dewatering process. The plant implemented a variety of measures, including upgrading water-solids separation, improving polymer program effectiveness and reliability, optimizing treatment costs, reducing solid waste sent to the landfill, decreasing labor requirements, and maintaining septic-free conditions in clarifiers. The changes succeeded in greatly reducing solid waste generation and achieving total annual savings of over half a million dollars per year. 8 figs., 1 tab.

Moer, C.; Fernandez, J.; Carraro, B. [Duke Energy (United States)

2009-08-15T23:59:59.000Z

36

Fate of Mercury in FGD Systems: Second Interim Report  

Science Conference Proceedings (OSTI)

This report describes the results of laboratory investigations of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) absorbers that are used for SO2 control in coal-fired power plants. The laboratory investigations were conducted in the latter half of 2004 and in early 2005, and include bench-scale simulations of wet FGD absorbers under a range of operating conditions and fundamental investigations of the kinetics of mercury reactions in FGD liquors. Data collected in the EPA merc...

2005-03-14T23:59:59.000Z

37

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a coal-to-stack basis, was 87%. The mercury material balance closures for the four tests conducted at the plant ranged from 89% to 114%, with an average of 100%. These results appear to show that the SCR had a positive effect on mercury removal. In earlier programs, CONSOL sampled mercury at six plants with wet FGDs for SO{sub 2} control without SCR catalysts. At those plants, an average of 61 {+-} 15% of the mercury was in the oxidized form at the air heater outlet. The principal purpose of this work is to develop a better understanding of the potential Hg removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of Hg chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize Hg removal.

J. A. Withum; S.C. Tseng; J. E. Locke

2004-10-31T23:59:59.000Z

38

Redesigning experimental equipment for determining peak pressure in a simulated tank car transfer line  

E-Print Network (OSTI)

When liquids are transported from storage tanks to tank cars, improper order of valve openings can cause pressure surges in the transfer line. To model this phenomenon and predict the peak pressures in such a transfer line, ...

Diaz, Richard A

2007-01-01T23:59:59.000Z

39

Corrosion in Wet Flue Gas Desulfurization (FGD) Systems: Technical Root Cause Analysis of Internal Corrosion on Wet FGD Alloy Absorbers  

Science Conference Proceedings (OSTI)

State-of-the-art flue gas desulfurization (FGD) technologies have been or are being installed on most large coal-fired electric generating units in response to new regulatory emission requirements. Aggressive corrosion has been noted in some of these systems, presumably from the low pH, high chloride environments created in the FGD process. There exists a plethora of material systems (metallic, organic, plastics, coating, and so forth) available to construct these systems, but, because of cost, fabricabi...

2012-04-30T23:59:59.000Z

40

Demonstration Test of Iron Addition to a Flue Gas Desulfurization (FGD) Absorber to Enhance Mercury Removal  

Science Conference Proceedings (OSTI)

This report documents the findings from a full-scale demonstration test of the effects on trace elements of adding iron to a forced oxidation flue gas desulfurization (FGD) scrubber. Three specific effects were evaluated: lowering mercury emissions to the atmosphere; lowering the concentration of soluble or sub-micron-sized mercury particles in FGD purge water, which could improve removal of mercury in FGD purge water treatment; and lowering the concentration of selenate in FGD purge water, which could i...

2009-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FGD Chemistry and Analytical Methods Handbook, Volume 2: Chemical and Physical Test Methods, Revision 1  

Science Conference Proceedings (OSTI)

Utilities operating flue gas desulfurization (FGD) systems can increase system reliability and reduce operating costs by monitoring and controlling process chemistry. A revision of volume 2 of this handbook, an industry standard for FGD chemistry labs, incorporates the latest advances in FGD analytical chemistry and introduces methods for determining liquid-phase thiosulfate and boron concentrations.

1988-11-01T23:59:59.000Z

42

FGD wastewater treatment still has a way to go  

SciTech Connect

The power industry should jointly address questions about FGD water treatment and share the lessons it has learned so far. The article describes a scheme developed by CH2M Hill to treat FGD wastewater and remove heavy metals. The process desaturates the waste water of sulfates and removes the bulk of the insoluble suspended solids prior to tertiary treatment of heavy metals using a chemical/physical treatment process. Additional treatment could be provided (for example, anoxic biological treatment) for selenium, nitrates and organics. 2 figs.

Higgins, T.; Givens, S.; Sandy, T. [CH2M Hill (United States)

2008-01-15T23:59:59.000Z

43

The Fate of Mercury Absorbed in Flue Gas Desulfurization (FGD) Systems  

Science Conference Proceedings (OSTI)

Wet flue gas desulfurization (FGD) systems are known to remove a percentage of the mercury in coal flue gases. This raises several questions about the fate of mercury removed by wet FGD systems: Does the absorbed mercury stay in the FGD liquor or does it leave with the byproduct solids? What happens to mercury in the FGD liquor and solid byproducts when they leave the FGD system? To address such questions, this report describes results from an EPRI project that involves field sample collection and labora...

2005-03-24T23:59:59.000Z

44

Tank vessels transferring Outer Continental Shelf (OCS) oil proposed design and equipment standards  

SciTech Connect

The US Coast Guard proposes to require US and foreign flag tank vessels engaged in the transfer of OCS oil in bulk as cargo from an offshore oil exploitation or production facility to shore to have segregated ballast tanks, dedicated clean ballast tanks, or special ballast arrangements by 6/1/80. This proposal would implement the Port and Tanker Safety Act of 1978 and would eliminate the mixing of ballast water and oil, thus reducing operational pollution that could occur if there was a substantial increase in vessel traffic. Comments must be received by 6/16/80.

1980-05-01T23:59:59.000Z

45

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 5 - Eastern Bituminous Coal-Fired Power Plant wi th an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber 8212 fabric filter (SDA-FF) combination. In this program CONSOL is determining ...

2005-11-28T23:59:59.000Z

46

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Site 7 - Eastern Bituminous Coal-Fired Power Plant with an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber fabric filter (SDA-FF) combination. In this program CONSOL is determining mercu...

2006-07-26T23:59:59.000Z

47

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 4 - Eastern Bituminous Coal-Fired Power Plant wit h an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber fabric filter (SDA-FF) combination. In this program CONSOL is determining mercu...

2006-07-31T23:59:59.000Z

48

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Site 6 - Eastern Bituminous Coal-Fired Power Plant with an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber 8211 fabric filter (SDA-FF) combination. In this program CONSOL is determining ...

2006-07-31T23:59:59.000Z

49

Laboratory Evaluation of Novel Trace Element Removal Technologies for Wet FGD Wastewater  

Science Conference Proceedings (OSTI)

Wet flue gas desulfurization (FGD) systems can remove a wide range of trace elements, such as mercury, selenium, arsenic, and others from the flue gas. Some trace elements leave the FGD system with solid byproduct streams, but a portion generally leaves as dissolved species in the FGD chloride purge stream. The U.S. Environmental Protection Agency (EPA) effluent limitation guidelines and state or local regulations generally limit the quantities of these trace species in wastewater discharges from ...

2012-12-31T23:59:59.000Z

50

Evaluation of the Impact of Limestone on Gypsum Crystal Habit in Wet FGD Scrubbers  

Science Conference Proceedings (OSTI)

This document summarizes the results of a laboratory program focused on determining what key limestone components are responsible for impacting wet flue gas desulfurization (FGD) byproduct gypsum properties. Tests were conducted using several commercial limestone samples for which documented full-scale limestone forced oxidation wet FGD operating experience exists. These include limestone samples known to produce FGD gypsum with both ‘good’ and ‘poor’ crystallization ...

2012-12-28T23:59:59.000Z

51

Reduction of Water Use in Wet FGD Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of WateR use in Wet fGd Reduction of WateR use in Wet fGd systems Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

52

NETL: Utilization Projects - Value Added Products from FGD Sulfite rich  

NLE Websites -- All DOE Office Websites (Extended Search)

Value Added Products from FGD Sulfite rich Scrubber Material Value Added Products from FGD Sulfite rich Scrubber Material In pursuit of developing value added products from sulfite-rich scrubber material, e.g., low-density panels, carpet underlayment, siding, pre-cast building material, lumber panels, particle and wafer type boards, the following four experimental tasks are proposed: A comprehensive characterization of sulfite-rich scrubber materials produced by power plant generation. Specifically, the mercury, selenium, arsenic, boron, and organic content will be monitored The sulfite-rich scrubber material will be combined with cheap but renewable agricultural byproducts like micronized core fibers and/or micronized wheat straw, and the composites will be formulated by exploiting the natural polymers of the byproducts. The conditions under which structural composites can be formulated using injection molding and compressive molding will be evaluated.

53

Flue Gas Desulfurization (FGD) Wastewater Characterization and Management: 2007 Update  

Science Conference Proceedings (OSTI)

Tightened air regulations on acid-gas-forming emissions are leading more electric utilities to install flue gas desulfurization (FGD) systems, typically wet scrubbers. However, there are challenges associated with such decisions in terms of utility wastewater management. Volatile metals, such as selenium and mercury, are better captured in wet scrubber systems than in electrostatic precipitators and may be present at higher concentrations in utility wastewater systems. This report is designed to help pow...

2008-03-31T23:59:59.000Z

54

High-volume, high-value usage of flue gas desulfurization (FGD) by- products in underground mines: Phase 1, Laboratory investigations. Quarterly report, April--June 1995  

SciTech Connect

The kinetics study which is investigating hydration reactions of the ADM by-product (Subtask 2.2) was continued this quarter. This study further aided in gaining information on mineral precipitation and dissolution reactions during hydration of the ADM materials. The information is of importance for a comprehensive understanding of the factors that control strength and long-term stability during aging of FGD materials. The decision was made by Addington, Inc., DOE, and the University of Kentucky that the originally selected mine site for the emplacement demonstration must be changed, mainly for safety reasons. Mine selection will be a priority for the next quarter (Jul--Sep, 1995). Another activity during this reporting period was related to Subtask 4.3, the selection and testing of the transport system for the FGD material. A laboratory-scale pneumatic emplacement test unit (ETU) for dry FGD materials was built at the CAER to generate data so that a final selection of the field demonstration technology can be made. A dry pneumatic system was chosen for laboratory testing because the equipment and expertise available at the CAER matched this sort of technology best. While the design of the laboratory system was based on shotcrete technology, the physical properties of the emplaced FGD material is expected to be similar for other transport techniques, either pneumatic or hydraulic. In other words, the selection of a dry pneumatic transport system for laboratory testing does not necessarily imply that a scaled-up version will be used for the field demonstration. The ETU is a convenient means of producing samples for subsequent chemical and physical testing by a representative emplacement technology. Ultimately, the field demonstration technology will be chosen based on the laboratory data and the suitability of locally available equipment.

NONE

1995-09-01T23:59:59.000Z

55

Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors  

SciTech Connect

This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

Gary Blythe; John Currie; David DeBerry

2008-03-31T23:59:59.000Z

56

The politics of FGD deployment in the UK (1980s-2009)  

E-Print Network (OSTI)

flow hydro Nuclear Natural gas Oil Coal #12;7 SO2 regulation and FGD investments By the early 1980s are generally higher for coal than for natural gas. This has had important consequences for FGD. CCS has been. Natural gas contains virtually no sulphur. There are also varying sulphur content in different coals (and

57

Update of Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three mercury control technology research and development projects. One project is co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL), the second is funded solely by EPRI, and the third is co-funded by EPRI, DOE-NETL, and several EPRI-member companies. All three projects are focused on understanding and/or enhancing mercury capture (co-removal) by wet flue gas desulfurization (FGD) systems. The first project, c...

2007-03-12T23:59:59.000Z

58

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

J.A. Withum

2006-03-07T23:59:59.000Z

59

Reduction of Water Use in Wet FGD Systems  

Science Conference Proceedings (OSTI)

Cooperative Agreement DE-FC26-06NT42726 was established in January 2006, and is current through Amendment 2, April 2006. The current reporting period, April 1, 2008 through June 30, 2008, is the eighth progress-reporting period for the project. However, this report will be the final report (instead of a quarterly report) because this project is being terminated. Efforts to bring this project to a close over the past several months focused on internal project discussions, and subsequent communications with NETL, regarding the inherent difficulty with completing this project as originally scoped, and the option of performing an engineering study to accomplish some of the chief project objectives. However, NETL decided that the engineering study did indeed constitute a significant scope deviation from the original concepts, and that pursuit of this option was not recommended. These discussions are summarized in the Results and Discussion, and the Conclusion sections. The objective of this project by a team lead by URS Group was to demonstrate the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulphurization (FGD) systems on coal-fired boilers. Furthermore, the project intended to demonstrate that regenerative heat exchange to cool flue gas upstream of the electrostatic precipitator (ESP) and reheat flue gas downstream of the FGD system would result in the following benefits to air pollution control (APC) systems on coal-fired power plants: (1) Improve ESP performance due to reduced gas volume and improved ash resistivity characteristics, (2) Control SO3 emissions through condensation on the fly ash, and (3) Avoid the need to install wet stacks or to provide flue gas reheat. Finally, operation at cooler flue gas temperatures offered the potential benefit of increasing mercury (Hg) removal across the ESP and FGD systems. This project planned to conduct pilot-scale tests of regenerative heat exchange to determine the reduction in FGD water consumption that can be achieved and assess the resulting impact on APC systems. An analysis of the improvement in the performance of the APC systems and the resulting reduction in capital and operating costs were going to be conducted. The tests were intended to determine the impact of operation of cooling flue gas temperatures on FGD water consumption, ESP particulate removal, SO{sub 3} removal, and Hg removal, and to assess the potential negative impact of excessive corrosion rates in the regenerative heat exchanger. Testing was going to be conducted on Columbian coal (with properties similar to low-sulfur Eastern bituminous coal) and SO{sub 3} will be spiked onto the flue gas to simulate operation with higher SO{sub 3} concentrations resulting from firing a higher sulfur coal, or operating with a selective catalytic reduction (SCR) unit. The project was also going to include associate planning, laboratory analytical support, reporting, and management activities. The URS project team finalized a conceptual alternative approach to demonstrate, via an engineering study, the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption. This idea was presented in summary format to NETL for consideration. NETL determined that this alternative approach deviated from the original project objectives, and that it would be in the best interest of all parties involved to cancel the project.

David Rencher

2008-06-30T23:59:59.000Z

60

Land application uses for dry FGD by-products, Phase 1 report  

SciTech Connect

The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

62

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 10---Eastern-Bituminous Coal-Fired Power Plant w ith an SCR, ESP and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber – fabric filter (SDA-FF) combination. In this program CONSOL is to determine mercury speciation and removal at 10 coal-fired faci...

2005-11-28T23:59:59.000Z

63

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 3 - Eastern Bituminous Coal-Fired Power Plant Wit h an SCR, ESP, and Wet FGD; Impact of Chloride Addition  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber - fabric filter (SDA-FF) combination. In this program CONSOL is determining mer...

2006-04-26T23:59:59.000Z

64

Field Testing of a Wet FGD Additive for Enhanced Mercury Control  

SciTech Connect

This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

Gary Blythe; MariJon Owens

2007-12-31T23:59:59.000Z

65

Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Technical report, March 1--May 31, 1995  

Science Conference Proceedings (OSTI)

Goal is to assess technical and economic feasibility for producing fertilizer-grade ammonium sulfate from gypsum produced in limestone flue gas desulfurization (FGD). This is the 1st year of a 2-year program among Illinois State Geological Survey, University of Illinois (Urbana-Champaign), Allied-Signal, Marketing Chem. Process Inc., Henry Fertilizer, Illinois Power Co., and Central Illinois Public Services. In previous quarter, chemistry and process conditions were reviewed and a reactor system set up and used to conduct laboratory tests. FGD-gypsum from Abbott power plant was used. The scrubber, a Chiyoda Thoroughbred 121 FGD, produced a filter cake (98.36% gypsum and < 0.01% CaSO{sub 3}). Conversion of FGD- gypsum to ammonium sulfate was tested at 60-70{degree}C for 5-6 hr. Yield up to 82% and purity up to 95% were achieved for the ammonium sulfate production. During this quarter, more bench-scale experiments including a mass balance analysis were conducted; a yield up to 83% and up to 99% purity were achieved. A literature survey was completed and a preliminary process flow sheet was developed. Economics of the process is being estimated.

Chou, M.I.M.; Rostam-Abadi, Ml; Lytle, J.M.; Bruinius, J.A.; Li, Y.C. [Illinois State Geological Survey, Urbana, IL (United States); Hoeft, R. [Illinois Univ., Urbana, IL (United States); Dewey, S. [AlliedSignal-Chemicals (United States); Achorn, F. [Southeast Marketing Chem. Process INc. (SE-ME) (United States)

1995-12-31T23:59:59.000Z

66

Effect of Environmental Parameters on the Performance of Coatings in FGD Ductwork  

Science Conference Proceedings (OSTI)

Coatings used in the outlet ducts of flue gas desulfurization (FGD) systems may fail prematurely. Research has shown that coating lifetime is a function of flue gas temperature and the concentration of some of the chemicals present in the flue gas condensate.

1993-04-01T23:59:59.000Z

67

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

68

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

69

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

Gary Blythe

2007-05-01T23:59:59.000Z

70

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2002-10-04T23:59:59.000Z

71

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

Gary M. Blythe

2002-07-17T23:59:59.000Z

72

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-01-21T23:59:59.000Z

73

Teaching students about two-dimensional heat transfer effects in buildings, building components, equipment, and appliances using Therm 2.0.  

E-Print Network (OSTI)

Components, Equipment, and Appliances Using THERM 2.0as products such as appliances. Although there are other

Huizenga, Charlie; Arasteh, Dariush; Finalyson, Elizabeth; Mitchell, Robin; Griffith, Brent; Curcija, Dragan

1999-01-01T23:59:59.000Z

74

LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD  

SciTech Connect

The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young Unit 2 and TXU Monticello Unit 3. The work involves establishing Hg oxidation levels upstream of air pollution control devices (APCDs) and removal rates across existing ESP and FGD units, determining costs associated with those removal rates, investigating the possibility of the APCD acting as a multipollutant control device, quantifying the balance of plant impacts of the control technologies, and facilitating technology commercialization.

Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

2004-03-01T23:59:59.000Z

75

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

76

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

77

Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System  

SciTech Connect

This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the demonstration early, during a planned unit outage. On October 2, 2009, Unit 3 was taken out of service for a fall outage and the catalyst upstream of Absorber C was removed. This ended the demonstration after approximately 17 months of the planned 24 months of operation. This report discusses reasons for the pressure drop increase and potential measures to mitigate such problems in any future application of this technology. Mercury oxidation and capture measurements were made on Unit 3 four times during the 17-month demonstration. Measurements were performed across the catalyst and Absorber C and 'baseline' measurements were performed across Absorber A or B, which did not have a catalyst upstream. Results are presented in the report from all four sets of measurements during the demonstration period. These results include elemental mercury oxidation across the catalyst, mercury capture across Absorber C downstream of the catalyst, baseline mercury capture across Absorber A or B, and mercury re-emissions across both absorbers in service. Also presented in the report are estimates of the average mercury control performance of the oxidation catalyst technology over the 17-month demonstration period and the resulting mercury control costs.

Gary Blythe; Jennifer Paradis

2010-06-30T23:59:59.000Z

78

Development of Mercury Oxidation Catalyst for Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on a mercury control technology development program co-funded by EPRI, the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL), and several EPRI-member companies. The mercury control process under development uses catalysts installed downstream of the air heater and particulate control device to promote the oxidation of elemental mercury in flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) ...

2007-03-13T23:59:59.000Z

79

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

Gary M. Blythe

2002-02-22T23:59:59.000Z

80

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-07-01T23:59:59.000Z

82

Value-Added Products from FGD Sulfite-Rich Scrubber Materials  

SciTech Connect

According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

Vivak Malhotra

2010-01-31T23:59:59.000Z

83

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period January 1, 2002 through March 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE) and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the second full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to pilot unit design and conducting laboratory runs to help select candidate catalysts. This technical progress report provides an update on these two efforts. A Test Plan for the upcoming pilot-scale evaluations was also prepared and submitted to NETL for review and comment. Since this document was already submitted under separate cover, this information is not repeated here.

Gary M. Blythe

2002-04-26T23:59:59.000Z

84

Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems  

Science Conference Proceedings (OSTI)

Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 {mu}m). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH){sub 2} and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH){sub 2} systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.

Qiao, X.C. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Poon, C.S. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: cecspoon@polyu.edu.hk; Cheeseman, C. [Department of Civil and Environmental Engineering, Imperial College, London SW7 2BU (United Kingdom)

2006-07-01T23:59:59.000Z

85

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

Gary Blythe; MariJon Owens

2007-12-01T23:59:59.000Z

86

Laboratory - Equipment  

Science Conference Proceedings (OSTI)

Available Equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z. B. Ohaus ... W. Barnstead ...

2013-09-13T23:59:59.000Z

87

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

Gary M. Blythe

2003-10-01T23:59:59.000Z

88

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, Second-Year Results  

Science Conference Proceedings (OSTI)

This report summarizes the second year of technical progress on the project entitled "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems." The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. ...

2004-03-17T23:59:59.000Z

89

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

90

Recycle/reuse of boiler chemical cleaning wastes in wet limestone flue gas desulfurization (FGD) systems  

Science Conference Proceedings (OSTI)

Boiler chemical cleaning wastes (BCCW) are generated by the periodic waterside cleaning of utility boilers to remove metallic deposits from boiler tube surfaces. Depending on boiler metallurgy, BCCW generally contain high concentrations of iron and copper or both, as well as other heavy metals such as chromium, lead, nickel, and zinc. BCCW treatment and disposal methods include precipitation, coponding in an ash pond, evaporation in the fireside of an operating boiler (for organic solvents), and contracted off-site disposal. Depending on the type of BCCW chemical treatment methods achieve varying degrees of success. BCCW which contain organic chelating agents can be especially difficult to treat to national pollutant discharge elimination system (NPDES) limits (1 mg/L for both iron and copper) with conventional lime precipitation.Research is being done to evaluate different BCCW treatment and disposal methods. One waste management option under consideration is reuse of BCCW in utility wet flue gas desulfurization (FGD) systems. To investigate this option, a series of laboratory tests were performed in which five different types of BCCW were added to the reaction tank of EPRI's bench-scale wet limestone FGD system. This paper presents the results and conclusions from this study.

Stohs, M.; Owens, D.R. (Radian Corp. (US)); Micheletti, W. (Electric Power Research Inst., Palo Alto, CA (USA))

1988-01-01T23:59:59.000Z

91

Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures  

E-Print Network (OSTI)

and condensation processes in heat transfer equipment, 2ndand condensation processes in heat transfer equipment, in,the convection process, the heat transfer coefficient of

Lu, Ming-Chang

2010-01-01T23:59:59.000Z

92

Zevenhoven & Kilpinen SULPHUR 6.1.2004 3-25 3.10 Costs related to FGD  

E-Print Network (OSTI)

commercial FGD process options, two plant sizes and two types of coal, a comparison is given in Table 3 temperature: 625-650EC. The stability of a commercial sorbent should be such that it can be sulphided below ~550EC, sulphuric acid H2SO4 is formed which condensates, resulting in corrosion at temperatures

Zevenhoven, Ron

93

Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD  

Science Conference Proceedings (OSTI)

Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

2007-03-31T23:59:59.000Z

94

Microsoft Word - Enhanced FGD Hg Capture Economics FINAL May2008.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's Mercury Control Technology NETL's Mercury Control Technology Field Testing Program Preliminary Economic Analysis of Wet FGD Co-Benefit Enhancement Technologies Prepared for U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Innovations for Existing Plants Program Prepared by Andrew P. Jones 1 and Thomas J. Feeley, III 2 1 Research and Development Solutions, LLC 2 U.S. Department of Energy, National Energy Technology Laboratory May 2008 2 DISCLAIMER This technical report was prepared by RDS/SAIC with the support of the U.S. Department of Energy. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

95

Value-Added Products From FGD Sulfite-Rich Scrubber Materials  

DOE Green Energy (OSTI)

Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

Vivak M. Malhotra

2006-09-30T23:59:59.000Z

96

Laboratory Equipment Donation Program - Equipment Applications  

Office of Scientific and Technical Information (OSTI)

Specific questions concerning equipment should be directed to the point of Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant award e-mail sent to the applicant. Step 1: Search and Apply for Equipment Note: If you know the Item Control Number of the equipment you need, you may go directly to the on-line application. Please follow these procedures to "Search Equipment" and apply for equipment using the LEDP Online Application: Select the "Search Equipment" menu link. Enter the type of equipment desired into the search box or choose the "Equipment List" link, which will allow you see a complete list of available equipment. Select the "Item Control Number" for the desired equipment. This

97

Grain Preparation, Maintenance and Storage of Grain Transfer ...  

Science Conference Proceedings (OSTI)

... Unlike other commercial devices, these transfer standards are biological ... containers, temperature measuring devices, and refrigeration equipment. ...

2013-01-31T23:59:59.000Z

98

Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

Science Conference Proceedings (OSTI)

Previous sampling has shown that air pollution control devices can have a significant impact on mercury and other trace elements. For example, selective catalytic reduction (SCR) can substantially increase the percentage of oxidized mercury that can then be removed by a wet flue gas desulfurization (FGD) system. The electrostatic precipitator (ESP) also readily captures most of the trace elements of interest. The emission of these trace elements is then directly related to the overall particulate collect...

2008-08-12T23:59:59.000Z

99

Environmental Monitoring of Abandoned Mined Land Revegetated Using Dry FGD By-Products and Yard Waste Compost  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 25 million tons of flue gas desulfurization (FGD) by-products annually in the United States. Utilities expect this quantity to increase as they apply new controls to comply with Clean Air Act Amendments. This report presents the results of a field-scale study of beneficial land-use applications of these by-products in surface mine reclamation.

2000-12-06T23:59:59.000Z

100

JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

SciTech Connect

The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

Dennis Laudal

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 2008 contacts thomas J. Feeley III Technology Manager Environmental & Water Resources National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6134 thomas.feeley@netl.doe.gov charles E. Miller Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5745 charles.miller@netl.doe.gov Gary Blythe Principal Investigator URS Corp. 9400 Amberglen Blvd. P.O. Box 201088 Austin, Texas 78720 512-419-5321 gary_blythe@urscorp.com Environmental and Water Resources Full-Scale TeSTing oF a Mercury oxidaTion caTalyST upSTreaM oF a WeT Fgd SySTeM Background To provide alternatives for power plant owners to comply with the Clean Air Mercury Rule promulgated by the U.S. Environmental Protection Agency, NETL is

102

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

Richard Rhudy

2006-06-30T23:59:59.000Z

103

Flue Gas Desulfurization Equipment Issues Guidelines  

Science Conference Proceedings (OSTI)

As electric utilities enter a more competitive environment, every aspect of electric power generation is under scrutiny to determine where costs can be reduced. Because flue gas desulfurization (FGD) systems represent significant capital, operating, and maintenance expenses for many coal-fired power plants, identification and implementation of cost reduction options are crucial. This report documents successful approaches for determining the cost-effectiveness of key FGD optimization strategies.

2001-10-15T23:59:59.000Z

104

Laboratory Equipment Donation Program - Equipment Information  

Office of Scientific and Technical Information (OSTI)

Description: Location of Equipment: Address Line 2: Address Line 3: City: State: Zip: Contact: Phone: Fax: Email address: Quantity: Original Acquisition Cost: 0.00 U.S....

105

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

Advancing heat transfer technologies is a critical factor in power electronics equipment. NREL aims to characterize and develop advanced heat transfer technologies.

Abraham, T.

2007-11-08T23:59:59.000Z

106

Laboratory Equipment Donation Program - Equipment List  

Office of Scientific and Technical Information (OSTI)

Equipment List Equipment List Already know the item control number? Submit Reset Item Control Number Equipment Name Date Entered Condition Picture 89022833290004 1300594 TLD DETECTOR 12/16/2013 Repairable N/A 89022833290005 1300595 PICOMETER 12/16/2013 Repairable N/A 89022833290008 1300598 READER 12/16/2013 Repairable N/A 89022833290010 1300600 DETECTOR VACUUM PUMP 12/16/2013 Repairable N/A 89022833290016 1300606 TLD READER 12/16/2013 Repairable N/A 89022833290018 1300608 READER 12/16/2013 Repairable N/A 89022833290019 1300609 ANALYZER WITH DETECTOR 12/16/2013 Repairable N/A 89022833180013 1300993 PRESSURE REGULATOR 12/04/2013 Repairable N/A 89022833180022 1301098 VACUUM GAUGE 12/04/2013 Repairable N/A 89022833180023 1301099 OSCILLOSCOPE 12/04/2013 Repairable N/A

107

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

108

Pilot-Scale Demonstration of Hybrid Zero-Valent Iron Water Treatment Technology: Removing Trace Metals from Flue Gas Desulfurization (FGD) Wastewater  

Science Conference Proceedings (OSTI)

In previous laboratory- and field bench-scale tests, the hybrid zero-valent iron (hZVI) process had been demonstrated capable of removing selenium, mercury, nitrates, and other pollutants from flue gas desulfurization (FGD) wastewater. By incorporating zero-valent iron (ZVI) with magnetite and certain Fe(II) species, the hZVI technology creates a highly reactive mixture that can transform and immobilize various trace metals, oxyanions, and other impurities from aqueous streams. To further evaluate ...

2013-04-09T23:59:59.000Z

109

High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993  

SciTech Connect

This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

Not Available

1994-03-01T23:59:59.000Z

110

Superconducting Power Equipment  

Science Conference Proceedings (OSTI)

The 2010 Electric Power Research Institute (EPRI) Technology Watch (Techwatch) report on superconducting power applications (EPRI report 1019995, Superconducting Power Equipment: Technology Watch 2010) introduced coverage about superconducting magnetic energy storage systems and superconducting transformers. The 2011 report contains additional information about superconducting power equipment, including progress to demonstrations in some projects. The 2011 report also includes a section on superconductin...

2011-12-22T23:59:59.000Z

111

Commercial equipment cost database  

SciTech Connect

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

112

Test Plan for K Basin floor sludge consolidated sampling equipment  

SciTech Connect

The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

OLIVER, J.W.

1998-10-30T23:59:59.000Z

113

Energy Audit Equipment  

E-Print Network (OSTI)

The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple tools or expensive technically complex or multifunctional tools. In general, tools are needed which measure light, temperature and humidity, electricity, air flow, heat loss, and general energy information.

Phillips, J.

2012-01-01T23:59:59.000Z

114

Grid Equipment Reliability Study  

Science Conference Proceedings (OSTI)

Throughout the world, utilities have witnessed changes to electrical power markets. These changes have presented new and continuous challenges to maintaining the transmission system's integrity. In the past, emphasis at the transmission level has been on the system as a whole and not at the equipment level. This report summarizes the finding of a study that investigated the need to develop a new set of metrics and benchmarks to measure and compare grid equipment performance.

2001-12-10T23:59:59.000Z

115

Electricity Used by Office Equipment and Network Equipment in...  

NLE Websites -- All DOE Office Websites (Extended Search)

: Detailed Report and Appendices Title Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices Publication Type Report LBNL Report...

116

Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Inventory Equipment Resources Title Equipment Type Facility Laboratory Building Room Accumet Basic AB15 pH meter pH Meter SSRL BioChemMat Prep Lab 2 131 209 Agate...

117

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

subpart W. Statutory Authority The current energy conservation standards for commercial refrigeration equipment are mandated by Part A-1, the "Certain Industrial Equipment" of...

118

Laboratory Equipment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Facilities Scientific Labs Equipment Query Equipment Lab: HFIR - Biology Lab HFIR - Post Beam Sample Handling Lab HFIR - User Chemistry Lab High Pressure Lab SNS -...

119

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Equipment Insulation Jump to: navigation, search TODO: Add description List of Equipment Insulation...

120

NSLS Electrical Equipment Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Scientist Equipment and Outline  

NLE Websites -- All DOE Office Websites (Extended Search)

Outline and Equipment Outline and Equipment LIGHT AND COLOR Grade levels: can be adapted for grades 2-8. Length of time: 30-45 minues. Room preference: Double classroom or all-purpose room. Equipment is located in the Lederman Science Center. Talk to Susan Dahl to borrow this set. Spectrum tube power supply, gas tubes and diffraction grating glasses Light box with red, green, and blue translucent film Power chord, extension chord Large set of lenses Small concave and convex lenses Magnetic optics kit, includes a small laser Slinky Flashlight Clear plastic tub, powdered milk Water Radiometer Electromagnetic energy spectrum poster Set of red, green and blue flood lights Where does light come from? Use a boy and a girl to make a human demonstration of molecules and atoms. Have students rub their hands together and notice friction equals heat.

122

Equipment Operational Requirements  

SciTech Connect

The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

2009-06-11T23:59:59.000Z

123

Office Equipment Energy Use  

Science Conference Proceedings (OSTI)

Miscellaneous electric loads in office buildings consume nearly 58 billion kilowatt hours per year, which translates to $6.1 billion in electricity costs to businesses. Most office space is not sub metered, thus making it difficult for tenants to know how much electricity they use. Consequently, they are unable to see how the amount they pay for their space is affected by the efficiency of equipment they choose and how they operate it. By using recommended power-saving equipment and best practices outlin...

2010-12-16T23:59:59.000Z

124

field_equipment.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

EQUIPMENT INVENTORY EQUIPMENT INVENTORY Trucks * Five vac/pressure trucks, 60-90 bbl, up to 5 bpm at 5,000 lb. * Water/fi re truck, 110 bbl * Two dump trucks: 5-yard and 12-yard * Belly dump trailer * Chemical injection truck, 20 bbl capacity * Three crane trucks: 6,000 lb., 8,000 lb., and 30 ton * Klaeger swab truck * Rig-up truck with 21-foot poles, 30,000-lb. capacity * Winch truck, 40,000-lb. capacity * Two bucket trucks: 25-foot and 28-foot reach * Two welding trucks with Miller Trailblazer welder * Two Ditch Witches: 8" x 7' and 6" x 3" * International PayStar 5000 transport truck * Western Star transport truck Backhoes & Loaders * John Deere 410G backhoe * Cat 420 backhoe * Case 20W loader with 2-yard bucket * Bobcat skid loader with bucket, forks, post hole digger, and trencher attachments

125

Foodservice Equipment Applications Handbook  

Science Conference Proceedings (OSTI)

A typical foodservice operation may spend 75 percent or more of its energy dollar to provide lighting, refrigeration, ventilation, and miscellaneous end uses. Performance characteristics and operational advantages make electricity an excellent option for powering major cooking equipment. This handbook describes the six most common types of major cooking appliances--griddles, fryers, broilers, ovens, ranges, and kettles--including typical applications and industry purchasing trends. Such information will ...

1996-03-26T23:59:59.000Z

126

Definition: Real-Time Load Transfer | Open Energy Information  

Open Energy Info (EERE)

Real-time load transfer is achieved through real-time feeder reconfiguration and optimization to relieve load on equipment, improve asset utilization, improve distribution...

127

Equipment Certification | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Equipment Certification Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Canada Commercial Construction Developer

128

Tech Transfer  

Tech Transfer The Industrial Partnerships Office is improving tech transfer processes with our very own Yellow Belt. Several of the Lab's process ...

129

Accurate LPG analysis begins with sampling procedures, equipment  

SciTech Connect

Proper equipment and procedures are essential for obtaining representative samples from an LPG stream. This paper discusses how sampling of light liquid hydrocarbons generally involves one of two methods: flow- proportional composite sampling by a mechanical device or physical transfer of hydrocarbon fluids from a flowing pipeline or other source into a suitable portable sample container. If sampling by proper techniques and equipment supports careful chromatographic analysis, full advantage of accurate mass measurement of LPG can be realized.

Wilkins, C.M. (Koch Pipelines, Inc., Medford, OK (US))

1990-11-05T23:59:59.000Z

130

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

131

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide: Fuel Handling Equipment Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical task during a nuclear power plant refueling outage. The proper operation of fuel handling equipment (such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators) is important to a successful refueling outage and to preparing fuel for eventual disposal.BackgroundThe fuel handling system contains the components used to move fuel from the time that the new fuel is received until the spent fuel ...

2013-12-13T23:59:59.000Z

132

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Part A-1 of Title III (42 U.S.C. 6311-6317) establishes a similar program for ''Certain Industrial Equipment,'' which includes commercial refrigeration equipment. Amendments to...

133

China production equipment sourcing strategy  

E-Print Network (OSTI)

This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

Chouinard, Natalie, 1979-

2009-01-01T23:59:59.000Z

134

Solar and Wind Energy Equipment Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate None Program Info State Wisconsin Program Type Property Tax Incentive Rebate Amount Varies Provider Wisconsin Department of Revenue In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then transfers or stores solar energy into usable forms of thermal or electrical energy, but does not include equipment or components that would be present as part of a

135

Agricultural Lighting and Equipment Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Lighting and Equipment Rebate Program Agricultural Lighting and Equipment Rebate Program Agricultural Lighting and Equipment Rebate Program < Back Eligibility Agricultural Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies according to technology; prescriptive and custom rebates available Provider Efficiency Vermont In Vermont, agricultural operations are eligible for prescriptive and customized incentives on equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting (free to $175 per fixture, depending on the type of fixture or lighting) and for a variety of equipment including plate coolers, variable speed milk transfer

136

Substation Equipment Life Extension Guidelines  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment. The Electric Power Research Institute (EPRI) report Life Extension Guidelines for Substation Equipment-Fi...

2011-12-21T23:59:59.000Z

137

Transferring Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

138

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information Oregon Program Type ApplianceEquipment Efficiency...

139

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information New York Program Type ApplianceEquipment Efficiency Standards ''...

140

Data Center Equipment | Open Energy Information  

Open Energy Info (EERE)

Center Equipment Jump to: navigation, search TODO: Add description List of Data Center Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titleDataCenterEquip...

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrical Equipment Inventory and Inspection Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inventory and Inspection Information APS Non-NRTL Electrical Equipment Inventory Spreadsheet ANL Recognized Reputable Electrical Equipment Manufacturer List as...

142

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

143

Experience Based Seismic Equipment Qualification  

Science Conference Proceedings (OSTI)

This report provides guidelines that can be used to perform an experience-based seismic equipment qualification for verification of seismic adequacy of active electrical and mechanical equipment consistent with requirements of American Society of Civil Engineers (ASCE)-7. The report summarizes what requirements are sufficient to ensure that an item of equipment can perform its intended safety function after a design earthquake. The report also provides additional guidance on ensuring that an item of equi...

2007-12-21T23:59:59.000Z

144

Equipment Risk and Performance Assessment  

Science Conference Proceedings (OSTI)

Risk assessment and management are key elements in a well developed asset management implementation. Consequently an increasing number of utility managers are devoting resources to the task of improving their capabilities for risk-based decision making. Equipment risk models are essential elements in a risk assessment process. However, most proposed power delivery equipment risk models require for their successful application some probabilistic representation describing the chances of equipment ...

2012-12-14T23:59:59.000Z

145

Equipment Risk and Performance Assessment  

Science Conference Proceedings (OSTI)

Risk assessment and management are key elements in a well-developed asset management implementation. Consequently, an increasing number of utility managers are devoting resources to the task of improving their capabilities for risk-based decision making. Equipment risk models are essential elements in the risk assessment process. However, for their application, most proposed power delivery equipment risk models require some probabilistic representation describing the chances of equipment failure. This re...

2011-12-21T23:59:59.000Z

146

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

The comment period is closed. Milestones and Documents The direct heating equipment, residential water heaters, and pool heaters standby and off mode test procedures...

147

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Certification of Commercial Heating, Ventilating, Air-Conditioning, Refrigeration, and Water Heating Equipment Sign up for e-mail updates on regulations for this and other products...

148

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Amendments and Correction to Petitions for Waiver and Interim Waiver for Consumer Products and Commercial and Industrial Equipment Sign up for e-mail updates on regulations for...

149

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Collection on Commercial Equipment Labeling Sign up for e-mail updates on regulations for this and other products The Department of Energy is seeking information...

150

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

151

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

152

2004 Equipment Reliability Forum Proceedings  

Science Conference Proceedings (OSTI)

This report describes the proceedings of the EPRI 2004 Equipment Reliability Forum that was held September 13–14, 2004, in Kansas City, Missouri. This annual forum provides an opportunity for industry personnel involved in equipment reliability and related issues to exchange information and share experiences. It is structured to incorporate both formal presentations and open discussion.

2004-11-30T23:59:59.000Z

153

Equipment Risk and Performance Assessment  

Science Conference Proceedings (OSTI)

This report introduces the basis for understanding, developing, and applying a new set of practical, condition-based risk models for substation equipment. Because of the great variety of risks encountered in the power delivery industry and the diversity in utility equipment and business practices, the focus at this stage of the project is at the conceptual level.

2010-12-23T23:59:59.000Z

154

Laboratory Equipment Donation Program - Guidelines  

Office of Scientific and Technical Information (OSTI)

The United States Department of Energy, in accordance with its The United States Department of Energy, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. Universities, colleges and other non-profit educational institutions of higher learning in the United States are eligible to apply for equipment to use in energy-oriented educational programs in the life, physical, and environmental sciences, and in engineering. The equipment listed in this database is available for grant; however, specific items may be recalled for DOE use and become unavailable through the program. Frequently Asked Questions Who is eligible to apply for equipment? Any non-profit, educational institution of higher learning, such as a middle school, high school, university, college, junior college, technical

155

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Single Package Vertical Air Conditioners and Heat Pumps Single Package Vertical Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's energy conservation standards for single package vertical air conditioners and heat pumps as a separate equipment class since 2008. Before 2010, this equipment was regulated under the broader scope of commercial air conditioning and heating equipment. Single package vertical air conditioners and heat pumps are commercial air conditioning and heating equipment with its main components arranged in a vertical fashion. They are mainly used in modular classrooms, modular office buildings, telecom shelters, and hotels, and are typically installed on the outside of an exterior wall or in a closet against an exterior wall but inside the building.

156

LANSCE | Lujan Center | Ancillary Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ancillary Equipment Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10 - LQD 02 - SMARTS Victor Fanelli vfanelli@lanl.gov Or particular instrument scientist Top loading closed-cycle refrigerator T = 10 K to 500 K option of in situ gas adsorption cell 07 - FDS Luke Daemon lld@lanl.gov Monika Hartl hartl@lanl.gov

157

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Heating Equipment and Pool Heaters Active Mode Test Procedures Direct Heating Equipment and Pool Heaters Active Mode Test Procedures Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to amend the active mode test procedures for direct heating equipment and pool heaters. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of proposed rulemaking regarding active mode test procedures for direct heating equipment and pool heaters. 78 FR 63410 (October 24, 2013). The comment deadline is January 7, 2014. Public Meeting Information

158

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

heaters, gas-fired and oil-fired instantaneous water heaters and hot water supply boilers, and unfired hot water storage tanks. Commercial water heating equipment is used to...

159

Commonwealth's Master Equipment Leasing Program  

Energy.gov (U.S. Department of Energy (DOE))

The [http://www.trs.virginia.gov/debt/MELP%20Guides.aspx Master Equipment Leasing Program] (MELP) ensures that all Commonwealth agencies, authorities and institutions obtain consistent and...

160

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

for automatic commercial ice-making equipment cover maximum energy use and maximum condenser water use of cube ice machines with harvest rates between 50 and 2,500 lbs of ice...

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Small, Large, and Very Large, Air-Cooled Commercial Air Conditioning and Heating Equipment Sign up for e-mail updates on regulations for this and other products Pursuant to Section...

162

Equipment Maintenance Optimization Manual Applications  

Science Conference Proceedings (OSTI)

This report is a compilation of Equipment Maintenance Optimization Manuals (EMOMs) that include procedures and troubleshooting supported by broad-based utility experience. EMOMs for critical generating station equipment allows power generating plants to replace existing maintenance practices with the latest industry best practices. Using this information as a benchmark, current practices can be validated or adjusted for more optimum performance of the overall maintenance process. In addition, the EMOMs c...

2001-12-21T23:59:59.000Z

163

Equipment Maintenance Optimization Manual Prototypes  

Science Conference Proceedings (OSTI)

This report provides detailed information to assist plant staff in performing recommended equipment maintenance tasks. It is a compilation of equipment maintenance optimization manual (EMOM) prototypes that include procedures and trouble shooting supported by broad-based utility experience. The EMOMs enable utility generation stations to: minimize operation and maintenance costs, including parts and labor; assist in maintenance planning, scheduling, and parts strategy; develop comprehensive maintenance m...

1999-11-24T23:59:59.000Z

164

Water-Using Equipment: Domestic  

SciTech Connect

Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

Solana, Amy E.; McMordie-Stoughton, Katherine L.

2006-01-24T23:59:59.000Z

165

Power System Equipment Module Test Project  

DOE Green Energy (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

166

Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA 70, Article 625 Electric Vehicle Charging System. This article does not provide all of the information necessary for the installation of electric vehicle charging equipment. Please refer to the current edition of the electrical code adopted by the local jurisdiction for additional installation requirements. Reference to the 2011 NEC may be

167

Characterization equipment essential drawing plan  

SciTech Connect

The purpose of this document is to list the Characterization equipment drawings that are classified as Essential Drawings and Support Drawings. Essential Drawings: Are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment (HNF 1997a). Support Drawings: Are those drawings identified by facility staff that further describe the design details of structures, systems, or components shown on essential drawings. (HNF 1997a) The Characterization equipment drawings identified in this report are deemed essential drawings as defined in HNF-PRO-242, Engineering Drawing Requirements (HNF 1997a). These drawings will be prepared, revised, and maintained per HNF-PRO-440, Engineering Document Change Control (HNF 1997b). All other Characterization equipment drawings not identified in this document will be considered General drawings until the Characterization Equipment Drawing Evaluation Report (Wilson 1998) is updated during fiscal year 1999. Trucks 1 and 2 drawings are not included in this revision of the essential drawing list due to uncertainty about future use.

WILSON, G.W.

1999-05-14T23:59:59.000Z

168

High level radioactive waste vitrification process equipment component testing  

Science Conference Proceedings (OSTI)

Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

1985-04-01T23:59:59.000Z

169

Probabilistic Rating and Equipment Temperature Tracking During Emergency Load Events  

Science Conference Proceedings (OSTI)

This report concerns a possible extension of the Electric Power Research Institute's (EPRI's) Dynamic Thermal Circuit Rating (DTCR) and Increased Power Flow (IPF) technologies. In most applications of dynamic rating and real-time monitoring to date, the purpose is to enhance the use of existing power equipment by calculating power flow limits based on real-time weather and load data, rather than using worst-case” assumptions. The goal of these enhancements has been to allow additional economic transfers ...

2008-02-25T23:59:59.000Z

170

Energy efficiency standards for equipment: Additional opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency standards for equipment: Additional opportunities in the residential and commercial sectors Title Energy efficiency standards for equipment: Additional opportunities in...

171

Building Technologies Office: Appliance and Equipment Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Standards Result in Large Energy, Economic, and Environmental Benefits to someone by E-mail Share Building Technologies Office: Appliance and Equipment Standards Result...

172

Philadelphia Gas Works - Commercial and Industrial Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food service equipment. All equipment must meet program...

173

Renewable Energy Equipment Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Equipment Exemption Renewable Energy Equipment Exemption Eligibility Agricultural Commercial General PublicConsumer Residential Savings For Solar Buying & Making...

174

Laboratory Equipment Donation Program - LEDP Widget  

Office of Scientific and Technical Information (OSTI)

LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment...

175

Commercial Refrigeration Equipment | Open Energy Information  

Open Energy Info (EERE)

Refrigeration Equipment Jump to: navigation, search TODO: Add description List of Commercial Refrigeration Equipment Incentives Retrieved from "http:en.openei.orgw...

176

Southwest Gas Corporation - Commercial Energy Efficient Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water heaters, tankless...

177

Puerto Rico - Renewable Energy Equipment Certification | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico - Renewable Energy Equipment Certification Puerto Rico - Renewable Energy Equipment Certification Eligibility Construction InstallerContractor Savings For Solar Buying...

178

Appliances, Lighting, Electronics, and Miscellaneous Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes Title Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in...

179

PNNL: EDO - Facilities & Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities & Equipment Facilities & Equipment Facilities Equipment Decades of government investment on and around the Pacific Northwest National Laboratory campus has made PNNL a business-friendly resource for conducting a wide range of research. As a mission-focused organization, we are dedicated to teaming with government agencies, industry and academia to address what we believe are among the nation's most pressing needs in the areas of energy, environment, national security, and fundamental science. But behind these important missions is a wealth of supporting capabilities including incubator space, research laboratories, and user facilities that may be just what your business needs. We invite you to learn more about how we can work with businesses as well as what research laboratories and user facilities are available.

180

Equipment  

Science Conference Proceedings (OSTI)

...are becoming common, and the newer rectifier-inverter supplies are very compact and versatile. The inverter power supply consists of three converters: 60 Hz primary ac is rectified to dc. Direct current is inverted to high-frequency ac. Alternating current is rectified to dc....

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Equipment  

Science Conference Proceedings (OSTI)

...The power source should be of a constant-current design. Transistorized power sources are most common, although inverter power supplies are also available. It should have a minimum open-circuit voltage of 80 V to ensure the reliable initiation

182

Equipment  

Science Conference Proceedings (OSTI)

...lined with natural rubber and acid-resistant red shale or carbon brick joined with silica-filled hot poured sulfur cement. [graphic]...

183

Equipment  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... To avoid production losses, reduce maintenance cost and increase safety reflexes of the crane operators in case of emergency, ECL™ has ...

184

Canister Transfer System Description Document  

SciTech Connect

The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

NONE

2000-10-12T23:59:59.000Z

185

Leaching Technologies, Equipment and Design  

Science Conference Proceedings (OSTI)

In order to simplify this non-linear mode of heat transfer, the effects of radiation had ... Then the antimony salt method was used to separate the remanent nickel.

186

System and Equipment Troubleshooting Guideline  

Science Conference Proceedings (OSTI)

This guideline outlines a generic process for use by power plant personnel engaged in the troubleshooting of plant systems and equipment. The structured approach presented in the guideline will be helpful for any plant personnel engaged in these activities, whether working individually or as part of a troubleshooting team.

2002-01-22T23:59:59.000Z

187

Photon Sciences Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Y Y Rhein Craig 20622 PSBC Active Y Y Page 3 of 80 List of Photon Sciences Mat'l Handling Equip 5242013 4:09:58 PM 725 UV East GE-56 PS-C01 Yale A-422-3749 2 ton...

188

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

189

Energy-related laboratory equipment (ERLE) guidelines  

SciTech Connect

This document describes the Used Energy-Related Laboratory Equipment grants, and eligibility and procedures for participation. The document contains tables identifying typical equipment that may be requested, where to review ERLE equipment lists, and where to mail applications, a description of the eligible equipment grants access data system, and a copy of the ERLE grant application and instructions for its completion and submission.

Not Available

1995-01-01T23:59:59.000Z

190

Written Information Equipment TECHNOLOGY: Oral Information  

SCIENTIFIC OR TECHNOLOGICAL Equipment TECHNOLOGY: DEVELOPMENTAL RESOURCES Written Information Oral Information Hardware Facilities Data

191

VR based knowledge transfer in medical technology and techniques  

Science Conference Proceedings (OSTI)

This paper reports on an ongoing project’s use of virtual reality (VR) technologies to support vocational training. Three-dimensional interactive VR models can be employed to support the innovative transfer of knowledge about complex equipment ...

Wolfram Schoor; Rüdiger Mecke; Martina Rehfeld

2006-05-01T23:59:59.000Z

192

Equipment Certification Requirements | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Requirements Equipment Certification Requirements Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Contents 1 Equipment Certification Incentives 2 References Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines

193

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

194

BASIS Equipment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Equipment BASIS Schematic Schematic of the SNS Backscattering Spectrometer. Helium dewer cooling a sample Helium dewer cooling a sample (bird's eye view). The heart of the work in a typical experiment is setting up the sample in the desired environment. A typical neutron sample ranging from a millimeter to a few centimeters is placed in a specialized cylindrical can and sealed. For liquids, the backscattering instrument often uses an annular can, created by placing a smaller can within a larger can and inserting the liquid sample between the two cans. This picture shows a helium dewer cooling the environment encompassing the sample can, which has been lowered into the beam from the top of the scattering tank. Crystals Crystals. The backscattering spectrometer is defined by the reflection of specific

195

Bulk Hauling Equipment for CHG  

NLE Websites -- All DOE Office Websites (Extended Search)

BULK HAULING EQUIPMENT FOR CHG BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg * Purchase Cost (+/- 5%) - $510,000 HEXAGON LINCOLN TITAN(tm) V Magnum Trailer System Compressed Hydrogen Gas * Capacity 250 bar - 800 kg 350 bar - 1050 kg 540 bar - 1500 kg * Gross Vehicle Weight (with prime mover) 250 bar - 31 000 kg 350 bar - 34 200 kg 540 bar - 45 700 kg * Purchase Cost (+/-

196

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network (OSTI)

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN · · · · · 18 Specific design features 0 0 · · · · · · · · · · · · · · 19 Refrigerated surfaces 0 · · 0 0 0 · 0

197

Strategy Guideline: HVAC Equipment Sizing  

SciTech Connect

The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

Burdick, A.

2012-02-01T23:59:59.000Z

198

Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog  

Science Conference Proceedings (OSTI)

This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

Not Available

1994-07-01T23:59:59.000Z

199

Electron Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

200

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat Transfer Enhancement: Second Generation Technology  

E-Print Network (OSTI)

This paper reviews current activity in the field of enhanced heat transfer, with the aim of illustrating the technology and typical applications. Guidelines for application of enhanced surfaces are given, and practical concerns and economics are discussed. Special attention is directed toward use of enhanced surfaces in industrial process heat exchangers and heat recovery equipment.

Bergles, A. E.; Webb, R. L.

1984-01-01T23:59:59.000Z

202

Fire suppression and detection equipment  

SciTech Connect

Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

E.E. Bates [HSB Professional Loss Control, Lexington, KY (United States)

2006-01-15T23:59:59.000Z

203

Laboratory Equipment Donation Program - Application Process  

Office of Scientific and Technical Information (OSTI)

Equipment listings on the LEDP web site are obtained from the U.S. General Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows 30 days for grantees from eligible institutions to apply for it on the LEDP site. Equipment Condition Codes are found near the top of the "LEDP Equipment Information" page for each item. The condition of equipment is graded as follows: 1: Unused Good Condition 4: Used Good Condition 7: Repairable Requires Repairs X: Salvage Salvage S: Scrap Scrap Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant

204

Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

205

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

206

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

207

Appliances and Commercial Equipment Standards: Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Office HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies...

208

Improved Thermal Modeling Tools for Substation Equipment  

Science Conference Proceedings (OSTI)

The ratings of substation terminal equipment often limit power flow through transmission circuits. Capital investment in terminal equipment is generally modest in comparison to lines, transformers, and underground cables. Replacement difficulties are centered more on service availability than on cost. Detailed manufacturer test data is often unavailable for older equipment but ratings are simpler to calculate than for lines. Certain types of terminal equipment are tolerant of over-loading and problems in...

2007-03-08T23:59:59.000Z

209

Equipment-Immunity Performance Guidelines: 2010 Activities  

Science Conference Proceedings (OSTI)

This report details EPRI’s 2010 efforts for improved equipment-immunity standards and performance in the electrical environment.

2010-12-16T23:59:59.000Z

210

Liquid-Liquid Extraction Equipment  

Science Conference Proceedings (OSTI)

Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

Jack D. Law; Terry A. Todd

2008-12-01T23:59:59.000Z

211

Seismic Studies of Substation Equipment: Progress Report  

Science Conference Proceedings (OSTI)

IEEE Standard 693, Recommended Practice for Seismic Design of Substations, is used by electric power utilities to qualify substation equipment for seismic movements. Deficiencies exist in the present standard, and information is unavailable for dynamic response that may be used to better analyze equipment and permit equipment evaluation in case of limited configuration changes, such as insulator substitution.

2009-09-28T23:59:59.000Z

212

Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference  

SciTech Connect

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2002-06-01T23:59:59.000Z

213

Proceedings: Substation Equipment Diagnostics Conference IX  

SciTech Connect

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2001-09-01T23:59:59.000Z

214

Proceedings: Substation Equipment Diagnostics Conference VIII  

SciTech Connect

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The eighth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2000-06-01T23:59:59.000Z

215

Sample-related peripheral equipment at IPNS  

Science Conference Proceedings (OSTI)

This paper describes samples environment equipment provided by IPNS to visiting users and staff scientists. Of the twelve horizontal neutron beam stations, (ten now operational, two under construction) all use one or more form of such support equipment. An in-house support group devotes a significant fraction of its time to development, calibration, and maintenance of this equipment.

Bohringer, D.E.; Crawford, R.K.

1985-01-01T23:59:59.000Z

216

Guide to Energy-Efficient Office Equipment  

Science Conference Proceedings (OSTI)

Office equipment directly consumes as much as 30 billion kilowatt-hours of electricity, which represents 5% of total commercial electric energy consumption. EPRI's Guide to Energy-Efficient Office Equipment discusses the energy cost savings and environmental benefits of using high-efficiency equipment in areas ranging from personal computers and monitors to printers, copiers, and facsimile machines.

1996-04-05T23:59:59.000Z

217

Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference  

Science Conference Proceedings (OSTI)

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

2002-06-27T23:59:59.000Z

218

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Efficiency Determination Methods and Alternate Rating Methods Alternative Efficiency Determination Methods and Alternate Rating Methods Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to revise and expand its existing regulations governing the use of alternative efficiency determination methods (AEDM) and alternate rating methods (ARM) for covered products as alternatives to testing for the purpose of certifying compliance. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a final rule revising its existing regulations governing the use of particular methods as alternatives to testing for commercial heating, ventilating, air conditioning, water heating, and refrigeration equipment. 78 FR 79579 (December 31, 2013).

219

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Illuminated Exit Signs Illuminated Exit Signs Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of illuminated exit signs since 2005. Illuminated exit signs are used to indicate exit doors in schools, hospitals, libraries, government buildings, and commercial buildings of all kinds, including offices, restaurants, stores, auditoriums, stadiums, and movie theatres. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates There are no recent updates for this equipment. Standards for Illuminated Exit Signs The following content summarizes the energy conservation standards for illuminated exit signs. The text is not an official reproduction of the Code of Federal Regulations and should not be used for legal research or citation.

220

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Warm Air Furnaces Commercial Warm Air Furnaces Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of commercial warm air furnaces since 1994. Commercial warm air furnaces are self-contained oil-fired or gas-fired furnaces that are designed to supply heated air through ducts to spaces that require it. Commercial warm air furnaces are industrial equipment and have a maximum rated input capacity of 225,000 British thermal units (Btu) an hour or more. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a request for information regarding energy conservation standards for commercial warm air furnaces. 78 FR 25627 (May 2, 2013). For more information, please see the rulemaking webpage.

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Pumps Commercial and Industrial Pumps Sign up for e-mail updates on regulations for this and other products Pumps are used in agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. Currently there are no energy conservation standards for pumps. The Department of Energy (DOE) will conduct an analysis of the energy use, emissions, costs, and benefits associated with this equipment during the commercial and industrial pumps energy conservation standards rulemaking. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document. 78 FR 7304 (Feb. 1, 2013). For more information, please see the rulemaking page.

222

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Compressors Determination Commercial and Industrial Compressors Determination Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) proposes to determine that commercial and industrial compressors meet the criteria for covered equipment under Part A-1 of Title III of the Energy Policy and Conservation Act (EPCA), as amended. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a Proposed Coverage Determination concerning commercial and industrial compressors. 77 FR 76972 (Dec. 31, 2012). Public Meeting Information No public meeting is scheduled at this time. Submitting Public Comments The comment period is closed.

223

Solar Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Construction General Public/Consumer Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Equipment Certification Provider Florida Solar Energy Center Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar equipment certified first contacts FSEC for an application and requests that FSEC test samples of the product at random. Equipment is then subjected to a series of tests in order to be approved or denied certification. Standards and applications procedures for specific technologies are available on the FSEC web site.

224

Laboratory Equipment Donation Program - Contact Us  

Office of Scientific and Technical Information (OSTI)

End of Year Reports End of Year Reports At the end of the first year of using LEDP grant equipment, the grantee must provide DOE with a report on the use of the equipment. If a grantee does not submit a report, the DOE OPMO who approved the grant application can pull the equipment back, or not allow that institution to apply for more equipment. The report should describe: Any new courses instituted as a result of the grant of the equipment; Existing courses which have been expanded as a result of the grant of the equipment; Research activities, e.g., thesis titles, journals articles, sponsored research, etc.; and Other ways the equipment has been used to enhance courses, e.g., experiments, demonstrations, etc. If your item control Number starts with Send your report to 890565

225

Southwest Gas Corporation - Commercial High-Efficiency Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless water heaters, boiler equipment, griddles, fryers, conveyor ovens,...

226

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical item during a nuclear power plant refueling outage. The proper operation of fuel handling equipment, such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators, is important to a successful refueling outage and to preparing fuel for eventual disposal.

2007-12-21T23:59:59.000Z

227

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

228

Survey of Substation Equipment Access Control Policies  

Science Conference Proceedings (OSTI)

Utility management and control of access to substations and equipment can help prevent not only unauthorized access by outside agents with ill intent, but also erroneous access to, or erroneous operation of, utility equipment by utility personnel.  This report provides the results of an EPRI–sponsored research project to identify how utilities manage access to transmission and distribution substations and equipment. BackgroundThe enhanced ...

2012-11-20T23:59:59.000Z

229

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

230

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

231

Reduce Radiation Losses from Heating Equipment  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Not Available

2006-01-01T23:59:59.000Z

232

MOV surge arresters: improved substation equipment protection  

Science Conference Proceedings (OSTI)

The introduction of metal-oxide-varistor (MOV) surge arresters has added a new dimension to substation equipment protection. Through the optimal use of these arresters, it is possible to lower surge arrester ratings and thereby improve protective margins, resulting in a possible reduction of the insulation levels (BIL) of substation equipment. This reduction in BIL can lead to a significant reduction in the cost of substation equipment. General methods are delineated for selecting MOV surge arresters for substation protection and the resulting effect on substation equipment insulation levels.

Niebuhr, W.D.

1985-07-01T23:59:59.000Z

233

Schools - Electronic Equipment Damage Due to Lightning  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of damage to a school's phone equipment, security alarm, and network computer system during a lightning storm.

2003-12-31T23:59:59.000Z

234

PPP Equipment Corporation | Open Energy Information  

Open Energy Info (EERE)

PPP Equipment Corporation Sector Solar Product PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

235

Zhongneng Windpower Equipments | Open Energy Information  

Open Energy Info (EERE)

manufacturer engages in the development, design, testing and products manufacture of rotor blade of WTGS. References Zhongneng Windpower Equipments1 LinkedIn Connections...

236

Laboratory Equipment Donation Program - Contact Us  

Office of Scientific and Technical Information (OSTI)

Contact Us If you have a question about the Laboratory Equipment Donation Program (LEDP), we recommend you check frequently asked questions. If your question still has not been...

237

The Healthcare and Medical Equipment Industry  

Science Conference Proceedings (OSTI)

This PQ TechWatch highlights the measures that the healthcare and medical equipment industry is taking to reduce power quality (PQ) and electromagnetic compatibility (EMC) problems.

2003-12-31T23:59:59.000Z

238

Agricultural Lighting and Equipment Rebate Program (Vermont)...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Agricultural Lighting and Equipment Rebate Program (Vermont) This is the approved revision of this page, as...

239

Request an Inspection of User Electrical Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

date, time, and location of the inspection Equipment list and description List any manualsdocumentationschematics that exist and are present to aid with the inspection. A...

240

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Stangl Semiconductor Equipment AG | Open Energy Information  

Open Energy Info (EERE)

Solar Product German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References Stangl Semiconductor Equipment AG1 LinkedIn...

242

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

Nucleares, SA Place Madrid, Spain Zip 28006 Sector Services Product ENSA is a Spanish nuclear components and nuclear services supply company. References Equips Nucleares, SA1...

243

APS Guideline for Personal Protective Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

severe consequences. Consequently, the CAT has adopted the following policies and procedures to ensure the proper selection and use of such equipment by CATXSD personnel...

244

Electric Vehicle Supply Equipment (EVSE) Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing What's New PLUGLESS Level 2 EV Charging System by Evatran Group Inc. - August 2013 The Advanced Vehicle Testing Activity is tasked...

245

Solar Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Program Info State Minnesota Program Type Equipment Certification Provider Minnesota Department of Commerce Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial buildings in the state meet Solar Rating and Certification Corporation (SRCC) standards. Specifically, the rule references SRCC's "Operating Guidelines" pertaining to collector certification and system certification: OG-100 and OG-300, respectively. Local building officials

246

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors Electric Motors Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of electric motors since 1997. Electric motors convert electrical energy to rotating mechanical energy. When operating, the electrical energy is transferred as useful mechanical energy to some driven device such as a fan, pump, blower, compressor, or conveyor. The Energy Policy and Conservation Act (EPCA), as amended by the Energy Independence and Security Act of 2007 (EISA 2007), covers three broad categories of electric motors: general purpose, definite purpose and special purpose. These broad categories include a variety of motors including single-speed, continuous-duty polyphase motors with voltages not greater than 600 volts; motors with or without mounting feet; motors built in a T- or U-frame; motors built with synchronous speeds of 3600, 1800, 1200, or 900 rpm (two, four, six, or eight poles, respectively); National Electrical Manufacturers Association (NEMA) Design B motors from 1 to 500 horsepower, NEMA Design A and C motors from 1 to 200 horsepower; and motors that are close-coupled pump or vertical solid-shaft normal thrust motors.

247

Energy Efficiency Standards for Residential and Commercial Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards for Residential and Commercial Equipment: Additional Opportunities Title Energy Efficiency Standards for Residential and Commercial Equipment: Additional...

248

Research on Precise Support for Armored Equipment  

Science Conference Proceedings (OSTI)

The current support of the armored equipment is traditional extensive mode. There are many problems, such as excessive maintenance, late maintenance and high ratio of expenses to battle effectiveness. Aiming at these problems, the significance of Precise ... Keywords: Precise Support, Armored Equipment, advanced sensors, C4ISR

Yong-chun Xia; Yu-hua Zhou; Ren-jie Xu; Bi-wei Xie

2012-03-01T23:59:59.000Z

249

Life Extension Guidelines for Other Substation Equipment  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with tighter, leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment.BackgroundThe ...

2012-12-12T23:59:59.000Z

250

General Restaurant Equipment: Order (2013-CE-5344)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered General Restaurant Equipment Co. to pay a $8,000 civil penalty after finding General Restaurant Equipment had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

251

Life Extension Guidelines for Other Substation Equipment  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with tighter, leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment.BackgroundEPRI’s Life Extension Guidelines for ...

2013-12-20T23:59:59.000Z

252

Life Extension Guidelines for Substation Equipment  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment. EPRI's life extension guidelines for substationsfirst published in 1995 and periodically revisedsupport curre...

2010-12-22T23:59:59.000Z

253

Definition: Equipment Health Sensor | Open Energy Information  

Open Energy Info (EERE)

Sensor Sensor Jump to: navigation, search Dictionary.png Equipment Health Sensor Monitoring devices that automatically measure and communicate equipment characteristics that are related to the 'health' and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can also automatically generate alarm signals if the equipment characteristics reach critical or dangerous levels.[1] Related Terms sustainability References ↑ [www.smartgrid.gov/sites/default/files/pdfs/description_of_assets.pdf SmartGrid.gov 'Description of Assets'] An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Health_Sensor&oldid=502526

254

Registration, Force Protection Equipment Demonstration - May 2009 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 May 2009 Demonstrating commercially availale physical security/force protection soultions around the world The bombing of Khobar Towers in Saudi Arabia on 25 June 1996 revealed the need for continal vigilance and protection againist terrorist forces intent on harming US personnel and interests. The Chairman if the Joint Chiefs of Staff directed the Services to investigate COTS equipments solutions for physical security/force protection needs. The Office of the Under Secretary of Defense for Acquistion, Technology, and Logistics (OUSD {at&l}) tasked the Office of the US Army Product Manager, force Protection Systems (PM-FPS), to coordiante and facilitate a Force Protection Equipment

255

CVD Equipment Corp | Open Energy Information  

Open Energy Info (EERE)

CVD Equipment Corp CVD Equipment Corp Jump to: navigation, search Name CVD Equipment Corp Place Ronkonkoma, New York Zip 11779 Sector Solar Product New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of solar and semiconductor fabrication. Coordinates 40.81122°, -73.098744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.81122,"lon":-73.098744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Definition: Disturbance Monitoring Equipment | Open Energy Information  

Open Energy Info (EERE)

Disturbance Monitoring Equipment Disturbance Monitoring Equipment Jump to: navigation, search Dictionary.png Disturbance Monitoring Equipment Devices capable of monitoring and recording system data pertaining to a Disturbance. Such devices include the following categories of recorders: Sequence of event recorders which record equipment response to the event., Fault recorders, which record actual waveform data replicating the system primary voltages and currents. This may include protective relays., Dynamic Disturbance Recorders (DDRs), which record incidents that portray power system behavior during dynamic events such as low-frequency (0.1 Hz - 3 Hz) oscillations and abnormal frequency or voltage excursions. Phasor Measurement Units and any other equipment that meets the functional requirements of DMEs may qualify as DMEs.[1]

257

Laboratory Equipment Donation Program - About Us  

Office of Scientific and Technical Information (OSTI)

About LEDP About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department of Energy (DOE) to grant surplus and available used energy-related laboratory equipment to universities and colleges in the United States for use in energy oriented educational programs. This grant program is sponsored by the Office of Workforce Development for Teachers and Scientists (WDTS). The listing of equipment available through LEDP is updated as new equipment is identified. It is available at no cost for a limited time and is granted on a first-received qualified application basis. Specific items may be recalled for DOE use and become unavailable through the program after the

258

Experimental Equipment | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Equipment SSRL plans the distribution of its limited equipment on the basis of the information supplied on the Beam Time Request Form and the User Support Requirements Form. Please make sure to state all of your needs. Standard X-Ray Station Equipment Standard equipment to be found on an x-ray station includes: (1 ea.) Small and large ionization chambers (1) Exit slits (1) X-Y sample positioner (3) Keithly 427 current-to-voltage amplifier TEK 2215 60 MHZ 2 channel scope Voltage-to-frequency converter (3 channels) (1) Fluke high voltage power supply (1) Kinetic Systems hex scaler (1) Kinetic Systems up-down presettable counter (1) Ortec real-time clock (2) Joerger stepping motor controller DSP Micro VAX or Kinetic Systems G.I./CAMAC crate controller (1) Standard Engineering Corporation CAMAC power supply

259

Equipment qualification research program: program plan  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump.

Dong, R.G.; Smith, P.D.

1982-06-08T23:59:59.000Z

260

RMOTC - Field Information - Equipment and Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Facilities Equipment & Facilities Motor Grader at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC's test facility has its own line of workover, support, and heavy equipment available for partner use on site. RMOTC can also offer its partners workspace on site in its Customer Operations Center which has

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Office Buildings - End-Use Equipment  

U.S. Energy Information Administration (EIA) Indexed Site

End-Use Equipment End-Use Equipment The types of space heating equipment used in office buildings were similar to those of the commercial buildings sector as a whole (Table 8 and Figure 5). Furnaces were most used followed by packaged heating systems. Individual space heaters were third-most used but were primarily used to supplement the building's main heating system. Boilers and district heat systems were more often used in larger buildings. Table 8. Types of Heating Equipment Used in Office Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Buildings* All Office Buildings All Buildings* All Office Buildings All Buildings 4,645 824 64,783 12,208 All Buildings with Space Heating 3,982 802 60,028 11,929 Heating Equipment (more than one may apply)

262

Definition: Equipment Condition Monitor | Open Energy Information  

Open Energy Info (EERE)

Condition Monitor Condition Monitor Jump to: navigation, search Dictionary.png Equipment Condition Monitor A monitoring device that automatically measures and communicates equipment characteristics that are related to the "health" and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can automatically generate alarm signals if conditions exceed preset thresholds.[1] Related Terms sustainability References ↑ https://www.smartgrid.gov/category/technology/equipment_condition_monitor [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitions|Template:BASEPAGENAME]] Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Condition_Monitor&oldid=502601"

263

Transferring Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

264

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

265

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

266

Appliances and Commercial Equipment Standards: Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Office HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Office » Appliances & Equipment Standards About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Guidance and Frequently Asked Questions This webpage is designed to provide guidance and answer Frequently Asked Questions (FAQs) on the U.S. Department of Energy's appliance standards program. Guidance types span all covered products and covered equipment and cover such topics as: definitions, scope of coverage, conservation standards, test procedures, certification, Compliance and Certification Management System (CCMS), and enforcement. This website offers users an

267

Water-Using Equipment: Commercial and Industrial  

Science Conference Proceedings (OSTI)

Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

Solana, Amy E.; McMordie-Stoughton, Katherine L.

2006-01-24T23:59:59.000Z

268

New surface equipment for underbalanced drilling  

Science Conference Proceedings (OSTI)

Perhaps the single most exciting development in the area of new drilling technology in this decade is underbalanced drilling (UBD). This category includes both jointed pipe and coiled tubing applications. Each has advantages and disadvantages in UBD operations. Regardless of the method selected for a particular UBD application, equipment similarities exist. The surface control and production equipment must be correctly sized and designed for the overall total UBD engineering solution. This article describes the various types, applications and purposes of special surface equipment needed in underbalanced operations. This is the second in a series of articles on UBD technology and its rapid development is this field.

Cuthbertson, R.L.; Vozniak, J.; Kinder, J.

1997-03-01T23:59:59.000Z

269

Mitigated Transfer Line Leaks that Result in Surface Pools and Spray Leaks into Pits  

Science Conference Proceedings (OSTI)

This analysis provides radiological and toxicological consequence calculations for postulated mitigated leaks during transfers of six waste compositions. Leaks in Cleanout Boxes equipped with supplemental covers and leaks in pits are analyzed.

HEY, B.E.

1999-12-07T23:59:59.000Z

270

Definition: Equipment Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search Dictionary.png Equipment Rating The maximum and minimum voltage, current, frequency, real and reactive power flows on individual equipment under steady state, short-circuit and transient conditions, as permitted or assigned by the equipment owner.[1] Also Known As Standard current ratings Related Terms reactive power, smart grid References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Rating&oldid=502535" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

271

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

272

Laboratory Equipment Donation Program - Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Laboratory Equipment Donation Program Home About LEDP FAQ Application Site Index Contact Us Administrative Login SEARCH: Go! view equipment list LEDP News Latest Equipment Added as of January 08, 2014: 1. DATA HANDLING SYSTEM 89514133530195 2. METER, VOLT 89514133530179 3. RECORDER, STRIP 89514133530184 4. RECORDER, STRIP 89514133530185 5. SCINTILLATOR STRIPS, 1.9 CM X 1.5 CM X 96 CM 89514133530188 Quick Links What type of equipment is available? Who is eligible to apply? How long will it take to find out if my application has been approved? Who is responsible for arranging and paying for shipping? RSS Get Widgets Bookmark and Share Get the tools you need to inspire innovation and creativity The United States Department of Energy (DOE), in accordance with its

273

Energy Sub-Metering Equipment and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Sub-Metering Equipment and Applications Energy Sub-Metering Equipment and Applications Speaker(s): Sim Gurewitz Date: July 24, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Paul Mathew This talk will address the following topics:Submetering basics: What is it? How does a submeter work?How to obtain a finer level of energy information within the buildingApplications: Who submeters and why?LEED NC/EB/CS and submetering / Energy & Atmosphere pointsSubmetering equipment: gas, electric, water, steam, CW Btu and HHW BtuHow to install equipment without scheduling an outageLoad Control option for automated load shedding and peak shavingWireless submeters and communication options / integration to EMS-BMCSAutomatic remote meter reading and cost allocation softwarePutting it all together into a metering SYSTEM: read from anywhere, IP

274

HVAC Equipment Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Equipment Rebate Program HVAC Equipment Rebate Program HVAC Equipment Rebate Program < Back Eligibility Agricultural Commercial Industrial Installer/Contractor Institutional Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Heat Pumps Maximum Rebate Rebates of greater than $5,000 require pre-approval Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies depending on technology and efficiency Provider Efficiency Vermont NOTE: Rebate reservations are required for all boiler and furnace projects. Efficiency Vermont offers rebates for commercial installations of high-efficiency HVAC equipment and controls. For businesses and purchases

275

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

276

NETL: Carbon Absorber Retrofit Equipment (CARE)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Control Carbon Absorber Retrofit Equipment (CARE) Project No.: DE-FE0007528 Spray Jet Array for Neustream-C Nozzle Technology Spray Jet Array for Neustream-C Nozzle...

277

Definition: Reduced Equipment Failures | Open Energy Information  

Open Energy Info (EERE)

limits based on real-time equipment or environmental factors.1 Related Terms sustainability References SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You...

278

Biomass Equipment & Materials Compensating Tax Deduction  

Energy.gov (U.S. Department of Energy (DOE))

In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

279

Enhanced Substation Equipment Industry-Wide Database  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Industrywide Equipment Performance Database (IDB) for transformers is a collaborative effort to pool appropriate transformer operating and failure data in order to assemble a statistically valid population of many types of transformers.

2008-12-18T23:59:59.000Z

280

Hot conditioning equipment conceptual design report  

SciTech Connect

This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

Bradshaw, F.W., Westinghouse Hanford

1996-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cruising Equipment Company CECO | Open Energy Information  

Open Energy Info (EERE)

Cruising Equipment Company CECO Cruising Equipment Company CECO Jump to: navigation, search Name Cruising Equipment Company (CECO) Place Seattle, Washington Zip 98107 Product Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Integrating Equipment Health Information Into Grid Operations  

Science Conference Proceedings (OSTI)

In recent years, grid operators have expressed keen interest in having equipment health information available in real time. The health status of critical power system equipment can help operators assess situations, identify associated risks, and develop mitigation strategies/solutions in a time frame commensurate with the risk level. Health status information can also help operators recognize potential failures and take proactive actions, such as unloading a transformer or breaker that has shown signs of...

2011-12-21T23:59:59.000Z

283

Specifying and Testing Superconducting Power Equipment  

Science Conference Proceedings (OSTI)

EPRI held a workshop on September 21, 2007 in Hauppauge, New York to discuss what is needed to develop standards and specifications for testing superconducting power equipment. Stakeholders, including developers, equipment manufacturers, and electric utilities, participated in the discussions, which were arranged in a semi-formal setting to promote open dialogue. The U.S. Department of Energy provided assistance with meeting facilitation and recording.

2008-07-22T23:59:59.000Z

284

An Approach to Evaluating Equipment Efficiency Policies  

E-Print Network (OSTI)

The National Energy Conservation Policy Act of 1978 authorized studies of several types of industrial equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy efficiency standards. An approach to the evaluation of these and related policy options is under development. The approach includes equipment classification and characterization, market characterization, and the subsequent evaluation of effectiveness and costs of the policy options. Technical, economic, and marketing data obtained with the cooperation of industrial groups, such of policy impacts.

Newsom, D. E.; Evans, A. R.

1980-01-01T23:59:59.000Z

285

Seaport Land-Side Equipment Electrification Opportunities  

Science Conference Proceedings (OSTI)

The air quality problems associated at the Ports, have become a widely discussed issue facing cargo handling in recent years. While growth is necessary for economic health, the pollution emitted is growing as well. This study gives an overview of the many aspects of the port that can be considered for electrification. The emphasis of the work is a complete review of the land side equipment. Primary equipment includes: terminal tractors, forklifts, top loaders, empty container handlers, non-road vehicles,...

2006-01-24T23:59:59.000Z

286

Substation Equipment Asset Management: Utility Experience Sharing  

Science Conference Proceedings (OSTI)

Utilities have been maintaining substation equipment reliably since the industry’s inception, but now many are facing increased challenges to reduce operating and maintenance costs without adversely affecting service levels. In this setting, utilities may benefit from knowing which programs and techniques their peers have implemented. To that end, the Electric Power Research Institute (EPRI) conducted a series of industry surveys assessing key substation equipment maintenance practices. As ...

2013-12-18T23:59:59.000Z

287

Gas insulated substation equipment for industrial applications  

SciTech Connect

Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

Kenedy, J.J.

1984-11-01T23:59:59.000Z

288

Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel  

E-Print Network (OSTI)

With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer in micro-channels. Based on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have indicated that the evaporator and condenser of air conditioner would be more efficient and more compact by using microchannels, and hence it could improve the coefficient of performance of air conditioners to meet the new energy conversion standards in China. The relationship between condensation heat transfer of refrigerants and surface physical characteristics of the evaporator are pointed out and analyzed in order to achieving the corresponding heat transfer coefficients.

Su, J.; Li, J.

2006-01-01T23:59:59.000Z

289

List of Agricultural Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Agricultural Equipment Incentives Agricultural Equipment Incentives Jump to: navigation, search The following contains the list of 90 Agricultural Equipment Incentives. CSV (rows 1 - 90) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment Boilers Chillers Custom/Others pending approval Dishwasher Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Food Service Equipment Yes Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Vermont Agricultural Agricultural Equipment Custom/Others pending approval Lighting

290

CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Construction - Mechanical Equipment - June Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 June 26, 2012 Nuclear Facility Construction - Mechanical Equipment Installation, (HSS CRAD 45-53, Rev. 0) The purpose of this criteria review and approach, this CRAD includes mechanical equipment installation, including connections of the equipment to installed piping systems, and attachments of the equipment to structures (concrete, structural steel, or embed plates). Mechanical equipment includes items such as pumps and motors, valves, tanks, glove boxes, heat exchangers, ion exchangers, service air system, fire pumps and tanks, and heating, ventilation, and air condition (HVAC) equipment such as fans, scrubbers and filters.

291

Alternative Fuels Data Center: Pollution Control Equipment Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pollution Control Pollution Control Equipment Exemption to someone by E-mail Share Alternative Fuels Data Center: Pollution Control Equipment Exemption on Facebook Tweet about Alternative Fuels Data Center: Pollution Control Equipment Exemption on Twitter Bookmark Alternative Fuels Data Center: Pollution Control Equipment Exemption on Google Bookmark Alternative Fuels Data Center: Pollution Control Equipment Exemption on Delicious Rank Alternative Fuels Data Center: Pollution Control Equipment Exemption on Digg Find More places to share Alternative Fuels Data Center: Pollution Control Equipment Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pollution Control Equipment Exemption Dedicated original equipment manufacturer natural gas vehicles and

292

Sales and Use Tax Exemption for Renewable Energy Equipment  

Energy.gov (U.S. Department of Energy (DOE))

In April 2008, the Maryland enacted legislation exempting geothermal and solar energy equipment from the state sales and use tax. Geothermal equipment is defined as "equipment that uses ground loop...

293

NERSC's Data Transfer Nodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transfer Nodes Data Transfer Nodes Data Transfer Nodes Overview The data transfer nodes are NERSC servers dedicated to performing transfers between NERSC data storage resources such as HPSS and the NERSC Global Filesystem (NGF), and storage resources at other sites including the Leadership Computing Facility at ORNL (Oak Ridge National Laboratory). These nodes are being managed (and monitored for performance) as part of a collaborative effort between ESnet, NERSC, and ORNL to enable high performance data movement over the high-bandwidth 10Gb ESnet wide-area network (WAN). Restrictions In order to keep the data transfer nodes performing optimally for data transfers, we request that users restrict interactive use of these systems to tasks that are related to preparing data for transfer or are directly

294

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

295

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

296

Tech Transfer Report 2000  

Science Conference Proceedings (OSTI)

Page 1. Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report ...

2010-07-27T23:59:59.000Z

297

West Valley transfer cart control system design description  

SciTech Connect

Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

1993-01-01T23:59:59.000Z

298

Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Equipment Tax Exemption

299

Wiring methods, components, and equipment for general use. -...  

NLE Websites -- All DOE Office Websites (Extended Search)

to conductors which form an integral part of equipment such as motors, controllers, motor control centers and like equipment. 1926.405(a)(1) General requirements -...

300

Harbin Wind Power Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Harbin Wind Power Equipment Company Jump to: navigation, search Name Harbin Wind Power Equipment...

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,,,,,,,,,,"Lease Equipment Costs for Primary Oil Production in...  

U.S. Energy Information Administration (EIA) Indexed Site

of Lease Equipment Costs for Primary Oil Recovery ",,,"Oil Production--West Texas" ,,"Operations (10 Producing Wells)" ,,,"Lease Equipment Costs for Primary Oil...

302

1999 Commercial Buildings Characteristics--End-Use Equipment  

Annual Energy Outlook 2012 (EIA)

Energy Consumption Survey Lighting Equipment Standard fluorescent and incandescent light bulbs were the most widely used types of lighting equipment (Figure 3). The vast...

303

A Review of Equipment Aging Theory and Technology  

Science Conference Proceedings (OSTI)

Reviews the theory and technology of equipment aging particularly as they relate to the qualification of safety-system equipment for nuclear power generating stations.

1980-09-01T23:59:59.000Z

304

Avista Utilities (Gas and Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through electric food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates...

305

Avista Utilities (Gas & Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates through...

306

Alliant Energy Interstate Power and Light - Farm Equipment Energy...  

Open Energy Info (EERE)

Equipment, Ceiling Fan, Clothes Washers, CustomOthers pending approval, Dishwasher, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Heat recovery, Lighting,...

307

Management of Sensitive Equipment at Selected Locations, IG-0606...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

use or readily convertible to cash. Generally, this includes equipment such as computers, personal digital assistants, cameras, and communications equipment. The Department...

308

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Incentive - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Bay...

309

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

310

A Methodological Framework for Comparative Assessments of Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methodological Framework for Comparative Assessments of Equipment Energy Efficiency Policy Measures Title A Methodological Framework for Comparative Assessments of Equipment Energy...

311

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credit Anne Arundel County - Solar and Geothermal Equipment...

312

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credits Anne Arundel County - Solar and Geothermal Equipment...

313

Measuring and Test Equipment Assessment Plan,NNSA/Nevada Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent Oversight Division Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent...

314

NineStar Connect - Residential Energy Efficient Equipment Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NineStar Connect - Residential Energy Efficient Equipment Rebate Program NineStar Connect - Residential Energy Efficient Equipment Rebate Program Eligibility Residential Savings...

315

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy...

316

Changes related to "Nanjing Sunec Wind Generator Equipment Factory...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Nanjing Sunec Wind Generator Equipment Factory" Nanjing Sunec Wind Generator Equipment Factory Jump...

317

Pages that link to "Nanjing Sunec Wind Generator Equipment Factory...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Nanjing Sunec Wind Generator Equipment Factory" Nanjing Sunec Wind Generator Equipment Factory Jump...

318

Category:Smart Grid Projects - Equipment Manufacturing | Open...  

Open Energy Info (EERE)

Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment Manufacturing" The following 2 pages are in this category, out of 2...

319

NSLS Services | Repair & Equipment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Repair & Equipment Services Repair & Equipment Services Cleaning Facility (BNL Central Shops) Solvent cleaning of vacuum parts and leak checking service is also available. Work is billed to each user via a BNL ILR. Contact the NSLS Building Manager to arrange for any of these services. Electronics Repair Limited repairs for electronic equipment are available from an outside contractor through the Control Room. Contact Control Room Supervisor Randy Church (x2550 or x2736, pager 5310). Shipping memos are filled out on the web, and pick ups are on Fridays. Come to the Control Room for assistance. The user should call the contractor on the day before scheduled pickups to alert the contractor of the pickup. Items to be repaired should be left in the Control Room with the completed shipping memo. Costs are charged to the

320

REMOTE CONTROL EQUIPMENT FOR PLUTONIUM METAL PRODUCTION  

SciTech Connect

Design and construction of remote control equipment for plutonium metal production are described. Criteria for the design of the equipment included the following: rubber gloves were to be completely eliminated; all mechanisms were to be built as integral units to facilitate replacement through use of the plastic- bag technique; no accessory equipment such as switches, valves, piping, or cylinders were to be inside the contaminated enclosure unless required to handle the plutonium; and all units were to be tested in mockups before final design. The chemical process, general layout, and operating function are outlined. Descriptions are given of all mechanical units, electrical systems, hydroxide slurry systems, ventilation systems, and chemical tanks and manifolds. (W.L.H.)

Hazen, W.C.

1951-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Guide to efficient unitary cooling equipment  

SciTech Connect

The universe of unitary cooling equipment is a large one; these systems are used in nearly forty percent of the residential and commercial buildings in the United States. Unitary cooling equipment is made up of off-the-shelf units: factory-assembled single or split systems, including air-source heat pumps and air conditioners. The efficiency of this class of cooling equipment has increased steadily in recent years, driven primarily by government standards. Although most of the units have efficiencies near the minimum federal standards, a significant number of models beat the standards by 10 to 30 percent. However, the larger the system, the narrower the range of efficiencies available and the fewer models available in the most efficient categories. For the buyer and the utility, this report reveals where to get efficiency information on current products, and a recommended purchasing process. It also examines the ratings, standards, and programs that can expand the number of high-efficiency models available.

Gregerson, J.; George, K.L.

1995-07-01T23:59:59.000Z

322

Matching equipment size to the cooling load  

SciTech Connect

This article presents a heat extraction rate analysis method, using ASHRAE algorithms that enables HVAC system designers to optimally size cooling equipment. The final stage of the cooling load calculation process determines the heat extraction rate required to achieve design conditions. Put another way, this stage determines the equipment capacity required to match the cooling load profile, and it does so in a manner that predicts the resulting space temperature profile, and it does so in a manner that predicts the resulting space temperature profile. It is a stage in the design process that, in practice, may not be given the attention it deserves.

Bloom, B. (Harvey Toub Engineering, Atlanta, GA (United States))

1993-10-01T23:59:59.000Z

323

Conceptual design report, CEBAF basic experimental equipment  

Science Conference Proceedings (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

NONE

1990-04-13T23:59:59.000Z

324

Electricity used by office equipment and network equipment in the U.S.: Detailed report and appendices  

E-Print Network (OSTI)

LBNL-45917 Electricity Used by Office Equipment and Network46 Electricity Used by Office Equipment and Networkestimates in detail how much electricity is consumed by that

2001-01-01T23:59:59.000Z

325

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

326

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

327

Test and Test Equipment Joshua Lottich  

E-Print Network (OSTI)

Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

Patel, Chintan

328

Central Waste Complex (CWC) Safety Equipment List  

Science Conference Proceedings (OSTI)

This document lists all safety equipment for the Central Waste Complex, per HNF-PRO-704. This document provides a list of structures, systems, and components that are essential to the continuing safe operation of the Central Waste Complex, as designated by the applicable facility management and the cognizant engineer.

WHITLOCK, R.W.

2000-01-20T23:59:59.000Z

329

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network (OSTI)

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

330

A cost analysis model for heavy equipment  

Science Conference Proceedings (OSTI)

Total cost is one of the most important factors for a heavy equipment product purchase decision. However, the different cost views and perspectives of performance expectations between the different involved stakeholders may cause customer relation problems ... Keywords: Cost responsibilities, Operating costs, Ownership costs, Post-Manufacturing Product Cost (PMPC), System life-cycle cost

Shibiao Chen; L. Ken Keys

2009-05-01T23:59:59.000Z

331

Transfer Credit Approval Form For Transfer Terms and Exchange Programs  

E-Print Network (OSTI)

Transfer Credit Approval Form For Transfer Terms and Exchange Programs CONTINUED Student/transfer term is not a Dartmouth-sponsored program. ______ The regulations for exchange/transfer terms of the COI will review my transfer term application and I may only receive Dartmouth credit for a transfer

Myers, Lawrence C.

332

Collecting Construction Equipment Activity Data from Caltrans Project Records  

E-Print Network (OSTI)

Industrial Law n and Garden Logging Military Tactical Support Misc. Portable Equipment Transport Refrigeration

Kable, Justin M

2008-01-01T23:59:59.000Z

333

Building Technologies Office: About the Appliance and Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Appliance and About the Appliance and Equipment Standards Program to someone by E-mail Share Building Technologies Office: About the Appliance and Equipment Standards Program on Facebook Tweet about Building Technologies Office: About the Appliance and Equipment Standards Program on Twitter Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Google Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Delicious Rank Building Technologies Office: About the Appliance and Equipment Standards Program on Digg Find More places to share Building Technologies Office: About the Appliance and Equipment Standards Program on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes

334

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on AddThis.com...

335

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

336

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on AddThis.com...

337

Alternative Fuels Data Center: Biodiesel Production and Blending Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Production Biodiesel Production and Blending Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on AddThis.com... More in this section... Federal State

338

HVAC equipment replacement for best size and efficiency  

DOE Green Energy (OSTI)

The purpose of this project was to explore the potential benefits of HVAC equipment replacement for buildings owned by the City of Phoenix. The specific research objectives were as follows: Establishment an understanding of the magnitude and sources of saving available through equipment replacement; Establish an economic model for understanding equipment replacement and deciding when equipment should be replaced; Establish technical methods for calculating savings from replacement of various types of equipment; Demonstrate the replacement of a major item of HVAC equipment and document the savings through actual experimentation and measurement; and Provide guidance material for other jurisdictions wishing to investigate equipment replacement. 11 figs., 9 tabs.

Teji, D.S.

1988-02-01T23:59:59.000Z

339

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

340

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on AddThis.com... More in this section... Federal

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mandatory Electric Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards to someone by E-mail Share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Facebook Tweet about Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Twitter Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Google Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Delicious Rank Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Digg Find More places to share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on

342

STLOAD 1.0, Substation Equipment Thermal Loading Program  

Science Conference Proceedings (OSTI)

The Substation Equipment Thermal Loading Program, STLOAD Version 1.0 software is intended for use by substation engineers for the purpose of establishing thermal ratings for and making diagnostic evaluations of substation equipment. STLOAD 1.0 software calculates substation equipment operating temperatures and thermal ratings based on user-specified physical parameters for the equipment and user-specified load and air temperature data. Substation equipment that can be modeled using STLOAD includes strain...

2006-03-15T23:59:59.000Z

343

Fuel transfer system  

DOE Patents (OSTI)

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

344

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

345

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

346

Memristive Transfer Matrices  

E-Print Network (OSTI)

An electrical analysis is performed for a memristor crossbar array integrated with operational amplifiers including the effects of parasitic or contact resistances. It is shown that the memristor crossbar array can act as a transfer matrix for a multiple input-multiple output signal processing system. Special cases of the transfer matrix are described related to reconfigurable analog filters, waveform generators, analog computing, and pattern similarity. Keywords: transfer matrix, memristor, analog electronics, crossbar, operational amplifier, reconfigurable electronics

Mouttet, Blaise

2010-01-01T23:59:59.000Z

347

High Volume--High Volume Usage of Flue Gas Desulfurization (FGD) By-Products in Underground Mines. Quarterly report, July 1-September 31, 1996  

SciTech Connect

The focus of activity for this quarter was the final selection and preparation of a mine site for the grout emplacement field demonstration. The site chosen is located in Floyd County, Kentucky and is owned by the Sunny Ridge Mining Company. Specifically, a northeast-trending highwall was selected that contains numerous auger holes of 31 inch diameter and varying depth. The coal has been deep- mined beyond the auger holes thus limiting their length. Access to the site is good, and the overlying strata are relatively un- weathered and competent. Preparation of the site involved culling a road to the highwall, followed by uncovering the auger holes which had previously been partially filled and graded with rock. The auger holes were then extensively characterized in the context of overall dimensions, condition, and extent of communication between holes. For this portion of the work, several types of apparatus were obtained, and constructed. Selection of a grout emplacement method was also completed. It was decided that concrete trucks will transport the dry FBC flyash to the site whereupon a specified amount of water will be added. This grout will then be transferred to a concrete pumping truck that will be used to inject the material into the auger holes. In this quarter, the arrangements necessary to complete the emplacement have been made.

NONE

1997-12-31T23:59:59.000Z

348

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

349

SRNL - Technology Transfer - Ombudsman  

... complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy.

350

Partnerships and Technology Transfer  

Economic Development Overview. ORNL's Partnerships Staff works with a number of partners in the region, State, and across the nation to help transfer ORNL-developed ...

351

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

352

NETL: Technology Transfer - DOE  

Home > Technology Transfer. ... and cheaper to design future power plants. ... we welcome the opportunity to build mutually beneficial partnerships with industry, ...

353

NREL: Technology Transfer - Contacts  

National Renewable Energy Laboratory Technology Transfer Contacts. Here you'll find contact information and resources to help answer any questions you may have about ...

354

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625â??658...

355

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

356

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

357

Sample Environment Equipment Categories - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › Sample Environment Home › Instruments › Sample Environment Sample Environment: Categories of Equipment All Ancillary Equipment Auto Changer Closed Cycle Refrigerators Closed Cycle Refrigerators - Bottom Loading Closed Cycle Refrigerators - Top Loading Furnaces Gas Handling Gas Panel High Pressure Systems Liquid Helium Cryostats Magnet Systems Other Special Environments Sample Cell Sample Stick Ultra Low Temperature Devices Sample Environment: by Beam Line All BL-11A-POWGEN BL-11B-MANDI BL-12-TOPAZ BL-13-Fundamental Neutron Physics Beam Line BL-14A-BL-14A BL-14B-HYSPEC BL-15-Neutron Spin Echo (NSE) BL-16B-VISION BL-17-SEQUOIA BL-18-ARCS BL-1A-TOF-USANS BL-1B-NOMAD BL-2-BASIS BL-3-SNAP BL-4A-Magnetism Reflectometer BL-4B-Liquids Reflectometer BL-5-Cold Neutron Chopper Spectrometer (CNCS) BL-6-EQ-SANS

358

Laboratory Equipment Donation Program - Guidelines/FAQ  

Office of Scientific and Technical Information (OSTI)

Frequently Asked Questions Frequently Asked Questions Who is eligible to apply for equipment? Due to budget constraints, the free shipping program for "high need schools" has been discontinued; and middle and high schools are no longer eligible to participate in the Laboratory Equipment Donation Program (LEDP) program. Participation in the LEDP is limited to accredited, post graduate, degree granting institutions including universities, colleges, junior colleges, technical institutes, museums, or hospitals, located in the U.S. and interested in establishing or upgrading energy-oriented educational programs in the life, physical, and environmental sciences and in engineering is eligible to apply. An energy-oriented program is defined as an academic research activity dealing primarily or entirely in

359

Process Equipment Cost Estimation, Final Report  

Office of Scientific and Technical Information (OSTI)

Process Equipment Cost Estimation Process Equipment Cost Estimation Final Report January 2002 H.P. Loh U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 and P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and Jennifer Lyons and Charles W. White, III EG&G Technical Services, Inc. 3604 Collins Ferry Road, Suite 200 Morgantown, WV 26505 DOE/NETL-2002/1169 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

360

Documentation Requirements for Pressurized Experiment Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Requirements for Pressurized Experiment Apparatus Documentation Requirements for Pressurized Experiment Apparatus PSSC NOTE01 15-Jan-2013 When bringing a piece of apparatus to the APS for an experiment that will involve pressure, whether it is to be used on a beamline during a measurement or in a laboratory to prepare the sample prior to the experiment, the hazards associated with the equipment must be reviewed. To review the equipment and make any recommendations, a certain level of documentation must be provided by the experimenter. The length and depth of the documentation should be commensurate with the complexity of the system. 1. Description of apparatus a. Description of the assembly and operation of the system. b. State the maximum working pressure, working fluid (liquid or gas) used to

Note: This page contains sample records for the topic "fgd equipment transferring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Measured Peak Equipment Loads in Laboratories  

SciTech Connect

This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

Mathew, Paul A.

2007-09-12T23:59:59.000Z

362

Miscellaneous equipment in commercial buildings: The inventory, utilization, and consumption by equipment type  

SciTech Connect

The nature of the miscellaneous equipment (devices other than permanently installed lighting and those used for space conditioning) in commercial buildings is diverse, comprising a wide variety of devices that are subject to varied patterns of use. This portion of the commercial load is frequently underestimated, and widely hypothesized to be growing. These properties make it a particularly difficult load to characterize for purposes of demand-side management. In the End-Use Load and Consumer Assessment Program (ELCAP), over 100 commercial sites in the Pacific Northwest have been metered at the end-use level for several years. Detailed inspections of the equipment in them have also been conducted. This paper describes how the ELCAP data have been used to estimate three fundamental properties of the various types of equipment in several classes of commercial buildings: (1) the installed capacity per unit floor area, (2) utilization of the equipment relative to the installed capacity, and (3) the resulting energy consumption by building type and for the Pacific Northwest commercial sector as a whole. Applications for the results include assessment of conservation potential, prediction of equipment loads from survey data, estimating equipment loads for energy audits, targeting of conservation technology development, and disaggregating building total or mixed end-use data. 4 tabs., refs.

Pratt, R.G.; Williamson, M.A.; Richman, E.E.

1990-09-01T23:59:59.000Z

363

BCM 1 Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Equipment Inventory 1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Agilent 8453 UV-Vis Spectrophotometer Analytical Agilent 8453 UV-VIS diode-array spectrophotometer. Wavelength range 190-1100 nm with a 1 nm optical slit width. Disposable plastic cuvettes are available in the lab, and quartz cuvettes and microcuvettes are available on a check-out basis. Beckman GPKR Centrifuge Centrifuge Beckman GPKR refrigerated centrifuge with fixed angle rotor, 8000 rpm max speed, temperature range -10°C to 40°C, fits 50mL tubes. Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation, automatic calibration and temperature compensation, % slope readout, self-diagnostics test on powerup and analog recorder output. Unique LCD shows pH, mV

364

Plant design: Integrating Plant and Equipment Models  

Science Conference Proceedings (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

365

Decontamination & Decommissioning Equipment Tracking System (DDETS)  

SciTech Connect

At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned.

Cook, S.

1994-07-01T23:59:59.000Z

366

Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Equipment Biodiesel Equipment and Fuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Equipment and Fuel Tax Exemption

367

Alternative Fuels Data Center: Installing New E85 Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installing New E85 Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data Center: Installing New E85 Equipment on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & Incentives

368

Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Blending Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with

369

Knowledge transfer frameworks  

Science Conference Proceedings (OSTI)

While theories abound concerning knowledge transfer in organisations, little empirical work has been undertaken to assess any possible relationship between repositories of knowledge and those responsible for the use of knowledge. This paper develops ... Keywords: hybrid approach, knowledge administration, knowledge management, knowledge storage, knowledge transfer framework

Sajjad M Jasimuddin; Nigel Connell; Jonathan H Klein

2012-05-01T23:59:59.000Z

370

Safety equipment list for 241-C-106 waste retrieval, Project W-320: Revision 1  

Science Conference Proceedings (OSTI)

The goals of the C-106 sluicing operation are: (1) to stabilize the tank by reducing the heat load in the tank to less than 42 MJ/hr (40,000 Btu/hour), and (2) to initiate demonstration of single-shell tank (SST) retrieval technology. The purpose of this supporting document (SD) is as follows: (1) to provide safety classifications for items (systems, structures, equipment, components, or parts) for the waste retrieval sluicing system (WRSS), and (2) to document and methodology used to develop safety classifications. Appropriate references are made with regard to use of existing systems, structures, equipments, components, and parts for C-106 single-shell transfer tank located in the C Tank Farm, and 241-AY-102 (AY-102) double shell receiver tanks (DST) located in the Aging Waste Facility (AWF). The Waste Retrieval Sluicing System consists of two transfer lines that would connect the two tanks, one to carry the sluiced waste slurry to AY-102, and the other to return the supernatant liquid to C-106. The supernatant, or alternate fluid, will be used to mobilize waste in C-106 for the sluicing process. The equipment necessary for the WRSS include pumps in each tank, sluicers to direct the supernatant stream in C-106, a slurry distributor in AY-102, HVAC for C-106, instrumentation and control devices, and other existing components as required.

Conner, J.C.

1994-11-15T23:59:59.000Z

371

Transfers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transfers Transfers Transfers Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. Below are a few tips to better assist you when you transer agencies: If you have any dependents you must complete a standard Form 2809 during new employee orientation as this information does not transfer over automatically. You will not be able to change your coverage until open season or a life changing event occurs. At the time of new employee orientation you must provide your most recent leave and earning statement (LES) so that your leave may be updated accordingly. If you do not provide us with this document it will take approximately 6 weeks before your annual and sick leave is updated.

372

Data Transfer Examples  

NLE Websites -- All DOE Office Websites (Extended Search)

» Data Transfer Examples » Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate files or bad results from a run that didn't work out that don't need to be saved. By running these jobs in the SCRATCH areas, these files will be deleted for you by the puge. If you run in the SANDBOX, you will have to clean up after yourselves. Batch Scheduled Transfers Use any queues to schedule jobs that move data to Projectb. A basic transfer script is here: kmfagnan@genepool12 ~ $ cat data_to_projb.sh #!/bin/bash -l #$ -N data2projb /projectb/scratch// kmfagnan@genepool12 ~ $ qsub data_to_projb.sh

373

Multinucleon transfer reactions  

SciTech Connect

The development of higher energies and better resolution in heavy-ion beams has led to a resurgence of interest in transfer reactions at energies well above the Coulomb barrier. Direct reactions with heavy ions are discussed in some detail. Heavy-ion reactions open up the possibility of new methods of spectroscopy, e.g., elastic transfer. Differential cross sections for heavy-ion ' transfer reactions are often featureless; however, some data show diffractive effects. The high angular momenta associated with recoil effects in heavy-ion reactions can be exploited to perform selective spectroscopy on light nuclei. Although most heavy-iontransfer data suggest that reactions proceed in a direct fashion, recent experiments indicate the presence of second-order multistep processes. Correlated nucleon transfer and transfer of many nucleons (e.g., (12C, alpha )) are also being investigated. (20 figures, 3 tables, 93 references) (RWR)

Scott, D.K.

1973-08-01T23:59:59.000Z

374

After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment  

Science Conference Proceedings (OSTI)

This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

2004-01-22T23:59:59.000Z

375

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Electric

376

Property Tax Assessment for Renewable Energy Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Property Tax Incentive Rebate Amount Renewable-energy equipment assessed at 20% of its depreciated cost Provider Arizona Department of Revenue Renewable energy equipment owned by utilities and other entities operating in Arizona is assessed at 20% of its depreciated cost for the purpose of determining property tax. "Renewable energy equipment" is defined as "electric generation facilities, electric transmission, electric distribution, gas distribution or combination gas and electric transmission

377

Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Highway Electric Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Highway

378

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

379

Chapter 10 - Property, Plant and Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-18-2011 7-18-2011 Chapter 10-1 CHAPTER 10 PROPERTY, PLANT, AND EQUIPMENT 1. INTRODUCTION. a. Background/Authorities. This chapter describes financial controls over the acquisition, use, and retirement of property and provides guidelines for distinguishing between charges to capital accounts and charges to expense accounts consistent with the Statement of Federal Financial Accounting Standards (SFFAS). b. Applicability. The applicability of this chapter is specified in Chapter 1, "Accounting Overview." When in conflict with the provisions of this paragraph, power marketing administrations (PMAs) should observe the policies of the Federal Energy Regulatory Commission and other industry

380

Laboratory Equipment Donation Program - LEDP Widget Code  

Office of Scientific and Technical Information (OSTI)

Widget Inclusion Code Widget Inclusion Code Copy the code below and paste it to your website or blog: