Sample records for fermilab john peoples

  1. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Myer, who joins us as Fermilab's new general counsel. John takes the reins from Gary Leonard, who has served the lab for many years. Please join me in welcoming John and thanking...

  2. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2013 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Garden Club Spring Meeting The Fermilab...

  3. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Fermilab Lecture Series Presents Particle...

  4. Fermilab | Traffic Safety at Fermilab |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit a SuggestionQuestion Fermilab traffic rules (FESHM 9010) Fermilab traffic accident statistics Traffic safety awareness training Resources Texting While Driving...

  5. Fermilab: Science at Work

    ScienceCinema (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14T23:59:59.000Z

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  6. Fermilab: Science at Work

    SciTech Connect (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-01T23:59:59.000Z

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  7. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Providence Journal, April 28, 2014: Brown physicist, who helped predict Higgs boson, dies Tuesday, April 29 Introducing the Fermilab Test Beam Committee Director's...

  8. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    page Unsubscribe from Fermilab Today From symmetry Commentary: Massive thoughts The Higgs boson and the neutrino fascinate the general public and particle physicists alike. Why is...

  9. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - One West Speaker: Chris Neu, University of Virginia Title: Latest Results on the Higgs Boson from CMS 8 p.m. Fermilab Lecture Series - Auditorium Speaker: Chad Mirkin,...

  10. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the electropolishing room at the Cavity Processing Research Laboratory, David Baird, ESH&Q, presents Fermilab's Cavity Processing R&D Group with the 2012 Industrial Hygiene...

  11. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2015 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement MS Office 2013Office 365: Transition from...

  12. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Lifestyle Patterns Approach to Weight...

  13. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Vehicles in restricted parking lots from...

  14. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catfish - Southern style collard greens - Black eyed peas - Cornbread - Sweet potato pie Chez Leon menu Call x3524 to make your reservation. Archives Fermilab Today...

  15. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO An advance in superconducting magnet technology opens the door for more powerful colliders A focusing magnet,...

  16. Tritium at Fermilab Fermilab Community Advisory Board

    E-Print Network [OSTI]

    Quigg, Chris

    Tritium at Fermilab Fermilab Community Advisory Board September 23, 2010 Rob Plunkett, Fermilab #12;2 Got water? Robert Plunkett #12;Fermilab has plenty Robert Plunkett3 The Fermilab site has numerous ponds and is the origin of Indian Creek and Ferry Creek. Fermilab uses water to cool accelerators

  17. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character," Shultz said. Photo: Amanda Solliday As of today, Fermilab's "What is a Higgs Boson?" video on YouTube has more than a million and a half views. This video and...

  18. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of the Day: Nectar of the birds From Science, July 22, 2014: Had there been no Higgs boson, this observation would have been the bomb Thursday, July 24 Fermilab technology...

  19. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hangout from the ICHEP conference in Valencia, Spain, on the latest news about the Higgs boson and more. Chat with Fermilab and CMS scientist Don Lincoln and with incoming CMS...

  20. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate Lecture Series - Curia II Speaker: Don Lincoln, Fermilab Title: The Higgs Boson and the LHC 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over THERE WILL BE NO...

  1. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speaker: Rouven Essig, Stony Brook University Title: Exotic Decays of the 125-GeV Higgs Boson 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4 p.m. Fermilab Colloquium - One...

  2. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab badge From Science News, June 23, 2014: It's almost time to get to know the Higgs boson better From UChicagoNews, June 19, 2014: Scholars and scientists explore factors...

  3. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cables criss-cross the surrounding space. Photo: Stephanie Timpone, PPD Safety Update ESH&Q weekly report, Feb. 10 This week's safety report, compiled by the Fermilab ESH&Q...

  4. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Have a safe day Wednesday, Jan. 28 3:30 p.m. Director's Coffee Break - WH2XO 4 p.m. Fermilab Colloquium - One West Speaker: Claudia Alexander, Jet Propulsion Laboratory Title:...

  5. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINAR THIS WEEK Wednesday, Jan. 28 3:30 p.m. Director's Coffee Break - WH2XO 4 p.m. Fermilab Colloquium - One West Speaker: Claudia Alexander, Jet Propulsion Laboratory Title:...

  6. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p.m. Joint Experimental-Theoretical Physics Seminar - One West Speaker: Eun-Joo Ahn, Fermilab Title: Surprising Results on the Composition of the Highest-Energy Cosmic Rays Visit...

  7. Fermilab FSPA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works: 2008 InternationalLife at Fermilab

  8. Fermilab at Work | Fermilab Now

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab Now Accelerator

  9. Fermilab | Directorate | Fermilab Directorate Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev. 0Joseph LykkenFermilab Directorate

  10. Fermilab | Directorate | Fermilab Former Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev. 0Joseph LykkenFermilab

  11. Fermilab | Fermilab at Work | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at Work Main

  12. POLARIZED TARGET EXPERIMENT AT FERMILAB

    E-Print Network [OSTI]

    Chamberlain, O.

    2010-01-01T23:59:59.000Z

    on Experiment 61 at Fermilab, which is a large collaborationBernie Sandler, From From Fermilab. Alan Jonckheere andTARGET EXPERIMENT AT FERMILAB Owen Chamberlain January 1977

  13. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lab director's office." He added, "We're thinking that after all of the relaxing spa treatments, people might need a nap." Photo of the Day Nessie spotted in Swan Lake Photo:...

  14. Fermilab Muon Ring Arrives to a Large Crowd of Fans

    SciTech Connect (OSTI)

    None

    2013-08-15T23:59:59.000Z

    A very large group of people gathered to watch the muon g-2 ring on its last leg of the big move from Brookhaven National Laboratory in Long Island, NY to Fermilab in Batavia, IL.

  15. Fermilab Today | Johns Hopkins University Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works: 2008SubmitMu2eIowa State

  16. Report of the Fermilab Committee for Site Studies

    SciTech Connect (OSTI)

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10T23:59:59.000Z

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  17. The Fermilab recycler ring

    SciTech Connect (OSTI)

    Martin Hu

    2001-07-24T23:59:59.000Z

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  18. Fermilab E791

    E-Print Network [OSTI]

    L. M. Cremaldi

    2000-10-12T23:59:59.000Z

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billion events were recorded through a loose transverse energy trigger and written to 8mm tape in the the 1991-92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysed on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  19. Fermilab recycler diagnostics

    SciTech Connect (OSTI)

    Martin Hu

    2001-07-24T23:59:59.000Z

    The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

  20. Breakthrough: Fermilab Accelerator Technology

    SciTech Connect (OSTI)

    None

    2012-04-23T23:59:59.000Z

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  1. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12T23:59:59.000Z

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  2. About Fermilab | Fermilab and the Community | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilab values strong

  3. Fermilab | Graphic Standards at Fermilab | Fermilab bar element

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group Robert R.Color paletteFermilab

  4. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheoryJohn

  5. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheoryJohnLee

  6. Fermilab | About | Organization | Fermilab Organization | Explanation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab

  7. Fermilab | Directorate | Fermilab Physics Advisory Committee (PAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev. 0Joseph LykkenFermilabPhysics

  8. Fermilab | Fermilab at Work | Labwide calendar information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab at Work Navbar

  9. Fermilab | Illinois Accelerator Research Center | Fermilab Core

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab

  10. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto FermilabFacilities

  11. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's Accelerator

  12. Scintillator manufacture at Fermilab

    SciTech Connect (OSTI)

    Mellott, K.; Bross, A.; Pla-Dalmau, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    1998-11-09T23:59:59.000Z

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  13. Scintillator manufacture at Fermilab

    SciTech Connect (OSTI)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01T23:59:59.000Z

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  14. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01T23:59:59.000Z

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  15. Scintillator manufacture at Fermilab

    SciTech Connect (OSTI)

    Mellott, K.; Bross, A.; Pla-Dalmau, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    1998-11-01T23:59:59.000Z

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested. {copyright} {ital 1998 American Institute of Physics.}

  16. FLARE, Fermilab Liquid Argon Experiments

    E-Print Network [OSTI]

    L. Bartoszek

    2004-08-24T23:59:59.000Z

    Mature technology of Liquid Argon Time Projection Chambers in conjunction with intense neutrino beams constructed at Fermilab offer a broad program of neutrino physics for the next decade.

  17. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  18. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Niki Saoulidou

    2010-01-08T23:59:59.000Z

    Neutrino oscillations provide the first evidencefor physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments. NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  19. Fermilab Art Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08FermilabArt Work

  20. Fermilab Art Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08FermilabArt

  1. Fermilab | DASTOW | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW '15 U.S.

  2. Fermilab | Labwide Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab « Return to

  3. Fermilab | Newsroom | Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab « Return7

  4. Fermilab | Science | Particle Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's

  5. CDF Search for the Higgs at Fermilab

    SciTech Connect (OSTI)

    Barbara Alvarez

    2009-03-10T23:59:59.000Z

    Fermilab CDF experiment representative Barbara Alvarez explains the experiment and the search for the Higgs Boson

  6. Fermilab Today Tuesday, June 2, 2009

    E-Print Network [OSTI]

    Fermilab Today Tuesday, June 2, 2009 Calendar Have a safe day! Tuesday, June 2 Noon Summer Lecture Series - Curia II Speaker: Pier Oddone, Fermilab Title: Future of Fermilab THERE WILL BE NO ACCELERATOR-Over THERE WILL BE NO FERMILAB COLLOQUIUM TODAY Click here for NALCAL, a weekly calendar with links to additional information

  7. Fermilab Today Wednesday, October 31, 2007

    E-Print Network [OSTI]

    Fermilab Today Wednesday, October 31, 2007 Subscribe | Contact Fermilab Today | Archive | Classifieds Search Calendar Wednesday, Oct. 31 THERE WILL BE NO FERMILAB ILC R&D MEETING THIS WEEK 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4 p.m. Fermilab Colloquium - One West Speaker: F. Gianotti, CERN

  8. Fermilab | Director's Policy Manual | No. 22.000 Fermilab Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointments Effective Date 1199 2.0 Effective Date 060906 3.0 Scope This policy covers all appointments for scientific staff at Fermilab. 4.0 Applicability All...

  9. About Fermilab | Fermilab and the Community | ILC Citizens' Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilab values strongFermilab -

  10. About Fermilab | Fermilab and the Community | Neighborhood Forum | Submit a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilab values strongFermilab

  11. Vertically Integrated Circuits at Fermilab

    SciTech Connect (OSTI)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01T23:59:59.000Z

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  12. Future Hadron Physics at Fermilab

    E-Print Network [OSTI]

    Jeffrey A. Appel

    2005-09-23T23:59:59.000Z

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future - a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC - the level of needed R&D, the ILC costs, and the timing - Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINER A and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  13. John Horst

    Broader source: Energy.gov [DOE]

    John Horst is aPublic Affairs Specialist with the Office of Energy Efficiency and Renewable Energy.

  14. John Gerrard

    Broader source: Energy.gov [DOE]

    John Gerrard is the NNSA Assistant Deputy Administrator for the Office of International Material Protection and Cooperation.

  15. Looking to the Future: A Fermilab Viewpoint

    E-Print Network [OSTI]

    H. E. Montgomery

    2005-08-20T23:59:59.000Z

    This is a short paper summarising a presentation of the evolution of the Fermilab program for the next five to ten years. Emphasis is given to the Fermilab accelerator complex, but external collaboration is emphasised.

  16. DZero search for the Higgs at Fermilab

    SciTech Connect (OSTI)

    Michael Kirby

    2009-03-10T23:59:59.000Z

    Fermilab DZero experiment representative Michael Kirby explains the Dzero experiment and their search for the Higgs Boson

  17. DZero search for the Higgs at Fermilab

    ScienceCinema (OSTI)

    Michael Kirby

    2010-01-08T23:59:59.000Z

    Fermilab DZero experiment representative Michael Kirby explains the Dzero experiment and their search for the Higgs Boson

  18. Future hadron physics facilities at Fermilab

    SciTech Connect (OSTI)

    Appel, Jeffrey A.; /Fermilab

    2004-12-01T23:59:59.000Z

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.

  19. Future Hadron Physics Facilities at Fermilab

    E-Print Network [OSTI]

    Jeffrey A. Appel

    2004-12-10T23:59:59.000Z

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, will be described.

  20. observation at CDF Dmitry Litvintsev (Fermilab CD)

    E-Print Network [OSTI]

    Quigg, Chris

    b observation at CDF Dmitry Litvintsev (Fermilab CD) for CDF June 15, 2007 Special seminar #12 and plans q Conclusion June 15, 2007 Dmitry Litvintsev, Fermilab, CDF 2 #12;Introduction Happy to show, Fermilab, CDF 3 #12;Source of data: CDF II 3 ¡ ¡ ¢ £ ¤ total 2 ¢ ¡ ¢ £ ¤ on tape Analysis uses data

  1. Fermilab Energy Scaling Workshop April 27, 2009

    E-Print Network [OSTI]

    Field, Richard

    Fermilab Energy Scaling Workshop April 27, 2009 Rick Field ­ Florida/CDF/CMS Page 1 11stst Workshop-bias" collisions and the "underlying event" in Run 1 at CDF. Rick's View of Hadron Collisions Fermilab 2009 Studying the "associated" charged particle densities in "min-bias" collisions. #12;Fermilab Energy Scaling

  2. Fermilab Today Monday, September 25, 2006

    E-Print Network [OSTI]

    Quigg, Chris

    Fermilab Today Monday, September 25, 2006 Monday, September 25 1:00 p.m. Research Techniques:30 p.m. Particle Astrophysics Seminar - Curia II Speaker: S. Dodelson, University of Chicago/Fermilab.m. Fermilab Colloquium (NOTE DATE) - 1 West Speaker: D. Clowe, Ohio University Title: A Direct Empirical Proof

  3. Update: tritium at Fermilab Fermilab Community Advisory Board

    E-Print Network [OSTI]

    Quigg, Chris

    , Fermilab #12;2 How is tritium produced? · In nature, tritium is produced when cosmic particles hit the particles in Earth's atmosphere · Tritium is also produced in small quantities in accelerator operations. · Becomes part of water molecules like normal hydrogen · Cannot penetrate skin. · Does not accumulate

  4. John Dominicis

    Office of Energy Efficiency and Renewable Energy (EERE)

    As Director, Information Technology Services Office and Chief Information Officer for the Office of Energy Efficiency and Renewable Energy (EERE), John Dominicis collaborates with e-government and...

  5. Neutrino Oscillations Experiments at Fermilab

    E-Print Network [OSTI]

    Adam Para

    2000-05-01T23:59:59.000Z

    Neutrino oscillations provide an unique opportunity to probe physics beyond the Standard Model. Fermilab is constructing two new neutrino beams to provide a decicive test of two of the recent positive indications for neutrino oscillations: MiniBOONE experiment will settle the LSND controversy, MINOS will provide detailed studies of the region indicated by the SuperK results.

  6. Fermilab, Indiana University Horn Optimization for nuSTORM

    E-Print Network [OSTI]

    McDonald, Kirk

    Fermilab, Indiana University Horn Optimization for nuSTORM HPTW 05/21/2014 Fermilab, Indiana University Ao Liu* A. Bross, D. Neuffer Fermilab, Indiana University *www.frankliuao.com/research.html #12;Fermilab, Indiana University WHO WE ARE, WHAT WE DO nuSTORM Overview 5/23/2014 Ao Liu 1 #12;Fermilab

  7. John Podesta

    Broader source: Energy.gov [DOE]

    John Podesta is Chair of the Center for American Progress and the Center for American Progress Action Fund. Under his leadership American Progress has become a notable leader in the...

  8. Presenta ons made available by Fermilab's Interna onal Services Office, WDRS and Fermilab Users Execu ve Commi ee's

    E-Print Network [OSTI]

    Quigg, Chris

    Presenta ons made available by Fermilab's Interna onal Services Office, WDRS and Fermilab Users to be announced. Check Fermilab Today or the Visa Office website. All presenta ons will occur in Wilson Hall on for a presenta on topic of interest to Fermilab users, email visaoffice@fnal.gov or contact the Fermilab UEC

  9. indirect LFV Stephan Lammel, Fermilab CD

    E-Print Network [OSTI]

    Fermilab

    , Fermilab CD Lepton-Photon 2005 Uppsala, June 30th Search for Higgs and New Phenomena at Colliders / #12;Lepton-Photon 2005 Stephan Lammel, Fermilab CD 2005-Jun-30, page 2/28 · Large variety of excellent-Photon 2005 Stephan Lammel, Fermilab CD 2005-Jun-30, page 3/28 Precision EWK/Top and Higgs CDF/D0 mtop went

  10. Physics at a Fermilab Proton Driver

    E-Print Network [OSTI]

    M. G. Albrow; S. Antusch; K. S. Babu; T. Barnes; A. O. Bazarko; R. H. Bernstein; T. J. Bowles; S. J. Brice; A. Ceccucci; F. Cei; H. W. KCheung; D. C. Christian; J. I. Collar; J. Cooper; P. S. Cooper; A. Curioni; A. deGouvea; F. DeJongh; P. F. Derwent; M. V. Diwan; B. A. Dobrescu; G. J. Feldman; D. A. Finley; B. T. Fleming; S. Geer; G. L. Greene; Y. Grossman; D. A. Harris; C. J. Horowitz; D. W. Hertzog; P. Huber; J. Imazato; A. Jansson; K. P. Jungmann; P. A. Kasper; J. Kersten; S. H. Kettell; Y. Kuno; M. Lindner; M. Mandelkern; W. J. Marciano; W. Melnitchouk; O. Mena; D. G. Michael; J. P. Miller; G. B. Mills; J. G. Morfin; H. Nguyen

    2005-09-16T23:59:59.000Z

    This report documents the physics case for building a 2 MW, 8 GeV superconducting linac proton driver at Fermilab.

  11. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used at Fermilab? I understand that they are used in "detectors" and "particle accelerators", but I would like more specific information. Student of Physics, Ami Dear Ami:...

  12. FIRST RESULTS FROM THE BERKELEY-FERMILAB-PRINCETON MULTIMUON SPECTROMETER

    E-Print Network [OSTI]

    Strovink, M.

    2010-01-01T23:59:59.000Z

    Witherell, and R.P. Johnson, Fermilab Propusal 391 (1975,nucleon scattering in the Fermilab muon beam emphasized theA. Mugge, and R.E. Shafer (Fermilab); G.D. Gollin, F.C.

  13. Fermilab Engineering Manual Appendices Revision 1.0

    E-Print Network [OSTI]

    Quigg, Chris

    Fermilab Engineering Manual Appendices Revision 1.0 Page 1 FERMI NATIONAL ACCELERATOR LABORATORY:__________________________ DATE:_________ REVISION NO.________ REVISION ISSUE DATE:____________ #12;Fermilab Engineering Manual ..................................... 166 #12;Fermilab Engineering Manual Appendices Revision 1.0 Page 3 A. REQUIREMENTS AND SPECIFICATIONS

  14. Fermilab | About Fermilab | Office of Communication | Internships In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab

  15. Fermilab | Director's Policy Manual | List of Fermilab Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW

  16. Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMOGridDataFermilab

  17. Fermilab at Work | Job Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab Now

  18. Fermilab at Work | Lab Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life Abri

  19. Fermilab at Work | Physics Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life AIP

  20. Fermilab at Work | Work Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab LifeWork

  1. Fermilab | Director's Policy Manual | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW '15flags

  2. Fermilab | Science | Particle Physics 101

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticle Physics

  3. Fermilab "Wine & Cheese" Talk September 27, 2013

    E-Print Network [OSTI]

    Field, Richard

    the Tevatron Energy Scan. Wine & Cheese talk, October 4, 2002. Studying the underlying event (UE) at CDF observables from the Tevatron Energy Scan. The PYTHIA UE tunes. #12;Fermilab "Wine & Cheese" Talk September 27Fermilab "Wine & Cheese" Talk September 27, 2013 Rick Field ­ Florida/CDF/CMS Page 1 Rick Field

  4. Physics at an Upgraded Fermilab Proton Driver

    E-Print Network [OSTI]

    S. Geer

    2005-07-19T23:59:59.000Z

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  5. Fermilab Today Thursday, July 16, 2009

    E-Print Network [OSTI]

    Toback, David

    based on the missing energy. In the GMSB model, the gravitino is the particle responsible for the dark Title: An Ultimate Neutrino Detector - Multi-Megaton Water Cherenkov Detector Click here for NALCAL at Fermilab. Many of them live on site. Fermilab Result of the Week Shedding light on dark matter Physicists

  6. Neutrino SuperBeams at Fermilab

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2011-08-23T23:59:59.000Z

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  7. John Shalf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. StorerJohn Shalf John Shalf

  8. Extruding plastic scintillator at Fermilab

    SciTech Connect (OSTI)

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31T23:59:59.000Z

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  9. Gary Feldman 1 Fermilab Workshop Multiple Measurements and

    E-Print Network [OSTI]

    Feldman, Gary

    Gary Feldman 1 Fermilab Workshop Multiple Measurements and Parameters in the Unified Approach Gary Feldman Workshop on Confidence Limits Fermilab March 28, 2000 #12;Gary Feldman 2 Fermilab Workshop Origins Feldman 3 Fermilab Workshop Lack of Uniformly Most Powerful Test · Error of the first kind: Rejecting

  10. Cecilia Gerber, Fermilab The D0 Silicon Microstrip Tracker

    E-Print Network [OSTI]

    Gerber, Cecilia E.

    1 Cecilia Gerber, Fermilab The D0 Silicon Microstrip Tracker Cecilia Gerber - Fermilab Outline · Conclusions and Outlook #12;2 Cecilia Gerber, Fermilab · Run II will start March 1st 2001 · Center forward preshower #12;3 Cecilia Gerber, Fermilab D0 Silicon Microstrip Tracker Barrel H-disk F

  11. Fermilab FERMILAB-TM-2175 July 2002 SAM Managed Cache and Processing for Clusters in a Worldwide

    E-Print Network [OSTI]

    Fermilab FERMILAB-TM-2175 July 2002 SAM Managed Cache and Processing for Clusters in a Worldwide, Sinisa Veseli, Stephen White, Victoria White Fermilab, Batavia, Illinois, USA *Northwestern University at Fermilab as a versatile, distributed, data management system. One of its many features is its ability

  12. DIMUON PRODUCTION BY HIGH ENERGY NEUTRINOS AND ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

    E-Print Network [OSTI]

    Orthel, John L.

    2010-01-01T23:59:59.000Z

    ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBERANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER*ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

  13. Physics History Books in the Fermilab Library

    SciTech Connect (OSTI)

    Sara Tompson.

    1999-09-17T23:59:59.000Z

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  14. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study the first three (and experience the last) at Fermilab. We are most familiar with gravity and second-most familiar with the electromagnetic force in our daily routine. So I...

  15. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Frequency Beams Hi, I'm a physics student and I love the work you are doing at Fermilab. I've been watching closely your progress and I believe some of the best mind are...

  16. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotation of Black Holes Hello Alyssa -- The questions you sent to Fermilab about physics didn't get lost, they just got routed to a couple of lazy postdocs. That's why it took so...

  17. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appreciate it if you could send it to me. That would be awesome. Thanks Luke Luke - Hello. I am a scientist here at Fermilab and your question got forwarded to me. In some...

  18. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could happen, and one of the solution was to introduce a new particle, called the Higgs boson. There are many other suggestions in the air, and one of our goals here at Fermilab...

  19. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to run Fermilab for one year -- the kinetic energy of 3 MILLION, 1000 ton freight trains all moving at 50 mileshour -- the explosion of 300 kilotons of TNT (or about 15...

  20. Heavy quark masses from Fermilab Fermions

    E-Print Network [OSTI]

    Matthew Nobes; Howard Trottier

    2005-09-26T23:59:59.000Z

    Using automated perturbation theory techniques, we have computed the one-loop mass of Fermilab fermions, with an improved gluon action. We will present the results of these calculations, and the resulting predictions for the charm and bottom quark masses in the MSbar scheme. We report mc(mc) = 1:22(9) GeV and mb(mb) = 4:7(4) GeV. In addition we present results for the one-loop coeffcients of the Fermilab action.

  1. John Christman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. Storer (1983) March 05,John

  2. John Scott

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. Storer (1983)ResourcesJohn

  3. John. F. O'Leary Appointed to Lead Federal Energy Administration...

    National Nuclear Security Administration (NNSA)

    John. F. O'Leary Appointed to Lead Federal Energy Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  4. OBSERVATIONS AND COMPUTATIONS OF HIGHER ENERGY COLLECTIVE EFFECTS IN THE FERMILAB BOOSTER

    E-Print Network [OSTI]

    Cornacchia, M.

    2010-01-01T23:59:59.000Z

    Energy Collective Effects in the Fermilab Booster* Massimoin during my visit to Fermilab in November and December

  5. Fermilab Workshop for Prairie - Our Heartland: Chemistry Institutes...

    Broader source: Energy.gov (indexed) [DOE]

    Chemistry Institutes Fermilab Workshop for Prairie - Our Heartland: Chemistry Institutes June 17, 2013 7:15PM EDT to June 21, 2013 9:15PM EDT Fermilab What was the Midwest like 200...

  6. Groundwater migration of radionuclides at Fermilab

    SciTech Connect (OSTI)

    Malensek, A.J.; Wehmann, A.A.; Elwyn, A.J.; Moss, K.J.; Kesich, P.M.

    1993-09-20T23:59:59.000Z

    The simple Single Resident Well (SRW) Model has been used to calculate groundwater movement since Fermilab`s inception. A new Concentration Model is proposed which is more realistic and takes advantage of computer modeling that has been developed for the siting of landfills. Site geologic and hydrologic data were given to a consultant who made the migration calculations from an initial concentration that was based upon the existing knowledge of the radioactivity leached out of the soil. The various components of the new Model are discussed, and numerical examples are given and compared with DOE/EPA limits.

  7. Photoproduction of charm particles at Fermilab

    SciTech Connect (OSTI)

    Cumalat, John P. [University of Colorado, Department of Physics Boulder, Colorado 80309 (United States)

    1997-03-15T23:59:59.000Z

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  8. Recent results on Charm Physics from Fermilab

    E-Print Network [OSTI]

    J. C. Anjos; E. Cuautle

    2000-05-16T23:59:59.000Z

    New high statistics, high resolution fixed target experiments producing $10^5$ - $10^6$ fully reconstructed charm particles are allowing a detailed study of the charm sector. Recent results on charm quark production from Fermilab fixed target experiments E791, SELEX and FOCUS are presented.

  9. One Loop Renormalization of Fermilab Fermions

    E-Print Network [OSTI]

    Matthew Nobes; Howard Trottier

    2002-09-02T23:59:59.000Z

    We discuss the current status of our automatic perturbation theory program as applied to Fermilab Fermions. We give an overview of our methods, a discussion of tree level matching, and one loop results for the coefficients of the higher dimension kinetic operators.

  10. Proposed New Antiproton Experiments at Fermilab

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2008-12-13T23:59:59.000Z

    Fermilab operates the world's most intense source of antiprotons. Recently various experiments have been proposed that can use those antiprotons either parasitically during Tevatron Collider running or after the Tevatron Collider finishes in about 2010. We discuss the physics goals and prospects of the proposed experiments.

  11. Correction magnets for the Fermilab Recycler Ring

    SciTech Connect (OSTI)

    James T Volk et al.

    2003-05-27T23:59:59.000Z

    In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

  12. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    SciTech Connect (OSTI)

    Apollinari, Giorgio; /Fermilab; Asner, David M.; /PNL, Richland; Baldini, Wander; /INFN, Ferrara; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; /Fermilab; Chakravorty, Alak; /St. Xavier U., Chicago; Colas, Paul; /Saclay; Derwent, Paul; /Fermilab; Drutskoy, Alexey; /Moscow, ITEP; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01T23:59:59.000Z

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  13. People Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

  14. Memorial John Adams

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Plusieurs orateurs honorent la mmoire de Sir John Adams (1920-1984), ancien DG du Cern et un "homme unique"

  15. Electron Cloud induced instabilities in the Fermilab Main Injector (MI) for the High Intensity Neutrino Source (HINS) project

    E-Print Network [OSTI]

    Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini, Marco; Celata, Christine; Grote, David

    2008-01-01T23:59:59.000Z

    Fermilab Main Injector (MI) for the High Intensity Neutrinofor the Fermilab maininjector (MI) show the existence of amitance growth. The Fermilab MI is being considered for an

  16. Electron Cloud induced instabilities in the Fermilab Main Injector (MI) for the High Intensity Neutrino Source (HINS) project

    E-Print Network [OSTI]

    Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini, Marco; Celata, Christine; Grote, David

    2008-01-01T23:59:59.000Z

    induced instabilities in the Fermilab Main Injector (MI) forrings. Results for the Fermilab maininjector (MI) show theem- mitance growth. The Fermilab MI is being considered for

  17. John Wright Assistant Professor

    E-Print Network [OSTI]

    Shepard, Kenneth

    John Wright Assistant Professor Department of Electrical Engineering Columbia University Zhang and John Wright, "Efficient Point-to-Subspace Query with Application to Robust Face Recognition", submitted to SIAM Journal on Imaging Science, 2013. John Wright, Arvind Ganesh, Kerui Min and Yi Ma

  18. Physics at a New Fermilab Proton Driver

    E-Print Network [OSTI]

    S. Geer

    2006-04-03T23:59:59.000Z

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ``Study on the Physics of Neutrinos'' concluded that the future U.S. neutrino program should have, as one of its components, ``A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing CP violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  19. Fixed target experiments at the Fermilab Tevatron

    E-Print Network [OSTI]

    Gaston Gutierrez; Marco A. Reyes

    2014-09-29T23:59:59.000Z

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of $\\sqrt{s}=40$ GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include $\\pi^+\\pi^-$, $K^0_s K^0_s$, $ K^0_sK^\\pm\\pi^\\mp$, $\\phi\\phi$ and $D^{*\\pm}$. Partial Wave Analysis results will be presented on the light states but only the cross section will be reviewed in the diffractive production of $D^{*\\pm}$

  20. Physics at a new Fermilab proton driver

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2006-04-01T23:59:59.000Z

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  1. A Roadmap for the Future of Fermilab

    SciTech Connect (OSTI)

    Oddone, Pier

    2005-12-12T23:59:59.000Z

    The principal aim of this roadmap is to place the US and Fermilab in the best position to host the International Linear Collider (ILC). The strategy must be resilient against the many vicissitudes that will attend the development of such a large project. Pier Oddone will explore the tension between the needed concentration of effort to move a project as large as the ILC forward and the need to maintain the breadth of our field.

  2. Data from Fermilab E-687 (Photoproduction of Heavy Flavours) and Fermilab E-831 (FOCUS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The FERMILAB E687 Collaboration studies production and decay properties of heavy flavours produced in photon-hadron interactions. The experiment recorded approximately 500 million hadronic triggers in the 1990-91 fixed target run at Fermilab from which over 80 thousand charm decays were fully reconstructed. Physics publications include the precision lifetime measurements of the charm hadrons, D meson semileptonic form factors, detailed Dalitz plot analyses, charm meson and baryon decay modes and spectroscopy, searches for rare and forbidden phenomena, and tests of QCD production mechanisms. The follow-on experiment FOCUS Collaboration (Fermilab E831) successfully recorded huge amount of data during the 1996-1997 fixed target run. The FOCUS home page is located at http://www-focus.fnal.gov/. FOCUS is an international collaboration with institutions in Brazil, Italy, South Korea, Mexico, Puerto Rico, and the U.S.

  3. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Color of Atoms Mr. Pordes- I have a question for science. As you probably know, we have been studying all about particles and the particle model of matter and John Dalton and...

  4. Mr. Jack W. Anderson Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    permitting. Liquid Effluents Erosion control devices would be utilized to prevent sediment accumulation in storm water runoff. V. NEPA Recommendati on Fermilab staff have...

  5. X013 Mr. Jack Anderson Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    AT FERMI NATIONAL ACCELERATOR LABORATORY (FERMILAB) - VARIOUS DEMOLITION JOBS 2013 Reference: Memorandum, from J. Anderson to M. Weis, dated May 28, 2013, Subject: National...

  6. Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Fermilab. The vertical axis shows amounts and the horizontal axis shows three categories: electricity consumption, demand, and annual electricity cost. For each category there are...

  7. Fermilab Workshop for Prairie - Our Heartland: Beauty and Charm...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  8. Fermilab Workshop for Prairie - Our Heartland: Insects at Work...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  9. Fermilab Workshop for Prairie - Our Heartland: Biology Institute...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  10. Fermilab Workshop for Prairie - Our Heartland: | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  11. RF tests of an 805 MHz pillbox cavity at Lab G of Fermilab

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    PILLBOX CAVITY AT LAB G OF FERMILAB* Derun Li, J. Corlett,apertures at Lab G of Fermilab, a dedicated facility forwas shipped to Lab G of Fermilab for high power tests in

  12. Aperture studies for the AP2 anti-proton Line at Fermilab

    E-Print Network [OSTI]

    Reichel, Ina; Zisman, Michael; Placidi, Massimo

    2003-01-01T23:59:59.000Z

    I Project. Technical report, Fermilab, Septem- ber 1984. [2]Upgrades. Pbar Note 680, Fermilab, April 2003. [4] M.mm-mrad. Pbar Note 571, Fermilab, October [5] F. Bieniosek.

  13. Fermilab silicon strip readout chip for BTev

    SciTech Connect (OSTI)

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01T23:59:59.000Z

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  14. Numerical Tests of the Improved Fermilab Action

    E-Print Network [OSTI]

    C. Detar; A. S. Kronfeld; M. B. Oktay

    2010-11-23T23:59:59.000Z

    Recently, the Fermilab heavy-quark action was extended to include dimension-six and -seven operators in order to reduce the discretization errors. In this talk, we present results of the first numerical simulations with this action (the OK action), where we study the masses of the quarkonium and heavy-light systems. We calculate combinations of masses designed to test improvement and compare results obtained with the OK action to their counterparts obtained with the clover action. Our preliminary results show a clear improvement.

  15. Dilepton Production at Fermilab and RHIC

    E-Print Network [OSTI]

    J. C. Peng; P. L. McGaughey; J. M. Moss

    1999-05-21T23:59:59.000Z

    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC.

  16. Superconducting radiofrequency linac development at Fermilab

    SciTech Connect (OSTI)

    Holmes, Stephen D.; /Fermilab

    2009-10-01T23:59:59.000Z

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  17. Fermilab at Work | Manuals and Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life

  18. Fermilab at Work | Physics Links: HEP Labs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life

  19. Fermilab | Director's Policy Manual | Document Hierarchy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW '15

  20. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab at Work

  1. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab at

  2. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab atCo-Op

  3. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab

  4. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory

  5. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory Related

  6. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory Related

  7. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory

  8. Fermilab | Illinois Accelerator Research Center | Construction Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at

  9. Fermilab | Illinois Accelerator Research Center | Contact IARC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab atContact

  10. Fermilab | Science | Particle Accelerators | Leading Accelerator Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's AcceleratorLHC

  11. Proton-Antiproton

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Dernire session du cours sur proton-antiproton du Cern Accelarator School. John Peoples, directeur de Fermilab fait un expos suivi de questions.

  12. Metropolitan area network support at Fermilab

    SciTech Connect (OSTI)

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01T23:59:59.000Z

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  13. The New (g-2) Experiment at Fermilab Brendan C. K. Casey

    E-Print Network [OSTI]

    Quigg, Chris

    The New (g-2)µ Experiment at Fermilab Brendan C. K. Casey Fermilab, PO Box 500, Batavia, IL 60510. This new g-2 experiment will be hosted by Fermilab making use of minor modifications to the existing hosted at Brookhaven. In particular, the entire storage ring and magnet will be shipped to Fermilab. We

  14. What Will The Neighbors Think? A Discussion with the Fermilab ILC Citizens' Task Force

    E-Print Network [OSTI]

    Quigg, Chris

    What Will The Neighbors Think? A Discussion with the Fermilab ILC Citizens' Task Force July 27 community play in working directly with the local community to bring the ILC to Fermilab? 5. Why should we build the ILC at Fermilab? What are the benefits for the local community? Why is Fermilab the best site

  15. LATBauerdick/Fermilab Condor Week May 3, 2012 Open Science Grid

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    LATBauerdick/Fermilab Condor Week May 3, 2012 f 1 Open Science Grid LATBauerdick/Fermilab #12;LATBauerdick/Fermilab Condor Week May 3, 2012 fThe OSG Ecosystem OSG Consortium sites/resources providers, reliable and shared resources to support computation at all scales. #12;LATBauerdick/Fermilab Condor Week

  16. Charm Physics at Fermilab E791

    E-Print Network [OSTI]

    Fermilab E791 Collaboration; D. J. Summers

    2000-09-06T23:59:59.000Z

    Experiment 791 at Fermilab's Tagged Photon Laboratory has just accumulated a high statistics charm sample by recording 20 billion events on 24000 8mm tapes. A 500 GeV/c pi- beam was used with a fixed target and a magnetic spectrometer which now includes 23 silicon fixed target and a magnetic spectrometer which now includes 23 silicon microstrip planes for vertex reconstruction. A new data acquisition system read out 9000 events/sec during the part of the Tevatron cycle that delivered beam. Digitization and readout took 50 uS per event. Data was buffered in eight large FIFO memories to allow continuous event building and continuous tape writing to a wall of 42 Exabytes at 9.6 MB/sec. The 50 terabytes of data buffered to tape is now being filtered on RISC CPUs. Preliminary results show D0 --> K- pi+ and D+ --> K- pi+ pi+ decays. Rarer decays will be pursued.

  17. Bob Wilson and The Birth of Fermilab

    ScienceCinema (OSTI)

    Edwin L. Goldwasser

    2010-01-08T23:59:59.000Z

    In the 1960?s the Lawrence Berkeley Laboratory (then The Lawrence Radiation Laboratory) submitted two proposals to build the next high energy physics research laboratory. The first included a 200 GeV accelerator and associated experimental facilities. The cost was $350 million. The Bureau of the Budget rejected that proposal as a ?budget buster?. It ruled that $250 million was the maximum that could be accepted. The second proposal was for a reduced scope laboratory that met the Bureau of the Budget?s cost limitation, but it was for a lower energy accelerator and somewhat smaller and fewer experimental facilities. The powerful Congressional Joint Committee on Atomic Energy rejected the reduced scope proposal as inadequate to provide physics results of sufficient interest to justify the cost. It was then that Bob Wilson came forth with a third proposal, coping with that ?Catch 22? and leading to the creation of Fermilab. How he did it will be the subject of this colloquium.

  18. Fermilab collider run 1b accelerator performance

    SciTech Connect (OSTI)

    Bharadwaj, V.; Halling, M.; Lucas, P.; McCrory, E.; Mishra, S.; Pruss, S.; Werkema, S.

    1996-04-01T23:59:59.000Z

    This report summarizes the performance of Run 1b as of the end of July 1995. This run is the conclusion of Fermilab Collider Run 1, which consists of Run 1a (May 1992 - May 1993) and Run 1b (January 1994 - February 1996). Run 1b is characterized by being the first with the new 400 MeV Linac. At this time the run is not complete. Colliding beam physics is scheduled to resume after the summer 1995 shut down and continue until mid-February 1996. All of the operation to date is at a Tevatron energy of 900 GeV. This report emphasizes performance numbers and the various improvements made to systems to achieve this performance. It will only discuss the underlying physics to a limited extent. The report is divided into sections on: run statistics, I&C issues, proton source performance, antiproton source performance, main ring performance, Tevatron performance, and a summary.

  19. John W. Meeker

    Office of Energy Efficiency and Renewable Energy (EERE)

    As Deputy of Procurement Services for the Golden Field Office in the Office of Energy Efficiency and Renewable Energy (EERE), John directs the procurement activityboth acquisition and financial...

  20. Status of the KTeV experiment at Fermilab

    SciTech Connect (OSTI)

    Ben-David, R.; KTeV Collaboration

    1997-10-01T23:59:59.000Z

    The KTeV experiment is a fixed target experiment at Fermilab. Its primary goal is the search for direct CP violation in the decay of neutral kaons. Its current status and some preliminary results will be discussed.

  1. Fermilab Workshop for Prairie- Our Heartland: Physics Institutes (second session)

    Broader source: Energy.gov [DOE]

    What was the Midwest like 200 years ago?The Prairie - Our Heartlandis both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  2. Ms. Victoria A. White Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    Ms. Victoria A. White Chief Operating Officer Fermilab P.O. Box 500 Batavia, I L 60510 Dear Ms. White: SUBJECT : NATIONA L ENVIRON MENTAL POLICY ACT DETERMI NATION AT FERMI...

  3. Ms. Victoria A, White Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    A, White Chief Operating Officer Fermilab P.O. Box 50Q Batavia, I L 60510 Dear Ms. White: SUBJECT: NATIONAL ENVIRONMEN TAL POLICY ACT DTRMINATI QN AT ERMs NATIONAL ACCELERATO R...

  4. Mr. Jack W. Anderson Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    'JAN 2013 Mr. Jack W. Anderson Chief Operating Officer Fermilab P.O. Box 500 Batavia, IL 60510 Dear Mr. Anderson: FSO H- fnAB U22 13 Scot' 1 13 FSO Bo, 3 Fso...

  5. Status of the KTeV Experiment at Fermilab

    E-Print Network [OSTI]

    R. Ben-David; representing the KTeV collaboration

    1998-01-06T23:59:59.000Z

    The KTeV experiment is a fixed target experiment at Fermilab. Its primary goal is the search for direct CP violation in the decay of neutral kaons. Its current status and some preliminary results will be discussed.

  6. Non-Perturbative Renormalization and the Fermilab Action

    E-Print Network [OSTI]

    Huey-Wen Lin

    2003-10-30T23:59:59.000Z

    We discuss the application of the regularization independent (RI) scheme of Rome/Southampton to determine the normalization of heavy quark operators non-perturbatively using the Fermilab action.

  7. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imagined Landscape - Melanie P. Brown, Suzanne K. Loechl, Julian E. Williams On Display: December 4, 2014 -January 29, 2015 Artist Reception - December 12 5-7pm Fermilab Art...

  8. Fermilab | Newsroom | Fermilab/U.S. experts on the Large Hadron Collider

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab « Return

  9. People Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the PacificCollaboration »People Profiles Featured

  10. Code input alternatives John C. Wright

    E-Print Network [OSTI]

    Wright, John C.

    Code input alternatives John C. Wright John Wright Oct 2009 ­ CSWIM Workshop@ORNL Extensible markup

  11. Physics at an upgraded proton driver at Fermilab

    SciTech Connect (OSTI)

    Steve Geer

    2004-07-28T23:59:59.000Z

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also supporting a vigorous 8 GeV fixed-target program. In addition, a Proton Driver might also serve as a stepping-stone to future accelerators, both as an R&D test bed and as an injector, with connections to the Linear Collider, Neutrino Factories, and a VLHC. Hence, although neutrino physics would provide the main thrust for the science program at an upgraded Fermilab proton source, the new facility would also offer exciting opportunities for other fixed-target particle physics (kaons, muons, neutrons, antiprotons, etc.) and a path towards new accelerators in the future.

  12. CP Violation in Strange Baryon Decays: A Report from Fermilab Experiment 871

    E-Print Network [OSTI]

    Fermilab Experiment E871

    CP Violation in Strange Baryon Decays: A Report from Fermilab Experiment 871 C. James, a R. A, Alabama 36688 j University of Virginia, Charlottesville, Virginia 22901 Abstract. Fermilab experiment 871

  13. The Mu2e Experiment at Fermilab: a Search for Charged Lepton Flavor Violation

    E-Print Network [OSTI]

    The Mu2e Experiment at Fermilab: a Search for Charged Lepton Flavor of the Mu2e Collaboration. A new experiment, Mu2e, is being developed at Fermilab

  14. CURRICULUM VITAE JOHN TEMPLE

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 CURRICULUM VITAE JOHN TEMPLE Associate Dean/Associate Professor P.I. Reed School of Journalism-Present: Oversee the academic operations of the school; oversee curriculum changes; chair faculty in Spring 2004 and Fall 2008. Convergence Curriculum: Worked with SOJ faculty, the Provost's Office

  15. Curriculum Vitae JOHN WAKABAYASHI

    E-Print Network [OSTI]

    Wang, Zhi "Luke"

    geochemical, geophysical studies and geologic prospecting for hard rock uranium deposits in Colorado1 Curriculum Vitae JOHN WAKABAYASHI Associate Professor of Geology, California State University, CA 93740-8039 tel. (559-278-6459) email: jwakabayashi@csufresno.edu EDUCATION A.B. Geology

  16. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04T23:59:59.000Z

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  17. Prospects for low-energy antiproton physics at Fermilab

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2001-02-10T23:59:59.000Z

    Fermilab has long had the world's most intense antiproton source, but the opportunities for medium-energy antiproton physics have been limited, and those for low-energy antiproton physics nonexistent. The conclusion of E835 brings this era to an end. While the future of antiproton physics at Fermilab remains highly uncertain, developments are occurring that may lead to a low-energy program within the next several years, with the possibility of an improved medium-energy program thereafter. These issues were considered at the recent $\\bar{p}2000$ Workshop at Illinois Institute of Technology. I summarize the current status of the Fermilab antiproton facility, review hyperon {\\em CP} violation as an example of the physics that might be achievable, and discuss future possibilities.

  18. Report of the Fermilab ILC Citizens' Task Force

    SciTech Connect (OSTI)

    None

    2008-06-01T23:59:59.000Z

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  19. World Network Speed Record Shattered Caltech, SLAC, Fermilab, CERN, Michigan, Florida,

    E-Print Network [OSTI]

    Low, Steven H.

    World Network Speed Record Shattered Caltech, SLAC, Fermilab, CERN, Michigan, Florida, Brookhaven, the Stanford Linear Accelerator Center (SLAC), Fermilab, CERN, and the University of Michigan and partners and Fermilab and an optimized Linux kernel developed at Michigan. Professor Harvey Newman of Caltech, head

  20. Eileen Berman Condor in the Fermilab Grid FacilitiesApril 30, 2008

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Eileen Berman #12;Condor in the Fermilab Grid FacilitiesApril 30, 2008 Fermi National Accelerator of 1000' s of users working for many years, rely on Fermilab to provide the core services and software necessary to enable the research that leads to scientific discoveries The Fermilab Grid Facilities

  1. Simona Rolli, Fermilab W&C Recent results on top quark,

    E-Print Network [OSTI]

    Fermilab

    4/27/04 Simona Rolli, Fermilab W&C seminar 1 Recent results on top quark, electroweak and new;4/27/04 Simona Rolli, Fermilab W&C seminar 2 Introduction Exciting time now at CDF ! frenzy activity in physics datasets Common identification/reconstruction cuts #12;4/27/04 Simona Rolli, Fermilab W&C seminar 3 Outline

  2. Kaori Maeshima, Fermilab La Thuile, 4th March 2005 1 Non SUSY Searches at the

    E-Print Network [OSTI]

    Fermilab

    Kaori Maeshima, Fermilab La Thuile, 4th March 2005 1 Non SUSY Searches at the Tevatron Kaori Maeshima (Fermilab) For the D0 and CDF Collaborations #12;Search Strategies & This Talk OrganizationSearch Strategies & This Talk Organization Kaori Maeshima, Fermilab La Thuile, 4th March 2005 2 New Phenomena Exp

  3. 7/25/13 Fermilab Today www.fnal.gov/pub/today/ 1/4

    E-Print Network [OSTI]

    Toback, David

    7/25/13 Fermilab Today www.fnal.gov/pub/today/ 1/4 Thursday, July 25, 2013 Subscribe | Contact Us, a weekly calendar with links to additional information. Ongoing and upcoming conferences at Fermilab Campaigns Take Five Weather Increasing clouds 79°/61° Extended forecast Weather at Fermilab Video of the Day

  4. A. Evdokimov, ITEP Wine & Cheese Seminar, Fermilab 18 Jun 2004 1 Anatoly Evdokimov

    E-Print Network [OSTI]

    Fermi National Accelerator Laboratory

    A. Evdokimov, ITEP Wine & Cheese Seminar, Fermilab 18 Jun 2004 1 Anatoly Evdokimov Institute & Cheese Seminar, Fermilab 18 Jun 2004 2 OutlineOutline Heavy-Light Meson Spectroscopy Reminder about SELEX Conclusions #12;A. Evdokimov, ITEP Wine & Cheese Seminar, Fermilab 18 Jun 2004 3 Heavy

  5. Measurement of the W Boson Mass With the Collider Detector at Fermilab

    E-Print Network [OSTI]

    Weitz, David

    Measurement of the W Boson Mass With the Collider Detector at Fermilab A thesis presented by Andrew With the Collider Detector at Fermilab Andrew Scott Gordon Thesis Advisor: Melissa Franklin Abstract We measure at Fermilab from pp collisions at ps = 1800 GeV. The data weretaken from January 1994 through July 1995

  6. *Correspondence address. Fermilab, MS 122 E 871, Batavia, IL 60510, USA. Fax: 16308403867.

    E-Print Network [OSTI]

    Fermilab Experiment E871

    *Correspondence address. Fermilab, MS 122 E 871, Batavia, IL 60510, USA. Fax: 1­630­840­3867. E, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA #Fermilab, Batavia, IL 60510, USA; accepted 29 April 2000 Abstract The data acquisition system of the HyperCP experiment at Fermilab recorded

  7. CIPANP -2003 Peter S. Cooper -Fermilab 1 Brief theory and model review

    E-Print Network [OSTI]

    Fermi National Accelerator Laboratory

    CIPANP - 2003 Peter S. Cooper - Fermilab 1 Outline ? Brief theory and model review ?Search methods. Cooper Fermi National Accelerator Laboratory #12;CIPANP - 2003 Peter S. Cooper - Fermilab 2 SELEX Collaboration #12;CIPANP - 2003 Peter S. Cooper - Fermilab 3 Some Nomenclature In this talk we replace PDG names

  8. The NuMI Neutrino Beam at Fermilab

    E-Print Network [OSTI]

    Sacha E. Kopp

    2004-12-18T23:59:59.000Z

    The Neutrinos at the Main Injector (NuMI) facility at Fermilab is due to begin operations in late 2004. NuMI will deliver an intense muon neutrino beam of variable energy 2-20 GeV directed into the Earth at 58 mrad for short (~1 km) and long (~700-900 km) baseline experiments. Several aspects of the design are reviewed, as are potential upgrade requirements to the facility in the event a Proton Driver is built at Fermilab to enhance the neutrino flux.

  9. Research Activities at Fermilab for Big Data Movement

    SciTech Connect (OSTI)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01T23:59:59.000Z

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  10. Collider Detector at Fermilab (CDF): Data from B Hadrons Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  11. 2013 Federal Energy and Water Management Award Winners John Eichhorst...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Eichhorst, John Fehr, M. Renee Jewell, and Kathleen Kreyns 2013 Federal Energy and Water Management Award Winners John Eichhorst, John Fehr, M. Renee Jewell, and Kathleen...

  12. First events and prospects at the Fermilab collider

    SciTech Connect (OSTI)

    Binkley, M.

    1986-03-01T23:59:59.000Z

    A brief description of the Collider Detector at Fermilab (CDF) is given including the detector components and the data acquisition system. The first test run, the first events, and the performance of the detector are discussed. Finally the prospects for future running are reviewed.

  13. MINERvA Detector ConstructionTimelapse at Fermilab

    SciTech Connect (OSTI)

    2009-09-01T23:59:59.000Z

    This is a short timelapse of one day of construction of the MINERvA detector located at Fermilab, approximately 375 feet below the ground. This sequence was shot at 5 minute intervals from 6:00 am until 11:00 pm on April 6, 2009.

  14. Search for New Fermions (Quirks) at the Fermilab Tevatron Collider

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; McGivern, Carrie Lynne; Sekaric, Jadranka; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.

    2010-11-19T23:59:59.000Z

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4??fb(?1) of integrated luminosity collected by the D0 experiment at the Fermilab...

  15. Fermilab Recycler Ring: Technical design report. Revision 1.1

    SciTech Connect (OSTI)

    Jackson, G. [ed.

    1996-07-01T23:59:59.000Z

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab`s ongoing High Energy Physics program and the Main Injector construction project.

  16. B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 -p. 1/66 Muon (g-2) Past and Future

    E-Print Network [OSTI]

    Roberts, B. Lee

    B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 1/66 Muon (g-2) Past and Future Beam@bu.edu http://physics.bu.edu/roberts.html #12;B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 2 Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 3/66B. L. Roberts, Fermilab , 3 September 2008 - p

  17. People's Physics Book The People's Physics Book

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    #12;People's Physics Book The People's Physics Book Authors James H. Dann, Ph.D. James J. Dann. All rights reserved. Textbook Website http://scipp.ucsc.edu/outreach/index2.html #12;People's Physics) "Each discovery, each advance, each increase in the sum of human riches, owes its being to the physical

  18. People's Physics Book The People's Physics Book

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book The People's Physics Book Authors James H. Dann, Ph.D. James J. Dann. All rights reserved. Textbook Website http://scipp.ucsc.edu/outreach/index2.html #12;People's Physics) "Each discovery, each advance, each increase in the sum of human riches, owes its being to the physical

  19. John Francis Croix The Dissertation Committee for John Francis Croix

    E-Print Network [OSTI]

    Aziz, Adnan

    Womack #12;Cell and Interconnect Timing Analysis Using Waveforms by John Francis Croix, B.S., M and Interconnect Timing Analysis Using Waveforms Publication No. John Francis Croix, Ph.D. The University of Texas certifies that this is the approved version of the following dissertation: Cell and Interconnect Timing

  20. Friction Stir Welding John Hinch and John Rudge

    E-Print Network [OSTI]

    Rudge, John

    Friction Stir Welding John Hinch and John Rudge September 11, 2002 1 Introduction Friction Stir Welding is an innovative technique for joining two pieces of metal. A rapidly rotating tool is pushed that a good model of friction stir welding should be able to predict - the power, the force, the temperature

  1. John R. Cort | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. Storer (1983)ResourcesJohn R.

  2. Search | Analyze | Review John Tredennick

    E-Print Network [OSTI]

    Tennessee, University of

    a Year! Content is Exploding #12;Search | Analyze | Review Litigation Keeps Going · Major companies: 556.S. company to: Acquiring company liable for the sins of its target #12;Search | Analyze | Review JohnSearch | Analyze | Review John Tredennick Bruce Kiefer Using Text Mining to Help Bring Electronic

  3. CURRICULUM VITAE JOHN W. SNEDDEN

    E-Print Network [OSTI]

    Yang, Zong-Liang

    1 CURRICULUM VITAE JOHN W. SNEDDEN RESEARCH INTERESTS: Sequence Stratigraphy, sedimentology Systems The ExxonMobil Methodology: SEPM Concepts in Sedimentology and Paleontology #9. Snedden, John W Bodies, SEPM Special Concepts in Sedimentology and Paleontology volume, p. 1-12. Snedden, J.W., and R. W

  4. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect (OSTI)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R. [Fermi National Accelerator Laboratory Batavia, IL, 60510 (United States)

    2014-01-29T23:59:59.000Z

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  5. New Phenomena II: Recent Results from the Fermilab Tevatron

    E-Print Network [OSTI]

    David Toback

    2000-05-12T23:59:59.000Z

    The CDF and D\\O collaborations continue to search for new physics using more than 100~pb$^{-1}$ of \\xxbar{p} collisions at $\\sqrt{s}=1.8$ TeV collected at the Fermilab Tevatron. We present recent results from both experiments on R-parity violating Supersymmetry and $Z'$/Technicolor production with $ee$ and \\xxbar{t} final states. In addition we introduce Sherlock, a new quasi-model-independent search strategy.

  6. Measuring Gaugino Soft Phases and the LSP Mass At Fermilab

    E-Print Network [OSTI]

    S. Mrenna; G. L. Kane; Lian-Tao Wang

    1999-10-25T23:59:59.000Z

    Once superpartners are discovered at colliders, the next challenge will be to determine the parameters of the supersymmetric Lagrangian. We illustrate how the relative phases of the gluino, SU(2), and U(1) gauginos and the Higgsino mass parameter mu can be measured at a hadron collider without ad hoc assumptions about the underlying physics, focusing on Fermilab. We also discuss how the gluino and LSP masses can be measured.

  7. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect (OSTI)

    Syphers, M.J.; /Fermilab

    2009-10-01T23:59:59.000Z

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  8. St John Ambulance Australia Research Scholarships St John Ambulance Australia ("St John") is Australia's leading provider of first aid training,

    E-Print Network [OSTI]

    of first aid kits and equipment. St John runs the ambulance services in Western Australia and the NorthernSt John Ambulance Australia Research Scholarships St John Ambulance Australia ("St John") is Australia's leading provider of first aid training, first aid services at public events and supplier

  9. Mobility of Tritium in Engineered and Earth Materials at the NuMI Facility, Fermilab: Progress report for work performed between June 13 and September 30, 2006

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    for the NuMI project, FERMILAB-TM-2009 and NuMI-B-279, Fermito NuMI beam tunnels, FERMILAB-TM-2083, Fermi Nationalprotection radiation safety, Fermilab report, July 2001.

  10. PERFORMANCE CHARACTERISTICS OF THE FERMILAB 15-FOOT BUBBLE CHAMBER WITH A 1/3-SCALE INTERNAL PICKET FENCE (IPF) AND A TWO-PLANE EXTERNAL MUON IDENTIFIER (EMI)

    E-Print Network [OSTI]

    Stevenson, M.L.

    2011-01-01T23:59:59.000Z

    L. Stevenson, G. P. Yost; Fermilab: B. Chrisman, D. Gee, A.of Hawaii; and M. Atac, Fermilab; "Status of the InternalPicket Fence for the Fermilab 15-Foot Bubble Chamber", U. H.

  11. INTERNATIONAL ORGANIZING John Priscu (Chair)

    E-Print Network [OSTI]

    Wall, Diana

    INTERNATIONAL ORGANIZING COMMITTEE John Priscu (Chair) Montana State University, USA Nina Gunde, USA Laurie Connell University of Maine, USA Hugh Ducklow MBL- Woods Hole, USA Beat Frey Swiss Federal

  12. CHRISTOPHER JOHN LOBB ADDRESS: Office

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    CHRISTOPHER JOHN LOBB ADDRESS: Office: Center for Superconductivity Research Department of Physics. Proc. No. 58 (AIP, New York, 1980), p. 308. 7. C. J. Lobb and Keith R. Karasek, A Monte Carlo

  13. Sir John Retcliffe (Hermann Goedsche)

    E-Print Network [OSTI]

    Wagner, Stephan

    Sir John Retcliffe (Hermann Goedsche) Sebastopol Historisch-politischer Roman aus der Gegenwart DRITTER THEIL. VON SILISTRIA BIS SEBASTOPOL DER AUFSTAND IM EPIRUS. Während noch der Winter mit seinen

  14. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect (OSTI)

    Holmes, Stephen D.; /Fermilab

    2010-05-01T23:59:59.000Z

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  15. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    SciTech Connect (OSTI)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.; /Fermilab

    2012-05-14T23:59:59.000Z

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  16. Electron cloud and space charge effects in the Fermilab Booster

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2007-06-01T23:59:59.000Z

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  17. Combining CPT-conjugate Neutrino channels at Fermilab

    E-Print Network [OSTI]

    Andreas Jansson; Olga Mena; Stephen Parke; Niki Saoulidou

    2007-11-07T23:59:59.000Z

    We explore an alternative strategy to determine the neutrino mass hierarchy by making use of possible future neutrino facilities at Fermilab. Here, we use CPT-conjugate neutrino channels, exploiting a nu_mu beam from the NuMI beamline and a barnu_e beam from a betabeam experimental setup. Both experiments are performed at approximately the same E/L. We present different possible accelerator scenarios for the betabeam neutrino setup and fluxes. This CPT-conjugate neutrino channel scenario can extract the neutrino mass hierarchy down to sin^2 (2 theta_13) \\approx 0.02.

  18. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect (OSTI)

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13T23:59:59.000Z

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  19. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect (OSTI)

    Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01T23:59:59.000Z

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  20. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)Perspectives ofTheArtist Within Fermilab

  1. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)PerspectivesImaginedMaryFermilab Examined -

  2. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)PerspectivesImaginedMaryFermilab Examined

  3. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)PerspectivesImaginedMaryFermilab

  4. Fermilab | Director's Policy Manual | No. 11.000 Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW1.000 Rev.

  5. Fermilab | Director's Policy Manual | No. 12.000 Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW1.000

  6. Fermilab | Director's Policy Manual | No. 13.000 Document Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW1.00013.000

  7. Fermilab | Newsroom | Press Releases | April 14, 2015: High School Students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «

  8. Fermilab | Newsroom | Press Releases | April 2, 2013: Explore the Wonders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «of Science

  9. Fermilab | Newsroom | Press Releases | April 22, 2015: Icarus Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «ofICARUS

  10. Fermilab | Illinois Accelerator Research Center | Accelerators and Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at Work

  11. Fermilab | Science | Particle Accelerators | LHC and Future Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's AcceleratorLHC and

  12. Fermilab | Science | Particle Physics 101 | Ask a Scientist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticle PhysicsAsk

  13. Fermilab | Science | Particle Physics 101 | How Particle Physics Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticle

  14. Fermilab | Science | Particle Physics 101 | Questions for the Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticleQuestions

  15. EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously cancelled (DOE/EA-1799).

  16. Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E

    E-Print Network [OSTI]

    Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E D0 The Isolated Photon Cross Section Purposes. #12;Fermilab-Pub-99 354-E The Isolated Photon Cross Section in pp Collisions at ps = 1.8 TeV B

  17. Economics of the Environment R. Quentin Grafton and John C.V. Pezzey

    E-Print Network [OSTI]

    Pezzey, Jack

    Chapter 4 Economics of the Environment R. Quentin Grafton and John C.V. Pezzey 1. Nature and Origins of Economics Nature Since our earliest ancestors people have been making economic decisions accumulated wealth, etc. Economics, in its most basic form, is the study of how given these constraints

  18. Fermilab Wine and Cheese, May 13th , 2005 p. 1 Search for Massive ResonancesGregory Veramendi

    E-Print Network [OSTI]

    Fermilab

    Fermilab Wine and Cheese, May 13th , 2005 p. 1 CDF Search for Massive ResonancesGregory Veramendi of Illinois, Urbana-Champaign) for the CDF collaboration #12;Fermilab Wine and Cheese, May 13th , 2005 p. 2 decaying to leptons and photons provides very clean signature even in a hadron collider #12;Fermilab Wine

  19. nature physics | VOL 7 | FEBRUARY 2011 | www.nature.com/naturephysics 93 In early January, the closure of Fermilab's

    E-Print Network [OSTI]

    Loss, Daniel

    , the closure of Fermilab's Tevatron accelerator in 2011 was confirmed. Last year, physicists working on the two over as the world's highest-energy accelerator. Director of Fermilab Pier Oddone must now chart the way, but Fermilab's accelerator facilities are already integral to various projects, present and future

  20. arXiv:hep-ph/0010338v26Dec2000 FERMILAB-Conf-00/279-T

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:hep-ph/0010338v26Dec2000 FERMILAB-Conf-00/279-T SCIPP 00/37 hep­ph/0010338 October 31, 2000 Working Group Members Michael Albrow (Fermilab) Howard Baer (Florida State) Emanuela Barberis (LBNL) Armando A. Barrientos Bendez´u (Hamburg) Pushpalatha Bhat (Fermilab) Alexander Belyaev (Moscow State

  1. Fermilab | Contact Fermilab | Email Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Form Subscribefeature photo

  2. Celebrating 30 Years of K-12 Educational Programing at Fermilab

    E-Print Network [OSTI]

    M. Bardeen; M. P. Cooke

    2011-09-21T23:59:59.000Z

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Center and workshops where teachers participate in authentic learning experiences as their students would. We offer informal classes for kids and host events where children and adults enjoy the world of science. Our website hosts a wealth of online resources. Funded by the U.S. Department of Energy, the National Science Foundation and Fermilab Friends for Science Education, our programs reach out across Illinois, throughout the United States and even around the world. We will review the program portfolio and share comments from the volunteers and participants.

  3. Mathematical modeling of a Fermilab helium liquefier coldbox

    SciTech Connect (OSTI)

    Geynisman, M.G.; Walker, R.J.

    1995-12-01T23:59:59.000Z

    Fermilab Central Helium Liquefier (CHL) facility is operated 24 hours-a-day to supply 4.6{degrees}K for the Fermilab Tevatron superconducting proton-antiproton collider Ring and to recover warm return gases. The centerpieces of the CHL are two independent cold boxes rated at 4000 and 5400 liters/hour with LN{sub 2} precool. These coldboxes are Claude cycle and have identical heat exchangers trains, but different turbo-expanders. The Tevatron cryogenics demand for higher helium supply from CHL was the driving force to investigate an installation of an expansion engine in place of the Joule-Thompson valve. A mathematical model was developed to describe the thermo- and gas-dynamic processes for the equipment included in the helium coldbox. The model is based on a finite element approach, opposite to a global variables approach, thus providing for higher accuracy and conversion stability. Though the coefficients used in thermo- and gas-dynamic equations are unique for a given coldbox, the general approach, the equations, the methods of computations, and most of the subroutines written in FORTRAN can be readily applied to different coldboxes. The simulation results are compared against actual operating data to demonstrate applicability of the model.

  4. John E. Hasse, Geospatial Research Lab,

    E-Print Network [OSTI]

    ap Executive Summary July 2010 John E. Hasse, Geospatial Research Lab Geospatial Research Laboratory Department of Geography Rowan University 201 Mullica Hill Road Glassboro by John Reiser, GIS specialist for the Rowan Geospatial Research Laboratory. http

  5. Phenomenology of Supersymmetric James Philip John Hetherington

    E-Print Network [OSTI]

    Hammerton, James

    Phenomenology of Supersymmetric Models James Philip John Hetherington King's College A dissertation after examination, November 2002. #12; ii #12; iii Phenomenology of Supersymmetric Models James Philip John Hetherington Abstract This thesis describes a set of connected studies regarding the phenomenology

  6. SILICON MODELS OF EARLY AUDITION John Lazzaro

    E-Print Network [OSTI]

    Lazzaro, John

    Carver Mead and committee members Richard Lyon and Mark Konishi for most of the ideas Harris, Scott Hemphill, Nancy Lee Henderson, John Hopfield, Calvin Jackson, Doug Kerns, John Klemic

  7. John Kotek | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - Project Leader at NREL JaredJohnJ.John Kotek

  8. John Lushetsky | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - Project Leader at NREL JaredJohnJ.John

  9. John Turner - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. StorerJohn ShalfJohn Turner -

  10. John Arrington | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson LabJeffersonStandards andJianzhiAboutJoeJohn A.John

  11. AGREEMENT & AUTHORIZATION FOR TELECOMMUTING The Employee named below is hereby authorized to perform work for Fermilab at the residence or off-site office located at

    E-Print Network [OSTI]

    Quigg, Chris

    FERMILAB AGREEMENT & AUTHORIZATION FOR TELECOMMUTING The Employee named below is hereby authorized to perform work for Fermilab at the residence or off-site office located at understands and agrees that authorization to perform Fermilab job duties away from the Fermilab premises

  12. Curriculum Vitae, July 2012 JOHN ANDREW NYMAN

    E-Print Network [OSTI]

    Nyman, John

    Curriculum Vitae, July 2012 JOHN ANDREW NYMAN School of Renewable Natural Resources Louisiana State ABBREVIATED CURRICULUM VITAE................................................................................ 4

  13. CURRICULUM VITAE DR. JOHN RICHARD THORNTON

    E-Print Network [OSTI]

    Thornton, John

    CURRICULUM VITAE DR. JOHN RICHARD THORNTON Contact Details Address: 17 Eden Park Court, Mount;Curriculum Vitae John Thornton CURRENT POSITIONS Associate Director of the Institute for Integrated Conference, Nantes, France, Sep- 3 #12;Curriculum Vitae John Thornton tember 25-29, 2006, Proceedings

  14. Arras User's Manual John B. Smith

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Arras User's Manual TR85-036 1985 John B. Smith The University of North Carolina at Chapel Hill'S MANUAL John B. Smith Department or Computer Science University or North Carolina Chapel Hill, North Carolina 27514 Copyright© 1984 by John B. Smith #12;Starling ARRAS Note for those not using TUCC: The ARRAS

  15. John J. Heldrich Center for Workforce Development

    E-Print Network [OSTI]

    Garfunkel, Eric

    SOLUTIONS AT WORK 2012 Annual Report John J. Heldrich Center for Workforce Development Rutgers, The State University of New Jersey Edward J. Bloustein School of Planning and Public Policy #12;John J. Heldrich Center for Workforce Development · www.heldrich.rutgers.edu Annual Report 2012 2 3 The John J

  16. Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  17. Collider Detector at Fermilab (CDF): Data from the Top Group's Top Quark Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Top group studies the properties of the top quark, the heaviest known fundamental particle. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  18. Physics Results from the Antiproton Experiment (APEX) at Fermilab

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    APEX Collaboration

    Is Antimatter stable? The APEX experiment searches for the decay of antiprotons at the Fermilab Antiproton Accumulator. Observation of antiproton decay would indicate a violation of the CPT theorem, which is one of the most fundamental theorems of modern physics. The best laboratory limits on antiproton decay come from the APEX experiment which achieved a sensitivity to antiproton lifetimes up to of order 700,000 years for the most sensitive decay modes. Antiproton lifetimes in this range could arise from CPT violation at the Planck scale.[copied from http://www-apex.fnal.gov/] This website presents published results from the APEX Test Experiment (T861) and from the E868 Experiment. Limits were placed on six antiproton decay modes with a muon in the final state and on seven antiproton decay modes with an electron in the final state. See also the summary table and plot and the APEX picture gallery.

  19. Techniques for the Top Squark Search at the Fermilab Tevatron

    E-Print Network [OSTI]

    John Sender

    2000-10-04T23:59:59.000Z

    This dissertation addresses the question of how to detect light top squarks at the upgraded Fermilab Tevatron collider. After a brief introduction to supersymmetry, the basic phenomenology of the light stop is reviewed and the current experimental situation is surveyed. The analysis presented here is based on collider event simulations. The main decay modes accessible to the Tevatron are studied, feasible discovery channels are identified, and recipes for experimental analysis are proposed. It is found that stops with masses up to the top quark mass are liable to detection under these schemes with the data from a few years' running at the upgraded Tevatron. With such an extended run, significant portions of parameter space may be probed.

  20. Forward Neutron Production at the Fermilab Main Injector

    E-Print Network [OSTI]

    T. S. Nigmanov; D. Rajaram; M. J. Longo; U. Akgun; G. Aydin; W. Baker; P. D. Barnes, Jr.; T. Bergfeld; A. Bujak; D. Carey; E. C. Dukes; F. Duru; G. J. Feldman; A. Godley; E. Glmez; Y. O. Gnaydin; N. Graf; H. R. Gustafson; L. Gutay; E. Hartouni; P. Hanlet; M. Heffner; C. Johnstone; D. M. Kaplan; O. Kamaev; J. Klay; M. Kostin; D. Lange; A. Lebedev; L. C. Lu; C. Materniak; M. D. Messier; H. Meyer; D. E. Miller; S. R. Mishra; K. S. Nelson; A. Norman; Y. Onel; J. M. Paley; H. K. Park; A. Penzo; R. J. Peterson; R. Raja; C. Rosenfeld; H. A. Rubin; S. Seun; N. Solomey; R. Soltz; E. Swallow; Y. Torun; K. Wilson; D. Wright; K. Wu

    2010-12-03T23:59:59.000Z

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $\\alpha$ is $0.46\\pm0.06$ for a beam momentum of 58 GeV/c and 0.54$\\pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.

  1. Algorithmic Thermodynamics John C. Baez

    E-Print Network [OSTI]

    Tomkins, Andrew

    Algorithmic Thermodynamics John C. Baez Department of Mathematics, University of California in statistical mechanics. This viewpoint allows us to apply many techniques developed for use in thermodynamics and chemical potential. We derive an analogue of the fundamental thermodynamic relation dE = TdS - PdV + µd

  2. Fusion Test Facilities John Sheffield

    E-Print Network [OSTI]

    Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

  3. CURRICULUM VITAE JOHN KEVIN GREEN

    E-Print Network [OSTI]

    Marsh, David

    CURRICULUM VITAE JOHN KEVIN GREEN Head, Department of Accounting Professor of Accounting Williams CURRICULUM VITAE 2 Assistant Professor of Economics, The University of the South, 1970-77 Economic Adviser. Volpi, and David E. Stout, "Transnational Income Reporting #12;GREEN: 2003 CURRICULUM VITAE 3

  4. Office of Facilities John Bollier

    E-Print Network [OSTI]

    Chello Ian Hobbs Kirsta MacLellan MaryBeth Radigan Mike Roberts Georgetta Sheppard Marilena Stephens Central Director Anthony Kosior Admin. and Business Systems Grey Kupiec Tom Undercuffler Kara Tavella Julia Alves Keith Roberts Julie Paquette Tom Downing John Higgins Bruce Bellmore Electronic Records David Kula Tony

  5. Sir John Retcliffe (Hermann Goedsche)

    E-Print Network [OSTI]

    Prodinger, Helmut

    Sir John Retcliffe (Hermann Goedsche) Sebastopol Historisch-politischer Roman aus der Gegenwart unserer Leser, welchen nicht ein Plan der Umgegend von Sebastopol zur Hand ist, eine kurze aber nothwen- dige Scizzirung des Terrains und der Festung gegeben haben. Sebastopol liegt, wie früher erwähnt

  6. Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    E-Print Network [OSTI]

    E. D. Courant; A. D. Krisch; M. A. Leonova; A. M. T. Lin; J. Liu; W. Lorenzon; D. A. Nees; R. S. Raymond; D. W. Sivers; V. K. Wong; I. Kourbanis; Ya. S. Derbenev; V. S. Morozov; D. G. Crabb; P. E. Reimer; J. R. O'Fallon; G. Fidecaro; M. Fidecaro; F. Hinterberger; S. M. Troshin; M. N. Ukhanov; A. M. Kondratenko; W. T. H. van Oers

    2011-10-13T23:59:59.000Z

    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.

  7. Mechanical behavior of Fermilab/General Dynamics built 15M SSC collider dipoles

    SciTech Connect (OSTI)

    Wake, M.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mazur, P.; Orris, D.; Strait, J. [Fermi National Accelerator Lab., Batavia, IL (United States); Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Thompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1992-04-01T23:59:59.000Z

    A series of full-scale demonstration SSC collider dipole magnets were built for the ASST. These magnets, DCA311 through DCA319, have 50 mm aperture and 15 m magnetic length with 6.6 Tesla uniform field. For the support structure of the W6733B cross section, the Fermilab design uses a vertical split in the yoke. The end sections of the magnet have solid spacers and are supported by collet clamps. The splices between inner and outer coils are made in preforms which lie outside of the high field region. The magnets were produced in pipeline fashion with no intentional major changes between magnets. As a part of the technology transfer program, the last 7 magnets were built by General Dynamics personnel using the magnet construction facilities of Fermilab, while the first two magnets were built entirely by Fermilab personnel. At present, the magnets up to DCA316 have been tested at Fermilab. The general characteristics of the magnets have been quite satisfactory. Both of the Fermilab built magnets have reached the conductor limited field strength with no significant training. Two of the General Dynamics built magnets each required a single training quench. However, all of the magnets tested up to date meet the ASST specifications. This report describes the mechanical properties of the ASST magnets at Fermilab based on the currently available test results.

  8. Building houses for people

    E-Print Network [OSTI]

    Townes, Anne E. (Anne Elizabeth)

    1995-01-01T23:59:59.000Z

    " ... shelter is part of daily human life and will come about wherever and whenever people will share space. Today, in a new age where so much more is possible, the professional plays a crucial role in that process. Yes, ...

  9. The coming revolution in particle physics: Report of the Fermilab Long Range Planning Committee

    SciTech Connect (OSTI)

    Jeff Appel et al.

    2004-06-22T23:59:59.000Z

    In early 2003, the Fermilab Director formed a committee (Appendix A) to examine options for the long-range future of Fermilab. Specifically, the committee was asked to respond to a charge (Appendix B), which laid out the assumptions, which were to underlie our discussions. The committee met a few times during the spring of 2003 and formulated a plan of action. It identified a number of issues that deserved attention, and a subcommittee was formed to focus on each. We agreed that in addressing these key issues, a broader participation was appropriate. The manner in which that was achieved varied from subcommittee to subcommittee to group. In some cases the expanded membership participated in all the discussions, in others, particular presentations were solicited and heard. Some subgroups met regularly over several months, others convened only for a small number of discussions. We have attempted to list participants in Appendix C. General presentations indicating the purpose of the work were given, for example at the Fermilab Users Annual Meeting. Towards the end of the summer some sense of direction developed and a series of open meetings was organized by the different subgroups. These meetings of two and more hour's duration gave the broader laboratory and user community a further chance to react to perceived directions and to make their opinions known. They were extremely well attended. In all, nearly 100 people have participated in the process including the development of initial drafts and proto-recommendations. A larger number attended the various open sessions. It is therefore likely, even expected, that the general thrusts of this report are no surprise. Nevertheless, the committee met in a number of plenary closed sessions including a two-day retreat in which all the issues were discussed and a common view was developed. The Director and Deputy Director heard and interacted with the discussions in most of these meetings. In attempting to converge, we have written the individual chapters from a slightly advocative point of view. In the final discussions and editing, we have attempted some damping. Nevertheless, if all recommendations were accepted, all positive options pursued, any reasonable budget would be exceeded. We have balanced this bottom up approach with a top down development. We tried to extract the essence and to provide a couple of balanced options based on the discussions at the retreat. Healthy, lively, and vigorous exchanges ensued which resulted in multiple rewrites and culminated in the Executive Summary for this document. It is there that you should find the most concise product of this process. In preparing the report, we did consider the potential availability of resources. We have devoted a chapter of the report to discuss the limitations of our efforts. It should be recognized that there are large variances among the public opinions about costs of large elements of the program such as the Linear Collider, or even the Proton Driver. The evolution of the laboratory budget is also very uncertain and depends on many things such as the success in physics terms of the current program. We have therefore taken a relatively optimistic point of view in achieving balance. It is in this sense that the report provides options. At any point in time, the Fermilab Director will need to make choices among the options; we hope that the broad thrusts, which we call out, will be helpful. In the remainder of the report we use chapter 2 to describe the Physics Landscape 2010-2020, which is the basis for what we would like to see happen. In chapter 3 we discuss the Linear Collider, which will be a major component of the laboratory program under any scenario and, if constructed nearby, a dominant one. In chapter 4 we describe a vigorous but evolutionary program to address the key neutrino physics areas, and in chapter 5 we discuss attractive initiatives, which would provide the necessary powerful source of protons and, hence, neutrinos for this program. A strong participation in the machine, the experiment (CMS), an

  10. A disoriented chiral condensate search at the Fermilab Tevatron

    SciTech Connect (OSTI)

    Convery, M.E.

    1997-05-01T23:59:59.000Z

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of {open_quotes}disoriented vacuum{close_quotes} might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity {eta} {approx} 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.

  11. Cryogenic system for the Cryomodule Test Facility at Fermilab

    SciTech Connect (OSTI)

    White, Michael; Martinez, Alex; Bossert, Rick; Dalesandro, Andrew; Geynisman, Michael; Hansen, Benjamin; Klebaner, Arkadiy; Makara, Jerry; Pei, Liujin; Richardson, Dave; Soyars, William; Theilacker, Jay [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

    2014-01-29T23:59:59.000Z

    This paper provides an overview of the current progress and near-future plans for the cryogenic system at the new Cryomodule Test Facility (CMTF) at Fermilab, which includes the helium compressors, refrigerators, warm vacuum compressors, gas and liquid storage, and a distribution system. CMTF will house the Project X Injector Experiment (PXIE), which is the front end of the proposed Project X. PXIE includes one 162.5 MHz half wave resonator (HWR) cryomodule and one 325 MHz single spoke resonator (SSR) cryomodule. Both cryomodules contain superconducting radio-frequency (SRF) cavities and superconducting magnets operated at 2.0 K. CMTF will also support the Advanced Superconducting Test Accelerator (ASTA), which is located in the adjacent New Muon Lab (NML) building. A cryomodule test stand (CMTS1) located at CMTF will be used to test 1.3 GHz cryomodules before they are installed in the ASTA cryomodule string. A liquid helium pump and transfer line will be used to provide supplemental liquid helium to ASTA.

  12. Solenoid magnet system for the Fermilab Mu2e experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamm, M J [Fermilab; Andreev, N [Fermilab /Boston U.; Ambrosio, G [Fermilab; Brandt, J [Fermilab; Coleman, R [CERN; Evbota, D [Fermilab; Kashikhin, V V [City Coll., N.Y.; Lopes, M [Fermilab; Miller, J [Fermilab; Nicol, T [KEK; Ostojic, R [Tsukuba

    2012-06-08T23:59:59.000Z

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

  13. Particle Production Measurements using the MIPP Detector at Fermilab

    E-Print Network [OSTI]

    Sonam Mahajan; Rajendran Raja; for the MIPP Collaboration

    2013-11-10T23:59:59.000Z

    The Main Injector Particle Production (MIPP) experiment is a fixed target hadron production experiment at Fermilab. It measures particle production in interactions of 120 GeV/c primary protons from the Main Injector and secondary beams of $\\pi^{\\pm}, \\rm{K}^{\\pm}$, p and $\\bar{\\rm{p}}$ from 5 to 90 GeV/c on nuclear targets which include H, Be, C, Bi and U, and a dedicated run with the NuMI target. MIPP is a high acceptance spectrometer which provides excellent charged particle identification using Time Projection Chamber (TPC), Time of Flight (ToF), multicell Cherenkov (CKOV), Ring Imaging Cherenkov (RICH) detectors, and Calorimeter for neutrons. We present inelastic cross section measurements for 58 and 85 GeV/c p-H interactions, and 58 and 120 GeV/c p-C interactions. A new method is described to account for the low multiplicity inefficiencies in the interaction trigger using KNO scaling. Inelastic cross sections as a function of multiplicity are also presented. The MIPP data are compared with the Monte Carlo predictions and previous measurements. We also describe an algorithm to identify charged particles ($\\pi^{\\pm}/\\rm{p}/\\bar{\\rm{p}}$ etc.), and present the charged pion and kaon spectra from the interactions of 120 GeV/c protons with carbon target.

  14. Status of the Fermilab Muon (g-2) Experiment

    E-Print Network [OSTI]

    B. Lee Roberts

    2010-01-20T23:59:59.000Z

    The New Muon $(g-2)$ Collaboration at Fermilab has proposed to measure the anomalous magnetic moment of the muon, $a_\\mu$, a factor of four better than was done in E821 at the Brookhaven AGS, which obtained $a_\\mu = [116 592 089 (63)] \\times 10^{-11}$ $\\pm 0.54$ ppm. The last digit of $a_{\\mu}$ is changed from the published value owing to a new value of the ratio of the muon-to-proton magnetic moment that has become available. At present there appears to be a difference between the Standard-Model value and the measured value, at the $\\simeq 3$ standard deviation level when electron-positron annihilation data are used to determine the lowest-order hadronic piece of the Standard Model contribution. The improved experiment, along with further advances in the determination of the hadronic contribution, should clarify this difference. Because of its ability to constrain the interpretation of discoveries made at the LHC, the improved measurement will be of significant value, whatever discoveries may come from the LHC.

  15. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    E866 NuSea Collaboration

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  16. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thurman-Keup, R; Cheung, H W.K.; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-09-01T23:59:59.000Z

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  17. Celebrating 30 Years of K-12 Educational Programing at Fermilab

    E-Print Network [OSTI]

    Bardeen, M

    2011-01-01T23:59:59.000Z

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Cent...

  18. Cryogenic controls for Fermilab's SRF cavities and test facility

    SciTech Connect (OSTI)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

    2007-07-01T23:59:59.000Z

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  19. Why QBism is not the Copenhagen interpretation and what John Bell might have thought of it

    E-Print Network [OSTI]

    N. David Mermin

    2014-09-08T23:59:59.000Z

    Christopher Fuchs and R\\"udiger Schack have developed a way of understanding science, which, among other things, resolves many of the conceptual puzzles of quantum mechanics that have vexed people for the past nine decades. They call it QBism. I speculate on how John Bell might have reacted to QBism, and I explain the many ways in which QBism differs importantly from the orthodox ways of thinking about quantum mechanics associated with the term "Copenhagen interpretation."

  20. John Moon | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through aEnergyLowJoel B. BradburneJohn Moon

  1. John Lippert | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentatJeff Zients -OutliineU.S.SwitchedJohn

  2. John Deutch | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - Project Leader at NREL JaredJohn Deutch -

  3. John Krummel | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. Storer (1983) MarchJohn

  4. Faces of Science: John Gordon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2FY98Bauer March 4,JoelJohn

  5. John Cymbalsky | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen I think ofJill Clough-JohnstonJohn Cymbalsky

  6. Faces of Science: John Gordon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 Budget Justification2John Gordon

  7. John Johansen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585 AprilJohansen About Us John Johansen

  8. John Spizzirri | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson LabJeffersonStandardsWelcomeJohn R.

  9. Sandia National Laboratories: John Savee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University SandiaJim Speck IntroductionJohn

  10. John Deere | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview JumpJessi3bl's blog HomeJohn Deere Jump to:

  11. A review of "John Donne: The Reforming Soul" by John Stubbs

    E-Print Network [OSTI]

    McDowell, Sean

    2008-01-01T23:59:59.000Z

    REVIEWS 1 John Stubbs. John Donne: The Reformed Soul. New York: W. W. Norton, 2007. 576 pp. $35.00. Review by SEAN MCDOWELL, SEATTLE UNIVERSITY. In John Donne scholarship, the nonfiction book one is most likely to find not just in libraries... but also in chain bookstores across the English-speaking world is John Donne: The Reformed Soul, the new full-length biography of Donne?s life by English scholar John Stubbs. Published first in the U. K. in 2006 and subsequently by W. W. Norton in 2007...

  12. Fermilab | Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto: EAGFermilab Today

  13. Fermilab | Tritium at Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified Forces | DoTravel and

  14. Fermilab | About Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies|21,

  15. Fermilab | Contact Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies|21,Contact

  16. Fermilab | Fermilab Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun

  17. Fermilab | Visit Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDarkDiscoveriesMuonsTheoryfeature

  18. Fermilab | Visit Fermilab | Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, Programs and Events

  19. John Shalf Gives Talk at San Francisco High Performance Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Shalf Gives Talk at San Francisco High Performance Computing Meetup John Shalf Gives Talk at San Francisco High Performance Computing Meetup September 17, 2014 XBD200503 00083...

  20. MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    Chetha Phang (EIA) Jennifer Lee (DOE PI) Michael Scott (EIA) Joe Benneche (EIA) Tom White (DOE) John Staub (EIA) Aloulou Fawzi (EIA) Presenters: John Staub and Joe Benneche...

  1. Lobbyist Disclosure Form - John Thorne | Department of Energy

    Energy Savers [EERE]

    Form - John Thorne John inquired whether there were any open solicitations for biofuels projects under 1703 and 1705. He was told there were no open solicitations at this...

  2. THE JOHNS HOPKINS UNIVERSITY ROYALTY DISTRIBUTION POLICY

    E-Print Network [OSTI]

    Ghosh, Somnath

    1 THE JOHNS HOPKINS UNIVERSITY ROYALTY DISTRIBUTION POLICY On April 2, 2001, the Johns Hopkins University Board of Trustees approved a revision to the distribution formula for royalty and equity from derived from inventions and to be performed by faculty inventors who receive royalty for sales

  3. John Day Tailrace MASS2 Hydraulic Modeling

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Richmond, Marshall C.

    2003-06-03T23:59:59.000Z

    Recent biological results for the Juvenile Bypass System at John Jay Lock and Dam have raised concerns about the hydraulic conditions that are created in the tailrace under different project operations. This Memorandum for Record discusses the development and application of a truncated MASS2 model in the John Day tailrace.

  4. Groundbreaking Ceremony The John Tickle Building

    E-Print Network [OSTI]

    Tennessee, University of

    . Jimmy G. Cheek Chancellor, The University of Tennessee, Knoxville Remarks Dr. Wayne T. Davis Dean Introduction of Mr. John Tickle Dr. Jimmy G. Cheek Remarks Mr. John Tickle Owner/President, Strongwell Corporation Special Presentation Dr. Jimmy G. Cheek Introduction of Groundbreaking Team Dr. Jimmy G. Cheek

  5. Status report on Fermilab experiment E-760: A study of charmonium produced by proton-antiproton annihilation

    SciTech Connect (OSTI)

    Pordes, S.

    1990-09-04T23:59:59.000Z

    This was a status report on Fermilab experiment E-760 -- an experiment to study charmonium states by resonant formation in proton-antiproton annihilation. The experiment uses antiprotons circulating in the Fermilab antiproton-accumulator as the beam and an internal hydrogen gas-jet as the target. Data taking with the full complement of apparatus started in early July 1990.

  6. FERMILAB-CONF-09-434-E LAL 09-120 D0Note 5999 Measurement of Z/

    E-Print Network [OSTI]

    Boyer, Edmond

    FERMILAB-CONF-09-434-E LAL 09-120 D0Note 5999 Measurement of Z/ +jet+X and +b/c+X Cross Sections. In this note, we present measurements of Z/ + jets production and photon plus heavy flavor jets at the Fermilab

  7. arXiv:hep-ph/0106116v327Feb2002 FERMILAB-Pub-00/334-T

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:hep-ph/0106116v327Feb2002 FERMILAB-Pub-00/334-T SCIPP-01/25 UCD-01-23 hep-ph/0106116 and approaches zero in the so-called "decoupling limit" of the model [1]. Experiments at the Fermilab Tevatron [2

  8. Interview of the John Simpson

    E-Print Network [OSTI]

    Simpson, John

    2010-01-01T23:59:59.000Z

    was attacked by bandits; I was driving up a mountain pass and the bandits ran across the skyline firing guns at me; eventually they hit the truck and I stopped; I wondered what I could do, and decided there was nothing; I took my wristwatch off and hid it under... people who had managed to get hold of guns, so probably desperate themselves; I did make one or two Chinese friends who were working with the unit; all the workers in my depot were Chinese - there were about fifty people; I had a rather formal attitude...

  9. Experimental observation of breakdowns in the Fermilab RF Gun G4 J.-P. Carneiro1, D. Edwards2, I. Gonin2, S. Schreiber1

    E-Print Network [OSTI]

    Experimental observation of breakdowns in the Fermilab RF Gun G4 J.-P. Carneiro1, D. Edwards2, I Fermilab has developed and delivered to DESY Hamburg two RF guns for the operation of the phase I at the A0 photo-injector at Fermilab since January 1999 where it has been successfully conditioned at 1 Hz

  10. Fermilab Today http://www.fnal.gov/pub/today/archive_2005/today05-05-06.html 1 of 4 8/31/2006 10:11 AM

    E-Print Network [OSTI]

    Toback, David

    Fermilab Today http://www.fnal.gov/pub/today/archive_2005/today05-05-06.html 1 of 4 8/31/2006 10: Central Exclusive Production of Higgs Bosons and Other States 8:00 p.m. Fermilab International Film Society - Auditorium Tickets: Adults $4 Title: Uzak (Distant) Saturday, May 7 8:00 p.m. Fermilab Arts

  11. A new particle physics experiment, planned to take place at Fermilab and the Sanford Lab, aims to transform our understanding of neutrinos

    E-Print Network [OSTI]

    Quigg, Chris

    June 2013 A new particle physics experiment, planned to take place at Fermilab and the Sanford Lab Accelerator Laboratory (Fermilab), located in Batavia, Illinois, and the Sanford Underground Research Facility to understanding neutrinos and their role in the universe. The distance between Fermilab and the Sanford Lab is 800

  12. 5/20/2014 Fermilab Today http://www.fnal.gov/pub/today/archive/archive_2014/today14-05-08.html 1/4

    E-Print Network [OSTI]

    Toback, David

    5/20/2014 Fermilab Today http://www.fnal.gov/pub/today/archive/archive_2014/today14-05-08.html 1 University Title: The MicroBooNE Detector, Beam Requirements and Status Milestone Fermilab launches new home page on website The new Fermilab home page features a rotating series of images of the laboratory

  13. U.S.-India Discovery Science Collaboration The Indian Institutions and Fermilab Collaboration (IIFC) is paving the way toward a successful

    E-Print Network [OSTI]

    Quigg, Chris

    U.S.-India Discovery Science Collaboration The Indian Institutions and Fermilab Collaboration (IIFC by collaborating with the Illinois Accelerator Research Center at Fermilab and seizing business opportunities at hundreds of millions of dollars, toward a new accelerator and physics research program at Fermilab

  14. Opportunities to Advance Fundamental Symmetries Research with Project-X is a staged evolution of the Fermilab accelerator complex realized by the dramatic

    E-Print Network [OSTI]

    -X is a staged evolution of the Fermilab accelerator complex realized by the dramatic advances in super-conducting RF technology [1] of the past decade and it is central to Fermilab's strategic plan for the comingV would produce intense neutrino sources and beams illuminating near detectors on the Fermilab site

  15. Heavy-Quark Masses from the Fermilab Method in Three-Flavor Lattice QCD

    E-Print Network [OSTI]

    Elizabeth D. Freeland; Andreas S. Kronfeld; James N. Simone; Ruth S. Van de Water; Fermilab Lattice; MILC Collaborations

    2007-10-23T23:59:59.000Z

    We report on heavy quark mass calculations using Fermilab heavy quarks. Lattice calculations of heavy-strange meson masses are combined with one-loop (automated) lattice perturbation theory to arrive at the quark mass. Mesons are constructed from Fermilab heavy quarks and staggered light quarks. We use the MILC ensembles at three lattice spacings and sea quark mass ratios of $m_{\\rm u,d} / m_{\\rm s} = 0.1$ to 0.4. Preliminary results for the bottom quark are given in the potential subtracted scheme.

  16. John T. Mihalczo | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. StorerJohn Shalf JohnJohnT.

  17. A review of "John Locke, Toleration and Early Enlightenment Culture." by John Marshall.

    E-Print Network [OSTI]

    Fritsch, Christopher N.

    2007-01-01T23:59:59.000Z

    in Baroque Rome will be of interest to a wide variety of scholars working in seventeenth-century studies. John Marshall. John Locke, Toleration and Early Enlightenment Culture. Cambridge: Cambridge University Press, 2006. viii + 767 pp. + 6 illus. $110... are intriguing to say the least. For the author, John Marshall, both of these men and numerous others debated and wrote about the application, limits, and merits of toleration in a REVIEWS 59 period designated as the early Enlightenment. In the years between...

  18. ARM - People Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncementsgovMeasurements MeasurementgovPeople Directory

  19. People | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the PacificCollaboration »People ProfilesAbout the

  20. PeopleSoft forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the PacificCollaboration »PeopleCenter

  1. NIF & PS People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I OPS People NIF-MIT

  2. Manhattan Project: People

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,LinksCP-1 GOESFJoe 1, the firstPeople

  3. Supercomputing Power to the People

    E-Print Network [OSTI]

    Chauhan, Arun

    Supercomputing Power to the People Arun Chauhan Indiana University #12;Supercomputing power. Sadayappan #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming Languages: A Buddhist View #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming

  4. Pushpa Bhat, Fermilab June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa Bhat 2

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    1 Pushpa Bhat, Fermilab #12;June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa Bhat 2 Richard Feynman automata-based programs on the connection machine #12;June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa Bhat@fnal.gov ACAT 2002 Workshop June 24-28, 2002 Moscow, Russia #12;June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa

  5. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    SciTech Connect (OSTI)

    Asner, David M.; /Carleton U.; Phillips, Thomas J.; /Duke U.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; Stefanski, Ray; /Fermilab /INFN, Ferrara /Hbar Technol., West Chicago /IIT, Chicago /CHEP, Taegu /Luther Coll. /Michigan U. /Northwestern U. /Notre Dame U. /St. Xavier U., Chicago

    2009-02-05T23:59:59.000Z

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  6. A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab

    E-Print Network [OSTI]

    T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; J. Guimaraes da Costa; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; D. Beecher; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; I. Bizjak; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; M. Deninno; M. D'Errico; F. Devoto; A. Di Canto; B. Di Ruzza; J. R. Dittmann; S. Donati; M. D'Onofrio; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; R. Eusebi; S. Farrington; J. P. Fernndez Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. Gonzlez Lpez; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. H. Kim; S. B. Kim; Y. J. Kim; Y. K. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; D. Lucchesi; A. Luc; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; L. Marchese; F. Margaroli; P. Marino; M. Martnez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; E. Nurse; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; A. Pranko; F. Prokoshin; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernndez; P. Renton; M. Rescigno; T. Riddick; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; R. Shekhar; P. F. Shepard; M. Shimojima; M. Shochet; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; H. Song; V. Sorin; R. St. Denis; M. Stancari; O. Stelzer-Chilton; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; S. Sun; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; I. Shreyber-Tecker; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vzquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizn; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang

    2014-04-29T23:59:59.000Z

    We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $\\sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $W\\to e\

  7. C. Gerber -Fermilab W and Z PT DistributionsW and Z PT Distributions

    E-Print Network [OSTI]

    Gerber, Cecilia E.

    Arnold-Kauffman Nucl. Phys. B349, 381 O(s 2) resummation (b -space) MRSA' after detector simulation) after detector simulation MRSA' #12;C. Gerber - Fermilab 12 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0

  8. The Reach of CERN LEP2 and Fermilab Tevatron Upgrades for Higgs Bosons in Supersymmetric Models

    E-Print Network [OSTI]

    Howard Baer; B. W. Harris; Xerxes Tata

    1998-07-06T23:59:59.000Z

    Luminosity upgrades of the Fermilab Tevatron pbar-p collider have been shown to allow experimental detection of a Standard Model (SM) Higgs boson up to $m_{H_{SM}}\\sim 120$ GeV via $WH_{SM} \\to \\ell\

  9. T864 (MiniMax): A Search for Disoriented Chiral Condensate at the Fermilab Collider

    E-Print Network [OSTI]

    J. D. Bjorken

    1996-10-16T23:59:59.000Z

    A small test/experiment has been performed at the Fermilab Collider to measure charged particle and photon multiplicities in the forward direction, $\\eta \\approx 4.1$. The primary goal is to search for disoriented chiral condensate (DCC). The experiment and analysis methods are described, and preliminary results of the DCC search are presented.

  10. TO: Persons Joining the Fermilab (FRA) Staff SUBJECT: Inventions and Employee Patent Agreement

    E-Print Network [OSTI]

    Quigg, Chris

    TO: Persons Joining the Fermilab (FRA) Staff SUBJECT: Inventions and Employee Patent Agreement in royalties received from patentable inventions to which FRA, LLC has taken title. As provided in FRA, LLC to sign a patent agreement. The attached form has been developed to comply with this requirement

  11. New STFC senior management structure JOHN WOMERSLEY

    E-Print Network [OSTI]

    New STFC senior management structure JOHN WOMERSLEY Chief Executive JANET SEED Acting Executive External Innov. Public Engagement Education and Training ING, JAC ANDREW TAYLOR Executive Director Financial Management Governance TIM BESTWICK Executive Director, Business and Innovation Business

  12. High Throughput Materials Characterization John M. Gregoire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper for Establishing a User Facility for Synchrotron-based High Throughput Materials Characterization John M. Gregoire 1 , Matthew J. Kramer 2 , Apurva Mehta 3 1 Joint Center for...

  13. Amy Finkelstein: 2012 John Bates Clark Medalist

    E-Print Network [OSTI]

    Levin, Jonathan

    Amy Finkelstein is the 2012 recipient of the John Bates Clark Medal from the American Economic Association. The core concerns of Amy's research program have been insurance markets and health care. She has addressed whether ...

  14. Harry J. Holzer John M. Quigley

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Harry J. Holzer John M. Quigley Steven Raphael Public Transit and the Spatial Distribution, with particularly large effects for minority workers and individuals on public assistance (O'Regan and Quigley, 1999

  15. Report Tunneling Cost Reduction Study prepared for Fermilab

    SciTech Connect (OSTI)

    Not Available

    1999-07-16T23:59:59.000Z

    Fermi National Accelerator Laboratories has a need to review the costs of constructing the very long tunnels which would be required for housing the equipment for the proposed Very Large Hadron Collider (VLHC) project. Current tunneling costs are high, and the identification of potential means of significantly reducing them, and thereby helping to keep overall project costs within an acceptable budget, has assumed great importance. Fermilab has contracted with The Robbins Company to provide an up-to-date appraisal of tunneling technology, and to review the potential for substantially improving currently the state-of-practice performance and construction costs in particular. The Robbins Company was chosen for this task because of its long and successful experience in hard rock mechanical tunnel boring. In the past 40 years, Robbins has manufactured over 250 tunneling machines, the vast majority for hard rock applications. In addition to also supplying back-up equipment, Robbins has recently established a division dedicated to the manufacture of continuous conveying equipment for the efficient support of tunneling operations. The study extends beyond the tunnel boring machine (TBM) itself, and into the critical area of the logistics of the support of the machine as it advances, including manpower. It is restricted to proven methods using conventional technology, and its potential for incremental but meaningful improvement, rather than examining exotic and undeveloped means of rock excavation that have been proposed from time to time by the technical community. This is the first phase of what is expected to be a number of studies in increasing depth of technical detail, and as such has been restricted to the issues connected with the initial 34 kilometer circumference booster tunnel, and not the proposed 500 kilometer circumference tunnel housing the VLHC itself. The booster tunnel is entirely sited within low to medium strength limestone and dolomite formations, typical of the Chicago area. The rock is generally competent with widely spaced jointing, and slowdown of the operation for the installation of rock support is expected to be minimal. The tunneling system will have to be equipped with the necessary equipment for an efficient response to poor rock conditions however. Because the ground conditions are expected to be very favorable, a state-of-the-art TBM should have no difficulty in excavating at a high penetration rate of 10 meters per hour or more in rock of the average of the range of strengths stated to exist. Disc cutter changes will be few as the rock has very low abrasivity. However, experience has shown that overall tunneling rates are a relatively low percentage of the machine's penetration rate capability. Therefore the main focus of improvement is guaranteeing that the support systems, including mucking and advance of the utilities do not impede the operation. Improved mechanization of the support systems, along with automation where practicable to reduce manpower, is seen as the best means of raising the overall speed of the operation, and reducing its cost. The first phase of the study is mainly involved with establishing the baseline for current performance, and in identifying areas of improvement. It contains information on existing machine design concepts and provides data on many aspects of the mechanical tunneling process, including costs and labor requirements. While it contains suggestions for technical improvements of the various system, the time limitations of this phase have not permitted any detailed concept development. This should be a major part of the next phase.

  16. Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ,

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  17. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  18. Aspect-Oriented Programming of Sparse Matrix Code John Irwin, Jean-Marc Loingtier, John R. Gilbert, Gregor Kiczales, John Lamping, Anurag Mendhekar,

    E-Print Network [OSTI]

    Aspect-Oriented Programming of Sparse Matrix Code John Irwin, Jean-Marc Loingtier, John R. Gilbert the German Copyright Law. #12;Aspect-Oriented Programming of Sparse Matrix Code John Irwin, Jean and explicitly while preserving the expressiveness of the original functional language. The resulting code

  19. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1987-10-31T23:59:59.000Z

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  20. arXiv:hep-ph/0208209v313Dec2002 FERMILAB-Pub-02/114-T

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:hep-ph/0208209v313Dec2002 FERMILAB-Pub-02/114-T SCIPP 02/07 hep­ph/0208209 Higgs Boson Theory

  1. A review of "John Donne: An Annotated Bibliography of Modern Criticism, 1979-1995." by John R. Roberts.

    E-Print Network [OSTI]

    Donald R. Dickson

    2005-01-01T23:59:59.000Z

    -century political and liter- ary culture. John R. Roberts. John Donne: An Annotated Bibliography of Modern Criticism, 1979- 1995. Pittsburgh: Duquesne UP, 2004. xxvii + 605 pp. $145. Review by DONALD R. DICKSON, TEXAS A&M UNIVERSITY Students of John Donne... will welcome this volume by John R. Roberts and place it alongside his previous works, John Donne: An Annotated Bibliography of Modern Criticism, 1912-1967 (1973) and John Donne: An Annotated Bibliography of Modern Criticism, 1968-1978 (1982). As with his...

  2. Plots and Figures from the Main Injector Neutrino Oscillation Search (MINOS) at Fermilab

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MINOS, or Main Injector Neutrino Oscillation Search, is an experiment at Fermilab designed to study the phenomena known as neutrino oscillations. It uses a beam of neutrino particles produced by the NuMI beamline facility - Neutrinos at the Main Injector. The beam of neutrinos is sent through the two MINOS detectors, one at Fermilab and one in the Soudan Mine in northern Minnesota. The Minos for Scientists page provides a link to the data plots that are available to the public and also provides explanations for some of the recent results of the experiment. Another links leads to a long listing of MINOS publications in refereed journals. Photo galleries are found by checking the links on the left menu.

  3. TMDs and Drell-Yan Experiments at Fermilab and J-PARC

    E-Print Network [OSTI]

    Jen-Chieh Peng

    2008-11-27T23:59:59.000Z

    The roles of the Drell-Yan experiments in studying the Transverse-Momentum-Dependent (TMD) parton distributions are discussed. Recent results from the Fermilab E866 experiment on the angular distributions of Drell-Yan dimuons in $p+p$ and $p+d$ at 800 GeV/c are presented. These data are compared with the pion-induced Drell-Yan data, and with models which attribute the $\\cos 2 \\phi$ azimuthal distribution to the presence of the transverse-momentum-dependent Boer-Mulders structure function $h_1^\\perp$. Constraints on the magnitude of the sea-quark $h_1^\\perp$ structure functions are obtained. Future prospects for studying the TMDs with Drell-Yan experiments at Fermilab and J-PARC are also discussed.

  4. Project-X: A new high intensity proton accelerator complext at Fermilab

    E-Print Network [OSTI]

    R. Tschirhart

    2011-09-15T23:59:59.000Z

    Fermilab has been working with the international particle physics and nuclear physics communities to explore and develop research programs possible with a new high intensity proton source known as "Project-X". Project X will provide multi-megawatt proton beams from the Fermilab Main Injector over the energy range 60-120 GeV simultaneous with multi-megawatt protons beams at 3 GeV with very flexible beam-timing characteristics and up to 300 kW of pulsed beam at 8 GeV. The Project-X research program includes world leading sensitivity in longbaseline neutrino experiments, neutrino scattering experiments, a rich program of ultra-rare muon and kaon decays, opportunities for next-generation electric dipole moment experiments and other nuclear/particle physics probes that reach far beyond the Standard Model.

  5. Tuning Fermilab Heavy Quarks in 2+1 Flavor Lattice QCD with Application to Hyperfine Splittings

    E-Print Network [OSTI]

    C. Bernard; C. DeTar; M. Di Pierro; A. X. El-Khadra; R. T. Evans; E. D. Freeland; E. Gmiz; Steven Gottlieb; U. M. Heller; J. E. Hetrick; A. S. Kronfeld; J. Laiho; L. Levkova; P. B. Mackenzie; J. N. Simone; R. Sugar; D. Toussaint; R. S. Van de Water

    2011-02-22T23:59:59.000Z

    We report the non-perturbative tuning of parameters--- kappa_c, kappa_b, and kappa_crit ---that determine the heavy-quark mass in the Fermilab action. This requires the computation of the masses of Ds^(*) and Bs^(*) mesons comprised of a Fermilab heavy quark and a staggered light quark. Additionally, we report the hyperfine splittings for Ds and Bs mesons as a cross-check of our simulation and analysis methods. We find a splitting of 145 +/- 15 MeV for the Ds system and 40 +/- 9 MeV for the Bs system. These are in good agreement with the Particle Data Group average values of 143.9 +/- 0.4 MeV and 46.1 +/- 1.5 MeV, respectively. The calculations are carried out with the MILC 2+1 flavor gauge configurations at three lattice spacings $a$ approximately 0.15, 0.12, and 0.09 fm.

  6. An 800-MeV superconducting LINAC to support megawatt proton operations at Fermilab

    E-Print Network [OSTI]

    Derwent, Paul; Lebedev, Valeri

    2015-01-01T23:59:59.000Z

    Active discussion on the high energy physics priorities in the US carried out since summer of 2013 resulted in changes in Fermilab plans for future development of the existing accelerator complex. In particular, the scope of Project X was reduced to the support of the Long Base Neutrino Facility (LBNF) at the project first stage. The name of the facility was changed to the PIP-II (Proton Improvement Plan). This new facility is a logical extension of the existing Proton Improvement Plan aimed at doubling average power of the Fermilab's Booster and Main Injector (MI). Its design and required R&D are closely related to the Project X. The paper discusses the goals of this new facility and changes to the Project X linac introduced to support the goals.

  7. The discovery of the b quark at Fermilab in 1977: The experiment coordinator`s story

    SciTech Connect (OSTI)

    Yoh, J.

    1997-12-01T23:59:59.000Z

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  8. Recent developments in electropolishing and tumbling R&D at Fermilab

    SciTech Connect (OSTI)

    Cooper, C.; Brandt, J.; Cooley, L.; Ge, M.; Harms, E.; Khabiboulline, T.; Ozelis, J.; /Fermilab; Boffo, C.; /Babcock Noell, Wuerzburg

    2009-10-01T23:59:59.000Z

    Fermi National Accelerator Lab (Fermilab) is continuing to improve its infrastructure for research and development on the processing of superconducting radio frequency cavities. A single cell 3.9 GHz electropolishing tool built at Fermilab and operated at an industrial partner was recently commissioned. The EP tool was used to produce a single cell 3.9 GHz cavity that reached an accelerating gradient of 30 MV/m with a quality factor of 5 x 10{sup 9}. A single cell 1.3 GHz cavity was also electropolished at the same industrial vendor using the vendor's vertical full-immersion technique. On their first and only attempt the vendor produced a single cell 1.3 GHz cavity that reached 30 MV/m with a quality factor of 1 x 10{sup 10}. These results will be detailed along with preliminary tumbling results.

  9. Grid Computing in the Collider Detector at Fermilab (CDF) scientific experiment

    E-Print Network [OSTI]

    Douglas P. Benjamin

    2008-10-20T23:59:59.000Z

    The computing model for the Collider Detector at Fermilab (CDF) scientific experiment has evolved since the beginning of the experiment. Initially CDF computing was comprised of dedicated resources located in computer farms around the world. With the wide spread acceptance of grid computing in High Energy Physics, CDF computing has migrated to using grid computing extensively. CDF uses computing grids around the world. Each computing grid has required different solutions. The use of portals as interfaces to the collaboration computing resources has proven to be an extremely useful technique allowing the CDF physicists transparently migrate from using dedicated computer farm to using computing located in grid farms often away from Fermilab. Grid computing at CDF continues to evolve as the grid standards and practices change.

  10. Operation of the intensity monitors in beam transport lines at Fermilab during Run II

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crisp, J; Fellenz, B; Fitzgerald, J; Heikkinen, D; Ibrahim, M A.

    2011-10-01T23:59:59.000Z

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. During Run II, much effort was made to continually improve the resolution and accuracy of the system.

  11. Charm-sea Contribution to High-p_T ?Production at the Fermilab Tevatron

    E-Print Network [OSTI]

    Cong-Feng Qiao

    2003-03-26T23:59:59.000Z

    The direct production of $J/\\psi(\\psi')$ at large transverse momentum, $p_T \\gg M_{J/\\psi}$, at the Fermilab Tevatron is revisited. It is found that the sea-quark initiated processes dominate in the high-$p_T$ region within the framework of color-singlet model, which is not widely realized. We think this finding is enlightening for further investigation on the charmonium production mechanism.

  12. Prospects for Searching for Excited Leptons during RunII of the Fermilab Tevatron

    E-Print Network [OSTI]

    E. Boos; A. Vologdin; D. Toback; J. Gaspard

    2001-11-05T23:59:59.000Z

    This letter presents a study of prospects of searching for excited leptons during RunII of the Fermilab Tevatron. We concentrate on single and pair production of excited electrons in the photonic decay channel in one CDF/DO detector equivalent for 2 fb^{-1}. By the end of RunIIa, the limits should be easily extended beyond those set by LEP and HERA for excited leptons with mass above about 190 GeV.

  13. TC corrections to the single-top-quark production at the Fermilab Tevatron

    E-Print Network [OSTI]

    Gongru Lu; Yigang Cao; Jinshu Huang; Junde Zhang; Zhenjun Xiao

    1997-01-29T23:59:59.000Z

    We calculate one-loop corrections to the single-top-quark production via $q\\overline{q}' \\to t\\overline b$ at the Fermilab Tevatron from the Pseudo-Goldstone bosons ( PGBs ) in the framework of one generation technicolor model. The maximum correction to the total cross section for the single-top-quark production is found to reach -2.4% relative to the tree-level cross section, which may be observable at a high-luminosity Tevatron.

  14. Studying W+W- production at the Fermilab Tevatron with SHERPA

    E-Print Network [OSTI]

    T. Gleisberg; F. Krauss; A. Schaelicke; S. Schumann; J. Winter

    2005-04-05T23:59:59.000Z

    The merging procedure of tree-level matrix elements with the subsequent parton shower as implemented in SHERPA will be studied for the example of W boson pair production at the Fermilab Tevatron. Comparisons with fixed order calculations at leading and next-to-leading order in the strong coupling constant and with other Monte Carlo simulations validate once more the impact and the quality of the merging algorithm and its implementation.

  15. Strategy for discovering a low-mass Higgs boson at the Fermilab Tevatron Pushpalatha C. Bhat

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    Strategy for discovering a low-mass Higgs boson at the Fermilab Tevatron Pushpalatha C. Bhat Fermi-mass standard model Higgs boson, during run II, via the processes pp¯WHl bb¯, pp¯ZH l l bb¯ and pp¯ZH ¯bb¯. We conventional analysis, in the integrated luminosity required to find a standard model Higgs boson in the mass

  16. Proposal for Fermilab remote access via ISDN (Ver. 1.0)

    SciTech Connect (OSTI)

    Lidinsky, W.P.; Martin, D.E.

    1993-07-02T23:59:59.000Z

    Currently, most users at remote sites connect to the Fermilab network via dial-up over analog modems using a dumb terminal or a personal computer emulating a dumb terminal. This level of connectivity is suitable for accessing a single, character-based application. The power of personal computers that are becoming ubiquitous is under-utilized. National HEPnet Management (NHM) has been monitoring and experimenting with remote access via the integrated services digital network (ISDN) for over two years. Members of NHM felt that basic rate ISDN had the potential for providing excellent remote access capability. Initially ISDN was not able to achieve this, but recently the situation has improved. The authors feel that ISDN can now provide, at a remote site such as a user`s home, a computing environment very similar to that which is available at Fermilab. Such an environment can include direct LAN access, windowing systems, graphics, networked file systems, and demanding software applications. This paper proposes using ethernet bridging over ISDN for remote connectivity. With ISDN remote bridging, a remote Macintosh, PC, X-terminal, workstation, or other computer will be transparently connected to the Fermilab LAN. Except for a slight speed difference, the remote machine should function just as if it were on the LAN at Fermilab, with all network services-file sharing, printer sharing, X-windows, etc. - fully available. There are two additional reasons for exploring technologies such as ISDN. First, by mid-decade environmental legislation such as the Federal Clean Air Act of 1990 and Illinois Senate Bill 2177 will likely force increased remote-worker arrangements. Second, recent pilot programs and studies have shown that for many types of work there may be a substantial cost benefits to supporting work away from the site.

  17. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12T23:59:59.000Z

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  18. Uniform longitudinal beam profiles in the Fermilab Recycler using adaptive rf correction

    SciTech Connect (OSTI)

    Hu, Martin; Broemmelsiek, Daniel Robert; Chase, Brian; Crisp, James L.; Eddy, Nathan; Joireman, Paul W.; Ng, King Yuen; /Fermilab

    2007-06-01T23:59:59.000Z

    The Fermilab Recycler Ring is a permanent magnet based 8 GeV anti-proton storage ring. A wideband RF system, driven with ARB's (ARBitrary waveform generators), allows the system to produce programmable barrier waveforms. Beam current profile distortion was observed, its origin verified both experimentally and theoretically, and an FPGA-based correction system was designed, tested and implemented to level the bunch profile.

  19. John Papanikolas: Visualizing Charge Carrier Motion in Nanowires...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Papanikolas: Visualizing Charge Carrier Motion in Nanowires Using Femtosecond Pump-Probe Microscopy Apr 17, 2014 | 4:00 PM - 5:00 PM John Papanikolas Professor of Chemistry &...

  20. THE UNIVERSITY OF CONNECTICUT HEALTH CENTER JOHN DEMPSEY HOSPITAL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Mandibular condyle prosthesis Operating Room Temporomandibular joint (TMJ) prosthesis Operating Room. PROCEDURE: A. DELEGATION OF RESPONSIBILITY & OFFICIAL CONTACT PERSON The Chief Operating Officer for John: Chief Operating Officer for John Dempsey Hospital UCHC Safety Officer Director of Clinical Engineering

  1. Sustainability policy and environmental policy John C. V. Pezzey

    E-Print Network [OSTI]

    Pezzey, Jack

    Sustainability policy and environmental policy John C. V. Pezzey Australian National University Economics and Environment Network Working Paper EEN0211 October 2002 #12;Sustainability Policy and Environmental Policy John C. V. Pezzey Centre for Resource and Environmental Studies Australian National

  2. Sampling Efficiency and Biodiversity Peter Neal & John Moriary

    E-Print Network [OSTI]

    Sidorov, Nikita

    Sampling Efficiency and Biodiversity Peter Neal & John Moriary First version: 9 June 2009 Research #12;Sampling efficiency and biodiversity Peter Neal and John Moriary June 9, 2009 1 Introduction Given

  3. People Strategy Committed to you

    E-Print Network [OSTI]

    People Strategy Committed to you and our future #12;The Forestry Commission's mission is to protect. As a nation we face many challenges. No matter how good the policies and plans developed to address them, ultimately what counts is delivery. It is action on the ground that makes all the difference. Our people

  4. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect (OSTI)

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01T23:59:59.000Z

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  5. John C Lacenere | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson LabJeffersonStandards andJianzhiAboutJoeJohnJohn C

  6. arXiv:0802.2965v1[hep-ex]21Feb2008 Single Top Quark Production at the Fermilab Tevatron Collider

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:0802.2965v1[hep-ex]21Feb2008 Single Top Quark Production at the Fermilab Tevatron Collider at the Fermilab Tevatron Collider are s-channel, which involve the exchange of a time-like W boson, and t be created in association with an an on-shell W boson, but this process is negligible at the Fermilab

  7. Under the Boardwalk Case History St. Johns Sideroad at the McKenzie Wetland, Aurora, Ontario, Canada

    E-Print Network [OSTI]

    Buchanan, Ian D.

    2007-01-01T23:59:59.000Z

    7E2, Fax: 905-895-7735 Canada Abstract: St. Johns Sideroad,of Aurora, Ontario, Canada and lies within the watershed ofin conjunction with Environment Canada, created the McKenzie

  8. Oliver F. Quinn, R.Stuart Haszeldine, John R. Underhill, and John E. Dixon, University of Edinburgh, Edinburgh, United Kingdom

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Oliver F. Quinn, R.Stuart Haszeldine, John R. Underhill, and John E. Dixon, University of Edinburgh around 60-70jC. Hydrocarbon inclusions, galena and fluorite are also present. The structural high acted

  9. John B. Macdonald Compiled by Christopher Hives (2005)

    E-Print Network [OSTI]

    Handy, Todd C.

    John B. Macdonald fonds Compiled by Christopher Hives (2005) Last revised August 2013 University Description John B. Macdonald fonds. ­ 1962-1967. 15 cm of textual records. Biographical Sketch The University of British Columbia's fourth president, John Barfoot Macdonald, was born in Toronto on February 23, 1918

  10. DENDROCHRONOLOGICAL DATING OF THE CHIEF JOHN ROSS HOUSE, ROSSVILLE, GEORGIA

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Donald, grandfather of Chief John Ross, for his Cherokee bride. This construction date first emerged in the 1950s principal chiefof the Cherokee before the tribe'sforced removal during the Trail of Tears. Using structure was reportedly built in 1797 by John McDonald, grandfa- ther of Chief John Ross, for his Cherokee

  11. John Shepard Wright Benefactor of Forestry in Indiana*

    E-Print Network [OSTI]

    John Shepard Wright Benefactor of Forestry in Indiana* by W. C. Bramble Head, Department of Forestry and Conservation, 1958 ­ 1973, Purdue University "John Shepard Wright was a quiet, scholarly man in the Proceedings of the Indiana Academy of Science for 1951. John S. Wright's interest in science and forestry

  12. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications

    E-Print Network [OSTI]

    Shiltsev, V

    2014-01-01T23:59:59.000Z

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  13. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01T23:59:59.000Z

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  14. SOLAR DESALINATION John H. Lienhard,1,

    E-Print Network [OSTI]

    Lienhard V, John H.

    CHAPTER 9 SOLAR DESALINATION John H. Lienhard,1, Mohamed A. Antar,2 Amy Bilton,1 Julian Blanco,3, Saudi Arabia 3 Plataforma Solar de Almeria, Carretera de Senes s/n, 04200 Tabernas (Almeria), Spain 4 supply infrastructure are inadequate, fossil energy costs may be high whereas solar energy is abundant

  15. Mechanical and Industrial Engineering John Stuart

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical and Industrial Engineering John Stuart Paul Washburn Co-Chairs MIE IAB Meeting #12;2Mechanical and Industrial Engineering Dean Tim Anderson #12;3Mechanical and Industrial Engineering Strategic vision for growing College Goal Method Current resources #12;4Mechanical and Industrial Engineering

  16. The Political Science Major Johns Hopkins University

    E-Print Network [OSTI]

    Niebur, Ernst

    The Political Science Major Johns Hopkins University The Department The programs of the Political Science department are designed to help students attain a deeper understanding of politics in its various dimensions. The department encourages students to become sophisticated theoretically and to study politics

  17. Time (hole?) machines John Byron Manchak

    E-Print Network [OSTI]

    Manchak, John

    Time (hole?) machines John Byron Manchak Department of Philosophy, University of Washington, Box machines Hole machines Time travel General relativity a b s t r a c t Within the context of general relativity, we consider a type of "time machine" and introduce the related "hole machine". We review what

  18. GPU Acceleration of Numerical Weather John Michalakes

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    GPU Acceleration of Numerical Weather Prediction John Michalakes National Center for Atmospheric parallelism will prove ineffective for many scenarios. We present an alternative method of scaling model Exponentially increasing processor power has fueled fifty years of continuous improvement in weather and climate

  19. STATUS OF SOLAR MODELS a JOHN BAHCALL

    E-Print Network [OSTI]

    Bahcall, John

    56 STATUS OF SOLAR MODELS a JOHN BAHCALL Institute for Advanced Study, Princeton, NJ 08540 M. H from 14 standard solar models published recently in refereed journals are inconsistent with the results of the 4 pioneering solar neutrino experiments if nothing happens to the neutrinos after they are created

  20. STATUS OF SOLAR MODELS a JOHN BAHCALL

    E-Print Network [OSTI]

    Bahcall, John

    by nuclear fusion reactions in the interior of the sun. The four pioneering experiments--chlorine 756 STATUS OF SOLAR MODELS a JOHN BAHCALL Institute for Advanced Study, Princeton, NJ 08540 M. H Introduction I was asked by Matts Roos to review in this talk the status of solar models as they relate

  1. Communication and Coordination John H. Miller

    E-Print Network [OSTI]

    Communication and Coordination John H. Miller Scott Moser February 25, 2003 Abstract Remarkable coordinate are not well understood. Here we examine the role of communication in achieving coordination this question we employ an adaptive model of strategically communicating agents (Miller et al. [7]) playing

  2. Radio Astronomy Fundamentals I John Simonetti

    E-Print Network [OSTI]

    Ellingson, Steven W.

    Radio Astronomy Fundamentals I John Simonetti Spring 2012 Radio astronomy provides a very different view of the universe than optical astronomy. Radio astronomers and optical astronomers use astronomy. Radio astronomers talk about sources of radio emission. Cas A is a strong source, for example

  3. The Sybil Attack John R. Douceur

    E-Print Network [OSTI]

    Keinan, Alon

    1 The Sybil Attack John R. Douceur Microsoft Research johndo@microsoft.com "One can have, some undermining this redundancy. One approach to preventing these "Sybil attacks" is to have a trusted agency certify identities. This paper shows that, without a logically centralized authority, Sybil attacks

  4. College of Engineering John V. Lombardi

    E-Print Network [OSTI]

    Mountziaris, T. J.

    creative and productive careers. Each year, through private support, the College of Engineering providesCollege of Engineering #12;John V. Lombardi Chancellor, University of Massachusetts Amherst #12, College of Engineering #12;We'd like to invite you to help us make the College of Engineering a place

  5. CURRICULUM VITAE Name: John Charles Priscu

    E-Print Network [OSTI]

    Lawrence, Rick L.

    and Oceanography winter meeting, Salt Lake City. February 2003. Participant and discussion leader, National ScienceCURRICULUM VITAE Name: John Charles Priscu Birthdate: September 20, 1952 Citizenship: U-present. Chair, SCAR-SALE (Subglacial Antarctic Lake Environments) International Scientific Planning Group

  6. JOHN A. WALKER COLLEGE OF BUSINESS

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    JOHN A. WALKER COLLEGE OF BUSINESS COMPUTER INFORMATION SYSTEMS MINOR (310) Fall 2011 ­ Summer 2012 Students not majoring in the College of Business may earn a computer information systems minor not admitted to the College of Business may take at most five business courses at the 3000 or 4000 level

  7. Fast Bayesian People Detection Gwenn Englebienne a

    E-Print Network [OSTI]

    Englebienne, Gwenn

    linearly on the number of people in the scene. When many people are present in the frame, detecting allFast Bayesian People Detection Gwenn Englebienne a Ben J.A. Kr¨ose a a Universiteit van Amsterdam for tracking people with fixed cameras, which automatically detects the number of people in a frame, is robust

  8. Portsmouth Paducah Project Office People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPO People Photo Gallery To view a larger photo, click on the thumbnail photo. Photo will open in a new browser window. PortsmouthPaducah Project Office 1017 Majestic Drive,...

  9. A review of "De Doctrina Christina. Volume VIII of The Complete Works of John Milton" by John Milton, edited by John K. Hale and J. Donald Cullington

    E-Print Network [OSTI]

    Mulryan, John

    2013-01-01T23:59:59.000Z

    #15;#16; #29;#28;#27;#28;#26;#25;#28;#28;#26;#25;#24;-#23;#28;#26;#25;#22;#21;#20; #26;#28;#19;#29; John Milton. De Doctrina Christiana. Volume VIII of #31;e Complete Works of John Milton, ed. John K. Hale and J. Donald Cullington. Oxford: Oxford...;rst translator, Charles Sumner, renders as ?contingent decrees.? John Carey, the sec- ond translator, verbosely retranslates the phrase as ?making decrees in a non-absolute way? and our editors, most absurdly, as ?non-absolute decreeing? (#14...

  10. Collimation system for beam loss localization with slip stacking injection in the Fermilab Main Injector

    SciTech Connect (OSTI)

    Brown, Bruce C.; /Fermilab

    2008-09-01T23:59:59.000Z

    Slip stacking injection for high intensity operation of the Fermilab Main Injector produces a small fraction of beam which is not captured in buckets and accelerated. A collimation system has been implemented with a thin primary collimator to define the momentum aperture at which this beam is lost and four massive secondary collimators to capture the scattered beam. The secondary collimators define tight apertures and thereby capture a fraction of other lost beam. The system was installed in 2007 with commissioning continuing in 2008. The collimation system will be described including simulation, design, installation, and commissioning. Successful operation and operational limitations will be described.

  11. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    SciTech Connect (OSTI)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01T23:59:59.000Z

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10/sup -10/ torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs.

  12. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN LHC

    SciTech Connect (OSTI)

    Pasquinelli, Ralph J.; /Fermilab; Jansson, Andreas; /ESS, Lund

    2011-02-01T23:59:59.000Z

    A means for non-invasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gating system. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron and Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  13. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect (OSTI)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01T23:59:59.000Z

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  14. Supersymmetric Electroweak Corrections to Single Top Quark Production at the Fermilab Tevatron

    E-Print Network [OSTI]

    Chong Sheng Li; Robert J. Oakes; Jin Min Yang

    1996-11-27T23:59:59.000Z

    We have calculated the $O(\\alpha_{ew} M_t^2/M_W^2)$ supersymmetric electroweak corrections to single top quark production via $q\\bar q' \\to t\\bar b$ at the Fermilab Tevatron in the minimal supersymmetric model. The supersymmetric electroweak corrections to the cross section are a few percent for $tan \\beta> 1$, and can exceed 10% for $tan\\beta<1$. The combined effects of SUSY electroweak corrections and the Yukawa corrections can exceed 10% for favorable parameter values, which might be observable at a high-luminosity Tevatron.

  15. Higgs Boson Signals in Three b-jet Final States at the Fermilab Tevatron

    E-Print Network [OSTI]

    Debajyoti Choudhury; Anindya Datta; Sreerup Raychaudhuri

    1998-09-26T23:59:59.000Z

    At the Fermilab Tevatron, final states with three tagged b-jets could play an important role in searches for a Higgs boson with mass in the range 100-300 GeV. These signals arise from gb fusion and we demonstrate their observability in the limit of a large b-quark Yukawa coupling. Rather promising discovery limits on such a coupling are obtained and consequent effects on the parameter space of the Higgs-boson sector in the MSSM are discussed.

  16. Search for Neutral Heavy Leptons in the NuTeV Experiment at Fermilab

    E-Print Network [OSTI]

    NuTeV Collaboration; R. B. Drucker

    1998-11-23T23:59:59.000Z

    Preliminary results from a search for neutral heavy leptons in the NuTeV experiment at Fermilab. The upgraded NuTeV neutrino detector for the 1996-1997 run included an instrumented decay region for the NHL search which, combined with the NuTeV calorimeter, allows detection in several decay modes (mu-mu-nu, mu-e-nu, mu-pi, e-pi, and e-e-nu). We see no evidence for neutral heavy leptons in our current search in the mass range from 0.3 GeV to 2.0 GeV decaying into final states containing a muon.

  17. Light meson and baryon spectroscopy from charm decays in Fermilab E791

    E-Print Network [OSTI]

    M. V. Purohit

    2000-10-16T23:59:59.000Z

    We present results from Fermilab experiment E791. We extracted the fractions of resonant components in the $\\Lambda_c^+\\to p K^- \\pi^+$ decays, and found a significant polarization of the $\\Lambda_c^+$ using a fully 5-dimensional resonant analysis. We also did resonant analyses of $D^+$ and $D^+_s$ decays into $\\pi^+\\pi^-\\pi^+$. We observed an insignificant asymmetry in the Breit Wigner describing the $f_0(980)$ and found good evidence for a light and broad scalar resonance in the $D^+$ decays.

  18. Model Independent Searches for New Physics at the Fermilab Tevatron Collider

    E-Print Network [OSTI]

    Joel Piper

    2009-06-19T23:59:59.000Z

    The standard model is a successful but limited theory. There is significant theoretical motivation to believe that new physics may appear at the energy scale of a few TeV, the lower end of which is currently probed by the Fermilab Tevatron Collider. The methods used to search for physics beyond the standard model in a model independent way and the results of these searches based on 1.0 fb-1 of data collected with the D0 detector and 2.0 fb^-1 at the CDF detector are presented.

  19. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    SciTech Connect (OSTI)

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; /Fermilab; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2010-05-01T23:59:59.000Z

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  20. DZero (D0) Experiment Results for New Phenomena from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the New Phenomena Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  1. DZero (D0) Experiment Results for Electroweak Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Electroweak Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  2. DZero (D0) Experiment Results for Top Quark Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Top Quark Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  3. DZero (D0) Experiment Results for Higgs Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Higgs Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  4. DZero (D0) Experiment Results for QCD Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons at the highest available energies. It involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the QCD Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  5. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thurman-Keup, R; Bhat, C; Blokland, W; Crisp, J; Eddy, N; Fellenz, B; Flora, R; Hahn, A; Hansen, S; Kiper, T; Para, A

    2011-10-01T23:59:59.000Z

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This article describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  6. Fermilab | Newsroom | Press Releases | August 2, 2012: Pier Oddone to Step

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group Robert05Down as Fermilab

  7. Fermilab | Newsroom | Press Releases | April 2, 2013: High-school students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «of

  8. Fermilab | Newsroom | Press Releases | April 29, 2013: New baby bison born

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «ofICARUSat

  9. Fermilab | Newsroom | Press Releases | April 29, 2015: New baby bison born

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab

  10. Safer Vehicles for People and the Planet

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2008-01-01T23:59:59.000Z

    t save people and the planet at the same time. ReferencesVehicles for People and the Planet Published in American

  11. People of Color and Disenfranchised Communities Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    People of Color and Disenfranchised Communities Environmental Health Network (the Coalition) People of Color and Disenfranchised Communities Environmental Health Network (the...

  12. PEOPLE AWARDS GUIDELINES 07/14 PEOPLE AWARDS

    E-Print Network [OSTI]

    Rambaut, Andrew

    and other cultural attractions; arts agencies; production companies; schools; local education authorities. People Awards support projects that cover at least one of the following areas: stimulate interest extraordinary improvements in human and animal health. Allied to this is a commitment to develop and support

  13. PEOPLE AWARDS GUIDELINES 11/14 PEOPLE AWARDS

    E-Print Network [OSTI]

    Rambaut, Andrew

    agencies; production companies; schools; local education authorities; universities and colleges; youth. People Awards support projects that cover at least one of the following areas: stimulate interest extraordinary improvements in human and animal health. Allied to this is a commitment to develop and support

  14. PEOPLE AWARDS GUIDELINES 05/14 PEOPLE AWARDS

    E-Print Network [OSTI]

    Rambaut, Andrew

    . Organisations might include: museums and other cultural attractions; arts agencies; production companies. People Awards support projects that cover at least one of the following areas: stimulate interest improvements in human and animal health. Allied to this is a commitment to develop and support activities

  15. The neutral kaon program at Fermilab and recent E731 results

    SciTech Connect (OSTI)

    Ramberg, E.J.

    1991-09-01T23:59:59.000Z

    Currently, Fermilab has a long-range program in neutral kaon physics which covers a wide variety of physics topics. In this report, I will be discussing the latest results from experiment E731 on the radiative decay of neutral kaons K{sub L,S} {yields} {pi}{sup +}{pi}{sup {minus}} {gamma}. These results include the first measurement of two new CP violation parameters: {eta}{sub +} {sub {minus}}{gamma} = (2.60{plus minus}0.54{plus minus}0.21) {center dot} 10{sup {minus}3}, and {phi}{sub +}{sub {minus}}{gamma} = (41{plus minus}28{plus minus}11){degrees}. The presence of a rho propogator form factor in the K{sub L} direct mission decay has been confirmed. Besides these results, the status of experiments E773 and E799, which are running in the 1991 fixed target run at Fermilab, and plans for future neutral kaon experiments will be discussed. 9 refs., 6 figs., 1 tab.

  16. Measurements of the Fermilab 200 MeV transfer line quadrupole magnets

    SciTech Connect (OSTI)

    Kroc, T.

    1990-03-22T23:59:59.000Z

    This report presents the results of measurements of two quadrupole magnets that are used in the 200 MeV transfer line. The measurements were performed to obtain data to evaluate the suitability of these magnets for use in a 400 MeV transfer line once the Linac Upgrade is complete. In order to provide a basis for comparison, data were obtained from Fermilab's Magnet Test Facility of measurements of magnets of similar size and strength that were built for the Loma Linda project. These Loma Linda magnets are possible replacements for the ones presently in the 200 MeV transfer line. The Fermilab Linac Upgrade includes the reconfiguration of the transfer line that runs from the linac to the booster in order to handle the higher beam energy. Nominally, the quadrupole strengths will need to be 1.5 times their current operating points. This report will use a value of 1.7 to allow a tuning range to account differences in geometry between the old and new lines. Another goal in the design of the new transfer line is to produce a non-steering line. A complaint about the current line is that steering results from any attempt to re-tune the line. 18 figs., 3 tabs.

  17. R and D of Nb(3)Sn accelerator magnets at Fermilab

    SciTech Connect (OSTI)

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E; Bordini, B.; Bossert, R.; Carcagno, R.; Chichili, D.R.; DiMarco, J.; Elementi, L.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Kephart, R.; Lamm, M.; Limon, P.J.; Novitski, I.; Orris, D.; Pischalnikov, Yu.; Schlabach, P.; Stanek, R.; /Fermilab; ,

    2004-11-01T23:59:59.000Z

    Fermilab is developing and investigating different high-field magnet designs for present and future accelerators. The magnet R&D program was focused on the 10-12 T accelerator magnets based on Nb{sub 3}Sn superconductor and explored both basic magnet technologies for brittle superconductors--wind-and-react and react-and-wind. Magnet design studies in support of LHC upgrades and VLHC are being performed. A series of 1-m long single-bore models of cos-theta Nb{sub 3}Sn dipoles based on wind-and-react technique was fabricated and tested. Three 1-m long flat racetracks and the common coil dipole model, based on a single-layer coil and wide reacted Nb{sub 3}Sn cable, have also been fabricated and tested. Extensive theoretical studies of magnetic instabilities in Nb{sub 3}Sn strands, cable and magnet were performed which led to successful 10 T dipole model. This paper presents the details of the Fermilab's high field accelerator magnet program, reports its status and major results, and formulates the program next steps.

  18. Report on Workshop on Future Directions for Accelerator R&D at Fermilab

    SciTech Connect (OSTI)

    Shiltsev, V.; Church, M.; Spentzouris, P.; Chou, W.; /Fermilab

    2009-09-01T23:59:59.000Z

    Accelerator R&D has played a crucial role in enabling scientific discovery in the past century and will continue to play this role in the years to come. In the U.S., the Office of High Energy Physics of DOE's Office of Science is developing a plan for national accelerator R&D stewardship. Fermilab undertakes accelerator research, design, and development focused on superconducting radio-frequency (RF), superconducting magnet, beam cooling, and high intensity proton technologies. In addition, the Lab pursues comprehensive integrated theoretical concepts and simulations of complete future facilities on both the energy and intensity frontiers. At present, Fermilab (1) supplies integrated design concept and technology development for a multi-MW proton source (Project X) to support world-leading programs in long baseline neutrino and rare processes experiments; (2) plays a leading role in the development of ionization cooling technologies required for muon storage ring facilities at the energy (multi-TeV Muon Collider) and intensity (Neutrino Factory) frontiers, and supplies integrated design concepts for these facilities; and (3) carries out a program of advanced accelerator R&D (AARD) in the field of high quality beam sources, and novel beam manipulation techniques.

  19. Bringing Computing Power to the People

    E-Print Network [OSTI]

    Chauhan, Arun

    Bringing Computing Power to the People Honors Seminar Fall 2005 Arun Chauhan #12;Honors Seminar, Fall 2005 Computing Power to the People Collaborators Indiana Joshua Hursey Andrew Lumsdaine Pooja to the People Interface #12;Honors Seminar, Fall 2005 Computing Power to the People Interacting with Computers

  20. People Strategy Fit for Our Future

    E-Print Network [OSTI]

    People Strategy Fit for Our Future People Strategy 2011-2016 #12;#12;Fit for Our Future Tim. The implications of the Comprehensive Spending Review settlements in each country will mean big changes for many of our people. Fit for Our Future: People Strategy 2011-2016 | 1 The Executive Board and the rest of my

  1. Rebuilding It Better; BTI-Greensburg, John Deere Dealership ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to save close to 50% in annual energy cost. 45491.pdf More Documents & Publications Building Green in Greensburg: BTI Greensburg John Deere Rebuilding It Better: Greensburg,...

  2. Building Green in Greensburg: BTI Greensburg John Deere

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing BTI Greensburg John Deere dealership building in Greensburg, Kansas.

  3. "New Results from the National Ignition Facility", Dr. John Lindl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009,...

  4. John C. Layton: Before the Subcommittee on Oversight and Investigation...

    Broader source: Energy.gov (indexed) [DOE]

    October 9, 1997 Before the Subcommittee on Oversight and Investigations Commerce Committee U.S. House of Representatives Statement of John C. Layton, Inspector General Department...

  5. MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    (NREL) Brown, Marilyn (Georgia Tech) Burns, Stephanie (IMT) Carroll, Ryan (Alliance for Green Heat) Chase, Alex (Energy Solutions) Cogan, Jonathan (EIA OC) Conti, John (EIA OEA)...

  6. John S. Wright Forestry Center Room Sizes, Capacities, and Rates

    E-Print Network [OSTI]

    Appendix 1 John S. Wright Forestry Center Room Sizes, Capacities, and Rates Room College the Wright Center contact: Marlene Mann, Administrative Assistant Forestry and Natural Resources Voice: 765

  7. John Hale III Awarded Minority Federal Government Public Servant...

    Office of Environmental Management (EM)

    awarded John Hale III, Director of the U.S. Department of Energy's Office of Small Business and disadvantage Utilization, the National Minority Federal Government Public Servant...

  8. ENGINEERING STRATEGIC PRIORITIES PEOPLE FACULTY, STUDENTS, STAFF

    E-Print Network [OSTI]

    Columbia University

    -Time Program Algorithms for Data Science Probability and Statistics Machine Learning for Data Science Nicholas Tatonetti Biomedical Informatics David Blei Statistics & Computer Science John Cunningham Statistics Kenneth Ross Computer Science Nicholas Ruozzi Computer Science Rocco Servedio Computer Science Jay

  9. people

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration goSecuritycdns ||fors|center |1/%2A en Our

  10. People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive Solar Home Design JuneRL Contracts/Procurements

  11. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - WH2XO 4 p.m. Accelerator Physics and Technology Seminar - ICB Hermitage Speaker: Mike Kelly, Argonne National Laboratory Title: Superconducting RF Technology: The Last 15 Years...

  12. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    events and volunteer opportunities. In the News Six decades of science for peace From CERN Courier, Sept. 23, 2014 CERN's origins can be traced back to the late 1940s, when a...

  13. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at x3428 with questions. In the News Muon g-2 storage ring starts a new life From CERN Courier, Oct. 27, 2014 In March 2001, the Brookhaven g-2 storage ring was retired,...

  14. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matter as the closer galaxy groups do. Read more Announcements Latest Announcements PII training required for all employees ACU's presents "How much will I need to retire?"...

  15. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its researchers are not telling. On 17 February, Nobel laureate Samuel Ting of the Massachusetts Institute of Technology, who designed the Alpha Magnetic Spectrometer (AMS), was...

  16. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to begin entering them in FermiWorks. You will also receive guidance on how to set SMART goals that are: specific, measurable, action-oriented, and time-oriented. For more...

  17. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestone NOvA near detector complete A PPD technician installs the last avalanche photodiode, better known as an APD, on the NOvA near detector. Photo: Ting Miao, PPD On...

  18. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 13 at 6:30 p.m. in the Kuhn Village Barn with music by White Mule and calling by Allan Sundry. Everyone is welcome. You don't need to know anything, just come and have fun...

  19. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maximum use of natural light, or simply use a different type of bulb. LED, or light-emitting diode, bulbs are gaining popularity as a versatile and energy-efficient product. When...

  20. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    balance by the end of the plan year. Healthcare expenses to be reimbursed with the 2014 Health Care Reimbursement Accounts must be incurred by March 15, 2015. 2014 Dependent Care...

  1. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that seem to twinkle so gently in the clear night sky, but are actually raging thermonuclear furnaces. everything. I'm explicitly not talking about dark matter, which is...

  2. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seminar - Curia II Speaker: Aaron Pierce, University of Michigan Title: Top Partners as a Window to Extended Scalar Sectors 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over THERE...

  3. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topics include: Project Management, Compensation, Employment, ES&H, Medical, Site Security, Computer Security, Procurement, Budgeting, FMLA and Benefits, EAP, Visa, and...

  4. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    218 & 225 Attention Prescription Safety Eyewear Customers: Please be advised that the eye technician will not be on-site February the 18 & 25, 2015. Normal service will resume...

  5. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Nuclear Research (CERN), where the LHC is located, discovered the famed Higgs boson - aka the "God particle" - in 2012 after years of experiments, but truly...

  6. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hadron Collider's CMS experiment, one of two experiments credited with the 2012 Higgs boson discovery. In December he was awarded the CMS Collaboration Award for his...

  7. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speaker: Rouven Essig, Stonybrook University Title: Exotic Decays of the 125 GeV Higgs Boson 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4 p.m. Accelerator Physics and...

  8. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer or Illinois Accelerator Research Center. From symmetry What's next for Higgs boson research? Two years after the groundbreaking discovery of the Higgs boson,...

  9. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    last century, from the discovery of the electron to the recent observation of the Higgs boson, has been matched by advances in technology and improvements in our standard of...

  10. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including the tools researchers use to search for dark energy, dark matter and the Higgs boson particle. Photo: Kurt Riesselmann, Office of Communication One of the highlights of...

  11. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Together, these particles control unreasonable predictions of the mass of the Higgs boson made by the familiar Standard Model. One consequence of quantum mechanics is that...

  12. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    candidates for dark matter." Read more Frontier Science Result: CMS Half-life of the Higgs boson This plot shows how well the Higgs half-life () is known: Less than 20...

  13. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the leaders of two LHC experiments, ATLAS and CMS, announced the discovery of the Higgs boson on July 4, 2012. Life-size projections of various physicists appear on the wall;...

  14. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particle physics research and technology innovation, playing important roles in the Higgs boson and cosmic inflation discoveries - and the many more revelations still to come....

  15. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model versus graviton-like boson (spin 2, positive parity) versus the Standard Model Higgs boson (spin 0, positive parity). Right: the pseudoscalar boson (spin 0, negative parity)...

  16. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 dissertation investigated ways to characterize the precise properties of the Higgs boson. He constructed an analysis framework aimed at extracting the maximum amount of...

  17. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recommends a U.S. particle physics program that will pursue research related to the Higgs boson, neutrinos, dark matter, dark energy and inflation, and as-yet undiscovered...

  18. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search for the top quark and, Litke wrote, it could help discover the elusive Higgs boson. He further speculated that it could perhaps also begin to uncover some of the many...

  19. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Hadron Collider first turned on? Or been in the room when the discovery of the Higgs boson was announced? The creators of the new documentary "Particle Fever," which opens in...

  20. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo: William Miller, NOvA far detector supervisor In the News Had there been no Higgs boson, this observation would have been the bomb From Science, July 22, 2014 Ever wonder...

  1. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the field into the electronic era, enabling the discovery of the top quark and the Higgs boson and contributing to establishing the Standard Model of fundamental particles and...

  2. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Curia II Speaker: Yue Zhang, California Institute of Technology Title: From the Higgs Boson to the Origin of Matter in the Universe 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr...

  3. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physicist Joe Incandela, who led the CMS experiment during the discovery of the Higgs boson, handed the reins to his former deputy, CERN physicist Tiziano Camporesi. For the...

  4. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mysteriously lightweight, leading physicists to wonder if something other than the Higgs boson gives them their masses. Neutrinos come in three types, and they morph from one to...

  5. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your friends in photos and Netflix to recommend your next film - to search for the Higgs boson. More than 1,000 individuals have already joined the race. They're vying for prizes...

  6. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  7. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  8. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  9. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  10. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  11. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  12. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August...

  13. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  14. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014...

  15. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burrito - Knockwurst and braised cabbage sandwich - Chana masala - Jager schnitzel - German beef sandwich - Sauteed smoked sausage and spaetzle - Beef borscht soup - Texas-style...

  16. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flabby belly and tone that drooping posterior. Not recommended for individuals with osteoporosis. Class will be held on Mondays, April 6May 18, 12-12:45pm, in the Fitness Center...

  17. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and more severe head injuries. The work involves recording magnetic fields outside the head that are produced by the brain and then using the OSG to determine the neuroelectric...

  18. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steve Leman, Massachusetts Institute of Technology Title: Bringing Light to a Dark Matter Search 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4 p.m. Joint...

  19. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    French toast - Breakfast: chorizo and egg burrito - Cajun chicken sandwich - Smart cuisine: white fish florentine - Kielbasa and kraut - Roast beef and cheddar panino...

  20. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enchilada - Chicken parmesan - Zesty turkey pastrami sandwich - Peruvian beef and potato stir fry - Split pea soup - Texas-style chili - Assorted calzones Wilson Hall Cafe...