Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Low NOx modifications on front-fired pulverized coal fuel burners  

SciTech Connect (OSTI)

Burner optimizations and modifications were performed on Public Service of New Hampshire`s Schiller Units 4, 5, and 6. These are Foster-Wheeler 50 MWg pulverized coal and No.6 fuel oil-fired boilers with six burners each. Burner optimizations consisted of fuel flow, primary air, secondary air testing and balancing. Burner modifications consisted of the addition of circumferentially and radially staged flame stabilizers, circumferentially-staged coal spreaders, and modifications to the existing pulverized coal pipe. NO{sub x} emissions on Unit 6 of .41 lb/mmBtu were achieved at optimized burner settings at full load with all burners in service and without the use of overfire air or bias firing. This represented a 50% NO{sub x} reduction from the average pre-modification baseline NO{sub x} emissions of .81 lb/mmBtu prior to the optimizations and burner modification program. NO{sub x} emissions as low as .38 lb/mmBtu were achieved with the use of overfire air. There was essentially no quantifiable change in LOIs (baseline LOIs averaged 40%). Furnace excess O{sub 2} as low as 1.2% was achieved with CO emissions of less than 200 ppm. Total installed costs including the overfire air system were approximately $7/kW.

Owens, B.; Hitchko, M. [Public Service of New Hampshire, Manchester, NH (United States); Broderick, R.G. [RJM Corp., Ridgefield, CT (United States)

1996-01-01T23:59:59.000Z

2

Coupling ReaxFF with Temperature Accelerated  

E-Print Network [OSTI]

events Concerted Atom Movement #12;TAD Illustration Thigh #12;Implementation into CMDF Coding Obstacles: TAD standalone code - FORTRAN 77 CMDF - Python based #12;CMDF Module: TADTOOLS #12;Seamless;TAD ReaxFF Coupled Example: Hydrogen adatom on Platinum min = 5 x 1011 sec-1 , = .01 [100] Platinum

Goddard III, William A.

3

Cyber Friendly Fire: Research Challenges for Security Informatics  

SciTech Connect (OSTI)

This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly fire (FF). We define cyber FF as intentional offensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintention-ally harms the mission effectiveness of friendly or neutral forces. Just as with combat friendly fire, maintaining situation awareness (SA) is paramount to avoiding cyber FF incidents. Cyber SA concerns knowledge of a system’s topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and offensive countermeasures that may be applied to thwart network attacks. Mitigation strategies to combat cyber FF— including both training concepts and suggestions for decision aids and visualization approaches—are discussed.

Greitzer, Frank L.; Carroll, Thomas E.; Roberts, Adam D.

2013-06-06T23:59:59.000Z

4

Carbon dioxide emission during forest fires ignited by lightning  

E-Print Network [OSTI]

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31T23:59:59.000Z

5

Cyber Friendly Fire  

SciTech Connect (OSTI)

Cyber friendly fire (FF) is a new concept that has been brought to the attention of Department of Defense (DoD) stakeholders through two workshops that were planned and conducted by the Air Force Research Laboratory (AFRL) and research conducted for AFRL by the Pacific Northwest National Laboratory. With this previous work in mind, we offer a definition of cyber FF as intentional offensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission effectiveness of friendly or neutral forces. Just as with combat friendly fire, a fundamental need in avoiding cyber FF is to maintain situation awareness (SA). We suggest that cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system (and that populate the nodes), the nature of the activities or work performed, and the available defensive (and offensive) countermeasures that may be applied to thwart network attacks. A training implication is to raise awareness and understanding of these critical knowledge units; an approach to decision aids and/or visualizations is to focus on supporting these critical knowledge units. To study cyber FF, we developed an unclassified security test range comprising a combination of virtual and physical devices that present a closed network for testing, simulation, and evaluation. This network offers services found on a production network without the associated costs of a real production network. Containing enough detail to appear realistic, this virtual and physical environment can be customized to represent different configurations. For our purposes, the test range was configured to appear as an Internet-connected Managed Service Provider (MSP) offering specialized web applications to the general public. The network is essentially divided into a production component that hosts the web and network services, and a user component that hosts thirty employee workstations and other end devices. The organization's network is separated from the Internet by a Cisco ASA network security device that both firewalls and detects intrusions. Business sensitive information is stored in various servers. This includes data comprising thousands of internal documents, such as finance and technical designs, email messages for the organization's employees including the CEO, CFO, and CIO, the organization's source code, and Personally Identifiable client data. Release of any of this information to unauthorized parties would have a significant, detrimental impact on the organization's reputation, which would harm earnings. The valuable information stored in these servers pose obvious points of interest for an adversary. We constructed several scenarios around this environment to support studies in cyber SA and cyber FF that may be run in the test range. We describe mitigation strategies to combat cyber FF including both training concepts and suggestions for decision aids and visualization approaches. Finally, we discuss possible future research directions.

Greitzer, Frank L.; Carroll, Thomas E.; Roberts, Adam D.

2011-09-01T23:59:59.000Z

6

Front Burner- Issue 15  

Broader source: Energy.gov [DOE]

The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

7

Wild Fire Computer Model Helps Firefighters  

ScienceCinema (OSTI)

A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.

Canfield, Jesse

2014-06-02T23:59:59.000Z

8

The magnification of SN 1997ff, the farthest known supernova  

SciTech Connect (OSTI)

With a redshift of z {approx} 1.7, SN 1997ff is the most distant type Ia supernova discovered so far. This SN is close to several bright, z = 0.6-0.9 galaxies, and we consider the effects of lensing by those objects on the magnitude of SN 1997ff. We estimate their velocity dispersions using the Tully-Fisher and Faber-Jackson relations corrected for evolution effects, and calculate, applying the multiple-plane lensing formalism, that SN 1997ff is magnified by 0.34{+-}0.12 mag. Due to the spatial configuration of the foreground galaxies, the shear from individual lenses partially cancels out,and the total distortion induced on the host galaxy is considerably smaller than that produced by a single lens having the same magnification. After correction for lensing, the revised distance to SN 1997ff is m-M = 45.49 {+-} 0.34 mag, which improves the agreement with the {Omega}{sub M} = 0.35, {Omega}{Lambda} = 0.65 cosmology expected from lower-redshift SNe Ia, and is inconsistent at the {approx} 3 sigma confidence level with a uniform gray dust model or a simple evolution model.

Benitez, Narciso; Riess, Adam; Nugent, Peter; Dickinson, Mark; Chornock, Ryan; Filippenko, Alexei V.

2002-09-03T23:59:59.000Z

9

Mesquite Solar Plan - build out next to existing FF plants Solar...  

Open Energy Info (EERE)

Mesquite Solar Plan - build out next to existing FF plants Solar Power Plant Jump to: navigation, search Name Mesquite Solar Plan - build out next to existing FF plants Solar Power...

10

FIRE WATCH FORM University Fire Marshal  

E-Print Network [OSTI]

FIRE WATCH FORM University Fire Marshal Guidance Document Approved by: R. Flynn Last revised by: R. These are regulations used by the University Fire Marshal and EH&S as guidance to meet compliance pertaining the impairment coordinator (The University Fire Marshal has been identified as the Impairment Coordinator for all

Pawlowski, Wojtek

11

FIRE PROTECTION IMPAIRMENTS University Fire Marshal  

E-Print Network [OSTI]

FIRE PROTECTION IMPAIRMENTS University Fire Marshal Guidance Document Approved by: R. Flynn Last system. These are regulations used by the University Fire Marshal and EH&S as guidance to meet compliance, the owner shall be considered the impairment coordinator (The University Fire Marshal has been identified

Pawlowski, Wojtek

12

Model Fire Protection Program  

Broader source: Energy.gov [DOE]

To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

13

Annual Fire Safety Report  

E-Print Network [OSTI]

2010 Annual Fire Safety Report University of California, Irvine HIGHER EDUCATION OPPORTUNITY to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported publish an annual fire safety report, keep a fire log, and report fire statistics to the Secretary

Loudon, Catherine

14

Fire suppressing apparatus. [sodium fires  

DOE Patents [OSTI]

Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

Buttrey, K.E.

1980-12-19T23:59:59.000Z

15

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents [OSTI]

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

16

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents [OSTI]

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

1984-03-30T23:59:59.000Z

17

Fire Safety Training: Fire Modeling- NUREG 1934  

Broader source: Energy.gov [DOE]

Presenter: Frederick W. Mowrer, Ph.D., P.E. Director Fire Protection Engineering Programs - Cal Poly – SLO

18

Computational fire modeling for aircraft fire research  

SciTech Connect (OSTI)

This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

Nicolette, V.F.

1996-11-01T23:59:59.000Z

19

Data:7025ff1c-5561-48e0-b545-ff5337f04053 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No-4eca-bf68-a0cb8e6f39cb No revisiond294d8aebd59211317 No

20

Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1  

SciTech Connect (OSTI)

The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

NONE

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fire Protection Program Metrics  

Broader source: Energy.gov [DOE]

Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

22

Fire Foe: A Glovebox Fire Suppression System | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Envirogel Extinguishing Agent NRTL Qualification Fire Test Proof-of-Concept Testing Seismic Reliability Fire Foe: A Glovebox Fire Suppression System More Documents &...

23

A Global Optimization Method, ffBB, for General TwiceDifferentiable Constrained  

E-Print Network [OSTI]

A Global Optimization Method, ffBB, for General Twice­Differentiable Constrained NLPs: II et al., 1997) described the theoretical foundations of a global optimization algorithm, the ff problems, of small and medium size chemical engineering problems in the areas of reactor network design

Neumaier, Arnold

24

Front Burner - Issue 18 | Department of Energy  

Energy Savers [EERE]

Front Burner - Issue 18 Front Burner - Issue 18 The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and...

25

Front Burner - Issue 13 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3 Front Burner - Issue 13 The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity informing readers...

26

Front Burner - Issue 14 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 Front Burner - Issue 14 The Cybersecurity Front Burner Issue No. 14 addresses the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams. Cybersecurity...

27

Fire Classifications Fires involving the ordinary  

E-Print Network [OSTI]

, plastics, etc. Fires involving combustible or flammable liquids such as gasoline, kerosene, oils, grease is protected by various devices such as smoke detectors, sprinkler systems, and manual fire alarm pull stations. Manual pull stations are strategically located throughout the University. Usually located by each exit

Jia, Songtao

28

Fire in Buildings   

E-Print Network [OSTI]

During the lifetime of any building in Canada it is probable that one or more "unwanted" fires will occur. "Fire Loss in Canada, 1959," the report of the Dominion Fire Commissioner, states that for the period 1950-1959 the average number of reported...

Shorter, G.

29

Fire Protection Program Manual  

SciTech Connect (OSTI)

This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

Sharry, J A

2012-05-18T23:59:59.000Z

30

Data:7a411c32-9ed2-477c-81a3-ff95ff4e4ac0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de-477c-81a3-ff95ff4e4ac0 No revision has

31

Data:373c3ff3-ff6b-4d17-8c22-d8594edc8e45 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revision has been approved for this page.8784b28ff21f7227a

32

A Global Optimization Method, ffBB, for General TwiceDifferentiable Constrained  

E-Print Network [OSTI]

for nonconvex terms of generic structure. In most cases, the calculation of appropriate values for the ff parame energy conformation of molecules, distillation sequencing, reactor network design, batch process design

Neumaier, Arnold

33

Development of Novel Front Contract Pastes for Crystalline Silicon Solar Cells  

SciTech Connect (OSTI)

In order to improve the efficiencies of silicon solar cells, paste to silicon contact formation mechanisms must be more thoroughly understood as a function of paste chemistry, wafer properties and firing conditions. Ferro Corporation has been involved in paste development for over 30 years and has extensive expertise in glass and paste formulations. This project has focused on the characterization of the interface between the top contact material (silver paste) and the underlying silicon wafer. It is believed that the interface between the front contact silver and the silicon wafer plays a dominant role in the electrical performance of the solar cell. Development of an improved front contact microstructure depends on the paste chemistry, paste interaction with the SiNx, and silicon (“Si”) substrate, silicon sheet resistivity, and the firing profile. Typical front contact ink contains silver metal powders and flakes, glass powder and other inorganic additives suspended in an organic medium of resin and solvent. During fast firing cycles glass melts, wets, corrodes the SiNx layer, and then interacts with underlying Si. Glass chemistry is also a critical factor in the development of an optimum front contact microstructure. Over the course of this project, several fundamental characteristics of the Ag/Si interface were documented, including a higher-than-expected distribution of voids along the interface, which could significantly impact electrical conductivity. Several techniques were also investigated for the interfacial analysis, including STEM, EDS, FIB, EBSD, and ellipsometry.

Duty, C.; Jellison, D. G.E. P.; Joshi, P.

2012-04-05T23:59:59.000Z

34

Fire alarm system improvement  

SciTech Connect (OSTI)

This document contains the Fire Alarm System Test Procedure for Building 234-5Z, 200-West Area on the Hanford Reservation, Richland, Washington. This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the modifications to the Fire Protection systems function as required by project criteria. The ATP will test the Fire Alarm Control Panels, Flow Alarm Pressure Switch, Heat Detectors, Smoke Detectors, Flow Switches, Manual Pull Stations, and Gong/Door by Pass Switches.

Hodge, S.G.

1994-10-01T23:59:59.000Z

35

Fire protection design criteria  

SciTech Connect (OSTI)

This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

NONE

1997-03-01T23:59:59.000Z

36

Critical Fire Weather Patterns  

E-Print Network [OSTI]

.1 Sundowner Winds FAT -- 1.1 Southeastern U.S. Fire Weather LIT -- 1.1 East Winds MFR -- 1.1 East Winds OLM

Clements, Craig

37

Co-firing biomass  

SciTech Connect (OSTI)

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

38

Materials and Design 24 (2003) 6978 0261-3069/03/$ -see front matter 2002 Elsevier Science Ltd. All rights reserved.  

E-Print Network [OSTI]

operate near their limits of thermal cracking and melting erosion resistances during long-burst firing. Due to their high melting temperature (controls melting- erosion resistance), high hotMaterials and Design 24 (2003) 69­78 0261-3069/03/$ - see front matter 2002 Elsevier Science Ltd

Grujicic, Mica

39

Model Baseline Fire Department/Fire Protection Engineering Assessment  

Broader source: Energy.gov [DOE]

The purpose of the document is to comprehensively delineate and rationalize the roles and responsibilities of the Fire Department and Fire Protection (Engineering).

40

Magnesium Front End Design and Development  

Broader source: Energy.gov (indexed) [DOE]

by: Alan A. Luo and R. C. McCune Presented by: James Quinn, General Motors Unibody Architecture 3-piece Mg front end (bodyframe) USAMP AMD 603 - Magnesium Front End Design and...

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Front Burner - Issue 16 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6 Front Burner - Issue 16 The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign....

42

Fire science at LLNL: A review  

SciTech Connect (OSTI)

This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

Hasegawa, H.K. (ed.)

1990-03-01T23:59:59.000Z

43

Data:1f9671ff-e3a5-4528-8adb-c714b5f4e9ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 No revision has been43-962e-5a5fd675c789c714b5f4e9ff No

44

Electronic firing systems and methods for firing a device  

DOE Patents [OSTI]

An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

Frickey, Steven J. (Boise, ID); Svoboda, John M. (Idaho Falls, ID)

2012-04-24T23:59:59.000Z

45

Effect of Front-Side Silver Metallization on Underlying n+-p Junction in Multicrystalline Silicon Solar Cells: Preprint  

SciTech Connect (OSTI)

We report on the effect of front-side Ag metallization on the underlying n+-p junction of multicrystalline Si solar cells. The junction quality beneath the contacts was investigated by characterizing the uniformities of the electrostatic potential and doping concentration across the junction, using scanning Kelvin probe force microscopy and scanning capacitance microscopy. We investigated cells with a commercial Ag paste (DuPont PV159) and fired at furnace setting temperatures of 800 degrees, 840 degrees, and 930 degrees C, which results in actual cell temperatures ~100 degrees C lower than the setting temperature and the three cells being under-, optimal-, and over-fired. We found that the uniformity of the junction beneath the Ag contact was significantly degraded by the over-firing, whereas the junction retained good uniformity with the optimal- and under-fire temperatures. Further, Ag crystallites with widely distributed sizes from <100 nm to several ?m were found at the Ag/Si interface of the over-fired cell. Large crystallites were imaged as protrusions into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of the junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent recrystallization with incorporation of impurities in the Ag paste and with formation of crystallographic defects during quenching.

Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

2012-06-01T23:59:59.000Z

46

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect (OSTI)

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

47

Flooding and Fire Ants  

E-Print Network [OSTI]

Fire ants can be a serious problem during and after a flood. This publication explains how to protect yourself when you must return to flooded structures or deal with storm debris....

Nester, Paul

2008-08-05T23:59:59.000Z

48

Wildland Fire Safety Enhancements  

Broader source: Energy.gov (indexed) [DOE]

OPERATIONS OFFICE MANAGERS DOE FUXD OFFICE MANAGERS BILL RIcHARDsoN L%@ WILDLAND FIRE SAFETY ENHAN&MENTS By memorandum dated October 22000, I directed several actions & part of a...

49

Safety, Security & Fire Report  

E-Print Network [OSTI]

2013 Safety, Security & Fire Report Stanford University #12;Table of Contents Public Safety About the Stanford University Department of Public Safety Community Outreach & Education Programs Emergency Access Transportation Safety Bicycle Safety The Jeanne Clery and Higher Education Act Timely Warning

Straight, Aaron

50

ON THE DrFF,US~VE CAVITATION OF ISOLATED GRAIN BOUNDARY FACETS TN  

E-Print Network [OSTI]

ON THE DrFF,US~VE CAVITATION OF ISOLATED GRAIN BOUNDARY FACETS TN CREEPING POLYCRYSTALS J. R. RICE-Following concepts introduced by B. F. Dyson (Metal Sci.349 19761,the dilTusive cavitation of grain facets is considered in circumstances for which the cavitated fasts are well separated from one another. In this case

51

Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion  

E-Print Network [OSTI]

Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination determined the detailed sequence of reactions for hydrogen combustion with and without the BB. We validate

Goddard III, William A.

52

Hanford Site Fire June 2000 AM  

SciTech Connect (OSTI)

The Hanford Site Fire on the morning of June 29, 2000. Fire crews working to contain a fire on the Hanford Site in June 2000.

2000-06-29T23:59:59.000Z

53

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern  

E-Print Network [OSTI]

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

Stella, Carlo

54

Data:E908a735-13ff-4c76-99f1-f77ff3c9ad00 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has beenace4-3e58210a501f Noc9-64f337dd0502055ddf45fb-29e8831632bdf77ff3c9ad00 No

55

Data:1f5ff1e7-312d-46bd-b5ff-b2c877dcdbbf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 No revision has been approvedfd5820ca1 Nodd847f3b0a

56

Data:56c5d41f-f814-489a-a94f-f5cadeb0459e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388ca Nodf-c00bda3635a4 No

57

Data:4c5073ff-b274-47ff-8599-86e73d57a8e0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has been approved for7276d Noe73d57a8e0 No revision has been

58

Data:149bf789-0f8b-492c-8ff6-a1ba0a37ff4d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision78ced93e0 No revision has

59

Data:19b09558-e803-44ff-80cc-4ff6496f2c9d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9b4eb15e81c7

60

Data:926d3655-e2c1-41a1-8ff0-e0c3471cf8ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1 No revision has been040c1bfd8de42-a04a-30c00314504f742edb21c8c3471cf8ff

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Data:2f08b6ff-eef9-4afa-ad6f-f51723c980bb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 No revision has been approved forc86b06ceab4204b10 Nod12be1a5e9

62

Light-Front Holographic QCD  

SciTech Connect (OSTI)

The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian 'Light-Front Holography'. Light-Front Holography is in fact one of the most remarkable features of the AdS/CFT correspondence. The Hamiltonian equation of motion in the light-front (LF) is frame independent and has a structure similar to eigenmode equations in AdS space. This makes a direct connection of QCD with AdS/CFT methods possible. Remarkably, the AdS equations correspond to the kinetic energy terms of the partons inside a hadron, whereas the interaction terms build confinement and correspond to the truncation of AdS space in an effective dual gravity approximation. One can also study the gauge/gravity duality starting from the bound-state structure of hadrons in QCD quantized in the light-front. The LF Lorentz-invariant Hamiltonian equation for the relativistic bound-state system is P{sub {mu}}P{sup {mu}}|{psi}(P)> = (P{sup +}P{sup -} - P{sub {perpendicular}}{sup 2})|{psi}(P)> = M{sup 2}|{psi}(P)>, P{sup {+-}} = P{sup 0} {+-} P{sup 3}, where the LF time evolution operator P{sup -} is determined canonically from the QCD Lagrangian. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a LF Hamiltonian equation which describes the bound-state dynamics of light hadrons in terms of an invariant impact variable {zeta} which measures the separation of the partons within the hadron at equal light-front time {tau} = x{sup 0} + x{sup 3}. This allows us to identify the holographic variable z in AdS space with an impact variable {zeta}. The resulting Lorentz-invariant Schroedinger equation for general spin incorporates color confinement and is systematically improvable. Light-front holographic methods were originally introduced by matching the electromagnetic current matrix elements in AdS space with the corresponding expression using LF theory in physical space time. It was also shown that one obtains identical holographic mapping using the matrix elements of the energy-momentum tensor by perturbing the AdS metric around its static solution. A gravity dual to QCD is not known, but th

Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

2012-02-16T23:59:59.000Z

63

EHSO TRAINING CLASSES Fire Safety Program Training  

E-Print Network [OSTI]

EHSO TRAINING CLASSES Fire Safety Program Training 1. Fire Safety (60 minutes) Instruction includes an actual fire eperience. 2. Fire Extinguisher Training (30 minutes) A practical demonstration on actual burnable liquid fires. This practical extinguisher training is a critical portion of the fire

64

FIRE Diagnostics Kenneth M. Young  

E-Print Network [OSTI]

FIRE Diagnostics Kenneth M. Young Princeton Plasma Physics Laboratory Workshop on Physics Issues. Young 5/2/00 #12;FIRE: Diagnostics Schedule 1 2YEAR 3 4 5 6 7 8 9 10 11 12 16151413 First Plasma Vac for FIRE PPPL May 1 - 3, 2000 #12;Role for the Plasma Measurements · 1) Provide data for physics studies

65

Light front Casimir effect at finite temperature  

E-Print Network [OSTI]

The correct description of the standard Casimir effect for periodic boundary conditions via light front formalism implies in these conditions imposed at fixed Minkowski times [Almeida {\\it et al.} Phys. Rev. {\\bf D 87}, 065028 (2013); Chabysheva and Hiller, Phys. Rev. {\\bf D 88}, 085006 (2013)] instead of fixed light front times. The unphysical nature of this latter condition is manifested in the vacuum part by no regularization yielding a finite Casimir energy density [Lenz and Steinbacher, Phys. Rev. {\\bf D 67}, 045010 (2003)]. In the present paper, we extend this discussion and analyze the problem of the light front quantization with simultaneous presence of a thermal bath and boundary conditions. Considering both the oblique light front as well as Dirac light front coordinates, we show that the imposition of periodic boundary conditions at fixed Minkowski times recovers the expected behaviors for the energy density and Casimir entropy. We also investigate how the unphysical nature of the periodic boundary...

Rodrigues, P L M; Alves, Danilo T; Alves, Van Sérgio; Silva, Charles R

2015-01-01T23:59:59.000Z

66

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

67

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

J. D. Ludowise; K. L. Vialetti

2008-05-12T23:59:59.000Z

68

Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature  

DOE Patents [OSTI]

The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

1984-08-14T23:59:59.000Z

69

Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature  

SciTech Connect (OSTI)

The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7/sup 0/ F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88/sup 0/ F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

Kamath, K.

1984-08-14T23:59:59.000Z

70

Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature  

SciTech Connect (OSTI)

The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7/sup 0/F at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88/sup 0/F it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products. 1 table.

Kamath, K.

1983-05-03T23:59:59.000Z

71

Data:5ba1930f-20ff-4e2d-88ff-cdf31599c2c5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d4379-e4cca9d37856 Noff-cdf31599c2c5 No revision has been

72

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia  

E-Print Network [OSTI]

of carbon released from peat and forest fires in Indo- nesiasmoke clouds associated with peat and deforestation fires insmoke clouds associated with peat and deforestation fires in

Tosca, M. G; Randerson, J. T; Zender, C. S; Nelson, D. L; Diner, D. J; Logan, J. A

2011-01-01T23:59:59.000Z

73

Pressure transient method for front tracking  

SciTech Connect (OSTI)

A pressure transient technique for tracking the advance of cold water fronts during water flooding and goethermal injection operations has been developed. The technique is based on the concept that the steady state pressure buildup in the reservoir region inside the front can be calculated by a fluid skin factor. By analyzing successive pressure falloff tests, the advance of the front in the reservoir can be monitored. The validity of the methods is demonstrated by application to three numerically simulated data sets, a nonisothermal step-rate injection test, a series of pressure falloffs in a multilayered reservoir, and a series of pressure falloff tests in a water flooded oil reservoir.

Benson, S.M.; Bodvarsson, G.S.

1983-08-01T23:59:59.000Z

74

Strings in plane-fronted gravitational waves  

E-Print Network [OSTI]

Brinkmann's plane-fronted gravitational waves with parallel rays --~shortly pp-waves~-- are shown to provide, under suitable conditions, exact string vacua at all orders of the sigma-model perturbation expansion.

C. Duval; Z. Horvath; P. A. Horvathy

2006-02-13T23:59:59.000Z

75

Phase 1 and 2 feasibility study report for the 300-FF-1 Operable Unit  

SciTech Connect (OSTI)

The 300-FF-1 Operable Unit (OU) feasibility study (FS) presented in this document completes the FS process only through the first two study phases: Phase I, Remedial Alternatives Development, and Phase II, Remedial Alternatives Screening in accordance with CERCIA guidance for performing Remedial Investigations and Feasibility Studies (RI/FS) (EPA 1988a). This Phase I/II study provides a generalized view of workable remedial technologies as applied to the site contamination problems as a whole. Phase III, Detailed Analysis of Alternatives, will be performed at a later date to further evaluate screened alternatives based on the nine criteria in the CERCLA RI/FS guidance. The purpose of this Phase I/II FS is to develop and screen a range of alternatives for remediation of contamination present in the vadose zone of the 300-FF-1 OU. The scope of work for this Phase I/II FS includes five primary tasks: 1. Review existing documents and their associated data from relevant investigations and studies; 2. Establish remedial action objectives (RAO) and general response actions (GRA); 3. Identify applicable or relevant and appropriate requirements (ARARS) pertinent to all general response actions (including waste disposal); 4. Develop remedial alternatives (Phase I) applicable to the 300-FF-1 OU including identification and screening of technologies and process options, and assembly of remedial alternatives from representative technology types; 5. Screen alternatives (Phase II) developed in Phase I for implementability, effectiveness, and cost to identify those alternatives which warrant advancement to the detailed analysis phase (Phase III) of the FS.

Not Available

1993-11-01T23:59:59.000Z

76

Light front Casimir effect at finite temperature  

E-Print Network [OSTI]

The correct description of the standard Casimir effect for periodic boundary conditions via light front formalism implies in these conditions imposed at fixed Minkowski times [Almeida {\\it et al.} Phys. Rev. {\\bf D 87}, 065028 (2013); Chabysheva and Hiller, Phys. Rev. {\\bf D 88}, 085006 (2013)] instead of fixed light front times. The unphysical nature of this latter condition is manifested in the vacuum part by no regularization yielding a finite Casimir energy density [Lenz and Steinbacher, Phys. Rev. {\\bf D 67}, 045010 (2003)]. In the present paper, we extend this discussion and analyze the problem of the light front quantization with simultaneous presence of a thermal bath and boundary conditions. Considering both the oblique light front as well as Dirac light front coordinates, we show that the imposition of periodic boundary conditions at fixed Minkowski times recovers the expected behaviors for the energy density and Casimir entropy. We also investigate how the unphysical nature of the periodic boundary conditions imposed at fixed light front times manifests in the thermal part of the energy and entropy, showing that in the classical limit the Casimir entropy decreases linearly with the temperature (not becoming independent of the temperature as expected), and also that the Kirchhoff theorem is not respected.

P. L. M. Rodrigues; Silvana Perez; Danilo T. Alves; Van Sérgio Alves; Charles R. Silva

2015-01-06T23:59:59.000Z

77

Durham Fire Department 51 College Rd  

E-Print Network [OSTI]

information on what to do during an emergency. Students also receive annual fire drills to ensure hands-on practical traning of fire extinguisher that utilizes live fire exercises is available upon because most fires can be prevented. The best way to avoid fires is to avoid the hazards, which create

Pohl, Karsten

78

Fire and Ice Issue 9  

E-Print Network [OSTI]

Łs FIRE AND ICE # 9 IB FIRE ICE #9 A Blake/Avon slash fanzine r Available from: Kathleen Resch POBox 1766 Temple City, CA 91780 Kathleener@aol.com FIRE AND ICE # 9copyright © May, 2005 by Kathleen Resch for the contributors. No reprints... or reproduction without the written permission ofthe author/artist This is an amateur publication and is not p intended to infringe upon the rights ofany holders of"Blake's 7" copyrights. FIRE AND ICE 9 TABLE OF CONTENTS LEAVING ROOM 101 by Nova 2 TOO MANY...

Multiple Contributors

2005-01-01T23:59:59.000Z

79

ANNUAL SECURITY FIRE SAFETY REPORT  

E-Print Network [OSTI]

ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http................................................................................................................................................................... 7 ANNUAL SECURITY REPORT........................................................................................................................9 PREPARATION OF THE REPORT AND DISCLOSURE OF CRIME STATISTICS

80

QCD and Light-Front Dynamics  

SciTech Connect (OSTI)

AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

2011-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Phase I and II feasibility study report for the 300-FF-5 operable unit  

SciTech Connect (OSTI)

The purpose of this Phase I/II feasibility study is to assemble and screen a list of alternatives for remediation of the 300-FF-5 operable site on the Hanford Reservation. This screening is based on information gathered in the Phase I Remedial Investigation (RI) and on currently available information on remediation technologies. The alternatives remaining after screening provide a range of response actions for remediation. In addition, key data needs are identified for collection during a Phase II RI (if necessary). This Phase I/II FS represents a primary document as defined by the Tri-Party Agreement, but will be followed by a Phase III FS that will further develop the alternatives and provide a detailed evaluation of them. The following remedial action objectives were identified for the 300-FF-5 operable unit: Limit current human exposure to contaminated groundwater in the unit; Limit discharge of contaminated groundwater to the Columbia River; Reduce contaminant concentrations in groundwater below acceptable levels by the year 2018.

NONE

1993-12-31T23:59:59.000Z

82

BlueFire Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)andDepartment13,EnergyBlueFire

83

Fire Safety Committee Meeting Minutes- May 2014  

Broader source: Energy.gov [DOE]

DOE Fire Safety Committee Meeting Minutes, May, 2014 Topics included discussions on Fire modeling, revisions to DOE regulations and other important items relating to DOE and Fire Safety Community.

84

Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication  

DOE Patents [OSTI]

Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

Sopori, Bhushan

2014-05-27T23:59:59.000Z

85

MARGINAL VALUATION OF FIRE EFFECTS  

E-Print Network [OSTI]

in the planning unit's land, resource and fire management plans. These goals and objectives can assist you with identifying the resources that are important to protect or improve through fire management activities. As you and cultural attributes of the landscape that have value. Defining the resource considered for value change 2

86

WHC fire hazards analysis policy  

SciTech Connect (OSTI)

The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

Evans, C.B.

1994-04-01T23:59:59.000Z

87

Test One: The ‘Uncontrolled’ Fire   

E-Print Network [OSTI]

The first of the Dalmarnock Fire Tests was a post-flashover compartment fire experiment held on July 25th, 2006, in a two-bedroom single-family flat on the 4th floor of the 23- storey reinforced concrete tower in Dalmarnock, ...

Abecassis Empis, Cecilia; Cowlard, Adam; Welch, Stephen; Torero, Jose L

2007-11-14T23:59:59.000Z

88

Fire and Ice Issue 2  

E-Print Network [OSTI]

^ $$% i&l /P^ \\0 rffej FIRE AND ICE AVAILABLE FROM Kathleen Resch PO Box 1766 Temple City, CA 91780 FIRE AND ICE II TABLE OF CONTENTS COVER by Phoenix FRONTISPIECE by Gayle Feyrer "Flashpoint" by Rachel Duncan 1 PEDESTAL by Thomas 2 "A Damn Fine...

Multiple Contributors

1993-01-01T23:59:59.000Z

89

ANNUAL SECURITY & FIRE SAFETY REPORT  

E-Print Network [OSTI]

ANNUAL SECURITY & FIRE SAFETY REPORT 2014 A guide to policies, procedures, practices, and programs implemented to keep students, faculty, and staff safe and facilities secure. www.montana.edu/reports/security.pdf #12;Inside this Report 2014 Annual Security and Fire Safety Report for Reporting Year 2013

Maxwell, Bruce D.

90

Fire hazards analysis of central waste complex  

SciTech Connect (OSTI)

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

91

fire & fuels management Spruce Beetle-Induced Changes to Engelmann  

E-Print Network [OSTI]

. Keywords: crown fire, bark beetles, heat of combustion, fire behavior, time to ignition E ngelmann spruce

92

Friction forces on phase transition fronts  

SciTech Connect (OSTI)

In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.

Mégevand, Ariel, E-mail: megevand@mdp.edu.ar [IFIMAR (CONICET–UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, (7600) Mar del Plata (Argentina)

2013-07-01T23:59:59.000Z

93

Data:273a4fc1-6044-4727-9df6-ff2759861765 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved fordec-411fce1605ac4b55eef1c8e44-4727-9df6-ff2759861765

94

Data:4299549d-e21a-495d-8084-752879a4f6ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae Nobbe81d2e6 No revision79a4f6ff No

95

Data:4764654b-2894-4bee-9ef0-80173b66ff38 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revisione18fe97cb-14d199c51f2d No revisione57f3ac050adb66ff38

96

Data:1b430053-861e-4239-962b-13e44ff2723e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5efeb2958a4e3 No215358dad1236dcfe12 No3e44ff2723e

97

Data:3cefaa32-892e-411a-87ff-28624683de4b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved for this page.cefaa32-892e-411a-87ff-28624683de4b No

98

Data:3e7657b1-b459-4695-a166-fb91cdcc28ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved64ec514 Noc707c3a4d4cd No40aac0c56 No revisionfb91cdcc28ff

99

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect (OSTI)

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

100

Flame quality monitor system for fixed firing rate oil burners  

DOE Patents [OSTI]

A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ibm.com/redbooks Front cover  

E-Print Network [OSTI]

ibm.com/redbooks Front cover IBM XIV Storage System: Architecture, Implementation, and Usage Organization IBM XIV Storage System: Architecture, Implementation, and Usage September 2009 SG24-7659-01 #12 Storage System software. Note: Before using this information and the product it supports, read

Westall, James M.

102

Quadratic and Cubic ReactionDiffusion Fronts*  

E-Print Network [OSTI]

's student, Herr cand. Meinecke, moved a wire loop along the test tube to mark the position in the cytoplasm of frog oocytes [9], where calcium-induced calcium release provides a mechanism akin to auto- catalysis in chemical systems. Front-like calcium waves have also been found to occur on the surface

Showalter, Kenneth

103

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network [OSTI]

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah Hughes University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 Key Terms: earthquake

Sheehan, Anne F.

104

QCD and Light-Front Holography  

SciTech Connect (OSTI)

The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; ,

2010-10-27T23:59:59.000Z

105

Fire and Ice Issue 3  

E-Print Network [OSTI]

,fpl ^1 FIRE AND ICE Available from: Kathleen Resch PO Box 1766 Temple City,CA 91780 III © May, 1995 by Kathleen Resch for the contributors. No reprints or reproduction without the written permission of the author/artist. This is an amateur... publication and is not intended to infringe upon the rightsof "Blake's 7" copyright holders.. FIRE AND ICE TABLE OF CONTENTS THE GIFT by Pat Terra 1 "innerspace" by Pat Terra 24 WILD, BEAUTIFUL AND DAMNED by Gemini 25 SET THE NIGHT ON FIRE by Riley Cannon 40...

Multiple Contributors

1995-01-01T23:59:59.000Z

106

Firing of pulverized solvent refined coal  

DOE Patents [OSTI]

An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

1986-01-01T23:59:59.000Z

107

FIRE SAFETY PROGRAM TABLE OF CONTENTS  

E-Print Network [OSTI]

FIRE SAFETY PROGRAM TABLE OF CONTENTS Overview................................................................................................. 5 Health and Life Safety Fund........................................................................................................... 5 Hot work

Lin, Zhiqun

108

Fire Behavior at the Landscape Scale  

E-Print Network [OSTI]

Fire Behavior at the Landscape Scale Scott Stephens, ESPMScott Stephens, ESPM DepartmentStrategies for Landscape Fuel TreatmentsLandscape Fuel Treatments Fire Containment · Fuelbreaks Fire Modification · Area (WUI) ·· Maintenance? Must maintain into futureMaintenance? Must maintain into future #12;Tyee Fire

Stephens, Scott L.

109

Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force De-en Jiang,*,  

E-Print Network [OSTI]

as a carbon source to make carbon/carbon composite materials.3 Recently, the soft-template synthesisSimulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field De, and Materials and Process Simulation Center, DiVision of Chemistry and Chemical Engineering, California

Goddard III, William A.

110

EXPERIMENTAL STUDY OF TURBULENT SUPERCRITICAL OPEN CHANNEL WATER FLOW AS APPLIED TO THE CLiFF CONCEPT  

E-Print Network [OSTI]

is to investigate the hydrodynamic and heat transfer phenomena in the near-surface region of a turbulent open-turbulence interaction are the most important processes that determine the heat transfer rate in CLiFF flows. The current, low conductivity fluid, turbulence, surface waves, heat transfer ________________ Corresponding

California at Los Angeles, University of

111

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia  

E-Print Network [OSTI]

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia), Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia, J. Geophys. Res., 116, D08207, doi:10.1029/2010JD015148. 1. Introduction [2] Peat and deforestation fires

Zender, Charles

112

Fire protection for relocatable structures  

SciTech Connect (OSTI)

This standard supersedes DOE/EV-0043, ``Standard on Fire Protection for Portable Structures.`` It was revised to address the numerous types of relocatable structures, such as trailers, tension-supported structures, and tents being used by DOE and contractors.

NONE

1995-06-01T23:59:59.000Z

113

Test Two: The ‘Controlled Fire’   

E-Print Network [OSTI]

The main objective of Test Two was to demonstrate the effectiveness of ventilation changes and smoke management on the growth of a compartment fire and to display the potential for these techniques to be incorporated ...

Cowlard, Adam; Steinhaus, Thomas; Abecassis Empis, Cecilia; Torero, Jose L

2007-11-14T23:59:59.000Z

114

Model Fire Protection Assessment Guide  

Broader source: Energy.gov [DOE]

This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.

115

Unified Fire Recovery Command Center  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Checking Propane Tanks Checking Home Heating Oil Tanks Miscellaneous Safety Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Removing Debris Heating Fuels or heat penetrated the bark. Where fire has burnt deep into the tree trunk, the tree should be considered

116

Introduction to FireGrid   

E-Print Network [OSTI]

FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

2007-11-14T23:59:59.000Z

117

Incipient fire detection system  

DOE Patents [OSTI]

A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

Brooks, Jr., William K. (Newport News, VA)

1999-01-01T23:59:59.000Z

118

Front contact solar cell with formed emitter  

SciTech Connect (OSTI)

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John

2014-11-04T23:59:59.000Z

119

Front contact solar cell with formed emitter  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17T23:59:59.000Z

120

Light-front chiral effective field theory  

SciTech Connect (OSTI)

We propose a general framework to calculate the nonperturbative structure of relativistic bound state systems. The state vector of the bound state is calculated in the covariant formulation of light-front dynamics. In this scheme, the state vector is defined on the light front of general position {omega} {center_dot} x = 0, where {omega} is an arbitrary light-like four-vector. This enables a strict control of any violation of rotational invariance. The state vector is then decomposed in Fock components. Our formalism is applied to the description of the nucleon properties at low energy, in chiral perturbation theory. We also show that the use of a recently proposed regularization scheme, the so-called Taylor-Lagrange regularization scheme, is very adequate in order to treat divergences in this nonperturbative framework.

Mathiot, J.-F. [Laboratoire de Physique Corpusculaire (France)] [Laboratoire de Physique Corpusculaire (France); Tsirova, N. A., E-mail: ntsirova@ssu.samara.ru [Samara State University (Russian Federation)

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Pentan isomers compound flame front structure  

SciTech Connect (OSTI)

The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N. [Kazakh Al-Farabi State National Univ., Almaty (Kazakhstan)

1995-08-13T23:59:59.000Z

122

The radiological impact of the 2000 Hanford Fire (24-Command Fire).  

E-Print Network [OSTI]

??The range fire at the Hanford facility in late June 2000 coupled with the fire at Los Alamos during the same year have raised a… (more)

Henderson, Ashley David

2012-01-01T23:59:59.000Z

123

Colloid Formation at Waste Plume Fronts  

SciTech Connect (OSTI)

Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

2004-05-22T23:59:59.000Z

124

300-FF-1 physical separations CERCLA treatability test plan. Revision 1  

SciTech Connect (OSTI)

This test plan describes specifications, responsibilities, and general procedures to be followed to conduct physical separations soil treatability tests in the north process pond of the 300-FF-1 Operable Unit at the Hanford Site. The overall objective of these tests is to evaluate the use of physical separations systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions, and thereby minimizing waste volumes. If successful, the technology could be applied to clean up millions of cubic meters of contaminated soils at Hanford and other sites. In this document, physical separations refers to a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils without the use of chemical processes. Removal of metals and radioactive contaminants from the fine fraction of soils may require additional treatment such as chemical extraction, electromagnetic separation, or stabilization. Investigations/testing of these technologies are recommended to assess the economic and technical feasibility of additional treatment, but are not within the scope of this test. This plan provides guidance and specifications for two proposed treatability tests: one to be conducted by Westinghouse Hanford Company; and another proposed as competitive bid service contract. The main body of this test plan discusses the tests in general and items that are common to both tests. Attachment A discusses in detail the EPA system test and Attachment B discusses the vendor test.

Not Available

1993-05-01T23:59:59.000Z

125

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

J. D. Ludowise

2006-12-12T23:59:59.000Z

126

Fire Ants and Their Control.  

E-Print Network [OSTI]

fire ant control usually are labeled only for certain treatment sites. The techniques for applying these products also vary with the treatment sites. Care must be taken to select the best combination of control agents and application methods... in each situation to attain optimum results. The Non-Control Option - Why Consider it? In areas where fire ants are not causing a problem, it may be best not to attempt any control measures. The reason is that a unit area, sue as an acre ofland, ill...

Hamman, Philip J.; Drees, Bastiaan M.; Vinson, S. Bradleigh

1986-01-01T23:59:59.000Z

127

Fire performance of gable frame structures  

E-Print Network [OSTI]

Fire protection engineering and structural engineering are two relevant but separated fields of study. Many experiments conducted by fire protection engineers are under certain ideal boundary conditions, which may not be ...

Qian, Congyi

2013-01-01T23:59:59.000Z

128

Solid waste drum array fire performance  

SciTech Connect (OSTI)

Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

Louie, R.L. [Westinghouse Hanford Co., Richland, WA (United States); Haecker, C.F. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L. [Hughes Associates, Inc., Baltimore, MD (United States)

1995-09-01T23:59:59.000Z

129

Fire and the Design of Buildings   

E-Print Network [OSTI]

Fire is one of the major hazards to life and property in buildings. Regulations in respect of fire safety therefore constitute a major part of every building bylaw. These regulations naturally influence the design of almost every building. Good...

McGuire, J

130

Independent Oversight Review of the Fire Protection Program at...  

Energy Savers [EERE]

(wdata) * System Design Description, Fire Suppression System, Plutonium Facility * Preventive Maintenance Procedures- Plutonium Facility Fire Protection (Various) *...

131

University Fire Marshal's 2014 Annual Fire InspectionTraining  

E-Print Network [OSTI]

of 2000 led to NYS Governor's Task Force on Campus Fire Safety #12;Results of the Governors Task Force inspection of all educational buildings in New York State Enhanced detection/alarms in dorms Install Residential Code Building Code #12;Impacts to Cornell Annual Inspections of all Cornell buildings

Pawlowski, Wojtek

132

Nonperturbative calculations in light-front QED  

SciTech Connect (OSTI)

The methods of light-front quantization and Pauli-Villars regularization are applied to a nonperturbative calculation of the dressed-electron state in quantum electrodynamics. This is intended as a test of the methods in a gauge theory, as a precursor to possible methods for the nonperturbative solution of quantum chromodynamics. The electron state is truncated to include at most two photons and no positrons in the Fock basis, and the wave functions of the dressed state are used to compute the electrons's anomalous magnetic moment. A choice of regularization that preserves the chiral symmetry of the massless limit is critical for the success of the calculation.

Chabysheva, Sophia S. [Department of Physics, University of Minnesota-Duluth, Duluth, Minnesota 55812 (United States)

2010-12-22T23:59:59.000Z

133

Sandia National Laboratories: Front Edge Technology Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFront Edge Technology Inc.

134

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United States  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United Wildland fires can be an important source of greenhouse gases as well as black carbon emissions that have of climate response to fire emissions compared to other emission sources of GHG, aerosols, and black carbon

135

Fire Modeling Examples in a Nuclear World  

Broader source: Energy.gov [DOE]

Presenter: Mark Schairer, P.E.,Technical Manager, Fire Protection Engineering Division - Engineering Planning and Management (EPM), Inc.

136

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures  

E-Print Network [OSTI]

for each source rock. This allowed the bulk rate of oil and gas generation for a source rockEarly maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive

Goddard III, William A.

137

Fire and the Compartmentation of Buildings   

E-Print Network [OSTI]

No building is free from the threat of fire. A designer, however, can ensure that only limited damage will result if fire breaks out by reducing the over-all fire risk. There are various means at his disposal, but the single design feature...

McGuire, J

138

FIRE AND CLIMATE CHANGE IN CALIFORNIA  

E-Print Network [OSTI]

FIRE AND CLIMATE CHANGE IN CALIFORNIA Changes in the Distribution and Frequency of Fire's California Climate Change Center JULY 2012 CEC5002012026 Prepared for: California Energy Commission to climate change has the potential to induce alteration of future fire activity. This research presents just

139

Spatiotemporal Dynamics of Insect-Fire Interactions  

E-Print Network [OSTI]

Spatiotemporal Dynamics of Insect-Fire Interactions A thesis presented by Heather Joan Lynch Heather Joan Lynch Spatiotemporal Dynamics of Insect-Fire Interactions Abstract Insect outbreaks on the dynamics and composition of forest ecosystems. Although it has long been speculated that forest fires

Moorcroft, Paul R.

140

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect (OSTI)

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Identifying Lagrangian fronts with favourable fishery conditions  

E-Print Network [OSTI]

Lagrangian fronts (LF) in the ocean delineate boundaries between surface waters with different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps of the drift of synthetic tracers and other Lagrangian indicators. Using Russian ship's catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world, it is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along those LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts with the altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions the LF locations may serve good indicators of potential fishing grounds. Possible reasons for saury aggregation near LFs are discussed. We propose a mechanism of effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to forecast potential fishing grounds for the other pelagic fishes in different seas and the oceans.

S. V. Prants; M. V. Budyansky; M. Yu. Uleysky

2013-06-20T23:59:59.000Z

142

Magnesium Front End Design And Development (AMD603)  

Broader source: Energy.gov (indexed) [DOE]

edm2@chrysler.com February 28, 2008 Magnesium Front End Design And Development (AMD603) This presentation does not contain any proprietary or confidential information USAMP 2008...

143

apennine front kreep: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Chemical Engineering References and links 1. J. Warnatz, U. Maas, and R.W. Dibble, Combustion - physical and chemical fundamentals, "Characterization of flame front...

144

The Front Burner Cybersecurity The ACIO for Cybersecurity  

Broader source: Energy.gov (indexed) [DOE]

Special Edition of The Front Burner Cybersecurity The ACIO for Cybersecurity Issue No. 13 October 2012 National Cybersecurity Awareness Month October 2012 The Department of Energy...

145

Pigments which reflect infrared radiation from fire  

DOE Patents [OSTI]

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

146

Pigments which reflect infrared radiation from fire  

DOE Patents [OSTI]

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

Berdahl, Paul H. (Oakland, CA)

1998-01-01T23:59:59.000Z

147

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

Richard C. Logan

2002-03-28T23:59:59.000Z

148

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

J. L. Kubicek

2001-09-07T23:59:59.000Z

149

Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena  

SciTech Connect (OSTI)

Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.

Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

2012-02-16T23:59:59.000Z

150

Fire protection program fiscal year 1997 site support program plan - Hanford fire department  

SciTech Connect (OSTI)

The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

Good, D.E., Westinghouse Hanford

1996-07-01T23:59:59.000Z

151

Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2  

SciTech Connect (OSTI)

The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline.

Good, D.E.

1995-09-01T23:59:59.000Z

152

Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department  

SciTech Connect (OSTI)

The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995.

Good, D.E.

1994-09-01T23:59:59.000Z

153

Front lighted optical tooling method and apparatus  

DOE Patents [OSTI]

An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

Stone, W.J.

1983-06-30T23:59:59.000Z

154

Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions  

SciTech Connect (OSTI)

Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

2007-07-01T23:59:59.000Z

155

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect (OSTI)

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

156

Front contact solar cell with formed electrically conducting layers on the front side and backside  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.

Cousins, Peter John

2012-06-26T23:59:59.000Z

157

Data:Eb39d833-0092-4829-8fff-2a85273ff85a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision hasa3e396ee3ebbed0-6678a6880d18 No revision has been approved3db7d9a12a85273ff85a No

158

Data:F145a2ea-70ad-4266-8701-6306c41776ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It is currently under review70bcf5c2da6a41-98e86ff4fb849dfce71

159

Data:67f496ff-60de-4c74-a30c-d54736038363 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 No revision has1574de6f No5a-ff209849aea6

160

Data:1bb6f590-ff11-4020-a9ea-2525ce03296f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been approved for this page. It isd06af0f0c4d4 Noce03296f

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Data:1cfc6685-b392-457b-bc99-452953ebe6ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been approved6da7b9317a606-5eb4324c332421aa25d4

162

Data:1eea5ff2-dcba-4629-9674-8f3257c63f76 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62fb-4edd2b934768 No revision hasd58138b57

163

Data:1ff143fb-92f7-4639-b337-67d027720178 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 No revision9f51-3428f5d69a69 No revision has been

164

Data:22ffdca8-6297-43fb-9ff3-9f9aeacf1894 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9abb0359ca3f9 No revision has520-d438b4c30535

165

Data:2359584e-ff32-487c-a858-655670afbb15 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9abb0359ca3f9 Nof715c205a4f

166

Data:28b9040f-2005-453b-beb8-073ff628593e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf0e85488a7fe3a3badf5 No revision

167

Data:2941225b-7942-436b-bf1c-ec8065ff5acc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 No revision has been70efd0cc3 No revision hasff5acc

168

Data:2cc1bc6c-42cb-4766-9762-ff3152293216 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636b4a3-9fc56041cf03

169

Data:Bd532e45-881c-4925-9297-613aad344ff1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been approved for5-1687ae080745aad344ff1 No

170

Data:57766632-8930-4e58-bfd5-ff86403c7b43 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 No revision has been approved for this page.

171

Data:489b2d5d-3201-4006-8339-e6f3073ff772 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No revisioneade6ae054 No

172

Data:4926e449-ff01-4536-90f7-f34e26ec5854 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No78eaa3f7b2489bde No revision has been0cafdeca

173

Data:4a54ff54-91cd-42cd-adce-cccf3782643e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7d25b394 No revision has been approvede0c-57be00f354b7

174

Data:4a81ff34-3411-46a7-9415-4007405fb196 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7d25b394 No revision has beendb47 No revisionb8d49d2f8963

175

Data:4e0551ff-14f2-48dc-9741-aad211760963 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revisionf377c06978a3 No revision has beenaad211760963 No revision has

176

Data:133f9dfc-4802-4151-9ff9-f566ce0499b4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision has beenbbf1-8cb481a2607d No revision has

177

Data:170994ff-60d1-4edd-9896-9b340fea9782 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 Nob97eb4d202d0 No8827bff3a72 Nob0a0-6377b2685935 Nofea9782 No

178

Data:Dac7541d-db3e-4734-b381-6076ff013033 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9cd74bee60 No revision6ff013033 No revision has been approved

179

Data:E0031664-cc6e-4399-aba5-cc9400ff1c2a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for this page. It isDff95b8a-b6ab-451f-a26e-7581ec11f69bcc9400ff1c2a

180

Data:E6b74c86-7700-4665-9871-9ce5ff669295 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has beenace4-3e58210a501f No revision has been approved for this page.634d445ff669295

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Data:85201edb-9fae-4ff1-88f5-0faea981461a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098e No revision hasfae-4ff1-88f5-0faea981461a No revision has

182

Data:34433d7e-b5ff-4990-bb0f-17866e224605 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4a No4059736ce1f No revision has6f47c29261 No revision has

183

Data:3bbd170f-5446-4965-b533-b978147a31ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e Nobaed58c-e8e3-4cde-9f5f-e7605a21c900 No revision has been

184

Data:3db9ce18-87ff-447c-8827-3145564ec514 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved64ec514 No revision has been approved for this page. It is

185

Data:3ff9975d-7cea-4158-859a-7af03a128fff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1d No8-b13b41761ee4 No revision has been approved

186

Data:405c1876-2467-4ff1-9819-f7518dc36766 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1d No8-b13b41761ee4 No

187

DOE Standard: Fire protection design criteria  

SciTech Connect (OSTI)

The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

Not Available

1999-07-01T23:59:59.000Z

188

Heuristically Driven Front Propagation for Fast Geodesic Extraction  

E-Print Network [OSTI]

Heuristically Driven Front Propagation for Fast Geodesic Extraction Gabriel Peyr´e Laurent D. Cohen to quickly extract geodesic paths on images and 3D meshes. We use a heuristic to drive the front propagation that is similar to the A algorithm used in artificial intelli- gence. In order to find very quickly geodesic paths

Paris-Sud XI, Université de

189

Combustion fronts in porous media with two layers Steve Schecter  

E-Print Network [OSTI]

Combustion fronts in porous media with two layers layer 1 layer 2 Steve Schecter North Carolina Subject: Propagation of a combustion front through a porous medium with two parallel layers having different properties. · Each layer admits a traveling combustion wave. · The layers are coupled by heat

Schecter, Stephen

190

FLUCTUATIONS OF THE FRONT IN A STOCHASTIC COMBUSTION MODEL  

E-Print Network [OSTI]

FLUCTUATIONS OF THE FRONT IN A STOCHASTIC COMBUSTION MODEL #1; (FLUCTUATIONS DU FRONT DANS UN MODĂ?LE DE COMBUSTION) FRANCIS COMETS 1 , JEREMY QUASTEL 2 AND ALEJANDRO F. RAMĂŤREZ 3 Abstract. We consider an interacting particle system on the one dimensional lattice Z modeling combustion. The process

Quastel, Jeremy

191

Description and Simulation of Gust Front Wind Field Lijuan Wanga  

E-Print Network [OSTI]

-stationarity of the wind field associated with these extreme events poses serious challenges in their modelingDescription and Simulation of Gust Front Wind Field Lijuan Wanga , Ahsan Kareemb a Nat front wind field is proposed based on the time-frequency description of the wind field. Traditionally

Kareem, Ahsan

192

Light-Front Holography: A First Approximation to QCD  

SciTech Connect (OSTI)

Starting from the Hamiltonian equation of motion in QCD, we identify an invariant light-front coordinate {zeta} which allows the separation of the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single variable light-front Schroedinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. This light-front wave equation is equivalent to the equations of motion which describe the propagation of spin-J modes on anti-de Sitter (AdS) space. This allows us to establish formally a gauge/gravity correspondence between an effective gravity theory defined on AdS5 and light front QCD.

de Teramond, Guy F.; Brodsky, Stanley J.

2008-10-03T23:59:59.000Z

193

Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility  

SciTech Connect (OSTI)

This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

JOHNSON, B.H.

1999-08-19T23:59:59.000Z

194

Alternative approach for fire suppression of class A, B and C fires in gloveboxes  

SciTech Connect (OSTI)

Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

2011-02-10T23:59:59.000Z

195

Cryogenic slurry for extinguishing underground fires  

DOE Patents [OSTI]

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

196

Issues in Numerical Simulation of Fire Suppression  

SciTech Connect (OSTI)

This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.

Tieszen, S.R.; Lopez, A.R.

1999-04-12T23:59:59.000Z

197

LNG fire and vapor control system technologies  

SciTech Connect (OSTI)

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

198

Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers  

SciTech Connect (OSTI)

Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

1994-12-31T23:59:59.000Z

199

Flame front geometry in premixed turbulent flames  

SciTech Connect (OSTI)

Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.

Shepherd, I.G. (Lawrence Berkeley Lab., CA (United States)); Ashurst, W.T. (Sandia National Labs., Livermore, CA (United States))

1991-12-01T23:59:59.000Z

200

Front lighted optical tooling method and apparatus  

DOE Patents [OSTI]

An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.

Stone, William J. (Kansas City, MO)

1985-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

No material is "fire proof;" however, proper use and assembly of fire-rated building materials  

E-Print Network [OSTI]

General No material is "fire proof;" however, proper use and assembly of fire-rated building materials can reduce a fire's spread and extend the amount of time it takes for a home to ignite and burn. (Structural assembly is the process of layering materials when building exterior walls and roof.) Your roof

202

Activate the nearest fire alarm pull station Call 911 to report the fire  

E-Print Network [OSTI]

as designated by emergency responders, well away from the building. Do not touch or disturb the objectActivate the nearest fire alarm pull station Call 911 to report the fire Notify and assist people not re-enter the building until authorized to do so by emergency personnel. When the fire alarm

Azevedo, Ricardo

203

(BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM  

E-Print Network [OSTI]

. ETFS 4323 3 Intro to Performance-based Fire Safety8 ETFS 32338 3 Ethical Issues and Cultural Critique3(BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM 3 Technical Drawing I ETGR 1103 2 Western Culture and Hist. Awareness LBST 2101 3 Total Hours 16

Raja, Anita

204

Data:235f23dc-0bf9-46f1-96ff-e4885505c5b0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9abb0359ca3f9 Nof715c205a4ff1-96ff-e4885505c5b0 No

205

Sandia National Laboratories: Fire Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum OnFactFiber-opticAssessmentFire

206

Electron g-2 in Light-Front Quantization  

E-Print Network [OSTI]

Basis Light-front Quantization has been proposed as a nonperturbative framework for solving quantum field theory. We apply this approach to Quantum Electrodynamics and explicitly solve for the light-front wave function of a physical electron. Based on the resulting light-front wave function, we evaluate the electron anomalous magnetic moment. Nonperturbative mass renormalization is performed. Upon extrapolation to the infinite basis limit our numerical results agree with the Schwinger result obtained in perturbation theory to an accuracy of 0.06%.

Xingbo Zhao; Heli Honkanen; Pieter Maris; James P. Vary; Stanley J. Brodsky

2014-08-24T23:59:59.000Z

207

Climate regulation of fire emissions and deforestation in equatorial Asia  

E-Print Network [OSTI]

different types of fire, with peat fires emitting up to fourof carbon released from peat and forest fires in IndonesiaM, Wo¨sten H, Page S (2006) PEAT-CO2: assessment of CO2

2008-01-01T23:59:59.000Z

208

Real-time fire detection in low quality video  

E-Print Network [OSTI]

Motivation for a Robust Video-based Fire Detection SystemFigure 3.1: Screen shots of training videos with fire inshots of training videos with no fire in them. . . . . . .

True, Nicholas James

2010-01-01T23:59:59.000Z

209

The Influence of Travelling Fires on a Concrete Frame   

E-Print Network [OSTI]

. Current structural fire design methods do not account for these types of fires. This paper applies a novel methodology for defining a family of possible heating regimes to a framed concrete structure using the concept of travelling fires. A finite...

Law, Angus; Stern-Gottfried, Jamie; Gillie, Martin; Rein, Guillermo

2011-01-01T23:59:59.000Z

210

Security Informatics Research Challenges for Mitigating Cyber Friendly Fire  

SciTech Connect (OSTI)

This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly re (FF). We dene cyber FF as intentional o*ensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission e*ectiveness of friendly or neutral forces. We describe examples of cyber FF and discuss how it ts within a general conceptual framework for cyber security failures. Because it involves human failure, cyber FF may be considered to belong to a sub-class of cyber security failures characterized as unintentional insider threats. Cyber FF is closely related to combat friendly re in that maintaining situation awareness (SA) is paramount to avoiding unintended consequences. Cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and o*ensive countermeasures that may be applied to thwart network attacks. We describe a test bed designed to support empirical research on factors a*ecting cyber FF. Finally, we discuss mitigation strategies to combat cyber FF, including both training concepts and suggestions for decision aids and visualization approaches.

Carroll, Thomas E.; Greitzer, Frank L.; Roberts, Adam D.

2014-09-30T23:59:59.000Z

211

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect (OSTI)

This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

2002-01-31T23:59:59.000Z

212

Data:6e89818d-6835-4baa-b150-37862c3ff718 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision has been approved for7862c3ff718 No revision has been

213

Data:6eb02ab7-90ee-45ff-a806-0fa8908178ad | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision has been approved for7862c3ff718908178ad No revision has

214

Data:6ebd5c43-d777-48d2-8a02-286780ff0e60 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision has been approvedebd5c43-d777-48d2-8a02-286780ff0e60 No

215

Data:24e48356-8cbe-498c-97f1-e538c0d120ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d4-4797-b850-d42be48a30cfd0-bad0-807beebee7f7 No revision has8c0d120ff No

216

Data:2a139df7-a45b-4c1d-979a-cd797dc281ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 Nobcf-1b589b1c9a42 No revisioncd797dc281ff No

217

Data:5870f139-a2b5-4dce-90fb-aa727c9ff358 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 Noaa727c9ff358 No revision has been approved

218

Data:497e19c6-e62e-40bf-9124-a49ff9e9cbc1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No78eaa3f7b2489bde9ff9e9cbc1 No revision has been

219

Data:1a7c1076-47ed-41c8-8fb4-3b06a99292ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No revision5850cc4b9b Nod5d610d32 No6a99292ff

220

Data:2eb409d5-1b1a-424b-835f-e921d374ff72 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 No revision has been approved for thisa86c99a61835f-e921d374ff72 No

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Data:373495c6-665a-4768-ac8c-d2ff21f7227a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revision has been approved for this page.8784b28ff21f7227a No

222

Live Fire Range Environmental Assessment  

SciTech Connect (OSTI)

The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

None

1993-08-01T23:59:59.000Z

223

Coal-fired diesel generator  

SciTech Connect (OSTI)

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

224

Inverse Modelling to Forecast Enclosure Fire Dynamics   

E-Print Network [OSTI]

. This thesis proposes and studies a method to use measurements of the real event in order to steer and accelerate fire simulations. This technology aims at providing forecasts of the fire development with a positive lead time, i.e. the forecast of future events...

Jahn, Wolfram

225

Managing Imported Fire Ants in Urban Areas  

E-Print Network [OSTI]

The imported fire ant is found in much of Texas and across the southeastern U.S. This publication describes options for managing the pest in specific locations such as home lawns, gardens and buildings. Other topics include fire ant treatment...

Drees, Bastiaan M.

2006-08-17T23:59:59.000Z

226

Diagnostics for FIRE Kenneth M. Young  

E-Print Network [OSTI]

Diagnostics for FIRE Kenneth M. Young Princeton Plasma Physics Laboratory Burning Plasma Workshop May 1 - 3, 2001 General Atomics San Diego, CA #12;Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE · The diagnostic set should provide the same quality of data as in best

227

Diagnostics for FIRE Kenneth M. Young  

E-Print Network [OSTI]

Diagnostics for FIRE Kenneth M. Young Princeton Plasma Physics Laboratory NSO PAC 2 Meeting January 17, 2001 MIT Plasma Fusion Center Cambridge, MA #12;Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE · The diagnostic set should provide the same quality of data as in best

228

Risk assessment compatible fire models (RACFMs)  

SciTech Connect (OSTI)

A suite of Probabilistic Risk Assessment Compatible Fire Models (RACFMs) has been developed to represent the hazard posed by a pool fire to weapon systems transported on the B52-H aircraft. These models represent both stand-off (i.e., the weapon system is outside of the flame zone but exposed to the radiant heat load from fire) and fully-engulfing scenarios (i.e., the object is fully covered by flames). The approach taken in developing the RACFMs for both scenarios was to consolidate, reconcile, and apply data and knowledge from all available resources including: data and correlations from the literature, data from an extensive full-scale fire test program at the Naval Air Warfare Center (NAWC) at China Lake, and results from a fire field model (VULCAN). In the past, a single, effective temperature, T{sub f}, was used to represent the fire. The heat flux to an object exposed to a fire was estimated using the relationship for black body radiation, {sigma}T{sub f}{sup 4}. Significant improvements have been made by employing the present approach which accounts for the presence of temperature distributions in fully-engulfing fires, and uses best available correlations to estimate heat fluxes in stand-off scenarios.

Lopez, A.R.; Gritzo, L.A.; Sherman, M.P.

1998-07-01T23:59:59.000Z

229

Research Overview Department of Fire Protection Engineering  

E-Print Network [OSTI]

J.A. Milke structures, detection, egress S.I. Stoliarov pyrolysis, flammability, fire growth P spray interactions with fire plumes (kinematic), flame sheets (cooling and dilution), and flame: Detailed Experiments and Model Development for Thrust Chamber Film Cooling Sponsor: NASA Marshall

Shapiro, Benjamin

230

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

231

GREAT PLAINS INTERSTATE FOREST FIRE COOPERATIVE  

E-Print Network [OSTI]

GREAT PLAINS INTERSTATE FOREST FIRE COMPACT COOPERATIVE ANNUAL OPERATING PLAN 2011 #12;Great Plains are located in Appendices F through K. II. Purpose This cooperative operating plan facilitates assistance ordered through the Compact and used on joint US Federal/State fires will be considered agents

232

Fire Department Gets New Trucks, Saves Money  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

233

Fire and explosion hazards of oil shale  

SciTech Connect (OSTI)

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

234

Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work...  

Broader source: Energy.gov (indexed) [DOE]

Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control is Not Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control...

235

Microsoft Word - 2010 LASO Fire Protection Oversight at LANL  

Broader source: Energy.gov (indexed) [DOE]

of the fire flow test method and associated equipment to validate the accuracy of Hydro Flow Products pitotless nozzle for use by the Los Alamos Fire Department. This...

236

analysis fire simulation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

16 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

237

CRAD, Fire Protection - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2006 A section of...

238

assess fire hazard: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandra 7 Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Environmental Sciences and Ecology Websites Summary: Fire Climbing in the...

239

Home Front as Warfront: African American World War I Drama  

E-Print Network [OSTI]

This dissertation recovers little-known African American World War I plays that blur the boundary between the home front and warfront. I argue that with this focus, the plays wage their own war for African American citizenship ...

Egging, Anna Katherine

2010-08-31T23:59:59.000Z

240

Advanced integrated safeguards using front-end-triggering devices  

SciTech Connect (OSTI)

This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

Howell, J.A.; Whitty, W.J.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts   

E-Print Network [OSTI]

A series of experiments of shallow and strong smouldering fronts in boreal peat have been conducted under laboratory conditions to study the CO and CO2 emissions. Peat samples of 100 mm by 100 mm in cross section and 50 ...

Rein, Guillermo; Cohen, Simon; Simeoni, Albert

2009-01-01T23:59:59.000Z

242

Global optimization of silicon photovoltaic cell front coatings  

E-Print Network [OSTI]

The front-coating (FC) of a solar cell controls its efficiency, determining admission of light into the absorbing material and potentially trapping light to enhance thin absorbers. Single-layer FC designs are well known, ...

Ghebrebrhan, Michael

243

Speed-up of combustion fronts in shear flows  

E-Print Network [OSTI]

This paper is concerned with the analysis of speed-up of reaction-diffusion-advection traveling fronts in infinite cylinders with periodic boundary conditions. The advection is a shear flow with a large amplitude and the reaction is nonnegative, with either positive or zero ignition temperature. The unique or minimal speeds of the traveling fronts are proved to be asymptotically linear in the flow amplitude as the latter goes to infinity, solving an open problem from \\cite{b}. The asymptotic growth rate is characterized explicitly as the unique or minimal speed of traveling fronts for a limiting degenerate problem, and the convergence of the regular traveling fronts to the degenerate ones is proved for positive ignition temperatures under an additional H{\\"{o}}rmander-type condition on the flow.

Hamel, Francois

2011-01-01T23:59:59.000Z

244

Colorado Front Range Fuel Photo Series Michael A. Battaglia  

E-Print Network [OSTI]

Colorado Front Range Fuel Photo Series Michael A. Battaglia Jonathan M. Dodson Wayne D. Shepperd of Agriculture Forest Service Rocky Mountain Research Station June 2005 #12;Battaglia, Michael A.; Dodson

Fried, Jeremy S.

245

Repository Subsurface Preliminary Fire Hazard Analysis  

SciTech Connect (OSTI)

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

246

Renormalized Light Front Hamiltonian in the Pauli-Villars Regularization  

E-Print Network [OSTI]

We address the problem of nonperturbative calculations on the light front in quantum field theory regularized by Pauli-Villars method. As a preliminary step we construct light front Hamiltonians in (2+1)-dimensional $\\lambda\\phi^4$ model, for the cases without and with spontaneous symmetry breaking. The renormalization of these Hamiltonians in Pauli-Villars regularization is carried out via comparison of all-order perturbation theory, generated by these Hamiltonians, and the corresponding covariant perturbation theory in Lorentz coordinates.

M. Yu. Malyshev; S. A. Paston; E. V. Prokhvatilov; R. A. Zubov

2014-09-03T23:59:59.000Z

247

Data:5600c14d-154e-4342-9237-ff51e6451dfb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3 No6341f5b1b4 No revision has1e6451dfb No revision

248

Data:4ff74090-8588-4dcf-a0f0-93352675f340 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 Noecd-9c04-2d9a8c2fc998 Nofcf4-4946-8d30-e2c78ad3b21b3352675f340 No

249

Data:50066cd6-6f0a-4736-abde-c337186047ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 Noecd-9c04-2d9a8c2fc998aa0-9c1e87e57c40 No revision has been approved

250

Data:19d22b62-1dfd-495e-95ff-348040837613 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9b4eb15e81c7a49c4c690071 No300791a06 No

251

Data:356282ca-87f0-4fb6-a57c-3fc9389866ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79 No revisionbef6a9de7 No66-9384-2b376be26535

252

Data:39750348-a887-4ff8-8623-933ba8bd0ae6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revision has7f7767f21828 No934aed79f5d No33f8-933ba8bd0ae6 No

253

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)  

E-Print Network [OSTI]

of carbon released from peat and forest fires in Indonesiaforest, agricultural, and peat fires (1997–2009) G. R. vanin 2004: Importance of peat burn- ing and pyroconvective

2010-01-01T23:59:59.000Z

254

Optimization and Application of Lithium Parameters for the Reactive Force Field, ReaxFF Sang Soo Han, Adri C. T. van Duin, William A. Goddard III, and Hyuck Mo Lee*,  

E-Print Network [OSTI]

-Li interactions9). In this article, we report lithium parameters for the ReaxFF. The parameters are developedOptimization and Application of Lithium Parameters for the Reactive Force Field, ReaxFF Sang Soo to the dissociation energies of lithium-benzene sandwich compounds and the collision behavior of lithium atoms

van Duin, Adri

255

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

256

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Kimberly Chenoweth, Adri C. T. van Duin, and William A. Goddard, III*  

E-Print Network [OSTI]

MoOx heterogeneous cata- lysts,22 fuel cells,23 crack propagation in silicon crystals,24 dissociation of H2 on Pt additional transition states and chemical reactivity of systems relevant to these reactions and optimizedFF potential obtained after parameter optimization, we performed a range of NVT-MD simulations on various

Goddard III, William A.

257

Kuwaiti oil fires: Composition of source smoke  

SciTech Connect (OSTI)

While the Kuwaiti oil-fire smoke plumes manifested a pronounced impact on solar radiation in the Gulf region (visibility, surface temperatures, etc.), smoke plume concentrations of combustion-generated pollutants suggest that the overall chemical impact on the atmosphere of the smoke from these fires was probably much less than anticipated. Combustion in the Kuwaiti oil fires was surprisingly efficient, releasing on average more than 93% of the combusted hydrocarbon fuels as carbon dioxide (CO{sub 2}). Correspondingly, combustion-produced quantities of carbon monoxide (CO) and carbonaceous particles were low, each {approximately} 2% by weight. The fraction of methane (CH{sub 4}) produced by the fires was also relatively low ({approximately} 0.2%), but source emissions of nonmethane hydrocarbons were high ({approximately} 2%). Processes other than combustion (e.g., volatilization) probably contributed significantly to the measured in-plume hydrocarbon concentrations. Substantially, different elemental to organic carbon ratios were obtained for aerosol particles from several different types of fires/smokes. Sulfur emissions (particulate and gaseous) measured at the source fires were lower ({approximately} 0.5%) than predicted based on average sulfur contents in the crude. Sulfur dioxide measurements (SO{sub 2}) reported herein, however, were both limited in actual number and in the number of well fires sampled. Nitrous oxide (N{sub 2}O) emissions from the Kuwaiti oil fires were very low and often could not be distinguished from background concentrations. About 25-30% of the fires produced white smoke plumes that were found to be highly enriched in sodium and calcium chlorides. 18 refs., 1 fig., 4 tabs.

Cofer, W.R. III; Cahoon, D.R. [Langley Research Center, Hampton, VA (United States); Stevens, R.K.; Pinto, J.P. [Environmental Protection Agency, Research Triangle Park, NC (United States); Winstead, E.L.; Sebacher, D.I. [Hughes STX Corp., Hampton, VA (United States); Abdulraheem, M.Y. [Kuwait Environmental Protection Dept., Kuwait City (Kuwait); Al-Sahafi, M. [Ministry of Defense and Aviation, Eastern Province (Saudi Arabia); Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Rasmussen, R.A. [Oregon Graduate Institute of Science and Technology, Beaverton, OR (United States)] [and others

1992-09-20T23:59:59.000Z

258

Material Analysis for a Fire Assessment.  

SciTech Connect (OSTI)

This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

Brown, Alexander; Nemer, Martin

2014-08-01T23:59:59.000Z

259

Method of locating underground mines fires  

DOE Patents [OSTI]

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

260

Planning Rural Fire Protection for Texas.  

E-Print Network [OSTI]

, and shall have full authority to carry out the objects of their creation and to that end are authorized to acquire, purchase, hold, lease, manage, occupy and sell real and personal property or any interest therein; to enter into and to perform any and all... to make fire protection feasible, the citizens of the rural area must organize their own fire department to protect their property and their lives. ORGANIZING A FIRE PROTECTION PROGRAM Before planning can begin, a community must determine whether rural...

Jones, Jack L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure  

SciTech Connect (OSTI)

The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved.

MYOTT, C.F.

2000-02-03T23:59:59.000Z

262

Justification to remove 333 Building fire suppression system  

SciTech Connect (OSTI)

Justification to remove the 333 Building fire suppression system is provided. The Maximum Possible Fire Loss (MPFL) is provided (approximately $800K), potential radiological and toxicological impacts from a postulated fire are discussed, Life Safety Code issues are addressed, and coordination with the Hanford Fire Department is assured.

Benecke, M.W.

1995-12-04T23:59:59.000Z

263

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 12: Fire and Life Safety  

E-Print Network [OSTI]

-fired heaters 2. Heaters that lack a nationally recognized testing laboratory (NRTL) listing sticker 3. Radiant

Wechsler, Risa H.

264

Climate change-induced shifts in fire for Mediterranean ecosystems  

E-Print Network [OSTI]

RESEARCH PAPER Climate change-induced shifts in fire for Mediterranean ecosystems Enric Batllori1 Climate change, climate uncertainty, fire-climate relationship, fire shifts, Mediterranean biome Mediterranean biome and identify potential shifts in fire activity under an ensemble of global climate

Moritz, Max A.

265

Fire hazards analysis for solid waste burial grounds  

SciTech Connect (OSTI)

This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

McDonald, K.M.

1995-09-28T23:59:59.000Z

266

Development of a 16-MW sub th coal-water/heavy oil burner for front-wall firing  

SciTech Connect (OSTI)

The Canadian program of coal-water fuel (CWF) technology development has included the demonstration of commercial burners for CWF in both coal and oil-designed utility boilers. The demonstrations clearly showed that these burners were prototypes, and were, in fact, modified oil burners that were mismatched to the rheological properties of the CWF. As the demonstrations were proceeding, a simultaneous research program was undertaken in which the basic principles governing atomization and combustion of CWF were studied. Results from the fundamental studies which led to the development of a novel prototype dual fuel CWF/oil burner are described. In the various stages of development, the burner was scaled up from 1.5 MW{sub th} to an industrial scale of 16 MS{sub th} for demonstration in a 20-MW{sub (e)} oil-designed industrial utility boiler and for a single-burner commercial operation in an oil designed package steam boiler. A summary of the burner performance in these demonstrations is also given in this paper.

Thambimuthu, K.V.; Whaley, H. (EMR Canada/CANMET, Ottawa (CA)); Bennet, A.; Jonasson, K.A. (NRC Canada, Ottawa (CA))

1990-06-01T23:59:59.000Z

267

The behaviour of concrete structures in fire   

E-Print Network [OSTI]

The nature of concrete-based structures means that they generally perform very well in fire. However, concrete is a complex material and its properties can change dramatically when exposed to high temperatures. This paper provides a ‘state...

Fletcher, Ian A; Welch, Stephen; Torero, Jose L; Carvel, Ricky O; Usmani, Asif

2007-03-29T23:59:59.000Z

268

POST-FIRE REVEGETATION AT HANFORD  

SciTech Connect (OSTI)

Range fires on the Hanford Site can have a long lasting effect on native plant communities. Wind erosion following removal of protective vegetation from fragile soils compound the damaging effect of fires. Dust storms caused by erosion create health and safety hazards to personnel, and damage facilities and equipment. The Integrated Biological Control Program (IBC) revegetates burned areas to control erosion and consequent dust. Use of native, perennial vegetation in revegetation moves the resulting plant community away from fire-prone annual weeds, and toward the native shrub-steppe that is much less likely to burn in the future. Over the past 10 years, IBC has revegetated major fire areas with good success. IBC staff is monitoring the success of these efforts, and using lessons learned to improve future efforts.

ROOS RC; JOHNSON AR; CAUDILL JG; RODRIGUEZ JM; WILDE JW

2010-01-05T23:59:59.000Z

269

MODELING VENTILATION SYSTEM RESPONSE TO FIRE  

SciTech Connect (OSTI)

Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

Coutts, D

2007-04-17T23:59:59.000Z

270

ANNUAL FIRE CODE COMPLIANCE INSPECTION PROCESS  

E-Print Network [OSTI]

://SHAREPOINT.RMPS.CORNELL.EDU:8445/EHS/HSE DOCUMENTS/FIRE_CODE_INSPECTION_2014_REVISION.DOCX Table of Contents 1. Introduction................................................................................. 3 3.15 M.M. = Maintenance Management

Pawlowski, Wojtek

271

Fire Protection for Laboratories Using Chemicals  

Broader source: Energy.gov (indexed) [DOE]

Protection Engineer Fire Protection Engineering Pacific Northwest National Laboratory Phone 509-371-7902; Cell 509-308-7658 Fax 509-371-7890 andrew.minister@pnnl.gov Questions?...

272

Experiments and Observation of Peat Smouldering Fires   

E-Print Network [OSTI]

If a subsurface layer of peat is ignited, it smoulders (flameless combustion) slowly but steadily. These fires propagate for long periods of time (days, weeks, even years), are particularly difficult to extinguish and can spread over very extensive...

Ashton, Clare; Rein, Guillermo; Dios, JD; Torero, Jose L; Legg, C; Davies, M; Gray, A

2007-01-30T23:59:59.000Z

273

Tall building collapse mechanisms initiated by fire   

E-Print Network [OSTI]

This paper introduces the hypothesis of two possible failure mechanisms for tall buildings in multiple floor fires. This paper extends the previous work done on the WTC towers by investigating more "generic" tall building frames made of standard...

Usmani, Asif; Roben, Charlotte; Johnston, Louise; Flint, Graeme

274

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

275

A Wood-Fired Gas Turbine Plant  

E-Print Network [OSTI]

A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

Powell, S. H.; Hamrick, J. T.

276

Georgia Institute of Technology Fire Watch Procedures  

E-Print Network [OSTI]

-385-1000) Area II (404-385-2000) Area III (404-385-3000) Area IV (404-385-4000) Area V (404-385-5000) II. Fire Marshal 404-894-2990 2. Georgia Tech Police Department 404-894-2500 3. Facilities-Area 1 (404 the fire watch is in effect. 2. Patrol the entire area affected by the service outage every 30 minutes

277

Acoustic wave front reversal in a three-phase media  

E-Print Network [OSTI]

Acoustic wave front conjugation is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

N. I. Pushkina

2015-03-05T23:59:59.000Z

278

Acoustic wave front conjugation in a three-phase media  

E-Print Network [OSTI]

Acoustic wave front reversal is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

Pushkina, N I

2015-01-01T23:59:59.000Z

279

Light-Front Holography and Non-Perturbative QCD  

SciTech Connect (OSTI)

The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

2009-12-09T23:59:59.000Z

280

Light-Front Holographic QCD and Emerging Confinement  

E-Print Network [OSTI]

In this report we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. The light-front holographic methods described here gives a precise interpretation of holographic variables and quantities in AdS in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound states in physical space-time. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large $q^2$ the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low $q^2$ the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.

Stanley J. Brodsky; Guy F. de Teramond; Hans Gunter Dosch; Joshua Erlich

2015-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation  

E-Print Network [OSTI]

smoke clouds associated with peat and deforestation fires inforest, agricultural, and peat fires (1997– 2009), Atmos.of carbon released from peat and forest fires in Indonesia

Tosca, M. G; Randerson, J. T; Zender, C. S

2013-01-01T23:59:59.000Z

282

E-Print Network 3.0 - anthropogenic fire mosaics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

landscape mosaic on fire size distribution in mixedwood boreal forest using... , plus 13 forest mosaic scenarios whose compositions reflected lengths of fire cycle. Three fire...

283

After a Fire, Is the Food Safe? esidential fires are, unfortunately, a common  

E-Print Network [OSTI]

to salvage their lives and belongings. Whether it is the whole house involved or just a fire in the kitchen The American Red Cross recommends that you: s Make your home fire-safe by installing battery-powered smoke- guisher in the kitchen. s Plan two emergency escape routes from each room in the house. Have rope or chain

284

Fuel Treatment, Prescribed Fire, and Fire Restoration: Are the Benefits Worth It?  

E-Print Network [OSTI]

Fuel Treatment, Prescribed Fire, and Fire Restoration: Are the Benefits Worth It? Chairs: Susan Husari and Melanie Miller #12;Applying Simulation and Optimization to Plan Fuel Treatments at Landscape Scales1 J. Greg Jones,2 Jimmie D. Chew,2 Hans R. Zuuring3 Abstract Fuel treatment activities are analyzed

Standiford, Richard B.

285

Fire Department, City of New York Fire SaFety education  

E-Print Network [OSTI]

! Is your family fire safe? Protect yourself, your family and your neighbors. T here are special areas building. Your primary or first exit is your apartment door that leads into either an unenclosed (not sep- jured in a fire in your building. o Maintain your apartment door or doors lead- ing into the public hall

Salzman, Daniel

286

NIST Technical Note 1629 Fire Fighting Tactics Under Wind Driven Fire Conditions  

E-Print Network [OSTI]

(FEMA) Assistance to Firefighters Research and Development Grant Program and the United States Fire Administrator United States Fire Administration Glenn A. Gaines, Acting Assistant Administrator U.S. Department to differences in staffing, equipment, building stock, typical weather conditions, etc. There is uniformity

Bentz, Dale P.

287

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect (OSTI)

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

288

Data:Eea550b2-d02a-4201-a14f-f8b63642dc6c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc NoEce78e10-0967-4d20-a270-53a70a3b054fea-bcbb-5891d5ff3462Eea550b2-d02a-4201-a14f-f8b63642dc6c No

289

Data:58cb5ff5-06af-4759-911d-0670c120a69d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 Noaa727c9ff358 Noa2f6fd95c0098f41ec120a69d No

290

Data:506d93f0-3de8-4729-9c2b-47ff2b0259c1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 Noecd-9c04-2d9a8c2fc998aa0-9c1e87e57c40de8-4729-9c2b-47ff2b0259c1 No

291

Data:31046076-4a88-43ce-b096-44c74ff5fb64 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1 No revisiond-3b852c9ae2a264b719fd2bc No4c74ff5fb64 No

292

Data:326ad64e-05fa-49a3-b570-d5791f5ff836 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1f38825451 Noada1f3290a No7a7ddecc073e70-d5791f5ff836 No

293

Development of RF CMOS receiver front-ends for ultrawideband  

E-Print Network [OSTI]

demonstrates two different solutions for the RF front-end designs in the UWB receivers, one is distributed topology, and the other is based on traditional lumped element topology. The distributed amplifier is one of the attractive candidates for UWB Low Noise...

Guan, Xin

2009-05-15T23:59:59.000Z

294

Neutrino factory front-end: muon capture and cooling optimization  

E-Print Network [OSTI]

The neutrino factory is one of the designs proposed for a future intense neutrino beam facility. The layout discussed here focuses on the front-end of the current baseline. The challenges inherent to the cooling of muons are shown together with possible baseline optimization.

Prior, G

2010-01-01T23:59:59.000Z

295

INTERNAL GRAVITY WAVES FROM ATMOSPHERIC JETS AND FRONTS  

E-Print Network [OSTI]

INTERNAL GRAVITY WAVES FROM ATMOSPHERIC JETS AND FRONTS Riwal Plougonven1 and Fuqing Zhang2 consistently highlighted jet exit regions as a favored locus for intense gravity waves, the mechanisms need for improving parameterizations of nonorographic gravity waves in climate models that include

Plougonven, Riwal

296

Geodesic Remeshing Using Front Propagation Gabriel Peyre Laurent Cohen  

E-Print Network [OSTI]

Geodesic Remeshing Using Front Propagation Gabriel Peyr´e Laurent Cohen CMAP CEREMADE, UMR CNRS, we present a method for remeshing trian- gulated manifolds by using geodesic path calculations is automatically found. A geodesic Delaunay triangulation of the set of points is then created, using a Voronoi

Paris-Sud XI, Université de

297

A FRONT TRACKING METHOD FOR TRANSITIONAL SHOCK WAVES  

E-Print Network [OSTI]

A FRONT TRACKING METHOD FOR TRANSITIONAL SHOCK WAVES HYUN­CHEOL HWANG Abstract. Non of transitional shock waves, which are dependent on the parabolic regularization of the conservation laws transitional shock waves correctly. The algorithm includes the computation of saddle­to­saddle connec­ tions

New York at Stoney Brook, State University of

298

Utility theory front to back inferring utility from agents' choices  

E-Print Network [OSTI]

Utility theory front to back ­ inferring utility from agents' choices A. M. G. Cox Dept to utility theory and consumption & investment problems. Instead of specifying an agent's utility function) and ask if it is possible to derive a utility function for which the observed behaviour is optimal. We

299

Actin polymerization front propagation in a comb-reaction system  

E-Print Network [OSTI]

Anomalous transport and reaction dynamics are considered by providing the theoretical grounds for the possible experimental realization of actin polymerization in comb-like geometry. Two limiting regimes are recovered, depending on the concentration of reagents (magnesium and actin). These are both the failure of the reaction front propagation and a finite speed corresponding to the Fisher-KPP long time asymptotic regime.

Iomin, A; Pfohl, T

2015-01-01T23:59:59.000Z

300

Front and backside processed thin film electronic devices  

DOE Patents [OSTI]

This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

2012-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Front and backside processed thin film electronic devices  

DOE Patents [OSTI]

This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

2010-10-12T23:59:59.000Z

302

Flame front tracking by laser induced fluorescence spectroscopy and advanced  

E-Print Network [OSTI]

surface characteristics in turbulent premixed propane/air combustion," Combustion and Flame 120(4), 407 References and links 1. J. Warnatz, U. Maas, and R.W. Dibble, Combustion - physical and chemical fundamentals, "Characterization of flame front surfaces in turbulent premixed methane/air combustion," Combustion and Flame 101

Hamarneh, Ghassan

303

Front Vehicle Blind Spot Translucentization Based on Augmented Reality  

E-Print Network [OSTI]

Front Vehicle Blind Spot Translucentization Based on Augmented Reality Che-Tsung Lin, Yu-Chen Lin--Recently, WAVE/DSRC has become an attrac- tive technology for vehicular safety applications. Vehicles with WAVE/DSRC devices can communicate with their neighboring vehicles to exchange information to achieve collaborative

Wang, Yuan-Fang

304

Multimaterial Front Tracking Fang Da, Christopher Batty, and Eitan Grinspun  

E-Print Network [OSTI]

.8 [Simulation and Modeling]: Types of Simulation--Animation Additional Key Words and Phrases: front tracking. Numerous additional physical and mathemat- ical applications have this same form: soap bubbles and dry the space of possible entangled mesh configurations that can arise, and topological transformations

305

Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx  

E-Print Network [OSTI]

report the use of ReaxFF to study the activation and conversion of propene to acrolein by various metal acrolein. The propene reations on V2O5 occur at lower temperatures than on Bi2O3 or Bi2Mo3O12. The results-metal­ oxide (MMO) catalysts, accounts for the majority of the 8 billion pounds of acrolein produced annually

van Duin, Adri

306

Data:6ebaf50c-0760-4af2-84b4-5ce1d7ff810d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision has been approved

307

Data:0de33c2e-6868-43c9-b0ff-25ad959664d8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for this page.

308

Mitsubishi FGD plants for lignite fired boilers  

SciTech Connect (OSTI)

In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

1998-07-01T23:59:59.000Z

309

Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method  

SciTech Connect (OSTI)

We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

2012-06-01T23:59:59.000Z

310

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a coal-to-stack basis, was 87%. The mercury material balance closures for the four tests conducted at the plant ranged from 89% to 114%, with an average of 100%. These results appear to show that the SCR had a positive effect on mercury removal. In earlier programs, CONSOL sampled mercury at six plants with wet FGDs for SO{sub 2} control without SCR catalysts. At those plants, an average of 61 {+-} 15% of the mercury was in the oxidized form at the air heater outlet. The principal purpose of this work is to develop a better understanding of the potential Hg removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of Hg chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize Hg removal.

J. A. Withum; S.C. Tseng; J. E. Locke

2004-10-31T23:59:59.000Z

311

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal-to-stack basis, was 53%. The average Hg concentration in the stack flue gas was 4.09 {micro}g/m{sup 3}. The average stack mercury emission was 3.47 Ib/TBtu. The mercury material balance closures ranged from 87% to 108%, with an average of 97%. A sampling program similar to this one was performed on a similar unit (at the same plant) that was equipped with an SCR for NOx control. Comparison of the results from the two units show that the SCR increases the percentage of mercury that is in the oxidized form, which, in turn, lends to more of the total mercury being removed in the wet scrubber. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal.

J.A. Withum; S.C. Tseng; J.E. Locke

2005-11-01T23:59:59.000Z

312

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Four sampling tests were performed in August 2004 during ozone season with the SCR operating; flue gas mercury speciation and concentrations were determined at the SCR inlet, SCR outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Three sampling tests were also performed in November 2004 during non-ozone season with the SCR bypassed; flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet). Process samples for material balances were collected during the flue gas measurements. The results show that, at the point where the flue gas enters the FGD, a greater percentage of the mercury was in the oxidized form when the SCR was operating compared to when the SCR was bypassed (97% vs 91%). This higher level of oxidation resulted in higher mercury removals in the FGD because the FGD removed 90-94% of the oxidized mercury in both cases. Total coal-to-stack mercury removal was 86% with the SCR operating, and 73% with the SCR bypassed. The average mercury mass balance closure was 81% during the ozone season tests and 87% during the non-ozone season tests.

J. A. Withum; S. C. Tseng; J. E. Locke

2006-01-31T23:59:59.000Z

313

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

J. A. Withum; J. E. Locke

2006-02-01T23:59:59.000Z

314

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect (OSTI)

This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

2003-01-30T23:59:59.000Z

315

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

J. Hnat; L.M. Bartone; M. Pineda

2001-10-31T23:59:59.000Z

316

Improved Reliability of PV Modules with Lexan PC Sheet-Front...  

Broader source: Energy.gov (indexed) [DOE]

Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE...

317

Improved Reliability of PV Modules with Lexan PC Sheet-Front...  

Broader source: Energy.gov (indexed) [DOE]

IMPROVED RELIABILITY OF PV MODULES WITH LEXAN(tm) (PC ) SHEET - FRONT SHEET NORYL(tm) (PPE) SHEET - BACK SHEET NORYL(tm) Sheet for back sheet application LEXAN(tm) sheet for front...

318

E-Print Network 3.0 - adaptive optics wave-front Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: adaptive optics wave-front Page: << < 1 2 3 4 5 > >> 1 Wave-front generation of Zernike polynomial...

319

GASIFICATION BASED BIOMASS CO-FIRING  

SciTech Connect (OSTI)

Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

2003-01-01T23:59:59.000Z

320

Firing of pulverized solvent refined coal  

DOE Patents [OSTI]

A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

1990-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

24 Command Fire Improvement Action Program Plan  

SciTech Connect (OSTI)

Fluor Hanford (FH) is responsible for providing support to the Department of Energy Richland Operations Office (RL) in the implementation of the Hanford Emergency Preparedness (EP) program. During fiscal year 2000, a number of program improvements were identified from various sources including a major range fire (24 Command Fire). Evaluations of the emergency preparedness program have confirmed that it currently meets all requirements and that performance of personnel involved is good, however the desire to effect continuous improvement resulted in the development of this improvement program plan. This program plan defines the activities that will be performed in order to achieve the desired performance improvements.

GRIFFIN, G.B.

2000-12-01T23:59:59.000Z

322

Residential gas-fired sorption heat Test and technology evaluation  

E-Print Network [OSTI]

..........................................................................................10 1.3.2 Adsorption heat pumpsResidential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test

323

The FIRE infrared spectrometer at Magellan: construction and commissioning  

E-Print Network [OSTI]

We describe the construction and commissioning of FIRE, a new 0.8-2.5?m echelle spectrometer for the Magellan/ Baade 6.5 meter telescope. FIRE delivers continuous spectra over its full bandpass with nominal spectral ...

Simcoe, Robert A.

324

Savanna and shrubland fire behavior modeling in South Texas  

E-Print Network [OSTI]

The vegetation of South Texas has changed from mesquite savanna to mixed mesquite/acacia (Prosopis/Acacia) shrubland over the last hundred years. Fire reduction due to lack of fine fuel and suppression of fires is cited as reasons...

Streeks, Tamara Jean

2012-06-07T23:59:59.000Z

325

Management of Imported Fire Ants in Cattle Production Systems  

E-Print Network [OSTI]

This publication can help ranch managers develop integrated pest management plans for managing fire ant problems in cattle operations. It covers the specifics of managing fire ants in hay pastures and rangelands, around farm ponds, and near...

Fuchs, Thomas W.; Drees, Bastiaan M.

2004-03-31T23:59:59.000Z

326

CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS  

E-Print Network [OSTI]

This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

Baker, Ralph C.

2011-01-11T23:59:59.000Z

327

Initial Joint Review, Wildland Fire Safety at DOE Sites - December...  

Broader source: Energy.gov (indexed) [DOE]

Fire Safety Enchancements - Jan 19, 2001 Audit Report: IG-0760 Type B Accident Investigation, Response to the 24 Command Wildland Fire on the Hanford Site, June 27-July 1, 200...

328

Modelling of the Growth Phase of Dalmarnock Fire Test One   

E-Print Network [OSTI]

The challenge of modelling a well characterized full-scale fire test using computational fluid dynamics is illustrated in this work comparing a priori and a posteriori simulations. In 2006, The Dalmarnock Fire Tests were ...

Rein, Guillermo; Jahn, Wolfram; Torero, Jose L

329

Investigation of a Fatal Fire in a Moving Vehicle   

E-Print Network [OSTI]

This paper summarizes the essentials of an investigation conducted by the authors to test conflicting scenarios regarding the cause and origin of an accidental fire. Fire investigators proposed that an underbody fuel-leak ...

Alvares, Norman; Staggs, Kirk; Rein, Guillermo

2007-01-01T23:59:59.000Z

330

Geothermal system saving money at fire station | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

331

Fire Protection Program Assessment, Building 9116- Y12 Plant, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in Building 9116.

332

Fire hazards evaluation for light duty utility arm system  

SciTech Connect (OSTI)

In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

HUCKFELDT, R.A.

1999-02-24T23:59:59.000Z

333

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect (OSTI)

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

334

Licensing Uncertain Patents: Per-Unit Royalty vs. Up-Front Fee  

E-Print Network [OSTI]

Licensing Uncertain Patents: Per-Unit Royalty vs. Up-Front Fee David Encaouay and Yassine Lefouiliz schemes are investigated: the per-unit royalty rate and the up-front fee. We provide conditions under-unit royalty scheme, the opportunity to do so does not exist under the up-front fee scheme. We also establish

Boyer, Edmond

335

Introduction Idealized Moist Jet/Front Waves Ray Tracing Momentum Flux/Forcing Conclusion Gravity Waves  

E-Print Network [OSTI]

Introduction Idealized Moist Jet/Front Waves Ray Tracing Momentum Flux/Forcing Conclusion Gravity Waves in Moist Baroclinic Jet-Front Systems Junhong Wei, Fuqing Zhang Department of Meteorology The Pennsylvania State University Tuesday 19th August, 2014 #12;Introduction Idealized Moist Jet/Front Waves Ray

Thompson, Anne

336

Massively Parallel Computation of Sti Propagating Combustion frontsMarc Garbey and Damien Tromeur-Dervout  

E-Print Network [OSTI]

In this paper we study the computation of combustion fronts using MIMD archi- tecture. Our applications in gas models of combustion fronts: rst, a classical thermo-di usive model describing the combustion of a gasMassively Parallel Computation of Sti Propagating Combustion frontsMarc Garbey and Damien Tromeur

Garbey, Marc

337

F.F2.  

Broader source: Energy.gov (indexed) [DOE]

8 5.1 Actions to conserve energy, demonstrate potential energy conservation. and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful...

338

Physics design of front ends for superconducting ion linacs  

SciTech Connect (OSTI)

Superconducting (SC) technology is the only option for CW linacs and is also an attractive option for pulsed linacs. SC cavities are routinely used for proton and H{sup -} beam acceleration above 185 MeV. Successful development of SC cavities covering the lower velocity range (down to 0.03c) is a very strong basis for the application of SC structures in the front ends of high energy linacs. Lattice design and related high-intensity beam physics issues in a {approx}400 MeV linac that uses SC cavities will be presented in this talk. In particular, axially-symmetric focusing by SC solenoids provides strong control of beam space-charge and a compact focusing lattice. As an example, we discuss the SC front-end of the H{sup -} linac for the FNAL Proton Driver.

Ostroumov, P.N.; /Argonne; Carneiro, J.P.; /Fermilab

2009-01-01T23:59:59.000Z

339

Physics design of front ends for superconducting ion linacs  

SciTech Connect (OSTI)

Superconducting (SC) technology is the only option for CW linacs and is also an attractive option for pulsed linacs. SC cavities are routinely used for proton and H{sup -} beam acceleration above 185 MeV. Successful development of SC cavities covering the lower velocity range (down to 0.03c) is a very strong basis for the application of SC structures in the front ends of high energy linacs. Lattice design and related high-intensity beam physics issues in a {approx}400 MeV linac that uses SC cavities will be presented in this talk. In particular, axially-symmetric focusing by SC solenoids provides strong control of beam space charge and a compact focusing lattice. As an example, we discuss the SC front end of the H{sup -} linac for the FNAL Proton Driver.

Ostroumov, P.N.; /Argonne; Carneiro, J.-P.; /Fermilab

2008-09-01T23:59:59.000Z

340

Tracking thermal fronts with temperature-sensitive, chemically reactive tracers  

SciTech Connect (OSTI)

Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

Robinson, B.A.; Birdsell, S.A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ionization front-driven turbulence in the clumpy interstellar medium  

E-Print Network [OSTI]

We present 3D radiation-gasdynamical simulations of an ionization front running into a dense clump. In our setup, a B0 star irradiates an overdensity which is at a distance of 10 pc and modelled as a supercritical 100 M_sol Bonnor-Ebert sphere. The radiation from the star heats up the gas and creates a shock front that expands into the interstellar medium. The shock compresses the clump material while the ionizing radiation heats it up. The outcome of this "cloud-crushing" process is a fully turbulent gas in the wake of the clump. In the end, the clump entirely dissolves. We propose that this mechanism is very efficient in creating short-living supersonic turbulence in the vicinity of massive stars.

Thomas Peters; Robi Banerjee; Ralf S. Klessen

2008-08-20T23:59:59.000Z

342

Towards the Light Front Variables for High Energy Production Processes  

E-Print Network [OSTI]

Scale invariant presentation of inclusive spectra in terms of light front variables is proposed. The variables introduced go over to the well-known scaling variables x_F = 2p_z/sqrt(s) and x_T=2p_T/sqrt{s} in the high p_z and high p_T limits respectively. So Some surface is found in the phase space of produced pi-mesons in the inclusive reaction anti p p -> pi+- X at 22.4 GeV/c, which separates two groups of particles with significantly different characteristics. In one of these regions a naive statistical model seems to be in a good agreement with data, whereas it fails in the second region. Key words: Light front, inclusive, hadron-hadron, electron-positron, relativistic heavy ions, deep inelastic.

N. S. Amaglobeli; S. M. Esakia; V. R. Garsevanishvili; G. O. Kuratashvili; N. K. Kutsidi; R. A. Kvatadze; Yu V. Tevzadze; T. P. Topuria

1997-03-21T23:59:59.000Z

343

Epidemic fronts in complex networks with metapopulation structure  

E-Print Network [OSTI]

Infection dynamics have been studied extensively on complex networks, yielding insight into the effects of heterogeneity in contact patterns on disease spread. Somewhat separately, metapopulations have provided a paradigm for modeling systems with spatially extended and "patchy" organization. In this paper we expand on the use of multitype networks for combining these paradigms, such that simple contagion models can include complexity in the agent interactions and multiscale structure. We first present a generalization of the Volz-Miller mean-field approximation for Susceptible-Infected-Recovered (SIR) dynamics on multitype networks. We then use this technique to study the special case of epidemic fronts propagating on a one-dimensional lattice of interconnected networks - representing a simple chain of coupled population centers - as a necessary first step in understanding how macro-scale disease spread depends on micro-scale topology. Using the formalism of front propagation into unstable states, we derive ...

Hindes, Jason; Myers, Christopher R; Schneider, David J

2013-01-01T23:59:59.000Z

344

Towards the Light Front Variables for High Energy Production Processes  

E-Print Network [OSTI]

Scale invariant presentation of inclusive spectra in terms of light front variables is proposed. The variables introduced go over to the well-known scaling variables x_F = 2p_z/sqrt(s) and x_T=2p_T/sqrt{s} in the high p_z and high p_T limits respectively. So Some surface is found in the phase space of produced pi-mesons in the inclusive reaction anti p p -> pi+- X at 22.4 GeV/c, which separates two groups of particles with significantly different characteristics. In one of these regions a naive statistical model seems to be in a good agreement with data, whereas it fails in the second region. Key words: Light front, inclusive, hadron-hadron, electron-positron, relativistic heavy ions, deep inelastic.

Amaglobeli, N S; Garsevanishvili, V R; Kuratashvili, G O; Kutsidi, N K; Kvatadze, R A; Tevzadze, Yu V; Topuria, T P; Tevzadze, Yu V.

1998-01-01T23:59:59.000Z

345

Simulating Historic Landscape Patterns of Fire in the Southern Appalachian Mountains: Implications for Fire History and Management  

E-Print Network [OSTI]

Fire suppression policies implemented in the early 20th century led to a decrease in fire-associated species and ecosystems in the southern Appalachian Mountains. As managers work towards restoration, a greater understanding of the pre...

Gass, Ellen R

2014-05-21T23:59:59.000Z

346

Fire-grazing interactions in a mixed grass prairie  

E-Print Network [OSTI]

?)............................................................................................. 28 8 Effects (?between subjects?) of fall (October 1998) and spring (February 1999) prescribed fire on aboveground (a) live and (b) standing dead biomass during 1999.........................................................................................................................84 x LIST OF TABLES TABLE 1 Fire characteristics for cool season (March 1998, February 1999) and warm season (October 1998) prescribed fires................................................................ 24 2 ANOSIM and SIMPER...

Hubbard, John Andrew

2004-09-30T23:59:59.000Z

347

WILDLAND FIRE SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS  

E-Print Network [OSTI]

is already in place. Fire Management Planning CEMML provides high quality fire management planning adviceWILDLAND FIRE SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML | 1490 Campus installations present a serious risk to people, infrastructure, quality training areas, and important protected

348

A Spatial Planning and Analysis System for Wildland Fire Management  

E-Print Network [OSTI]

STARFIRE 11/29/2011 A Spatial Planning and Analysis System for Wildland Fire Management Welcome is an advanced and powerful spatial fire management planning and analysis system which is designed to provide visual and analytic support for fire management planning, decisions and communication. The system

349

Phase 2 fire hazard analysis for the canister storage building  

SciTech Connect (OSTI)

The fire hazard analysis assesses the risk from fire in a facility to ascertain whether the fire protection policies are met. This document provides a preliminary FHA for the CSB facility. Open items have been noted in the document. A final FHA will be required at the completion of definitive design, prior to operation of the facility.

Sadanaga, C.T., Westinghouse Hanford

1996-07-01T23:59:59.000Z

350

FireViz : a personal firewall visualizing tool  

E-Print Network [OSTI]

In this thesis, I present FireViz, a personal firewall visualizing tool. FireViz visually displays activities of a personal firewall in real time. The primary goal of FireViz is to educate typical computer users of the ...

Sharma, Nidhi

2005-01-01T23:59:59.000Z

351

Synthesis and Summary: Land Use Decisions and Fire Risk1  

E-Print Network [OSTI]

was spent in fire suppres- sion. The bill for all costs and damages amounted to more than $1 billion. Given of fuel management and fire protection. The complexity of watershed manage- ment was defined growth on fuel management and fire protection, concerns stated or implied in all presentations. Jim Davis

Standiford, Richard B.

352

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents [OSTI]

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

Wagoner, C.L.; Foote, J.P.

1995-07-04T23:59:59.000Z

353

Coal-fired generation staging a comeback. 2nd ed.  

SciTech Connect (OSTI)

The report is an overview of the renewed U.S. market interest in coal-fired power generation. It provides a concise look at what is driving interest in coal-fired generation, the challenges faced in implementing coal-fired generation projects, and the current and future state of coal-fired generation. Topics covered in the report include: An overview of coal-fired generation including its history, the current market environment, and its future prospects; An analysis of the key business factors that are driving renewed interest in coal-fired generation; An analysis of the challenges that are hindering the implementation of coal-fired generation projects; A description of coal-fired generation technologies; A review of the economic drivers of coal-fired generation project success; An evaluation of coal-fired generation versus other generation technologies; A discussion of the key government initiatives supporting new coal-fired generation; and A listing of planned coal-fired generation projects. 13 figs., 12 tabs., 1 app.

NONE

2007-07-01T23:59:59.000Z

354

Grid Computing for Fire Evolution Simulation Diploma Thesis  

E-Print Network [OSTI]

- p. 1/41 Grid Computing for Fire Evolution Simulation Diploma Thesis Thomas Diamantis University of Thessaly July 15, 2005 #12;Outline Grid computing overview Middleware overview Fire Dynamics Simulator Experiments and Results - p. 2/41 Outline Fire Dynamics Simulatior (FDS) and Grid Computing s Grid computing

Toronto, University of

355

Grid cell firing patterns signal environmental novelty by expansion  

E-Print Network [OSTI]

Grid cell firing patterns signal environmental novelty by expansion Caswell Barrya,b,c,1 , Lin Lin novelty causes the spatial firing patterns of grid cells to expand in scale and reduce in regularity firing fields remapped and showed a smaller, temporary expansion. Grid expansion provides a potential

Burgess, Neil

356

Guidance for the Quality Assurance of Fire Protection Systems  

Broader source: Energy.gov [DOE]

This quality assurance document is intended to provide guidance for the DOE fire protection community in the continuing effort to ensure the reliability of fire protection systems. This guidance document applies the concepts of DOE Order 5700.6C, Quality Assurance, to the management of fire protection systems.

357

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted wildland fire greenhouse gas and aerosol (organic aerosol (OA) and black carbon (BC)) emission inventories

358

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents [OSTI]

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

1995-01-01T23:59:59.000Z

359

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect (OSTI)

This clean coal technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and (to some extent) SO{sub x} emissions: Gas reburning and low NO{sub x} burners. The demonstrations will be conducted on a pre-NSPS utility boiler representative of US boilers that contribute significantly to the inventory of acid rain precursor emissions: a wall fired unit. Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is burned. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 75 percent or more as a result of combining LNB and GR to a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1991-04-26T23:59:59.000Z

360

Wildland Fire Management Plan for Brookhaven National Laboratory  

SciTech Connect (OSTI)

This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel. The BNL Fire Department is the lead on wildfire suppression. However, the BNL Natural Resource Manager will be assigned to all wildland fires as technical resource advisor.

Green,T.

2009-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia  

E-Print Network [OSTI]

biomass burning in Indonesia since 1960, Nat. Geosci. , 2,and deforestation fires in Indonesia M. G. Tosca, 1 J. T.unnatural disasters in Indonesia, Geogr. Rev. , 94, 55–79,

Tosca, M. G; Randerson, J. T; Zender, C. S; Nelson, D. L; Diner, D. J; Logan, J. A

2011-01-01T23:59:59.000Z

362

Unbonded Post Tensioned Concrete in Fire: A Review of Data from Furnace Tests and Real Fires   

E-Print Network [OSTI]

The fire-safe design of concrete structures which incorporate post-tensioned prestressing tendons has recently been the subject of debate within the structural engineering community, particularly when unbonded post-tensioned ...

Gales, John; Bisby, Luke; Gillie, Martin

363

Adaptive two-regime method: Application to front propagation  

SciTech Connect (OSTI)

The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.

Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom)] [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom); Flegg, Mark, E-mail: mark.flegg@monash.edu [School of Mathematical Sciences, Faculty of Science, Monash University Wellington Road, Clayton, Victoria 3800 (Australia)] [School of Mathematical Sciences, Faculty of Science, Monash University Wellington Road, Clayton, Victoria 3800 (Australia)

2014-03-28T23:59:59.000Z

364

A turnstile mechanism for fronts propagating in fluid flows  

E-Print Network [OSTI]

We consider the propagation of fronts in a periodically driven flowing medium. It is shown that the progress of fronts in these systems may be mediated by a turnstile mechanism akin to that found in chaotic advection. We first define the modified ("active") turnstile lobes according to the evolution of point sources across a transport boundary. We then show that the lobe boundaries may be constructed from stable and unstable \\emph{burning invariant manifolds}---one-way barriers to front propagation analogous to traditional invariant manifolds for passive advection. Because the burning invariant manifolds (BIMs) are one-dimensional curves in a three-dimensional ($xy\\theta$) phase space, their projection into $xy$-space exhibits several key differences from their advective counterparts: (lobe) areas are not preserved, BIMs may self-intersect, and an intersection between stable and unstable BIMs does not map to another such intersection. These differences must be accommodated in the correct construction of the new turnstile. As an application, we consider a lobe-based treatment protocol for protecting an ocean bay from an invading algae bloom.

John R. Mahoney; Kevin A. Mitchell

2013-05-22T23:59:59.000Z

365

A Life Cycle Assessment of a Magnesium Automotive Front End  

SciTech Connect (OSTI)

The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobile. The goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North America built 2007 GM-Cadillac CTS with the standard carbon steel based design. This LCA uses the 'cradle-to-grave' approach by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 and ISO 14044:2006. Furthermore, the LCA results for aluminum based front end autopart are presented. While weight savings result in reductions in energy use and carbon dioxide emissions during the use of the car, the impacts of fabrication and recycling of lightweight materials are substantial in regard to steel. Pathways for improving sustainability of magnesium use in automobiles through material management and technology improvements including recycling are also discussed.

Das, Sujit [ORNL; Dubreuil, Alain [Natural Resources Canada; Bushi, Lindita [GreenhouseGasMeasurement.com; Tharumarajah, Ambalavanar [CSIRO/CAST-CRC

2009-01-01T23:59:59.000Z

366

Fired heater for coal liquefaction process  

DOE Patents [OSTI]

A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

Ying, David H. S. (Macungie, PA)

1984-01-01T23:59:59.000Z

367

UF{sub 6} cylinder fire test  

SciTech Connect (OSTI)

With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

368

FIRE Project Action Plan in Response to  

E-Print Network [OSTI]

. The project should review other mission statements from the Office of Science in order to understand better, the Next Generation Space Telescope, etc. The project will also solicit input from the science community1 FIRE Project Action Plan in Response to Next Step Options Program Advisory Committee Report (PAC1

369

Direct fired absorption machine flue gas recuperator  

DOE Patents [OSTI]

A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1985-01-01T23:59:59.000Z

370

Blank fire configuration for automatic pistol  

DOE Patents [OSTI]

A pistol configured to fire blank cartridges includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

Teague, Tommy L. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

371

Fire Induced Collapse of Tall Buildings   

E-Print Network [OSTI]

This research was designed to investigate possible mechanisms that fires could initiate that might lead to collapse of a tall building of similar design to the WTC Towers. It was not designed to be a forensic study and no initial damage was applied...

Flint, Graeme

372

Posteriori Modelling of Fire Test One   

E-Print Network [OSTI]

This work shows that reproducing fire behaviour of a full-scale enclosure on a detailed level using CFD simulations is possible to certain degree but is a very challenging task. A posteriori (ie after the test) numerical simulations of the growth...

Jahn, Wolfram; Rein, Guillermo; Torero, Jose L

2007-10-14T23:59:59.000Z

373

DOE Fire Protection Handbook, Volume I  

SciTech Connect (OSTI)

The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directed to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.

NONE

1996-08-01T23:59:59.000Z

374

Environmental Health & Safety Fire Safety Unit  

E-Print Network [OSTI]

materials (gas, lighter fluid, charcoal, propane, solvents, etc.) All items powered by combustible fuels heat to start a fire if used improperly). Including but not limited to: George Foreman grills portable heating devices (space heaters of any type) What other items are not allowed in my room? Non

Portman, Douglas

375

No material is "fire proof." However, the proper use and assembly of fire-rated building materials  

E-Print Network [OSTI]

General No material is "fire proof." However, the proper use and assembly of fire-rated building materials can reduce a fire's spread and lengthen the amount of time it takes for a home to ignite and burn. Structural assembly is the process of layering materials when building exterior walls and roof. Your home

376

No material is "fire proof." However, the proper use and assembly of fire-rated building materials  

E-Print Network [OSTI]

General No material is "fire proof." However, the proper use and assembly of fire-rated building materials can reduce a fire's spread, and extend the amount of time it takes for a home to ignite and burn your home. However, radiant energy can eventually ignite materials behind the window even with glass

377

Though no material is "fire proof," the proper use and assembly of fire-rated building materials  

E-Print Network [OSTI]

General Though no material is "fire proof," the proper use and assembly of fire-rated building materials can reduce a fire's spread, and lengthen the amount of time it takes for a home to ignite and burn. Structural assembly is the layering of building materials. Decks are a very popular, well-used feature

378

22012 Georgia Tech Campus Fire Safety Report ANNUAL STUDENT HOUSING FIRE SAFETY REPORT IN ACCORDANCE WITH THE  

E-Print Network [OSTI]

with the following: · No halogen-touchier lights. The intense heat generated by these bulbs creates a fire hazard fire protection to slow the spread of fire. · Storing bicycles in stairwells or any other location, hazardous materials, etc., is also prohibited. Smoking · Smoking is prohibited in all residence hall areas

379

Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas  

E-Print Network [OSTI]

? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

380

Journal of Undergraduate Research, Spring 2014: Front Matter  

E-Print Network [OSTI]

in the 1970’s about the various emissions released with coal fired energy production. Juxtaposing these various mediums of research from the past and present gives viewers a new perspective and an outlet to pursue their own curiosities. The Journal... as it fosters an understanding accessible by all viewers. By creating work centered on energy production and consumption, viewers have the opportunity to connect with our current state of energy in order to create a higher level of cognizance of this complex...

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR  

SciTech Connect (OSTI)

This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

Berry, D. L.

1980-05-01T23:59:59.000Z

382

Electrical Sitchgear Building No. 5010-ESF Fire Hazards Technical Report  

SciTech Connect (OSTI)

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event.

N.M. Ruonavaara

2001-05-08T23:59:59.000Z

383

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect (OSTI)

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

384

Data:E8437d41-ef7f-4460-84b0-b9eb88ff4638 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has beenace4-3e58210a501f Noc9-64f337dd0502 No60-84b0-b9eb88ff4638 No revision has

385

Data:E9c0221a-8a04-4f3a-96b8-f4b3279ff5db | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision hasa3e396ee3eb No revision has been approved for thisd62f6d90597e No-f4b3279ff5db No

386

Data:Edf20f29-fa3b-41ea-bcbb-5891d5ff3462 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc NoEce78e10-0967-4d20-a270-53a70a3b054fea-bcbb-5891d5ff3462 No revision has been approved for this

387

Data:Ee3ae609-0864-4007-999f-f2f1570ee0d1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc NoEce78e10-0967-4d20-a270-53a70a3b054fea-bcbb-5891d5ff3462 No revisiond315f34e6e2 No

388

Data:F1388ebc-7913-4b7c-a541-98e86ff4fb84 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It is currently under review70bcf5c2da6a41-98e86ff4fb84 No revision has

389

Data:67c9be31-03af-4e73-855a-ff209849aea6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 No revision has1574de6f No5a-ff209849aea6 No revision has been

390

Data:6c3a9149-82e3-410b-b472-c9e1ff784b68 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3f49fa2694 No revision hasd4ce025baf7cca468da67a7ee1ff784b68 No

391

Data:6d28d278-1f51-4c08-9f8a-3c74d43736ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3f49fa2694 No9fb1785f59e2d98199c Nof8a-3c74d43736ff No revision

392

Data:6df5cc4e-9b21-4464-809b-ff986065de63 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision has been approved for this page. It is currently under

393

Data:6f3ff287-5f6b-4e34-99c1-8030e7196270 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision9-abd1-c3e1b33869bc No revision has been approved

394

Data:6f607409-f1ff-48b4-b932-93dd76f09a3a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision9-abd1-c3e1b33869bc No6f09a3a No revision has been

395

Data:6f68d5af-3b82-42ff-a290-7945ba59cabc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision9-abd1-c3e1b33869bc No6f09a3a No revision

396

Data:6ff07c48-413f-4b73-8eb7-99131de11f1b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No-4eca-bf68-a0cb8e6f39cb No revision has been approved for

397

Data:6ff41894-1942-46b7-97da-23301ee7fa3c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No-4eca-bf68-a0cb8e6f39cb No revision has been approved

398

Data:6ff7f4c5-2c00-4593-bb78-fe73ef86710a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No-4eca-bf68-a0cb8e6f39cb No revision has been

399

Data:7056d2ff-4f99-4de9-8aa1-737f2c694354 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No-4eca-bf68-a0cb8e6f39cbef09929b68a No revision has been

400

Data:70d1b1cb-78b8-4f71-910e-3b75ff62d69a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63cfd4f0-e47e-4d0c-bf46-09878b282c90 No revision has beenff62d69a No

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Data:731a68af-13dd-4c79-aad5-9f4523ff1b6e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision has been approvedfcebe8-30b6-481a-a538-ee3c224183d09f4523ff1b6e

402

Data:783be988-32fb-415c-a077-118c5ff727a8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision8390-f3c1d17c852df4287f69e3084-01725daf6fbb No18c5ff727a8 No

403

Data:6247ba1e-757b-4a6f-9da2-5790059ff57f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation,f31366697 No revision890217d01989 Noda2-5790059ff57f No

404

Data:6804679a-3ebb-40f3-9bbc-0b764c7ff2b4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation,f31366697 No revision890217d019896-1983088978fd No0b764c7ff2b4

405

Data:B859978e-2659-44c4-a1d2-852c8ff988c1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No revision has been approved for this page. It is currently

406

Data:Cdd577ff-5800-4ae1-b7f8-91cdf1b6621c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No revision has been approved

407

Data:1cab31fd-2325-43b6-a85b-617baee6ff66 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been approved6da7b9317 No revision600f3a70cb47f8d7a5

408

Data:1d38f77c-5ff4-4f2d-8dce-7a194767d9a5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e No revision hasd5c4fa0281 No94767d9a5 No

409

Data:1d3ff967-5ee3-47ab-9432-df2c178617bd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e No revision hasd5c4fa0281 No94767d9a5

410

Data:1d401866-1ff9-4ade-9e33-c0b8f46bee69 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e No revision hasd5c4fa0281

411

Data:1d5aab18-53ed-40f7-aabb-889fec1b89ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e No revision3576eb0f72d8

412

Data:1d698e9e-671e-48ce-9ff7-73797ac46482 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e Noc3ca4208e363 No revision63148a8e

413

Data:1d7453db-c309-4ac6-adfb-02a94ff9c66c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e Noc3ca4208e363e56a97b86 No

414

Data:1dfe32ff-1d7c-4e70-a411-6dfb0c0babab | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision hasbbd6-4aa8-8927-629604d047e05f02da6ab

415

Data:1e0e0292-c76f-4c94-8d15-ae6ff2681752 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62f No revision has been approved for

416

Data:1f10a653-341f-4ac2-88ff-f580e17d3f23 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 No revision has been approved for this page. It0e17d3f23 No

417

Data:1f2841bf-ff8e-4487-89e0-608dd570394d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 No revision has been approved for this08dd570394d No

418

Data:1f590a33-1ff5-482b-91c2-e8dd847f3b0a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 No revision has been approvedfd5820ca1 Nodd847f3b0a No

419

Data:206894ff-df80-4d6e-b300-77df89a649c9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 Noe-ed85d9cb7f6f No revision has been approveddf89a649c9 No

420

Data:21263577-1c3c-4ff6-8b41-754aa77547a5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 Noe-ed85d9cb7f6fcc928be348 No

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Data:2207f9f3-c710-41ff-9c12-08a3e87a8858 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9 No revision hasc4a21a0d7463 No revision has

422

Data:220b0330-77ee-40c0-a0f1-73f2a9a2ff4e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9 No revision hasc4a21a0d7463 No revision

423

Data:22196800-78e9-41ff-b268-f230aa1213e8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9 No revision hasc4a21a0d7463 Nof230aa1213e8 No

424

Data:223a7d6e-77b0-44ae-ac5f-f40d59ca640a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9 No revisionced3-4c6b-a88f-979996338ab8 No

425

Data:230b909b-4403-48ff-bd43-09a92e4446b6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9abb0359ca3f9 No revisiondb175625 No

426

Data:232f9d88-42f5-47f6-a848-e9ed72cbf2ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9abb0359ca3f9 No

427

Data:23ec52f7-c738-4cbf-9ff2-82ffe66b49fc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d4-4797-b850-d42be48a30cf No revision hasff2-82ffe66b49fc No revision has

428

Data:245bd7d1-d33d-4993-aba9-822ff9f1fdfc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d4-4797-b850-d42be48a30cf Nob718c0408b6 Nof1fdfc No revision has been

429

Data:24ff6b2b-60cb-48b2-8721-eca6f973e10e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d4-4797-b850-d42be48a30cfd0-bad0-807beebee7f7

430

Data:266921bd-0b0d-4cb8-9569-8e8cadeaa1ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved for this90d4-0346e2ab598d4ea9721 No revision

431

Data:27567a1c-a24b-4a30-9dea-1b021531f8ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf No revision has been approved for

432

Data:28ae0957-3fcf-4a9f-a9ff-ca06b2106019 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf0e85488a7fe3a3badf5 No revision has

433

Data:28daf674-7ff1-4cf3-8183-dd70c55668c0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf0e85488a7fe3a3badf5

434

Data:29b438af-8402-4ff7-98ee-f82e24d2c2d6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 No revision734fd1dcd286 No revision

435

Data:29bd8186-4b4c-4b51-81ff-12f81406d406 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 No revision734fd1dcd286 No revisionff-12f81406d406 No

436

Data:2b6e0fa9-1aeb-4108-885a-8ff9aad6a378 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8 No revision has beend3de3fd4a1a7 No866c0e2d48ea

437

Data:2c38106f-52a5-443b-bb0f-f676df6b8d0e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636 No revision hasb57054e4b Nofdc65efa1

438

Data:2c547a92-70ff-4ce0-9b03-525b00f1f534 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636 No revision82e4322ef69b No revisiond82051

439

Data:2c5727ff-c541-46dc-8253-5497a692dd68 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636 No revision82e4322ef69b No

440

Data:2c99437b-836d-4968-b8ff-f8fd9a6590d3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636b4a3-9fc56041cf03 No revision

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Data:2cff8503-f700-4a42-8384-77e1b6ff172c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revisionbeb-403f-b787-2700a3b20e2e No revision has been

442

Data:B4cce737-1f0e-4599-8fd5-3c761ff15060 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has-4ae2-aa45-110457d20bf5 No4599-8fd5-3c761ff15060 No revision has

443

Data:B4cdec3e-4bbf-416b-8ff6-d4b1cde8f8f1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has-4ae2-aa45-110457d20bf5 No4599-8fd5-3c761ff15060 No revision

444

Data:Baf7195f-f419-4861-9c6a-e1ffda04c71b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244 NoBaf7195f-f419-4861-9c6a-e1ffda04c71b No revision has been approved

445

Data:Bb211cf2-4cd4-4373-a51f-7087435ff12f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244 NoBaf7195f-f419-4861-9c6a-e1ffda04c71b No3d90b321 No revision

446

Data:Bd5ff9bd-ffee-4129-9a4c-e4752d1136d4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been approved for5-1687ae080745aad344ff1

447

Data:C2f18274-b69f-4b3f-aee5-5cd471ff1ce6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has beena032db6d83 Noc-56029b877fee No-2ac0c7dfae14 Nof-aee5-5cd471ff1ce6

448

Data:53226e8c-ff9c-4024-b376-22b8b6b08988 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783eabb28-cd1d-43dd-80d2-219739044111b17be4b

449

Data:532de819-e2ff-4c78-9689-3996c3c8dc07 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783eabb28-cd1d-43dd-80d2-219739044111b17be4ba0bc321512c7

450

Data:538b1d74-23ff-46f6-bc6a-5d30fc44a825 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has been approved for this page.a9-4197f3123fd0

451

Data:539fc033-23ff-4d61-abd0-46dd43f4a7a2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has been approved for this243a5586 No

452

Data:53fd5776-e0a2-4f18-8e17-8963ff8e361a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has beena332-b9f7c233624b No revision has been

453

Data:54adb3ff-c362-4574-b14b-8b9c0fd2f8fb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has2fea1047f348 No revision has beenb9c0fd2f8fb No revision

454

Data:5683ff7b-a387-45ac-b1e2-bf50b83fb3f9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388ca No revision has86292d No revision

455

Data:56ff1ae9-6d02-4493-b28f-30db52388f92 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388caee096040 No revision has8cbf1f67b6

456

Data:56ff663c-73db-4f67-932c-a15cc24e5cd8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388caee096040 No revision

457

Data:5751e555-0721-44ff-93dd-ea0b82b105de | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388caee0960404ce35f8c4 No revision

458

Data:5914a046-c43f-4ff5-b2f6-e77edc25fdb2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84bf7e33133cb0 No revisionedc25fdb2 No revision

459

Data:597b801b-9acc-4b0d-b4d6-ff89dfd7e1bd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No revision has been approved for this

460

Data:59fe2ff5-d989-4eef-bab0-9040fbc096f0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No revision has beena7dfb657519040fbc096f0 No revision

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Data:5aa25f93-f9be-437e-ae2d-a6bfe53484ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No0-774918862a76 No revision has been approved

462

Data:5b8b4272-2da4-4ac2-a8ae-b53b94ff3865 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d4379-e4cca9d37856 No revisiona1eec5b358 No

463

Data:04bf6122-2f6a-4cae-9336-9ee62035d7ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLCd32fc5a8420a0c118b388 No revision5cf3444afccae-9336-9ee62035d7ff

464

Data:06ae4a4e-77ea-4e94-bf01-797bf16ff8ab | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b No revision has4-bf01-797bf16ff8ab No

465

Data:40ff22fc-d504-4ba1-a479-06be1383dd36 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No revision has been

466

Data:416d9928-64b4-4449-b367-d55b0dc9ff3d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No revisionae70f6f3080b0791d18

467

Data:41b580ff-f6bf-43b4-8d30-81ae5bfe84d3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No9272891a285 Nocabce462bd No

468

Data:41f20767-b2a1-491d-b475-6e72a4ff3aa1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No9272891a285321e6989942 No revision has

469

Data:420fb714-7054-49c9-8b1f-f07dac56b12a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No9272891a285321e6989942 No70894d7 Nodac56b12a

470

Data:42858d25-ff26-41da-819b-fa2bbe81d2e6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae Nobbe81d2e6 No revision has been

471

Data:4335b3ff-5240-40c6-8ab5-00260b5b4bf7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae6b1ccc67 No49487c85d

472

Data:43a4ff37-a93e-4a41-b723-f35691126f92 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision hasaab84-009f-4fb1-b666-ed5d43c9089f No revision hasc30b5229a5 No

473

Data:43d638d4-b072-4a0d-945f-f2160c71fb44 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision hasaab84-009f-4fb1-b666-ed5d43c9089f Noc3-fa495c01b9ac No revision has

474

Data:441faa27-8ff0-438b-9a8f-0340cbc381a7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision hasaab84-009f-4fb1-b666-ed5d43c9089fa65b-33e4c0bf25edfdfe02ed1bc No

475

Data:445c8a12-ee49-4ede-9c31-5ff5740be7a0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revision has been approved for this page.

476

Data:44849fa9-4ff4-4f1d-895d-b13c69c9ee04 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revision has been approved for

477

Data:44fa34b9-ff22-4b3c-a986-a71daaf4c4cf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revision has beene35192938 No revision has been approved

478

Data:458a69c0-5fad-4bbd-ad91-fe40e6b7ff53 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revision has beene351929381437f4394 Nodef0eb152cd5946fd4a8

479

Data:45f2883f-0d67-4d9d-b444-ff70bc651efa | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revision hasb9f1a905e225 No0-818d-bb5f00dcd82c

480

Data:473c77da-d642-421c-8c52-d3ff02515da9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revisione18fe97c

Note: This page contains sample records for the topic "ff front firing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Data:476e1a6b-e913-46bd-96ff-b2598a3b1d0a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revisione18fe97cb-14d199c51f2d Nofb3640 No revision

482

Data:48935ff6-15bc-4aa9-9007-33b7645b562c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No revisioneade6ae054 No revision7-33b7645b562c No

483

Data:48bc530f-5556-47ff-b3e8-e3b9fde13300 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No78eaa3f7 No revision has beenb3e8-e3b9fde13300

484

Data:48c29415-40f4-47d3-b31c-b17ff12220cc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No78eaa3f7 No revision

485

Data:4b2f7a78-a78d-44de-b208-342a4c812ff8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7d25b394 Noc98dd29320 No revision has been

486

Data:4b7d6148-ff28-4fed-b0bb-c0ab0120ab1e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7d25b394 Noc98dd29320 No revision has877f5625568f

487

Data:4c2372f3-d130-465c-b4d2-a32056ff8767 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has been approved for thisee-978c0df01c31949926eb5f3433cd0

488

Data:4ca3ff7e-6b85-42c9-bb84-4e9616fb6e55 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has been approved for7276dddf5f36b2 No revision

489

Data:4cb18fae-92ff-4fb2-966b-57ed73c81045 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has been approved for7276dddf5f36b2 No revision7ed73c81045 No

490

Data:4cb2c5b5-92e3-45c4-b042-ff9680f018be | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has been approved for7276dddf5f36b2 No

491

Data:4d839420-11cd-4bd2-91ff-c21c59ffe800 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has beenb745-9ab1009e842882db6a9210a41e No revision has

492

Data:4dedbc1f-6804-4a60-a999-65e3e55dc7ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revisionf377c06978a3 No revision has been approved for this

493

Data:4dfef4fc-0ead-4ea2-9a6f-f2e668f9905d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revisionf377c06978a3 No revision has been

494

Data:4e0ff7e0-c55e-41c9-85b3-2335a62ba89e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revisionf377c06978a3 No revision has beenaad211760963 No

495

Data:4e38e029-eb97-476d-91ff-94fe0505ea9a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revisionf377c06978a3 No revision hasf6b2eb1fac No revision

496

Data:4ef52611-1237-48ff-b5e4-5a331d645ce5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revisionf377c06978a3bcce-0d410894aead2-1b6c68d2566b Noa331d645ce5 No

497

Data:4f87d715-ff88-423f-86dc-3343b7f732a6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 Noecd-9c04-2d9a8c2fc998 No revision hasdc-3343b7f732a6 No revision has

498

Data:4ff6a572-0a89-475f-9fb7-525661d6063c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 Noecd-9c04-2d9a8c2fc998 Nofcf4-4946-8d30-e2c78ad3b21b

499

Data:5009426b-1916-4d0f-aec5-235e7a10ff2e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 Noecd-9c04-2d9a8c2fc998aa0-9c1e87e57c40 No revision has

500

Data:509b2a73-37f9-4af0-acbe-f012b6d063ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783 No revision has been approved for this page.