National Library of Energy BETA

Sample records for fermi national accelerator

  1. Fermi National Accelerator Laboratory September 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory September 2012 Tritium, which has a half-life of 12.3 years, is an expected byproduct of accelerator operations at Fermilab. As part of our environmental monitoring program, we regularly sample the water discharged into the creeks on site and report the results to the Illinois Environmental Protection Agency, as required by state regulations. We also regularly test the water in the sanitary sewers. The low levels of tritium found since 2005 in Indian Creek,

  2. U.S. Department of Energy Fermi National Accelerator Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fermi National Accelerator Laboratory U.S. Department of Energy Fermi National Accelerator Laboratory The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments-a "comfort system" to cool the employee office space

  3. DOE - Office of Legacy Management -- Fermi National Accelerator Laboratory

    Office of Legacy Management (LM)

    - 016 Fermi National Accelerator Laboratory - 016 FUSRAP Considered Sites Site: Fermi National Accelerator Laboratory (016) More information at www.fnal.gov Designated Name: Not Designated under FUSRAP Alternate Name: None Location: Batavia, Illinois Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Particle physics laboratory Site Disposition: DOE continuing mission site; remediation completed by DOE Office of Environmental Management in 1996. Radioactive

  4. Labs at-a-Glance: Fermi National Accelerator Laboratory | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Fermi National Accelerator Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact Information Office

  5. Fermi National Accelerator Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal FNAL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Fermi National Accelerator Laboratory

  6. Fermi National Accelerator Laboratory November 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an international collaboration between U.S. universities, Fermilab in Illinois, Brookhaven National Laboratory in New York, and nine international labs and universities. It is...

  7. U.S. Department of Energy Fermi National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments — a "comfort system" to cool the employee office space and a "process system" for the equipment and accelerators. Backup cooling capacity is provided and cooling can be shifted between the process and comfort systems when necessary. The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs).

  8. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  9. Carrigan, Jr., Richard A. [Fermi National Accelerator Lab. (FNAL...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Lab. (FNAL), Batavia, IL (United States) 43 PARTICLE ACCELERATORS; BEAM OPTICS; CHANNELING; ATTENUATION; BEAM EXTRACTION; BENDING; CRYSTALS; MESON BEAMS; BEAMS;...

  10. U.S. Department of Energy Awards Contract for Management and Operation of Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC

    Broader source: Energy.gov [DOE]

    BATAVIA, ILLINOIS -- The U.S. Department of Energy (DOE) has awarded a new $1.575 billion, five-year contract for management and operation of Fermi National Accelerator Laboratory (FNAL) to the...

  11. Installation and commissioning of the new Fermi National Accelerator Laboratory H- Magnetron

    SciTech Connect (OSTI)

    Bollinger, D. S.

    2014-02-15

    The Fermi National Accelerator Laboratory (FNAL) 40 year old Cockcroft-Walton 750 keV injectors with slit aperture magnetron ion sources have been replaced with a circular aperture magnetron, Low Energy Beam Transport, Radio Frequency Quadrupole Accelerator, and Medium Energy Beam Transport, as part of the FNAL Proton Improvement Plan. The injector design is based on a similar system at Brookhaven National Laboratory. The installation, commissioning efforts, and source operations to date will be covered in this paper along with plans for additional changes to the original design to improve reliability by reducing extractor spark rates and arc current duty factor.

  12. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  13. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  14. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  15. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  16. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  17. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  18. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  19. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  20. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  1. Type A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001

    Broader source: Energy.gov [DOE]

    On June 21, 2001, at approximately 9:40 A.M., a construction sub-tier contractor employee (the “Operator”) at the Fermi National Accelerator Laboratory (Fermilab) received serious head injuries requiring hospitalization when he was struck by part of the drilling rig (a “tong”) that he was operating.

  2. Fermi National Accelerator Laboratory August 2015 The NO?A Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists determine the role that ghostly particles called neutrinos played in the evolution of the cosmos. The world's best neutrino beam Fermilab's accelerator complex...

  3. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona, Arkansas, Deleware, Florida, Georgia, Iowa, Kansas, Missouri, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Tennesse, Wyoming...

  4. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina, Rhode Island, Tennessee, Vermont 1,000,001-5,000,000 Indiana, Maryland, New Hampshire, Washington Colorado, District of Columbia, Florida, Massachusetts,...

  5. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota, Texas Arizona, Connecticut, Indiana, Kansas, Maine, Missouri, Nebraska, New Hampshire, South Carolina, Washington, Wisconsin More than 5 million California,...

  6. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Dakota, Utah, Wyoming 100,001-500,000 Arizona, Arkansas, Iowa, Kansas, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Vermont 500,001-1...

  7. Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) SLAC National Accelerator Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact Information Office of

  8. Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Thomas Jefferson National Accelerator Facility Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact

  9. Named Fellowships Luminary - Enrico Fermi | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enrico Fermi Enrico Fermi was born in Rome, Italy on September 29, 1901. Fermi was an Italian physicist, best known for having built the Chicago Pile-1 (the first nuclear...

  10. "Doing Business with Argonne and Fermi National Laboratories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Doing Business with Argonne and Fermi National Laboratories" 2014 Argonne-Fermilab Small Business Fair 1 of 20 2014 Argonne-Fermilab Small Business Fair On Aug. 28, 2014, Argonne...

  11. Fermi National Accelerator Laboratory March 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    630-840-5588 to register. Arts and Science Fermilab regularly hosts public events in Ramsey Auditorium, including lectures and arts performances. For a schedule, visit...

  12. Fermi National Accelerator Laboratory February 2015 Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known as synchrotron light sources to create the brightest light beams on Earth. These luminous sources provide tools for such applications as protein structure analysis,...

  13. Fermi National Accelerator Laboratory January 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh Puerto Rico University of Puerto Rico, Mayaguez Rhode...

  14. Fermi National Accelerator Laboratory August 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  15. Fermi National Accelerator Laboratory FY 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Carnegie Mellon University, Pittsburgh University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  16. Fermi National Accelerator Laboratory FY 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bucknell University Carnegie Mellon University, Pittsburgh Temple University, Philadelphia University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh...

  17. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 In 2012 at the Large Hadron Collider, scientists discovered the long-sought Higgs boson. Now the question is: Are there more types of Higgs bosons? What is a Higgs boson? What is...

  18. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recorded two distinct top-quark production mechanisms Explored a new mass range for the Higgs boson and constrained its mass through top-quark and W-boson mass measurements...

  19. Graphic Standards Fermi National Accelerator Laboratory 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    onto your slide, click outside of the text areas on the slide, select Insert > Choose. Search for your file and click Insert. Drag the image to position it to fit on your slide...

  20. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one-eighth of the southern sky, recording information on 300 million galaxies, 100,000 galaxy clusters and 4,000 supernovae. The Dark Energy Survey is a collaborative effort...

  1. Fermi National Accelerator Laboratory April 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thus explore whether the universe is even more complex than we think. Probing hints at new physics ICARUS: high-tech from Italy MicroBooNE: testing an anomaly SBND: closest to...

  2. Fermi National Accelerator Laboratory February 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2013 FY2014 K-12 teachers FY2013...

  3. Fermi National Accelerator Laboratory February 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2011 FY2012 K-12 teachers FY2011...

  4. Fermi National Accelerator Laboratory April 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. * With a strong focus on innovation and industrialization, IARC will attract high-tech companies and train Illinois citizens to develop advanced technology with...

  5. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intense beam of neutrinos, particles that may hold the key to understanding why the universe is made of matter. Using the cosmos as a laboratory, Fermilab scientists explore dark...

  6. accelerators | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accelerators A snapshot of NNSA's counterterrorism mission NNSA's mission of counterterrorism and counterproliferation is supported through innovative science and technology. Recently, Associate Administrator and Deputy Undersecretary for Counterterrorism and Counterproliferation Jay Tilden visited Oak Ridge National Laboratory (ORNL) and met with... Los Alamos plasma research shows promise for future compact accelerators The team in front of Los Alamos' Trident Laser Target Chamber. Back, from

  7. SLAC National Accelerator Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator...

  8. "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 Share Topic Operations Procurement Technology transfer

  9. Time-dependent models for blazar emission with the second-order Fermi acceleration

    SciTech Connect (OSTI)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    2014-01-01

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101–232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 10{sup 38} erg s{sup –1}, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  10. Multi-wavelength emission from the Fermi bubbles. I. Stochastic acceleration from background plasma

    SciTech Connect (OSTI)

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C. M.

    2014-07-20

    We analyze processes of electron acceleration in the Fermi bubbles in order to define parameters and restrictions of the models, which are suggested for the origin of these giant radio and gamma-ray structures. In the case of the leptonic origin of the nonthermal radiation from the bubbles, these electrons should be produced somehow in situ because of the relatively short lifetime of high-energy electrons, which lose their energy by synchrotron and inverse-Compton processes. It has been suggested that electrons in bubbles may be accelerated by shocks produced by tidal disruption of stars accreting onto the central black hole or a process of re-acceleration of electrons ejected by supernova remnants. These processes will be investigated in subsequent papers. In this paper, we focus on in situ stochastic (Fermi) acceleration by a hydromagnetic/supersonic turbulence, in which electrons can be directly accelerated from the background plasma. We showed that the acceleration from the background plasma is able to explain the observed fluxes of radio and gamma-ray emission from the bubbles, but the range of permitted parameters of the model is strongly restricted.

  11. Enrico Fermi Achieves First Self Sustain Nuclear Chain Reaction | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Enrico Fermi Achieves First Self Sustain Nuclear Chain Reaction Enrico Fermi Achieves First Self Sustain Nuclear Chain Reaction Chicago, IL Metallurgical Laboratory scientists led by Enrico Fermi achieve the first self-sustained nuclear chain reaction in pile constructed under the west grandstand at Stagg field in Chicago

  12. Accelerator Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accelerator Technology ATLAS at the LHC Cosmology & Astrophysics Instrumentation Precision Muon Physics Neutrino Physics Theoretical High Energy Physics Accelerator Technology Accelerator Technology To make the next generation of world-class particle accelerators - one even grander than the Large Hadron Collider in Switzerland - scientists will need to either create an extraordinarily large machine or rethink the basic principles that underpin the functioning of the accelerator.

  13. Thomas Jefferson National Accelerator Facility Technology Marketing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Jefferson National Accelerator Facility Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Thomas...

  14. Ground Broken for New Job-Creating Accelerator Research Facility at DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory in Illinois | Department of Energy Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi

  15. Kwok Ko SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kwok Ko SLAC National Accelerator Laboratory Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515. Large Scale Computing and Storage Requirements for High Energy Physics Rockville, MD, November 27-28, 2012 Present and Future Computing Requirements for Advanced Modeling for Particle Accelerator 1. Advanced Modeling for Particle Accelerators (AMPA) NERSC Repositories: m349 Principal Investigator: K. Ko Senior Investigators: SLAC - L. Ge, Z. Li, C. Ng, L. Xiao, FNAL -

  16. Christopher T. [Fermi National Accelerator Laboratory, P.O. Box...

    Office of Scientific and Technical Information (OSTI)

    IL 60439-4815 (United States), E-mail: zachos@anl.gov 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPACTIFICATION; DUALITY; FERMIONS; GAUGE INVARIANCE; HOLOGRAPHY;...

  17. U.S. Department of Energy Fermi National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs). The 3.5 million project (2.8 million before ...

  18. Fermi National Accelerator Laboratory October 2013 STEM Educational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2012 FY2013 K-12 teachers FY2012...

  19. DOE - Office of Legacy Management -- Fermi National Accelerator...

    Office of Legacy Management (LM)

    in high energy physics under the direction of the Department of Energy's Office of Science. Clean-up of contamination at the site was completed in 1997. Also see Documents...

  20. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM ...

  1. Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

  2. Brightest Fermi-LAT flares of PKS 1222+216: implications on emission and acceleration processes

    SciTech Connect (OSTI)

    Kushwaha, Pankaj; Singh, K. P.; Sahayanathan, Sunder

    2014-11-20

    We present a high time resolution study of the two brightest ?-ray outbursts from a blazar PKS 1222+216 observed by the Fermi Large Area Telescope (LAT) in 2010. The ?-ray light curves obtained in four different energy bands, 0.1-3, 0.1-0.3, 0.3-1, and 1-3 GeV, with time bins of six hours, show asymmetric profiles with similar rise times in all the bands but a rapid decline during the April flare and a gradual one during the June flare. The light curves during the April flare show an ?2 day long plateau in 0.1-0.3 GeV emission, erratic variations in 0.3-1 GeV emission, and a daily recurring feature in 1-3 GeV emission until the rapid rise and decline within a day. The June flare shows a monotonic rise until the peak, followed by a gradual decline powered mainly by the multi-peak 0.1-0.3 GeV emission. The peak fluxes during both the flares are similar except in the 1-3 GeV band in April, which is twice the corresponding flux during the June flare. Hardness ratios during the April flare indicate spectral hardening in the rising phase followed by softening during the decay. We attribute this behavior to the development of a shock associated with an increase in acceleration efficiency followed by its decay leading to spectral softening. The June flare suggests hardening during the rise followed by a complicated energy dependent behavior during the decay. Observed features during the June flare favor multiple emission regions while the overall flaring episode can be related to jet dynamics.

  3. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Design and Development Accelerator Design and Development Scientists around the world rely on particle accelerators to yield insights on the structure and function of ...

  4. Argonne Wakefield Accelerator Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities 4 Tesla Magnet Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility In order to achieve the high accelerating gradients needed to produce the tremendous energies required by a future particle accelerator, scientists have been looking for new ideas and solutions. Wakefield acceleration offers a potentially bold new path for the construction of the next generation of particle accelerators. The Argonne Wakefield

  5. Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan | Department of Energy Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan Los Alamos National Laboratory

  6. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ? 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (? 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  7. Secretary Chu Speaks at SLAC National Accelerator Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Friday, August 24, 2012, Secretary Chu gave a speech commemorating the 50th Anniversary of SLAC National Accelerator Laboratory. You can find the powerpoint presentation below.

  8. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL ...

  9. in Los Alamos National Security, LLC Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    local businesses receive $340,000 in Los Alamos National Security, LLC Venture Acceleration Funds July 9, 2013 Unmanned solar aircraft manufacturers, app developers among recipients LOS ALAMOS, N.M., July 9, 2013-Los Alamos National Security, LLC (LANS) awarded $340,000 to nine local businesses this year to help them grow and develop in Northern New Mexico. The grant awards are under the auspices of LANS' Venture Acceleration Fund and coordinated by the Los Alamos National Laboratory's

  10. THE EFFICIENCY OF SECOND-ORDER FERMI ACCELERATION BY WEAKLY COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect (OSTI)

    Lynn, Jacob W.; Quataert, Eliot; Parrish, Ian J.; Chandran, Benjamin D. G.

    2013-11-10

    We investigate the effects of pitch-angle scattering on the efficiency of particle heating and acceleration by MHD turbulence using phenomenological estimates and simulations of non-relativistic test particles interacting with strong, subsonic MHD turbulence. We include an imposed pitch-angle scattering rate, which is meant to approximate the effects of high-frequency plasma waves and/or velocity space instabilities. We focus on plasma parameters similar to those found in the near-Earth solar wind, though most of our results are more broadly applicable. An important control parameter is the size of the particle mean free path ?{sub mfp} relative to the scale of the turbulent fluctuations L. For small scattering rates, particles interact quasi-resonantly with turbulent fluctuations in magnetic field strength. Scattering increases the long-term efficiency of this resonant heating by factors of a few times 10, but the distribution function does not develop a significant non-thermal power-law tail. For higher scattering rates, the interaction between particles and turbulent fluctuations becomes non-resonant, governed by particles heating and cooling adiabatically as they encounter turbulent density fluctuations. Rapid pitch-angle scattering can produce a power-law tail in the proton distribution function, but this requires fine-tuning of parameters. Moreover, in the near-Earth solar wind, a significant power-law tail cannot develop by this mechanism because the particle acceleration timescales are longer than the adiabatic cooling timescale set by the expansion of the solar wind. Our results thus imply that MHD-scale turbulent fluctuations are unlikely to be the origin of the v {sup 5} tail in the proton distribution function observed in the solar wind.

  11. Los Alamos National Laboratory Venture Acceleration Fund boosts three

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    businesses Venture Acceleration Fund boosts three businesses LANL Venture Acceleration Fund boosts three businesses Integrative Enzymatics, Vapour Organic Beauty and HydroBio will receive startup funding from the Laboratory. June 19, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email New Mexico firms in health, beauty and agriculture gain support LOS ALAMOS, New Mexico, June 19,

  12. Los Alamos National Laboratory announces selection of venture acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fund recipients Venture acceleration fund recipients Los Alamos National Laboratory announces selection of venture acceleration fund recipients LANL has selected Manhattan Isotope Technology, LLC and Vista Therapeutics, Inc. as recipients of $100,000 awards. June 15, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  13. Preliminary Notice of Violation, SLAC National Accelerator Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEA-2009-01 | Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Preliminary Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 April 3, 2009 This letter refers to the Department of Energy's (DOE) Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances associated with the September 13, 2007 On April 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of

  14. Labs at-a-Glance: Argonne National Laboratory | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Argonne National Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact Information Office of Science U.S.

  15. Labs at-a-Glance: Brookhaven National Laboratory | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Brookhaven National Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact Information Office of

  16. Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Labs at-a-Glance: Lawrence Berkeley National Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact

  17. Labs at-a-Glance: Oak Ridge National Laboratory | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Oak Ridge National Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact Information Office of Science

  18. Labs at-a-Glance: Pacific Northwest National Laboratory | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Pacific Northwest National Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact Information Office

  19. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory and Argonne National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology development and testing facilities. Speak with experts in the field. photo collage Accelerator technologies are vital to broad sectors of the U.S. economy, including medicine, industry, defense and security, energy and environment. With this pilot program, the DOE Office of Science National Laboratories are opening their doors to potential

  20. SLAC National Accelerator Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories SLAC National Accelerator Laboratory Technologies

  1. Fermi National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ...Stewardship B+ Environment Safety and Health B+ Business Systems A- Facilities Maintenance and Infrastructure B+ Security and Emergency Management For information regarding ...

  2. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect (OSTI)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  3. Conference: Remembering Fermi | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remembering Fermi Citation Details Title: Remembering Fermi

  4. Remembering Fermi

    SciTech Connect (OSTI)

    Cronin, James

    2005-03-30

    A combination of the discovery of nuclear fission and the circumstances of the 2nd World War brought Enrico Fermi to Chicago, where he led the team that produced the first controlled, self-sustained nuclear chain reaction. Following the war in 1945 Chancellor Hutchins, William Zachariasen, and Walter Bartky convinced Fermi to accept a professorship at the University of Chicago, where the Institute for Nuclear Studies was established. Fermi served as the leading figure in surely the greatest collection of scientists the world has ever seen. Fermi's tenure at Chicago was cut short by his death in 1954. My talk will concentrate on the years 1945-54. Examples of his research notebooks, his speeches, his teaching, and his correspondence will be discussed.

  5. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  6. Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 September 3, 2009 Issued to Stanford University related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory On September 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Final Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851

  7. Fermi Feud

    Office of Energy Efficiency and Renewable Energy (EERE)

    Enrico Fermi was the first scientist to achieve a nuclear fission chain reaction when he and a group of young scientists were experimenting at the University of Chicago on December 2, 1942. Using a “Jeopardy” format, this game features energy, electricity and nuclear science answers and questions.

  8. Collaboration Topics - Acceleration Hardware and APIs | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Acceleration Hardware and APIs This work explores areas of common interest in programming models for the coming exascale era. Initially, the intent was to aggregate NNSA and CEA lab's work in this area into a common repository. Early work will focus on low-level application programming interfaces (APIs), micro-benchmarks, and mini-applications. Work in the out-years will include APIs and languages that provide higher levels of abstraction. Accomplishments 1)

  9. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  10. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  11. Enrico Fermi Patents

    Office of Scientific and Technical Information (OSTI)

    Patents Fermi Home Resources with Additional Information Fermi Honored Atoms for Peace Centennial of Birth Marburger Speech Stamp AudioVideo Clips US PATENT...

  12. Enrico Fermi: Audio/Video Clips

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Audio/Video Clips Fermi Home * Resources with Additional Information * Fermi Honored * Atoms for Peace * Centennial of Birth Marburger Speech * Stamp * Patents Video Clip Fermi's account of the first nuclear chain reaction on December 2,1942 (from the colloquium of the 10th Anniversary of the event), with artwork of the reactor by Argonne National Laboratory (ANL). Due to the secrecy of the event, no photographs were taken of the reactor. Introduction by Crawford Greenwalt. Courtesy of ANL

  13. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of

  14. Enrique Fermi Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enrique Fermi Award Enrique Fermi Award The Enrico Fermi Award is given by DOE to recognize scientists, engineers, and science policy makers for a lifetime of achievement in the field of nuclear energy. Established in 1956, it is the government's oldest science and technology award. Contact Jenna L. Montoya (505) 665-4230 Email It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge. ~Enrique Fermi fermi On November 16, 1954, President Eisenhower and

  15. Summary of contamination control practices at Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    R. May; S. Schwahn; K. Welch

    1997-01-01

    It is often the belief that electron accelerators are clean machines, producing little or no measurable removable contamination. However, at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), a 200 {micro}A continuous wave, 4 GeV electron accelerator, there are several types of contamination that may be found: external contamination of beamline components near high beam loss points, radionuclides produced from the spallation of oxygen in air, and internal contamination of water systems used to cool beamline components. The last two categories, however, are fairly well understood and are not discussed herein. The Jefferson Lab Radiation Control Group has developed a comprehensive set of contamination control practices to identify and control personnel exposure to these radionuclides.

  16. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  17. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  18. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  19. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  20. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  1. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  2. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  3. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  4. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  5. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  6. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  7. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  8. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  9. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  10. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  11. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  12. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  13. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  14. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  15. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  16. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires detailed understanding of the solar resource available at various locations. Under a bilateral partnership between the United States and India- the U.S.-India Energy Dialogue-the National Renewable Energy Laboratory (NREL) has developed solar maps and data for India to provide 15 years of hourly information by

  17. Accelerators, Electrodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icon-science.jpg Accelerators, Electrodynamics National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  18. Enrico Fermi Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patents Fermi Home * Resources with Additional Information * Fermi Honored * Atoms for Peace * Centennial of Birth Marburger Speech * Stamp * Audio/Video Clips US PATENT 2,206,634 (Process for the Production of Radioactive Substances); E. Fermi, E. Amaldi, F. Rasetti, E. Segre, B. Pontecorvo; July 2, 1940. The process, for production of isotopes including transuranic elements by reaction of neutrons, employs means for generating neutrons having a high average energy, slowing down and scattering

  19. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60650 * November 2013 NREL prints on paper that contains recycled content. NREL-Led Team Improves and Accelerates Battery Design The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineer- ing for Electric Drive Vehicle

  20. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect (OSTI)

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  1. MiniBooNE Status Ryan B. Patterson Princeton University Argonne Workshop on Trends in Neutrino Physics, Argonne National Laboratry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Ryan B. Patterson Princeton University Argonne Workshop on Trends in Neutrino Physics, Argonne National Laboratry May 14, 2003 The collaboration University of Alabama Bucknell University University of California, Riverside University of Cincinnati University of Colorado Columbia University Embry Riddle Aeronautical University Fermi National Accelerator Laboratory Indiana University Los Alamos National Laboratory Louisiana State University University of Michigan Princeton University ~60

  2. Accelerator on a Chip

    Broader source: Energy.gov [DOE]

    Scientists at the National Labs are attempting to build the world’s smallest particle accelerator.

  3. Enrico Fermi Award Ceremony | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enrico Fermi Award Ceremony Enrico Fermi Award Ceremony June 22, 2006 - 2:31pm Addthis Remarks Prepared for Energy Secretary Samuel Bodman The Department of Energy has a very rich scientific tradition and one of the best things about being Energy Secretary is from time to time I have an opportunity to acknowledge that tradition and the very real impact it continues to have on the lives of all Americans.Today is one of those days. We are here to honor Art Rosenfeld with our nation's highest

  4. Correlation between Fermi surface transformations and superconductivit...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Correlation between Fermi surface transformations and superconductivity ... Title: Correlation between Fermi surface transformations and superconductivity in the ...

  5. Type B Accident Investigation Board Report on the October 22, 1997, Electrical Arc Blast at Building F-Zero Fermi National Accelerator Laboratory, Batavia, Illinois

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Cherri J. Langenfeld, Manager, Chicago Operations Office, U.S. Department of Energy.

  6. Type B Accident Investigation Board Report on the September 4, 1998, Flammable Liquid Fire/Explosion at Fermi National Accelerator Laboratory, Batavia, Illinois

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Type B Accident Investigation Board appointed by John P. Kennedy, Acting Manager, Chicago Operations Office, U.S. Department of Energy.

  7. Michigan Nuclear Profile - Fermi

    U.S. Energy Information Administration (EIA) Indexed Site

    Fermi" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,085","7,738",81.4,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"

  8. Video: Honoring Science that Matters with the Enrico Fermi Award |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Video: Honoring Science that Matters with the Enrico Fermi Award Video: Honoring Science that Matters with the Enrico Fermi Award February 11, 2014 - 9:50am Addthis The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. The 2013 winners of the award are Dr. Allen J. Bard, of The University of Texas at Austin, and Dr. Andrew Sessler of the Lawrence Berkeley National Laboratory.

  9. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs An Iridate with Fermi Arcs Print Wednesday, 29 October 2014 00:00 Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved

  10. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a broken Fermi surface. In conventional superconductors, the superconducting gap-an indicator of superconductivity-vanishes above the superconducting transition temperature...

  11. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  12. Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development

    Broader source: Energy.gov [DOE]

    The National Geothermal Data System is online open-source platform that facilitates the discovery and use of geothermal data. It will help address one of the greatest barriers to development and deployment of this promising clean energy source.

  13. EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

  14. Oak Ridge National Laboratory (ORNL): Industrial Collaborations with the Fuel Cell Technologies Program: Accelerating Widespread Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCTO T2M Event at the 2014 Fuel Cell Seminar (11/11/14) Industrial Collaborations with the ORNL Fuel Cell Technologies Program: Accelerating Widespread Commercialization David L. Wood, III, Ph.D. Senior Scientist & Fuel Cell Technologies Program Manager T2M Event at the 2014 Fuel Cell Seminar Los Angeles, CA 11/11/14 2 FCTO T2M Event at the 2014 Fuel Cell Seminar (11/11/14) ORNL Overview * Founded: 1943 as a key Manhattan Project location. * Location: Oak Ridge, TN * 4250 Employees * Budget:

  15. Modeling High-Energy Gamma-Rays from the Fermi Bubbles - Oral Presentation

    SciTech Connect (OSTI)

    Splettstoesser, Megan

    2015-08-25

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 50 degrees in galactic latitude and 20-30 degrees in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration is responsible for the high-energy emission of the bubbles. Second order Fermi acceleration requires charged particles and irregular magnetic fields—both of which are present in the disk of the Milky Way galaxy. I use the assumption of second order Fermi acceleration in the transport equation, which describes the diffusion of particles. By solving the steady-state case of the transport equation, I compute the proton spectrum due to Fermi second order acceleration and compare this analytical solution to a numerical solution provided by Dr. P. Mertsch. Analytical solutions to the transport equation are taken from Becker, Le, & Dermer and are used to further test the numerical solution. I find that the numerical solution converges to the analytical solution in all cases. Thus, we know the numerical solution accurately calculates the proton spectrum. The gamma-ray spectrum follows the proton spectrum, and will be computed in the future.

  16. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs Print Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved photoemission spectroscopy (ARPES) with in situ electron doping

  17. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs Print Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved photoemission spectroscopy (ARPES) with in situ electron doping

  18. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs Print Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved photoemission spectroscopy (ARPES) with in situ electron doping

  19. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs Print Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved photoemission spectroscopy (ARPES) with in situ electron doping

  20. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs Print Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved photoemission spectroscopy (ARPES) with in situ electron doping

  1. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs Print Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved photoemission spectroscopy (ARPES) with in situ electron doping

  2. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Iridate with Fermi Arcs Print Researchers have discovered that "Fermi arcs," which are much-debated features found in the electronic structure of high-temperature superconducting (HTSC) cuprates, can also be found in an iridate (iridium oxide) compound. At the ALS, the researchers observed the electronic structure of strontium iridate as it evolved through different doping levels and temperatures by using angle-resolved photoemission spectroscopy (ARPES) with in situ electron doping

  3. Application Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest

  4. DOE Science Showcase - 2009 Enrico Fermi Award Winners | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information DOE Science Showcase - 2009 Enrico Fermi Award Winners Find government research information related to 2009 Enrico Fermi Award Winners, including full-text technical reports, citations, project summaries and more. OSTI makes R&D information rapidly available to researchers and the public so that discovery can be accelerated. Dr. Goodenough's Research DOE R&D Accomplishments John B. Goodenough, Cathode Materials, and Rechargeable

  5. Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selection of Venture Acceleration Fund recipients March 8, 2010 LOS ALAMOS, New Mexico, March 8, 2010-Los Alamos National Laboratory (LANL) has selected Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund invests in creating and growing Northern New Mexico businesses that have an association with LANL technology or expertise. Venture Acceleration Fund investments help

  6. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  7. SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Diamondoid Tip Adding a Layer of Tiny Diamonds Could Boost the Power of Electron Guns Used in Research and Industry Prev Next Headlines SLAC's Stanley Brodsky Shares...

  8. Neutron dose per fluence and weighting factors for use at high energy accelerators

    SciTech Connect (OSTI)

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  9. Towards a Holographic Marginal Fermi Liquid (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review D Research Org: SLAC National Accelerator ...

  10. Enrico Fermi - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enormous Blades for Offshore Energy Enormous Blades for Offshore Energy February 8, 2016 - 2:00pm Addthis Sandia's design for giant wind turbine blades that are stowed at dangerous wind speeds to reduce the risk of damage. | Courtesy of TrevorJohnston.com/Popular Science Stephanie Holinka Sandia National Laboratories A new design for gigantic blades longer than two football fields could help bring offshore 50-megawatt (MW) wind turbines to the United States and the world. Sandia's research on

  11. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  12. Fermi Award Winners Saluted | Department of Energy

    Office of Environmental Management (EM)

    The Fermi Award winner receives a citation signed by the President of the United States and the Secretary of Energy, a gold medal bearing the likeness of Enrico Fermi, and an ...

  13. The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility, OAS-RA-L-11-13

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility OAS-RA-L-11-13 September 2011 Department of Energy Washington, DC 20585 September 30, 2011 MEMORANDUM FOR THE DEPUTY DIRECTOR FOR SCIENCE PROGRAMS, OFFICE OF SCIENCE DIRECTOR, OFFICE OF RISK MANAGEMENT AND FINANCIAL POLICY, OFFICE OF THE CHIEF FINANCIAL OFFICER FROM: David Sedillo, Director NNSA & Science Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The 12 GeV CEBAF

  14. Lisa Utschig | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lisa Utschig Chemist, Solar Energy Conversion Group BA, Cornell College PhD, Northwestern University Enrico Fermi Scholar, Argonne National Laboratory Primary Research Interests:...

  15. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 - Los Alamos National Laboratory has selected Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners

  16. Fermi Timing and Synchronization System

    SciTech Connect (OSTI)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  17. Modeling high-energy gamma-rays from the Fermi Bubbles

    SciTech Connect (OSTI)

    Splettstoesser, Megan

    2015-09-17

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 55° in galactic latitude and 20°-30° in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration requires charged particles and irregular magnetic fields- both of which are present in the disk of the Milky Way galaxy. By solving the steady-state case of the transport equation, I compute the proton spectrum due to second order Fermi acceleration. I compare the analytical solutions of the proton spectrum to a numerical solution. I find that the numerical solution to the transport equation converges to the analytical solution in all cases. The gamma-ray spectrum due to proton-proton interaction is compared to Fermi Bubble data (from Ackermann et al. 2014), and I find that second order Fermi acceleration is a good fit for the gamma-ray spectrum of the Fermi Bubbles at low energies with an injection source term of S = 1.5 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹. I find that a non-steady-state solution to the gamma-ray spectrum with an injection source term of S = 2 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹ matches the bubble data at high energies.

  18. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg from Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.

  19. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  20. Toward a national plan for the accelerated commercialization of solar energy: the role of state and local government

    SciTech Connect (OSTI)

    Gadsby, N.

    1980-05-01

    This report characterizes solar technologies and related markets. It summarizes constraints and concerns that presently inhibit their accelerated commercialization and discusses the potential of subfederal units of government to remove, or at least alleviate, such barriers. It addresses the need for increased federal support if the potential for solar energy is to be realized.

  1. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  2. EA-0969: Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico to construct and operate a small research and development...

  3. Energy Department Announces $25 Million to Accelerate Integration...

    Office of Environmental Management (EM)

    5 Million to Accelerate Integration of Solar Energy into Nation's Electrical Grid Energy Department Announces 25 Million to Accelerate Integration of Solar Energy into Nation's ...

  4. An Iridate with Fermi Arcs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Univ. of Michigan); and B.J Kim (Argonne National Laboratory, Univ. of Michigan, and Max Planck Institute for Solid State Research). Research funding: National Science...

  5. The National Teacher Enhancement Program (K-8) coordinated by the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Richmond, C.R.

    1991-01-01

    Teachers need help, not harassment. So do the establishments in which teachers practice their profession. Community resources must be marshalled to provide help to local schools and teachers. In 1990 the National Science Foundation (NSF) established a unique educational activity named the National Teacher Enhancement Program (NTEP). NSF took advantage of the Department of Energy (DOE) sponsored educational programs and resources at several large DOE contractor labs that had had prior experience with DOE supported teacher enhancement programs. While DOE concentrated on teacher enhancement activities for secondary teachers, the NSF concentrated on teachers from grades K-8. The Oak Ridge National Laboratory (ORNL) is the lead organization for both administering and coordinating the grant. Other participating laboratories are Argonne National Laboratory (ANL), Fermi National Accelerator Laboratory (FERMI), Battelle-Pacific Northwest Laboratory (PNL), Lawrence Livermore Laboratory (LLNL) with some support functions provided by Brookhaven National Laboratory (BNL) and the Oak Ridge Associated Universities (ORAU). The program calls for a three week duration workshop to be conducted at each lab followed by in-service training and other activities during the year. The NSF/NTEP protocol calls for networking among the participating organizations and some of the teachers. An assessment effort is also an integral part of the program. 2 refs.

  6. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  7. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  8. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  9. DOE Science Showcase - 2009 Enrico Fermi Award Winners | OSTI...

    Office of Scientific and Technical Information (OSTI)

    2009 Enrico Fermi Award Winners Find government research information related to 2009 Enrico Fermi Award Winners, including full-text technical reports, citations, project summaries ...

  10. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund announces "Call for Ideas" August 2, 2010 LOS ALAMOS, New Mexico, August 2, 2010-Through September 1, 2010, Northern New Mexico Connect (NNM Connect) is accepting idea statements for the Los Alamos National Security, LLC Venture Acceleration Fund (VAF). VAF invests in creating and growing Northern New Mexico businesses that have an association with Los Alamos National Laboratory technology or expertise. It invests up to $100,000 in businesses that use

  11. Accelerated Aging of Roofing Surfaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National ... H. Laboratory method mimicking natural soiling and weathering of outdoor surfaces. Ser. ...

  12. Baseline review of the U.S. LHC Accelerator project

    SciTech Connect (OSTI)

    1998-02-01

    The Department of Energy (DOE) Review of the U.S. Large Hadron Collider (LHC) Accelerator project was conducted February 23--26, 1998, at the request of Dr. John R. O`Fallon, Director, Division of High Energy Physics, Office of Energy Research, U.S. DOE. This is the first review of the U.S. LHC Accelerator project. Overall, the Committee found that the U.S. LHC Accelerator project effort is off to a good start and that the proposed scope is very conservative for the funding available. The Committee recommends that the project be initially baselined at a total cost of $110 million, with a scheduled completion data of 2005. The U.S. LHC Accelerator project will supply high technology superconducting magnets for the interaction regions (IRs) and the radio frequency (rf) straight section of the LHC intersecting storage rings. In addition, the project provides the cryogenic support interface boxes to service the magnets and radiation absorbers to protect the IR dipoles and the inner triplet quadrupoles. US scientists will provide support in analyzing some of the detailed aspects of accelerator physics in the two rings. The three laboratories participating in this project are Brookhaven National Laboratory, Fermi National Accelerator Laboratory (Fermilab), and Lawrence Berkeley National Laboratory. The Committee was very impressed by the technical capabilities of the US LHC Accelerator project team. Cost estimates for each subsystem of the US LHC Accelerator project were presented to the Review Committee, with a total cost including contingency of $110 million (then year dollars). The cost estimates were deemed to be conservative. A re-examination of the funding profile, costs, and schedules on a centralized project basis should lead to an increased list of deliverables. The Committee concluded that the proposed scope of US deliverables to CERN can be readily accomplished with the $110 million total cost baseline for the project. The current deliverables should serve as

  13. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    SciTech Connect (OSTI)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  14. Enrico Fermi's Impact on Science - John Marburger Speech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi Home * Resources with Additional Information * Fermi Honored * Atoms for Peace * Centennial of Birth Stamp * Patents * Audio/Video Clips Enrico Fermi's Impact on Science Address given at the Italian Embassy Washington, D.C. Centennial Celebration of the Birth of Enrico Fermi November 27, 2001 Dr. John H. Marburger III President's Science Adviser and Director, Office of Science and Technology Policy It is a great honor to be invited to speak of Enrico Fermi on the occasion of his centennial

  15. U.S. Department of Energy's Clean Energy Investment Center |...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Laboratory, Idaho National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, ArgonneFermi National Accelerator Laboratories, and...

  16. Native American Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Native American Venture Acceleration Fund provides boost to six regional businesses February 26, 2013 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, New Mexico, Feb. 26, 2013-Six Native American businesses received grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help

  17. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regional businesses receive Native American Venture Acceleration Fund grants February 1, 2016 Investing in Northern New Mexico's economy through jobs, new revenue LOS ALAMOS, N.M., Feb. 1, 2016-Four Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients

  18. Test results of a Nb3Al/Nb3Sn subscale magnet for accelerator application

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; Sasaki, Ken -ichi; Ogitsu, Toru; Yamamoto, Akira; Kimura, Nobuhiro; Tsuchiya, Kiyosumi; Sugano, Michinaka; Enomoto, Shun; et al

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb3Al and Nb3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb3Al cable and the technology acquisition of magnet fabrication with Nb3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in a minimum-gap common-coil configuration with twomore » Nb3Al coils sandwiched between two Nb3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb3Sn coil and 8.2 T in the Nb3Al coil. The quench characteristics of the magnet were studied.« less

  19. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect (OSTI)

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  20. Director Emeritus, Los Alamos National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Emeritus, Los Alamos National Laboratory Siegfried Hecker Siegfried Hecker September 2009 Enrico Fermi Award Winner Stanford University Professor Siegfried Hecker has received the prestigious Enrico Fermi Award, one of the top honors awarded by the U.S. government. U.S. Energy Secretary Steven Chu, former director of the Lawrence Berkeley National Laboratory, announced the presidential award, which consists of a gold medal and $375,000 to be shared by the

  1. A hadronic-leptonic model for the Fermi bubbles: Cosmic-rays in the galactic halo and radio emission

    SciTech Connect (OSTI)

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2014-07-01

    We investigate non-thermal emission from the Fermi bubbles in a hadronic model. Cosmic-ray (CR) protons are accelerated at the forward shock of the bubbles. They interact with the background gas in the Galactic halo and create ?{sup 0}-decay gamma-rays and secondary electrons through proton-proton interaction. We follow the evolution of the CR protons and electrons by calculating their distribution functions. We find that the spectrum and the intensity profiles of ?{sup 0}-decay gamma-rays are consistent with observations. We predict that the shock front is located far ahead of the gamma-ray boundary of the Fermi bubbles. This naturally explains the fact that a clear temperature jump of thermal gas was not discovered at the gamma-ray boundary in recent Suzaku observations. We also consider re-acceleration of the background CRs in the Galactic halo at the shock front. We find that it can significantly affect the gamma-rays from the Fermi bubbles, unless the density of the background CRs is ? 10% of that in the Galactic disk. We indicate that secondary electrons alone cannot produce the observed radio emission from the Fermi bubbles. However, the radio emission from the outermost region of the bubbles can be explained if electrons are directly accelerated at the shock front with an efficiency of ?0.1% of that of protons.

  2. Results From Plasma Wakefield Acceleration Experiments at FACET...

    Office of Scientific and Technical Information (OSTI)

    International Particle Accelerator Conference (IPAC-2011), San Sebastian, Spain, 4-9 Sep 2011 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  3. Fermi surface topology and hot spot distribution in the Kondo...

    Office of Scientific and Technical Information (OSTI)

    Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 6 ... September 17, 2016 Title: Fermi surface topology and hot spot distribution in the Kondo ...

  4. 2013 Annual Planning Summary for the FERMI Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the FERMI Site Office.

  5. 2012 Annual Planning Summary for Fermi Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Fermi Site Office.

  6. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect (OSTI)

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates artificial Fermi arcs for Tc ? T ? Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  7. Pairing, pseudogap and Fermi arcs in cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  8. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    SciTech Connect (OSTI)

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Abdo, A. A.; Ackermann, M.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Belfiore, A.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Bastieri, D.; Bignami, G. F. E-mail: Gino.Tosti@pg.infn.it E-mail: tburnett@u.washington.edu; and others

    2012-04-01

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.

  9. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Science with the NERSC Burst Buffer Early User Program Wahid Bhimji , ... Early User Program, focused on real science applications and workflows that can ...

  10. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  11. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Connect activities through the Regional Development Corporation. "This is the third round of proposals for these Venture Acceleration Fund awards, which have already...

  12. Superfluid Fermi-Fermi mixture: Phase diagram, stability, and soliton formation

    SciTech Connect (OSTI)

    Adhikari, Sadhan K.

    2007-11-15

    We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.

  13. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect (OSTI)

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  14. Cosmic Accelerators: Engines of the Extreme Universe

    SciTech Connect (OSTI)

    Funk, Stefan

    2009-06-23

    The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

  15. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ? 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ? 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  16. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  17. Unconventional Fermi surface in an insulating state

    SciTech Connect (OSTI)

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  18. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  19. 2016_AUGUST.FermiOrgChart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Fermi Research Alliance, LLC Neutrino Division Gina Rameika Particle Physics Division Patricia McBride Office of the CRO Joe Lykken Chief Research Officer Fermilab Center for Particle Astrophysics Craig Hogan CMS Center Kevin Burkett Office of the General Counsel John Myer Office of Integrated Planning & Performance Management Erik Gottschalk Workforce Development & Resources Section Kay Van Vreede Office of the COO Timothy Meyer Chief Operating Officer Office of

  20. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Andrew Gordon About Us Andrew Gordon - SLAC National Accelerator Laboratory Andrew Gordon is the External Communications Manager at SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent The World's Most Powerful X-ray Laser is Getting an Upgrade June 21 Accelerator on a Chip February Jefferson Lab

    Andrew Hutton Named Head of Jefferson Lab's Accelerator Division Andrew Hutton Named Head of Jefferson Lab's Accelerator Division March

  1. ACCELERATE ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama, State of the Union, Feb. 13, 2013 The U.S. Department of Energy, Council on Competitiveness and Alliance to Save Energy have joined forces to undertake in Accelerate Energy...

  2. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  3. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  4. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Middleton, J.N.; Schildknecht, H.E.

    1979-08-20

    An improved acceleration switch is described which is of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  5. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Middleton, John N.; Schildknecht, Harold E.

    1981-01-01

    The disclosure relates to an improved acceleration switch, of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  6. ION ACCELERATOR

    DOE Patents [OSTI]

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  7. Fermi National Acceleator Laboratory Annual Program Review 1992

    SciTech Connect (OSTI)

    Appel, Jeffrey A.; Jovanovic, Drasko; Pordes, Stephen

    1992-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for March 31 - April 2, 1992. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  8. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  9. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016...

  10. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Their work was supported by supercomputing resources at the National Energy Research Scientific Computing Center (NERSC). Traditional accelerators, like the Large Hadron Collider ...

  11. Accelerated Technique for Carbon Mesoporous Materials - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Accelerated Technique for Carbon Mesoporous Materials Oak Ridge National Laboratory Contact ORNL About This Technology...

  12. The Illinois Accelerator Research Center, or IARC,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side-by-side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  13. Accelerate program opens doors for nontraditional students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerate program opens doors for nontraditional students Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec....

  14. Accelerator Stewardship Test Facility Program - Elliptical Twin...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) ...

  15. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  16. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  17. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; et al

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  18. Fermilab - Top Quark Press Release (Historical)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Laboratory

  19. TeVSymposium12MasterDB (PPD-115151)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated 6/6/2012 Tevatron Impact Symposium June 11, 2012 Fermi National Accelerator Laboratory - Batavia, Illinois - USA Registrants List Muons, Inc. 1. Robert Abrams Florida State University 2. Todd Adams Fermi National Accelerator Laboratory 3. Carl Albright Fermi National Accelerator Laboratory 4. Michael Albrow Norrell Design 5. John Altholz Benedictine University 6. Rebecca Alvarez Fermi National Accelerator Laboratory 7. Giorgio Ambrosio INFN, Padova 8. Silvia Amerio Fermi National

  20. Towards a Holographic Marginal Fermi Liquid (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; BRANES; DEFECTS; FERMI GAS; FERMIONS; FIELD THEORIES; ...

  1. 2011 Annual Planning Summary for Fermi Site Office (FSO)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Fermi Site Office (See Science APS).

  2. Enrico Fermi Achieves First Self Sustain Nuclear Chain Reaction...

    National Nuclear Security Administration (NNSA)

    Self Sustain Nuclear Chain Reaction Chicago, IL Metallurgical Laboratory scientists led by Enrico Fermi achieve the first self-sustained nuclear chain reaction in pile...

  3. Van der Waals metal-semiconductor junction: Weak Fermi level...

    Office of Scientific and Technical Information (OSTI)

    Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier Citation Details In-Document Search Title: Van der Waals ...

  4. Venture Acceleration Fund wins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins entrepreneurship award October 23, 2014 Fund supports economic development in Northern New Mexico LOS ALAMOS, N.M., Oct. 23, 2014-The Venture Acceleration Fund (VAF) created by Los Alamos National Security, LLC (LANS) and administered by the Regional Development Corporation received the 2014 entrepreneurship award from the International Economic Development Council (IEDC). The award was presented at IEDC's annual conference this week in Fort Worth, Texas. "Since the VAF was initiated

  5. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 4, 2014 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, N.M., Feb. 4, 2014-Six Northern New Mexico Native American-owned and operated businesses received a total of $60,000 in grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2

  6. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  7. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  8. The first Fermi LAT supernova remnant catalog

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Acero, F.

    2016-05-16

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidatesmore » falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, demonstrates the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. As a result, we model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less

  9. Fermi LAT Observations of LS 5039

    SciTech Connect (OSTI)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-29

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  10. Ther FERMI FEL project at TRIESTE

    SciTech Connect (OSTI)

    Walker, R.P.; Bulfone, D.; Cargnello, F.

    1995-12-31

    The goal of the FERMI project - Free Electron Radiation and Matching Instrumentation - is to construct a new user facility for FEL radiation beams covering a broad spectral range (2-250 {mu}m) to complement the high brightness VUV/Soft-Xray radiation available from the ELETTRA synchrotron radiation facility at Trieste. A unique feature of the project will be the possibility of carrying out {open_quote}pump-probe{close_quote} experiments using synchronized radiation beams from FERMI and ELETTRA on the same sample. The project was launched at a meeting with Italian FEL experts held in Trieste on the 18th November 1994, chaired by C. Rubbia, as a collaboration between Sincrotrone Trieste, ENEA (Frascati), INFN (Frascati) and the University of Naples (Department of Electronic Engineering). The facility will make use of an existing linac, that forms part of the ELETTRA injection system, and a hall into which the beam can be extracted. In addition, for the first phase of the project equipment will be used from the suspended INFN/ENEA {open_quote}SURF{close_quote} FEL experiment, including the undulator, beam transport magnets and optical cavity. In this first International FEL Conference report on the project, we summarize the main features of the project, concentrating in particular on the most recent activities, including: results of measurements of the linac beam in the FEL mode of operation, further studies of the electron beam transport system including possibilities for bunch length manipulations, and further numerical calculations of the FEL performance.

  11. LANL announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL announces Venture Acceleration Fund recipients LANL announces Venture Acceleration Fund recipients Ideum and OnQueue are the latest recipients of the awards from the Los Alamos National Security, LLC Venture Acceleration Fund. September 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  12. Enrico Fermi and the First Self-Sustaining Nuclear Chain Reaction

    Office of Scientific and Technical Information (OSTI)

    about Enrico Fermi and his work is available in full-text DOE reports and on the Web. ... FGST (Fermi Gamma-ray Space Telescope) Remembering Fermi (video) Top Additional Web Pages: ...

  13. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  14. Odd-frequency density waves: Non-Fermi-liquid metals with an...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; FERMI GAS; FERMI LEVEL; FREQUENCY DEPENDENCE; GOLDSTONE BOSONS; ...

  15. Momentum sharing in imbalanced Fermi systems

    SciTech Connect (OSTI)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

  16. Momentum sharing in imbalanced Fermi systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  17. Momentum sharing in imbalanced Fermi systems

    SciTech Connect (OSTI)

    Hen, O. [Tel Aviv Univ., Tel Aviv (Israel); Sargsian, M. [Florida International Univ., Miami, FL (United States); Weinstein, L. B. [Old Dominion Univ., Norfolk, VA (United States); Piasetzky, E. [Tel Aviv Univ., Tel Aviv (Israel), et. al.

    2014-10-30

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

  18. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  19. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  20. National Laboratory Photovoltaics Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  1. HEP Accelerator R&D Expertise | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    As needed, promising concepts are tested at national laboratory test facilities, such as the Advanced Wakefield Accelerator (AWA) at ANL, the Accelerator Test Facility (ATF) at ...

  2. Energy Secretary Moniz to Present Enrico Fermi Awards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy to Present Enrico Fermi Awards Energy Secretary Moniz to Present Enrico Fermi Awards January 29, 2014 - 2:10pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - On Monday, February 3, U.S. Secretary of Energy Ernest Moniz will present the 2013 Enrico Fermi Awards to Dr. Allen J. Bard, Director, Center for Electrochemistry and Hackerman-Welch Regents Chair in Chemistry at The University of Texas at Austin, and Dr. Andrew Sessler, Distinguished Scientist Emeritus and Director

  3. X.509 Authentication/Authorization in FermiCloud

    SciTech Connect (OSTI)

    Kim, Hyunwoo; Timm, Steven

    2014-11-11

    We present a summary of how X.509 authentication and authorization are used with OpenNebula in FermiCloud. We also describe a history of why the X.509 authentication was needed in FermiCloud, and review X.509 authorization options, both internal and external to OpenNebula. We show how these options can be and have been used to successfully run scientific workflows on federated clouds, which include OpenNebula on FermiCloud and Amazon Web Services as well as other community clouds. We also outline federation options being used by other commercial and open-source clouds and cloud research projects.

  4. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2015 Nearly $700,000 in new revenue generated last two years LOS ALAMOS, N.M., March 3, 2015-Six Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. "Our Native

  5. Enrico Fermi's Impact on Science - John Marburger Speech

    Office of Scientific and Technical Information (OSTI)

    essentials. Later, when I came to know Fermi and Dirac, I realized that they spoke and thought about physics very much in the way that I had imagined them to do from studying...

  6. Fermi Large Area Telescope Observations of the Supernova Remnant...

    Office of Scientific and Technical Information (OSTI)

    Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1 Citation Details ... Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS ...

  7. Inverse free-electron laser accelerator development

    SciTech Connect (OSTI)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 {times} 10{sup 11} W) CO{sub 2} laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 {mu}sec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment.

  8. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  9. RDC receives award for Accelerate Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDC Receives Award for Accelerate Program Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit RDC receives award for Accelerate Program Accelerate is designed to help graduate more technical career students, place them in jobs, and better prepare them for career and educational advancement. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community

  10. Lab seeks venture acceleration initiative partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration initiative partners Lab seeks Venture Acceleration initiative partners The Venture Acceleration Initiative is a pilot program to strategically spin off from the Lab start-up companies with emphasis on establishing new businesses in northern New Mexico. June 9, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable