Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

2

Enterprise Fellowship Scheme EFS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation ContractsCGNPC JV JumpEnphase EnergyEnteroFellowship

3

Greenhouse Gas Services AES GE EFS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384°,AES GE EFS Jump to: navigation,

4

Fermi Feud | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment ofThe development of efficient,

5

Energy-ef cient Cache Replacement Policies for Cooperative Caching in Mobile Ad Hoc Network  

E-Print Network [OSTI]

Energy-ef cient Cache Replacement Policies for Cooperative Caching in Mobile Ad Hoc Network dynamically. Most existing cache strategies perform replacement independently, and they seldom consider coordinated replacement and energy saving issues in the context of a mobile ad hoc network. In this paper, we

Chan, Edward

6

The Spectral Energy Distribution of Fermi bright blazars  

E-Print Network [OSTI]

(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the \\gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $\

Abdo, A A; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Horan, D; Hughes, R E; Itoh, R; Jackson, M S; Johannesson, G; Johnson, A S; Johnson, W N; Kadler, M; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knodlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Max-Moerbeck, W; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F

2009-01-01T23:59:59.000Z

7

A method for Fermi energy measurements A. Tsukernik,a)  

E-Print Network [OSTI]

due to the built-in field, which converts the diffusive regime of transport into thermionic emission on the analysis of thermionic emission and diffusion over a barrier with a built-in charge. The method can cannot be employed for Fermi energy measurements. As a result, the temperature dependence of thermionic

Luryi, Serge

8

Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies  

E-Print Network [OSTI]

Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions central collisions at Fermi energies. However, considering the same central event selection

Boyer, Edmond

9

Enrico Fermi Award Ceremony | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy Engagingbasics.pdfMultiple

10

Fermi Award Winners Saluted | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging withDots) -

11

Finite-size energy of non-interacting Fermi gases  

E-Print Network [OSTI]

We prove the asymptotics of the difference of the ground-state energies of two non-interacting $N$-particle Fermi gases on the half line of length $L$ in the thermodynamic limit up to order $1/L$. We are particularly interested in subdominant terms proportional to $1/L$, called finite-size energy. In the nineties Affleck and co-authors [Aff97, ZA97, AL94] claimed that the finite-size energy equals the decay exponent occuring in Anderson's orthogonality catastrophe. It turns out that the finite-size energy depends on the details of the thermodynamic limit and typically also includes a linear term in the scattering phase shift.

Martin Gebert

2014-06-14T23:59:59.000Z

12

In-medium effects for nuclear matter in the Fermi energy domain D. Durand,1  

E-Print Network [OSTI]

In-medium effects for nuclear matter in the Fermi energy domain O. Lopez,1 D. Durand,1 G. Lehaut,1 of nuclear reactions in the Fermi energy domain. I. INTRODUCTION Transport properties in nuclear matter energy domain, transport features should exhibit the in- terplay between mean-field (nuclear degrees

Boyer, Edmond

13

High-Energy Neutrinos in Light of Fermi-LAT  

E-Print Network [OSTI]

The production of high-energy astrophysical neutrinos is tightly linked to the emission of hadronic gamma-rays. I will discuss the recent observation of TeV to PeV neutrinos by the IceCube Cherenkov telescope in the context of gamma-ray astronomy. The corresponding energy range of hadronic gamma-rays is not directly accessible by extragalactic gamma-ray astronomy due to interactions with cosmic radiation backgrounds. Nevertheless, the isotropic sub-TeV gamma-ray background observed by the Fermi Large Area Telescope (LAT) contains indirect information from secondary emission produced in electromagnetic cascades and constrains hadronic emission scenarios. On the other hand, observation of PeV gamma-rays would provide a smoking-gun signal for Galactic emission. In general, the cross-correlation of neutrino emission with (extended) Galactic and extragalactic gamma-ray sources will serve as the most sensitive probe for a future identification of neutrino sources.

Ahlers, Markus

2015-01-01T23:59:59.000Z

14

2956r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 29562963 : DOI:10.1021/ef9014263  

E-Print Network [OSTI]

.1021/ef9014263 Published on Web 04/05/2010 Cubic-Plus-Association Equation of State for Asphaltene the asphaltene precipitation in live oils from temperature, pressure, and composition effects. The live oils. The hydro- carbon residue is further divided into the "heavy" component and asphaltenes. The asphaltene

Firoozabadi, Abbas

15

1106r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 11061113 : DOI:10.1021/ef9009857  

E-Print Network [OSTI]

.1021/ef9009857 Published on Web 01/05/2010 Modeling Asphaltene Precipitation by n-Alkanes from Heavy Oils of state to study the asphaltene precipitation from n-alkane diluted model solutions (asphalteneþtoluene/resins, and asphaltenes; n-alkanes are treated independently. The asphaltene precipitation is modeled as liquid

Firoozabadi, Abbas

16

Data:58ef1b1c-ef8f-476a-8664-a24f08a1bc2e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84

17

Data:A65b294d-ef33-4e22-9246-9b152b0ef245 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 Noddefe0-db39-48c0-ac98-7941b3451e3cf8e56363f No revisione903b17d302c No2b0ef245 No

18

Fermi-Energy-Dependent Structural Deformation of Chiral Single-Wall Carbon Nanotubes  

E-Print Network [OSTI]

In this work, we use an extended tight-binding approach for calculating the Fermi-energy dependence of the structural deformation of chiral single-wall carbon nanotubes (SWNTs). We show that, in general, nanotube strains ...

Vieira, Bruno G.?M.

19

Nonadiabatic phenomenology in small Fermi energy superconductors L. Pietronero a,b  

E-Print Network [OSTI]

Nonadiabatic phenomenology in small Fermi energy superconductors L. Pietronero a,b , E. Cappelluti hypothesis is of fundamental importance in the standard electron­phonon phenomenology, since it not only

Cappelluti, Emmanuele

20

Estimating the energy of stitching together the Maxwell and Fermi neutron spectra  

SciTech Connect (OSTI)

The energy of stitching together the Maxwell and Fermi spectra is estimated on the basis of experimental data and the results of calculations carried out using the MCU-RFFI and MCU-5 codes.

Ionov, V. S., E-mail: ivs2010@vver.kiae.ru; Marin, S. V. [National Research Center Kurchatov Institute (Russian Federation)

2014-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear symmetry energy from the Fermi-energy difference in nuclei  

E-Print Network [OSTI]

The neutron-proton Fermi-energy difference and the correlation to nucleon separation energies for some magic nuclei are investigated with the Skyrme energy density functionals and nuclear masses, with which the nuclear symmetry energy at sub-saturation densities is constrained from 54 Skyrme parameter sets. The extracted nuclear symmetry energy at sub-saturation density of 0.11 fm$^{-3}$ is 26.2 $\\pm$ 1.0 MeV with 1.5 $\\sigma$ uncertainty. By further combining the neutron-skin thickness of 208Pb, ten Skyrme forces with slope parameter of 28energy around saturation densities.

Ning Wang; Li Ou; Min Liu

2013-03-15T23:59:59.000Z

22

Data:18de6d8d-8ef1-4ffe-87ef-8a8bd9594063 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9 No3bdf6fd5eb No revisionadc3-3c3b192852bd

23

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Energy Frontier Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal...

24

On the energy-momentum spectrum of a homogeneous Fermi gas  

E-Print Network [OSTI]

We consider translation invariant quantum systems in thermodynamic limit. We argue that their energy-momentum spectra should have shapes consistent with effective models involving quasiparticles. Our main example is second quantized homogeneous interacting Fermi gas in a large cubic box with periodic boundary conditions, at zero temperature. We expect that its energy-momentum spectrum has a positive energy gap and a positive critical velocity.

Jan Derezi?ski; Krzysztof A. Meissner; Marcin Napirkowski

2012-06-01T23:59:59.000Z

25

Quantum lattice gas model of Fermi systems with relativistic energy relations  

E-Print Network [OSTI]

Presented are several example quantum computing representations of quantum systems with a relativistic energy relation. Basic unitary representations of free Dirac particles and BCS superconductivity are given. Then, these are combined into a novel unitary representation of a Fermi condensate superfluid. The modeling approach employs an operator splitting method that is an analytically closed-form product decomposition of the unitary evolution operator, applied in the high-energy limit. This allows the relativistic wave equations to be cast as unitary finite-difference equations. The split evolution operators (comprising separate kinetic and interaction energy evolution terms) serve as quantum lattice gas models useful for efficient quantum simulation.

Jeffrey Yepez

2013-07-12T23:59:59.000Z

26

Energy Secretary Moniz to Present Enrico Fermi Awards | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVAC |andof 2005

27

U.S. Department of Energy Fermi National Accelerator Laboratory |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeed Families" | Department

28

Data:5b984855-3e51-49e0-bcbf-4152d42020ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d4379-e4cca9d37856 No revisiona1eec5b358bcbf-4152d42020ef No

29

Superallowed Fermi transitions in RPA with a relativistic point-coupling energy functional  

E-Print Network [OSTI]

The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic point-coupling energy functional is applied to evaluate the isospin symmetry-breaking corrections {\\delta}c for the 0+\\to0+ superallowed Fermi transitions. With these {\\delta}c values, together with the available experimental ft values and the improved radiative corrections, the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined. Even with the consideration of uncertainty, the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.

Z. X. Li; J. M. Yao; H. Chen

2011-04-11T23:59:59.000Z

30

Data:6d6903e5-4077-45ce-9892-cdc68ef5935a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3f49fa2694 No9fb1785f59e2d98199c92ffd2a366cdb12ea No-cdc68ef5935a

31

Data:7074ac59-0505-457e-891d-86ef56805f0d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No-4eca-bf68-a0cb8e6f39cbef09929b68a No revision6ef56805f0d No

32

Data:28e40caf-58ee-497d-ab2e-962ef23bfcda | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf0e85488a7fe3a3badf5e-962ef23bfcda No revision

33

Data:295c13a4-3a02-4792-b62b-0192424121ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 No revision has been70efd0cc3-4792-b62b-0192424121ef

34

Data:55818145-8aab-4460-aa06-e7ef1a42a27a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3 No revision has been approved for this page.

35

Data:5a3fbda2-ffaf-41ef-8c25-fd22ffcf93ce | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No revision

36

Data:5175942c-4210-4ab4-9dce-e07ef939cfdd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783 No revision hasa9-0dccf016a7a7972e384 No revision7ef939cfdd No

37

Data:08c71545-a256-4e92-ada2-ef5568659916 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fbc9b253bedd No7-e86f2fd7b7e6ef5568659916 No

38

Data:0fc3ccaf-72ef-430b-8abc-e75868fdd372 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for thise2856597771 Noccaf-72ef-430b-8abc-e75868fdd372 No revision

39

Data:Afb02670-4400-4ef9-9669-4a5be717027d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has beenb2f1-0963489fea4e Nob3f1-01f301f150f6Afb02670-4400-4ef9-9669-4a5be717027d No

40

Condition on the KohnSham kinetic energy and modern parametrization of the ThomasFermi density  

E-Print Network [OSTI]

; published online 20 January 2009 We study the asymptotic expansion of the neutral-atom energy as the atomic-correlation energy, EXC n , must be approximated. But a direct, orbital-free DFT could be constructed if onlyCondition on the Kohn­Sham kinetic energy and modern parametrization of the Thomas­Fermi density

Burke, Kieron

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nonlocal extension of the dispersive-optical-model to describe data below the Fermi energy  

E-Print Network [OSTI]

Present applications of the dispersive-optical-model analysis are restricted by the use of a local but energy-dependent version of the generalized Hartree-Fock potential. This restriction is lifted by the introduction of a corresponding nonlocal potential without explicit energy dependence. Such a strategy allows for a complete determination of the nucleon propagator below the Fermi energy with access to the expectation value of one-body operators (like the charge density), the one-body density matrix with associated natural orbits, and complete spectral functions for removal strength. The present formulation of the dispersive optical model (DOM) therefore allows the use of elastic electron-scattering data in determining its parameters. Application to ${}^{40}$Ca demonstrates that a fit to the charge radius leads to too much charge near the origin using the conventional assumptions of the functional form of the DOM. A corresponding incomplete description of high-momentum components is identified, suggesting t...

Dickhoff, W H; Waldecker, S J; Charity, R J; Sobotka, L G

2010-01-01T23:59:59.000Z

42

Data:58cf012c-9841-42bc-825a-93bc6e4087ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 Noaa727c9ff358 Noa2f6fd95c0098f41ec120a69d

43

CONSTRAINING THE HIGH-ENERGY EMISSION FROM GAMMA-RAY BURSTS WITH FERMI  

SciTech Connect (OSTI)

We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the {nu}F{sub {nu}} spectra (E{sub pk}). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E{sub pk} than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to {gamma}{gamma} attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bonamente, E.; Cecchi, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Brigida, M. [Dipartimento di Fisica 'M. Merlin' dell'Universita e del Politecnico di Bari, I-70126 Bari (Italy); Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Caliandro, G. A., E-mail: jchiang@slac.stanford.edu, E-mail: kocevski@slac.stanford.edu, E-mail: moretti@particle.kth.se, E-mail: connauv@uah.edu, E-mail: valerie@nasa.gov, E-mail: michael.briggs@nasa.gov [Institut de Ciencies de l'Espai (IEEE-CSIC), Campus UAB, E-08193 Barcelona (Spain); Collaboration: Fermi Large Area Telescope Team; Fermi Gamma-ray Burst Monitor Team; and others

2012-08-01T23:59:59.000Z

44

Nonlocal extension of the dispersive-optical-model to describe data below the Fermi energy  

E-Print Network [OSTI]

Present applications of the dispersive-optical-model analysis are restricted by the use of a local but energy-dependent version of the generalized Hartree-Fock potential. This restriction is lifted by the introduction of a corresponding nonlocal potential without explicit energy dependence. Such a strategy allows for a complete determination of the nucleon propagator below the Fermi energy with access to the expectation value of one-body operators (like the charge density), the one-body density matrix with associated natural orbits, and complete spectral functions for removal strength. The present formulation of the dispersive optical model (DOM) therefore allows the use of elastic electron-scattering data in determining its parameters. Application to ${}^{40}$Ca demonstrates that a fit to the charge radius leads to too much charge near the origin using the conventional assumptions of the functional form of the DOM. A corresponding incomplete description of high-momentum components is identified, suggesting that the DOM formulation must be extended in the future to accommodate such correlations properly. Unlike the local version, the present nonlocal DOM limits the location of the deeply-bound hole states to energies that are consistent with (\\textit{e,e}$^{\\prime}$\\textit{p}) and (\\textit{p,2p}) data.

W. H. Dickhoff; D. Van Neck; S. J. Waldecker; R. J. Charity; L. G. Sobotka

2010-10-07T23:59:59.000Z

45

In-medium effects for nuclear matter in the Fermi energy domain  

E-Print Network [OSTI]

We study nuclear stopping in central collisions for heavy-ion induced reactions in the Fermi energy domain, between $15$ and $100$ A\\,\\textrm{MeV}. Using the large dataset of exclusive measurements provided by the $4\\pi$ array \\emph{INDRA}, we determine the relative degree of stopping as a function of system mass and bombarding energy. We show that the stopping can be directly related to the transport properties in the nuclear medium. By looking specifically at free nucleons (here protons), we present for the first time a comprehensive body of experimental results concerning the mean free path, the nucleon-nucleon cross-section and in-medium effects in nuclear matter. It is shown that the mean free path exhibits a maximum at $\\lambda_{NN}=9.5 \\pm 2$ \\textrm{fm}, around $E_{inc}=35-40$ A\\,\\textrm{MeV} incident energy and decreases toward an asymptotic value $\\lambda_{NN}= 4.5 \\pm 1$ \\textrm{fm} at $E_{inc} = 100$ A\\,\\textrm{MeV}. After accounting for Pauli blocking of elastic nucleon-nucleon collisions, it is ...

Lopez, O; Lehaut, G; Borderie, B; Rivet, M F; Bougault, R; Galichet, E; Guinet, D; Neindre, N Le; Marini, P; Napolitani, P; Prlog, M; Rosato, E; Spadaccini, G; Vient, E; Vigilante, M

2014-01-01T23:59:59.000Z

46

Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering  

E-Print Network [OSTI]

spread in FERMI@elettra gun and linac induced by intrabeamcathode area in the electron guns know in the literature asmost visible within the electron gun where the electron beam

Zholents, Alexander A

2008-01-01T23:59:59.000Z

47

Isospin transport in 84Kr+112,124Sn reactions at Fermi energies  

E-Print Network [OSTI]

Isospin transport phenomena in dissipative heavy ion collisions have been investigated at Fermi energies with a beam of 84Kr at 35AMeV. A comparison of the /Z of light and medium products forward-emitted in the centre of mass frame when the beam impinges on a n-poor 112Sn and a n-rich 124Sn targets is presented. Data were collected by means of a three-layer telescope with very good performances in terms of mass identification (full isotopic resolution up to Z about 20 for ions punching through the first detector layer) built by the FAZIA Collaboration and located just beyond the grazing angle for both reactions. The /Z of the decay products emitted when the n-rich target is used is always higher than that associated to the n-poor one. Since the detector was able to measure only fragments coming from the QuasiProjectile decay and/or neck emission, the observed behaviour can be ascribed to the isospin diffusion, driven by the isospin gradient between QuasiProjectile and QuasiTarget. Moreover, for light fragments the /Z as a function of the lab velocity of the fragment increases when we move from the QuasiProjectile velocity to the centre of mass (neck zone). This effect can be interpreted as an evidence of isospin drift driven by the density gradient between the QuasiProjectile zone (at normal density) and the more diluted neck zone.

S. Piantelli; G. Casini; A. Olmi; S. Barlini; M. Bini; S. Carboni; P. R. Maurenzig; G. Pasquali; G. Poggi; A. A. Stefanini; R. Bougault; N. LeNeindre; O. Lopez; M. Parlog; E. Vient; E. Bonnet; A. Chbihi; J. D. Frankland; D. Gruyer; E. Rosato; G. Spadaccini; M. Vigilante; B. Borderie; M. F. Rivet; M. Bruno; L. Morelli; M. Cinausero; M. Degerlier; F. Gramegna; T. Marchi; R. Alba; C. Maiolino; D. Santonocito; T. Kozik; T. Twarog

2013-09-06T23:59:59.000Z

48

The Search for High Energy Extended Emission by Fermi-LAT from Swift-Localized Gamma-Ray Bursts  

SciTech Connect (OSTI)

The brighter Fermi-LAT bursts have exhibited emission at energies >0.1 GeV that persists as late as {approx}2 ks after the prompt phase has nominally ended. This so-called 'extended emission' could arise from continued activity of the prompt burst mechanism or it could be the start of a high energy afterglow component. The high energy extended emission seen by the LAT has typically followed a t{sup -}{gamma} power-law temporal decay where {gamma} {approx} 1.2-1.7 and has shown no strong indication of spectral evolution. In contrast, the prompt burst emission generally displays strong spectral variability and more complex temporal changes in the LAT band. This differing behavior suggests that the extended emission likely corresponds to an early afterglow phase produced by an external shock. In this study, we look for evidence of high energy extended emission from 145 Swift-localized GRBs that have occurred since the launch of Fermi. A majority of these bursts were either outside of the LAT field-of-view or were otherwise not detected by the LAT during the prompt phase. However, because of the scanning operation of the Fermi satellite, the long-lived extended emission of these bursts may be detectable in the LAT data on the {approx}few ks time scale. We will look for emission from individual bursts and will perform a stacking analysis in order to set bounds on this emission for the sample as a whole. The detection of such emission would have implications for afterglow models and for the overall energy budget of GRBs.

Chiang, J.; /Stanford U., HEPL /SLAC; Racusin, J.L.; /NASA, Goddard

2012-05-01T23:59:59.000Z

49

Remembering Fermi  

SciTech Connect (OSTI)

A combination of the discovery of nuclear fission and the circumstances of the 2nd World War brought Enrico Fermi to Chicago, where he led the team that produced the first controlled, self-sustained nuclear chain reaction. Following the war in 1945 Chancellor Hutchins, William Zachariasen, and Walter Bartky convinced Fermi to accept a professorship at the University of Chicago, where the Institute for Nuclear Studies was established. Fermi served as the leading figure in surely the greatest collection of scientists the world has ever seen. Fermi's tenure at Chicago was cut short by his death in 1954. My talk will concentrate on the years 1945-54. Examples of his research notebooks, his speeches, his teaching, and his correspondence will be discussed.

Cronin, James (Enrico Fermi Institute, University of Chicago) [Enrico Fermi Institute, University of Chicago

2005-03-30T23:59:59.000Z

50

Published: June 14, 2011 r 2011 American Chemical Society 2896 dx.doi.org/10.1021/ef2005332 |Energy Fuels 2011, 25, 28962908  

E-Print Network [OSTI]

Fuels 2011, 25, 2896­2908 ARTICLE pubs.acs.org/EF Ignition Characteristics of Diesel and Canola is to investigate the spray ignition characteristics of diesel and canola-derived biodiesel in a rapid compression release rate after the start of injection, shows that canola-derived biodiesel ignites 23% faster than

Lee, Tonghun

51

Data:572ae204-e0f0-44e1-a396-568fbdf1e3ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388caee096040 No5466c2006b40 No68fbdf1e3ef

52

Data:1983d71a-48e2-4072-8c26-b598a51137ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9b4eb15e81c7 No revision has11df9010fd18a51137ef

53

Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation  

E-Print Network [OSTI]

We investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.

Lianyi He

2014-11-26T23:59:59.000Z

54

Data:Ec262e8c-a51a-4cbd-b601-b2b875ef39a9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revisionEc01d6d9-0b5c-46e0-8010-da811753d74a No revision has been approved1-b2b875ef39a9 No

55

Data:F5d73cd5-0c0e-4c85-b881-25ef9e514835 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It6d-bcfb5222116ea91d395f7fdf Noc4fa49eacd83 No revision1-25ef9e514835

56

Data:F6575add-8cbe-41e6-8ef9-5dec938eaa47 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It6d-bcfb5222116ea91d395f7fdfa673aa1f4743ef9-5dec938eaa47 No revision

57

Data:6520c301-b7d5-4f33-97bb-3cb1e35ef816 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved fore6e8eee4495-afb210887c9b No revision has been63cb16d6b Nocb1e35ef816

58

Data:6b8e30a2-2245-4ee4-b396-77e60a3ef2ee | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 Nob05268d8cdd50af6aae37bbaa846018 Noad3a-e43c02476c5be60a3ef2ee

59

Data:6e9f0310-c300-4b09-98d9-c078f57ef990 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision has been approved for7862c3ff718 Noc078f57ef990 No

60

Data:6eea9c97-9e14-4783-a37e-f0922fd77e99 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision hasc97-9e14-4783-a37e-f0922fd77e99 No revision has been

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Data:6ef4c292-7152-462c-814a-4b052c8c1cee | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision hasc97-9e14-4783-a37e-f0922fd77e99 No revision has

62

Data:77827cc8-51e2-4106-acff-c1da0d1e7ef5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision8390-f3c1d17c852d Nof0ac113123b15ccc3573 No4106-acff-c1da0d1e7ef5

63

Data:Ef5cb994-fec3-40fd-81f7-e9efc7036af9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No revisionEf26bb38-5a0f-4e06-b1e4-0ce2b0e0031a No

64

Data:1e01002e-7a5f-4601-bc3b-80ce915ef62f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62f No revision has been approved for this page. It

65

Data:1e43d8bc-214e-429a-bb90-4eb3d825ef2b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62f No revision hasac2dead Nobc9c961682

66

Data:1eba8e27-6ede-4481-ad1a-3a60a01ef241 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62f Noc7ab0bc244 No revision

67

Data:1ef2541e-0df2-4038-a02f-68480fa58ac2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62fb-4edd2b934768 No8480fa58ac2 No revision has been

68

Data:1ef2f6f9-fc3d-4343-8a9c-46a36f108eda | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62fb-4edd2b934768 No8480fa58ac2 No revision has

69

Data:1ef6212e-9bf5-4fc9-868c-d5090e4ea7cf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revisionb-80ce915ef62fb-4edd2b934768 No8480fa58ac2 No revision

70

Data:25d085b6-1661-4ee2-9be0-5d5eb26558ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved for this page.b-6bdba0a40f82 No-5d5eb26558ef No

71

Data:28ef6517-4f04-4e1f-acd2-f6bda425af4c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf0e85488a7fe3a3badf5e-962ef23bfcda

72

Data:2a5287be-227f-45f0-b4dd-80ef9fdc1457 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 Nobcf-1b589b1c9a42 Noa9c4572a85306125250ef9fdc1457 No

73

Data:2c0d993c-887f-4fe8-8d18-76ef058cedbf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636 No revision has been approved for6ef058cedbf

74

Data:2c46b1e5-2753-411c-87b1-82e4322ef69b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636 No revision82e4322ef69b No revision has been

75

Data:B7b3a8ef-09c6-4bfd-b017-f9e027a69421 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revisionb6dbbdc091c4061e2fe19bB7b3a8ef-09c6-4bfd-b017-f9e027a69421 No

76

Data:B94a9c56-e24f-40e7-892c-d42915dbf9ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 Nocadf-323f-4b6f-9089-15e8154a5fd970704d1a6 No99969e8af90e No92c-d42915dbf9ef No

77

Data:Ba03f94a-6f3a-4886-98a9-470ef22f266a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244 No revision has been approved91d7d99 No revision5d5fc04abc10ef22f266a

78

Data:C19659f5-395c-41a6-b808-3572698ef8c2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has beena032db6d83 No revision has been approved for572698ef8c2 No revision

79

Data:C1ed205a-c45a-4a8d-827d-842fa6ef9b58 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has beena032db6d83 No revision has842fa6ef9b58 No revision has been

80

Data:C2967bdf-7411-4a38-a477-e26eb2e79ef9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has beena032db6d83 Noc-56029b877fee No revision has been8-a477-e26eb2e79ef9

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Data:5333f944-5bcf-4d4d-83da-78f7ef0b79f6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has been approved for this page. It is currently under

82

Data:539f23ef-f056-464a-8dc6-dad1b33695a2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has been approved for this243a5586 No revision003b190d96

83

Data:53c9a897-96ef-4b74-b1cf-06c0d7f9fc42 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has been approvedcf-06c0d7f9fc42 No revision has been

84

Data:5705390e-f323-4e9e-b887-5d9fd807a031 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388caee096040 No revisionfd807a031 No

85

Data:5795f170-07b6-48c3-bace-8e938ef9b2f2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 No revision has been approved for

86

Data:597a9f9a-c327-479b-89c1-ef40d751c70c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No revision has been approved for this page.e1ca4eb0f

87

Data:5aa5f3ef-6fd6-4b77-9723-04528f59bc49 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No0-774918862a76 No revision has been approved28f59bc49

88

Data:5b281e4b-5518-4899-8962-50ef8e94cb8e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d4379-e4cca9d37856 No revision has been

89

Data:5df063b6-a1ed-410b-90e6-da6ef9a87e22 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page. It1f847bdc66 Nob886-32235ca9aa51e6-da6ef9a87e22 No

90

Data:5f841b3b-6c9a-431c-86c8-072ef7fde0eb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page.f9b87a5 No9c38a3bad1d4 No revision072ef7fde0eb No revision

91

Data:5feb422b-5e02-41d5-bb57-b0668aa1ef60 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page.f9b87a5 No9c38a3bad1d40565dc25f8 No8353d8b9140768aa1ef60 No

92

Data:40f9a62d-d838-4f32-91e4-c3042d0721ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No revision has been approvedac46f56c6dd0721ef

93

Data:508f2353-e41c-49fc-b086-51dd4aa5ef73 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783 No revision has been approved for this page. Itaa5ef73 No

94

Data:51784734-6f90-43a5-a416-7ef72aad87a7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783 No revision hasa9-0dccf016a7a7972e384 No revision7ef939cfdd

95

Data:0c99129d-a91c-4e59-927e-f7e996a19666 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable-1a29da98863b Noe46-dca51e7e0d5a No revisione9d7d51c4e-f7e996a19666 No

96

Data:135ba95e-b8f5-4885-a866-1ef76bc8d658 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision has beenbbf1-8cb481a2607d No revision1ef76bc8d658 No

97

Data:13e80fd0-be55-4bac-a394-1cb4826fa0ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision hasbf8fc65b25 No revision has been approved1cb4826fa0ef

98

Data:14da9b84-dce4-425b-b34f-ef3ed2eb8871 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision78ced93e0 No revisiondce4-425b-b34f-ef3ed2eb8871 No

99

Data:18840efd-27bf-4fdc-b6c0-9cd6b0d70ef9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9 No revision has been approved for this page.

100

Data:188ef1da-71c2-489f-ac19-5b3da3149f9c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9 No revision has been approved for

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Data:18c4158c-69d9-4bf6-92a3-dfa9f36166ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9 No3bdf6fd5eb No revision has been approved

102

Data:19fcd92f-8652-45c0-96f0-a73be7466ef5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No revision has been approved for this page. It

103

Data:1a696bc8-59c3-4911-8f9e-3d14b22ef90f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No revision5850cc4b9b No revision

104

Data:1a730f3e-6c83-46c2-bca0-58f9ef3a3722 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No revision5850cc4b9b No

105

Data:1a7c82b4-4660-42ef-b1fc-bcdc59c79e9a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No revision5850cc4b9b Nod5d610d32

106

Data:1aad7889-6847-4ef0-b93c-a215d7b39c4b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No0-41e34138aa76 No

107

Data:1acc0159-e93e-4c14-8bd2-1262c2af45ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No0-41e34138aa76 Nob9e4ee035561

108

Data:Fcf9b74e-611f-41b8-8dd8-2ca51ef75828 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved forcd976b98236 No revisionFcf9b74e-611f-41b8-8dd8-2ca51ef75828 No revision has been

109

Data:Fd258aef-385e-4237-ba4d-1aa7ef98b76e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved forcd976b98236 No revisionFcf9b74e-611f-41b8-8dd8-2ca51ef75828

110

Data:8b5777dc-e9c9-42a3-a223-2ef49878bda4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db5 No revision hascef78-6440-4257-8584-e4134c8774d8 No3-2ef49878bda4 No

111

Data:96a99a2c-3996-424a-a6b0-909198d85ef8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1 No789501c8a3b5 Noc60f0b1242e7ca4dccba98d7b82d-4cc0881ae07b Nod85ef8 No

112

Data:9a2b19db-14c6-4c26-9650-3840017ef345 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for this page. It137d62c3 No revision has840017ef345 No

113

Data:9a2cf3ef-4247-468f-a82e-78cff0359ecc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for this page. It137d62c3 No revision has840017ef345

114

Data:9a4bfe26-062e-4964-8439-5d1e0fd4ef3b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for this page. It137d62c3 No-8439-5d1e0fd4ef3b No revision

115

Data:9aa8976e-2e8b-4ce2-80c6-6e6ef2218a7e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for this page.76f5afd9 Nob-4ce2-80c6-6e6ef2218a7e No

116

Data:9b3b525f-0017-4495-ba86-8b3ef3c72c3d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for thisa44928f0654 No revisione806e466-8b3ef3c72c3d No

117

Data:9dc1b412-eb8e-4e9e-aa27-d7a140a1ef32 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision has4299e78a9 No revision hasa140a1ef32 No

118

Data:Cb921360-bf0d-4741-b191-8601f1ef78d9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742e80b26cc4 No revision has been approved for thisadbbe59074866863c917a2601f1ef78d9 No

119

Data:D1fe5751-5d8a-4d51-9edb-e75f51b053ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved fordbab-cdc7-4e74-8b49-bbf94bd37d77 No revision-e12c38f0307ff51b053ef No

120

Data:D24b2dce-0e69-4548-bbdb-0b9ec9ef2be8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved fordbab-cdc7-4e74-8b49-bbf94bd37d778de021c78 Noec9ef2be8 No revision has been

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Data:D2e6e8a8-6f5a-40de-8212-1ef503d46598 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6 No revision has been approved for this page.8212-1ef503d46598 No

122

Data:D72b0bf5-6360-4297-a75f-439e47625ef9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6d-b16b-9fabe37583c1 Nof7bb0b7d4f25 No133-72b28494a769 No439e47625ef9

123

Data:D7c6ef15-94e6-4992-885b-fb6b099a0f57 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6d-b16b-9fabe37583c10d943651 Noa07078a79ef Noc6f30745e No

124

Data:Da6e4733-84da-4ee8-af79-eb76d5ff53ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9c No2-d6f420785d1df5-ed03de31295e No revision9-eb76d5ff53ef No

125

Data:Dae83fd6-0569-4ec5-b030-983ef44690d0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9cd74bee60 NoDae83fd6-0569-4ec5-b030-983ef44690d0 No revision

126

Data:E39945cc-cc7d-42c2-ace8-b06d13b939ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for thisc4d368cd00cab702d7555d8d01408 No revisiond13b939ef No

127

Data:803ab4c1-e4a4-4b51-88ef-0f269203189b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revision has been approveddf99225215d No revision has been88ef-0f269203189b No

128

Data:85b551b3-4f4d-490c-bc0d-d173ef850e7b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098e Nod173ef850e7b No revision has been approved for this page.

129

Data:8637b2e2-ef4d-425f-851f-8f92ac71b667 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098e Nod173ef850e7b No

130

Data:86dce403-8a88-43ef-8416-40597ecc90f9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098e Nod173ef850e7b Nofeae331836d773c6b5e1f81223c87e3a40597ecc90f9

131

Data:86f11ef4-e0f6-4345-86de-18ec6c020bb1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098e Nod173ef850e7b37914bbdf No revision has been

132

Data:870f765a-491d-4c34-a480-f3ef993be18b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098e Nod173ef850e7b37914bbdf No revision hasecb0d6c5 Noef993be18b

133

Data:873fad9e-8f2d-484b-9823-ef7ba32d0883 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098e Nod173ef850e7b37914bbdf Noc-54044054ab55 No revision has

134

Data:893f8f72-b536-4e36-9f89-11fa1b3ef344 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098eef61148ac7f3f3e3da48 No revision has been approvedb3ef344 No

135

Data:89a453be-db8e-4efc-9573-ff3f660ef82e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098eef61148ac7f3f3e3da48 No revision39730b5ff3f660ef82e No

136

Data:2e690dbe-7098-403a-8f1d-d494e39f1ef3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 No revision has been approved for this page. Itcb7f8f8fae No94e39f1ef3

137

Data:31b4c8cc-8bc6-48ad-a00f-76ca719d7ef0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1f38825451 No revision has9e6e-2f8055479820 Noca719d7ef0

138

Data:32fe43aa-c6c4-4933-a729-328ef1469915 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4a No revision has been approved567300 No revision328ef1469915

139

Data:3c2d65cf-f40d-4d39-9db8-aa39ef4875b8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97ebecdcfa-6fb6-40ac-bf5c-d48387b933279ef4875b8 No revision has been

140

Data:3c461b87-cdf8-4a2c-afbe-0021e556ef3c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97ebecdcfa-6fb6-40ac-bf5c-d48387b933279ef4875b8

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Data:3f038ae0-f333-4afd-8558-1f35b1b6e2ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved64ec514e6-43e5-952b-08655b5a42de No revisionb6e2ef No

142

EFS Appendix SFA-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamicsPostdoctoralCenters »

143

EFS Appendix SFA-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamicsPostdoctoralCenters »6, 7/14/14)

144

Data:Edc9061a-dbcf-4e0b-a18a-7b38ef40ba47 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc NoEce78e10-0967-4d20-a270-53a70a3b054f NoEdc9061a-dbcf-4e0b-a18a-7b38ef40ba47 No revision has been

145

Data:2496dd7c-af7f-41cf-9bb5-65b17ef4da97 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d4-4797-b850-d42be48a30cf Nob718c0408b6467f456c97 Nocf-9bb5-65b17ef4da97 No

146

Data:55d52ef3-963f-45ad-9f06-c5a900c30fb1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3 No revision hasb-be3c-7b716b192303 Noa900c30fb1

147

Data:5733b767-7f8d-4a61-9fbb-2f33ef641b19 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revisionc8de9b501c3dd65b9388caee096040 No5466c2006b40cecd0c3bb4b9

148

Data:58e46dab-78ef-4b8c-9237-52b8284ee487 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 Noaa727c9ff358b3a72a9a41ab8284ee487 No revision

149

Data:436bd023-2d2d-4202-b859-0b278bb80ef2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae6b1ccc67b7f2e4202-b859-0b278bb80ef2 No

150

Data:478cc936-1719-471a-a152-0fb8ef4ab1b6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revisione18fe97cb-14d199c51f2d2-0fb8ef4ab1b6 No revision has

151

Data:19d9e814-eea9-4f47-847e-4ef40665cda4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9b4eb15e81c7a49c4c690071 No300791a06

152

Data:A90e4191-0f17-4d3f-903f-803c54d957ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No revision82e6036a79528-5e0f775c8acb Noda509da7543c54d957ef No

153

Data:Ff017aa6-e7c3-4c15-8fbf-e58b62222ef3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approvedfeb8-46c4-a088-48299e29c2f6 No0b5a4b8a0 No revisionFf017aa6-e7c3-4c15-8fbf-e58b62222ef3

154

Data:97f210d8-3e76-4636-9cf4-121b642ef0d7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1de-f2ac9a2bd9c0 No revision has7-65c076a2f11c-4636-9cf4-121b642ef0d7 No

155

Data:306ca1d7-2976-489f-a027-03ef43f5391f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1 No revision has been approved2976-489f-a027-03ef43f5391f

156

NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra'anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

2013-09-01T23:59:59.000Z

157

Secretary Chu Names 2009 Enrico Fermi Award Winners | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13Discovers TransformersLetter to SenatorNames

158

Collective flow properties of intermediate mass fragments and isospin effects in fragmentation at Fermi energies  

SciTech Connect (OSTI)

Within a microscopic transport model (Stochastic Mean Field) we analyze the collective flow properties associated to the intermediate mass fragments produced in nuclear fragmentation. We study the transverse and elliptic flow parameters for each rank in mass hierarchy. The results are plotted for {sup 124}Sn + {sup 124}Sn systems at an energy of 50AMeV and for an impact parameter b=4fm. The correlation with the dynamics of the isospin degree of freedom is also discussed and the results are presented for the same systems.

Baran, V.; Zus, R. [University of Bucharest, Faculty of Physics, P.O. Box MG-11, RO - 077125 Bucharest-Magurele (Romania); Colonna, M. [Laboratori Nazionali del Sud INFN, Catania (Italy); Di Toro, M. [Laboratori Nazionali del Sud INFN, Catania, Italy and Physics and Astronomy Department, University of Catania (Italy)

2013-11-13T23:59:59.000Z

159

SciTech Connect: Fermi Gamma-Ray Space Telescope: High-Energy Results From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Ca (2) Cu (3) O (10+delta)NeutronFIXATIION INthe First

160

U.S. Department of Energy, Secretary Chu Names 2009 Enrico Fermi Award  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite ForPropertiestoDeptSurfactantD.Scientific4

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Spectral Studies of Flaring FSRQs at GeV Energies Using Pass 8 Fermi-LAT Data  

E-Print Network [OSTI]

Flat spectrum radio quasars (FSRQs) are bright active galactic nuclei surrounded by gas clouds within a UV-visible intense radiation field that form the so-called broad line region (BLR). These objects emit relativistic jets from a region close to the central supermassive black hole and through the BLR. The Fermi-Large Area Telescope (Fermi-LAT) is sensitive to gamma-ray photons from $\\sim$30 MeV to more than 300 GeV. We have performed spectral analysis of bright FSRQs in a 5.5 year (2008-2014) data sample collected by Fermi-LAT, using the new Pass 8 event selection and instrument response function. Also, our study of flaring episodes in a limited time range brings interesting results while compared to the full 5.5 year data samples.

Britto, Richard J G; Lott, Benot

2015-01-01T23:59:59.000Z

162

Thermal hard-photons probing multifragmentation in nuclear collisions around the Fermi energy  

E-Print Network [OSTI]

Hard-photon (E$_{\\gamma} >$ 30 MeV) emission issuing from proton-neutron bremsstrahlung collisions is investigated in four different heavy-ion reactions at intermediate bombarding energies ($^{36}$Ar+$^{197}$Au, $^{107}$Ag, $^{58}$Ni, $^{12}$C at 60{\\it A} MeV) coupling the TAPS photon spectrometer with two charged-particle multidetectors covering more than 80% of the solid angle. The hard-photon spectra of the three heavier targets result from the combination of two distinct exponential distributions with different slope parameters, a result which deviates from the behaviour expected for hard-photon production just in first-chance proton-neutron collisions. The thermal origin of the steeper bremsstrahlung component is confirmed by the characteristics of its slope and angular distribution. Such thermal hard-photons convey undisturbed information of the thermodynamical state of hot and excited nuclear systems undergoing multifragmentation.

D. G. d'Enterria; G. Martnez

2000-07-06T23:59:59.000Z

163

GRB 110709A, 111117A, AND 120107A: FAINT HIGH-ENERGY GAMMA-RAY PHOTON EMISSION FROM FERMI-LAT OBSERVATIONS AND DEMOGRAPHIC IMPLICATIONS  

SciTech Connect (OSTI)

Launched on 2008 June 11, the Large Area Telescope (LAT) instrument on board the Fermi Gamma-ray Space Telescope has provided a rare opportunity to study high-energy photon emission from gamma-ray bursts (GRBs). Although the majority of such events (27) have been identified by the Fermi-LAT Collaboration, four were uncovered by using more sensitive statistical techniques. In this paper, we continue our earlier work by finding three more GRBs associated with high-energy photon emission, GRB 110709A, 111117A, and 120107A. To systematize our matched filter approach, a pipeline has been developed to identify these objects in nearly real time. GRB 120107A is the first product of this analysis procedure. Despite the reduced threshold for identification, the number of GRB events has not increased significantly. This relative dearth of events with low photon number prompted a study of the apparent photon number distribution. We find an extremely good fit to a simple power law with an exponent of -1.8 {+-} 0.3 for the differential distribution. As might be expected, there is a substantial correlation between the number of lower energy photons detected by the Gamma-ray Burst Monitor (GBM) and the number observed by LAT. Thus, high-energy photon emission is associated with some but not all of the brighter GBM events. Deeper studies of the properties of the small population of high-energy emitting bursts may eventually yield a better understanding of these entire phenomena.

Zheng Weikang; Akerlof, Carl W.; McKay, Timothy A. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Pandey, Shashi B. [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Zhang Binbin [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang Bing [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States); Sakamoto, Takanori, E-mail: zwk@umich.edu [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-09-01T23:59:59.000Z

164

Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode  

SciTech Connect (OSTI)

The objective of this calculation is to characterize the nuclear criticality safety concerns associated with the codisposal of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP) and placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for the degraded mode internal configurations of the codisposal WP. The results of this calculation and those of Ref. 8 will be used to evaluate criticality issues and support the analysis that will be performed to demonstrate the viability of the codisposal concept for the Monitored Geologic Repository.

D.R. Moscalu; L. Angers; J. Monroe-Rammsey; H.R. Radulesca

2000-07-21T23:59:59.000Z

165

Fermi Observations  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATE RELEASEEmissionsi

166

Data:004f5a69-12ef-4a52-a4a8-bda00f3187d3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy56430d887b28 No0f3187d3 No revision has

167

Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)  

ScienceCinema (OSTI)

The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

Chu, Steven (U.S. Energy Secretary)

2012-06-28T23:59:59.000Z

168

High-Energy Gamma-Ray Emission From Solar Flares: Summary of Fermi LAT Detections and Analysis of Two M-Class Flares  

E-Print Network [OSTI]

We present the detections of 19 solar flares detected in high-energy gamma rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first four years of operation. Interestingly, all flares are associated with fairly fast Coronal Mass Ejections (CMEs) and are not all powerful X-ray flares. We then describe the detailed temporal, spatial and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying gamma-ray emission over 13 hours, and the 2011 June 7 M2.5 flare, which was followed by gamma-ray emission lasting for 2 hours. We compare the Fermi-LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that a hadronic origin of the gamma rays is more likely than a leptonic origin and find that the energy spectrum of the proton distribution softens after the 2011 March 7 flare, favoring a scenario with continuous acceleration at the flare site. This work suggests that proton acceleratio...

,

2013-01-01T23:59:59.000Z

169

Fermi Observations of Gamma-ray Bursts  

SciTech Connect (OSTI)

The gamma-ray emission mechanism of Gamma-ray bursts (GRBs) are still unknown. Fermi Gamma-ray Space Telescope successfully detected high-energy (> 100 MeV) emission from 17 GRBs since its launch. Fermi revealed the distinct temporal behaviors and extra spectral component from high-energy emission. These new observational results are driving many theoretical implications, such as leptonic, hadronic and afterglow origin. The highest energy photon detected by Fermi gives a constraint on the bulk Lorentz factor of the ultra-relativistic jets of GRBs. The impact of the Fermi GRB observations extends not only to the GRB-related issues but also to the outside GRB physics, such as quantum gravity and model of the extra galactic background light.

Ohno, Masanori [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

2010-10-15T23:59:59.000Z

170

Michigan Nuclear Profile - Fermi  

U.S. Energy Information Administration (EIA) Indexed Site

Fermi" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

171

Local Fermi gas in inclusive muon capture from nuclei  

E-Print Network [OSTI]

We compare local Fermi gas and shell model in muon capture in nuclei in order to estimate the effect of finite nuclear size in low energy weak reactions.

J. E. Amaro; J. Nieves; M. Valverde; C. Maieron

2006-05-20T23:59:59.000Z

172

SOFCo EFS Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power Plant Jump to:SESAmerica, LLC JumpSOFCo

173

Closure & Waste Management Environmental Impact Statement (EfS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloistered JuneLabClosestHanlord 'fank

174

Enrico Fermi Awards Ceremony for Dr. Allen J. Bard and Dr. Andrew Sessler, February 2014 (Presentations, including remarks by Energy Secretary, Dr. Ernest Moniz)  

ScienceCinema (OSTI)

The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On February 3, 2014 it was conferred upon two exceptional scientists. The first to be recognized is Dr. Allen J. Bard, 'for international leadership in electrochemical science and technology, for advances in photoelectrochemistry and photocatalytic materials, processes, and devices, and for discovery and development of electrochemical methods including electrogenerated chemiluminescence and scanning electrochemical microscopy.' The other honoree is Dr. Andrew Sessler, 'for advancing accelerators as powerful tools of scientific discovery, for visionary direction of the research enterprise focused on challenges in energy and the environment, and for championing outreach and freedom of scientific inquiry worldwide.' Dr. Patricia Dehmer opened the ceremony, and Dr. Ernest Moniz presented the awards.

Moniz, Ernest [U.S. Energy Secretary

2014-08-22T23:59:59.000Z

175

Large Fermi energy modulation in graphene transistors with high-pressure O{sub 2}-annealed Y{sub 2}O{sub 3} topgate insulators  

SciTech Connect (OSTI)

We demonstrate a considerable suppression of the low-field leakage through a Y{sub 2}O{sub 3} topgate insulator on graphene by applying high-pressure O{sub 2} at 100?atm during post-deposition annealing (HP-PDA). Consequently, the quantum capacitance measurement for the monolayer graphene reveals the largest Fermi energy modulation (E{sub F}?=??0.52?eV, i.e., the carrier density of ?2??10{sup 13}?cm{sup ?2}) in the solid-state topgate insulators reported so far. HP-PDA is the robust method to improve the electrical quality of high-k insulators on graphene.

Kanayama, Kaoru; Nagashio, Kosuke, E-mail: nagashio@material.t.u-tokyo.ac.jp; Nishimura, Tomonori; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2014-02-24T23:59:59.000Z

176

EFS Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamicsPostdoctoralCenters »6,

177

EFS Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamicsPostdoctoralCenters »6,2,

178

EFS Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamicsPostdoctoralCenters »6,2,3,

179

EFS Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamicsPostdoctoralCenters »6,2,3,4,

180

Minimization of energy per particle among Bravais lattices in R2 Lennard-Jones and Thomas-Fermi cases  

E-Print Network [OSTI]

show some characterization results for the global minimizer of this energy and finally we also prove is triangular. AMS Classification: Primary 82B20 ; Secondary 52C15, 35Q40. Keywords: Lattice's energy ; Theta close to one and long range interaction. He showed that the global minimizer of the total energy

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Minimization of energy per particle among Bravais lattices in R2 Lennard-Jones and Thomas-Fermi cases  

E-Print Network [OSTI]

show some characterization results for the global minimizer of this energy and finally we also prove is triangular. AMS Classification: Primary 82B20 ; Secondary 52C15, 35Q40. Keywords: Lattice energy ; Theta interaction. He showed that the global minimizer of the total energy is triangular. His method was adapted

Paris-Sud XI, Université de

182

Minimization of energy per particle among Bravais lattices in R2 Lennard-Jones and Thomas-Fermi cases  

E-Print Network [OSTI]

that the global min- imizer of the total energy is the triangular lattice of length one. His method was adapted. The problem is to find the configuration of the points which minimizes the total energy of interaction, calledMinimization of energy per particle among Bravais lattices in R2 : Lennard-Jones and Thomas

183

Data:F1b31ea4-078b-4ef0-ad74-65c0b6f13f96 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It is currently-4fb5-8904-6cd8e9e0b38f Noea4-078b-4ef0-ad74-65c0b6f13f96

184

Data:F861a888-a9d9-46a7-80f1-5a5520b8ef8e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page.b4-a4ba-cd54152b87244538a159a88b Nof-2f6b27b9f006 Noa5520b8ef8e No

185

Data:Ef26bb38-5a0f-4e06-b1e4-0ce2b0e0031a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No revisionEf26bb38-5a0f-4e06-b1e4-0ce2b0e0031a No revision

186

Data:53cfa2c8-9d75-460a-a760-64b2d0ef54d3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has been approvedcf-06c0d7f9fc42 No revision has

187

Data:1a38a44d-72b8-4b16-b6ef-c37e329bd5d5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5 No revision has been1ddbace77e329bd5d5 No

188

Data:D7b2e1f0-6bb6-4b50-9817-1a07078a79ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6d-b16b-9fabe37583c10d943651 Noa07078a79ef No revision has been

189

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed CrossAn Iridate with Fermi Arcs An Iridate

190

A hybrid model for studying nuclear multifragmentation around Fermi energy domain: Case for central collision of Xe on Sn  

E-Print Network [OSTI]

Experimental data for central collisions of $^{129}$Xe on $^{119}$Sn at beam energies of (a) 32 MeV/nucleon, (b) 39 MeV/nucleon, (c) 45 MeV/nucleon and (d) 50 MeV/nucleon are compared with results calculated using a hybrid model. We use a transport model (BUU) to obtain the excitation energy per nucleon in the center of mass of the multifragmenting system. The canonical thermodynamic model is then used to determine the temperature which would lead to this excitation energy. With this temperature we use the canonical thermodynamic model to calculate various experimental data such as multiplicities of different composites, probability distribution of the largest cluster etc. Agreement with data establishes the validity of the model.

S. Mallik; G. Chaudhuri; S. Das Gupta

2015-03-17T23:59:59.000Z

191

A hybrid model for studying nuclear multifragmentation around Fermi energy domain: Case for central collision of Xe on Sn  

E-Print Network [OSTI]

Experimental data for central collisions of $^{129}$Xe on $^{119}$Sn at beam energies of (a) 32 MeV/nucleon, (b) 39 MeV/nucleon, (c) 45 MeV/nucleon and (d) 50 MeV/nucleon are compared with results calculated using a hybrid model. We use a transport model (BUU) to obtain the excitation energy per nucleon in the center of mass of the multifragmenting system. The canonical thermodynamic model is then used to determine the temperature which would lead to this excitation energy. With this temperature we use the canonical thermodynamic model to calculate various experimental data such as multiplicities of different composites, probability distribution of the largest cluster etc. Agreement with data establishes the validity of the model.

Mallik, S; Gupta, S Das

2015-01-01T23:59:59.000Z

192

Self-consistent Determination of Temperature and Fluctuation Thermometer in Heavy-ion Reactions near the Fermi Energies  

E-Print Network [OSTI]

The density and temperature of a fragmenting system in a multifragmentation process are evaluated in a self-consistent manner using ratios between the ratio of the symmetry energy coefficient relative to the temperature, a_{sym}/T, extracted from the fragment yields generated by antisymmetrized molecular dynamics (AMD) simulations for central collisions of ^{40}Ca + ^{40}Ca at 35 MeV/nucleon. The a_{sym}/T values are extracted from all isotope yields by an improved method based on the Modified Fisher Model (MFM). The ratios of a_{sym}/T obtained, using interactions with different density dependencies of the symmetry energy term, reflect the ratios of the symmetry energy at the density of fragment formation. Using this correlation, the density is found to be \\rho/\\rho_0 = 0.66 \\pm 0.02. The symmetry energy values for each interaction are determined at this density. With these values, temperature values are extracted as a function of isotope mass A. The extracted temperature values are compared with those evalu...

Liu, X; Wada, R; Huang, M; Chen, Z; Xiao, G Q; Zhang, S; Jin, X; Liu, J; Shi, F; Ren, P; Zheng, H; Natowitz, J B; Bonasera, A

2014-01-01T23:59:59.000Z

193

Primary Isotope Yields and Characteristic Properties of the Fragmenting Source in Heavy-ion Reactions near the Fermi Energies  

E-Print Network [OSTI]

For central collisions of $^{40}$Ca $+ ^{40}$Ca at 35 MeV/nucleon, the density and temperature of a fragmenting source have been evaluated in a self-consistent manner using the ratio of the symmetry energy coefficient relative to the temperature, $a_{sym}/T$, extracted from the yields of primary isotopes produced in antisymmetrized molecular dynamics (AMD) simulations. The $a_{sym}/T$ values are extracted from all isotope yields using an improved method based on the Modified Fisher Model (MFM). The values of $a_{sym}/T$ obtained, using different interactions with different density dependencies of the symmetry energy term, are correlated with the values of the symmetry energies at the density of fragment formation. Using this correlation, the fragment formation density is found to be $\\rho/\\rho_0 = 0.67 \\pm 0.02$. Using the input symmetry energy value for each interaction temperature values are extracted as a function of isotope mass $A$. The extracted temperature values are compared with those evaluated from the fluctuation thermometer with a radial flow correction.

X. Liu; W. Lin; R. Wada; M. Huang; Z. Chen; G. Q. Xiao; S. Zhang; X. Jin; J. Liu; F. Shi; P. Ren; H. Zheng; J. B. Natowitz; A. Bonasera

2014-06-13T23:59:59.000Z

194

Concentrator E-F11 water test  

SciTech Connect (OSTI)

This document is the Process Test Report for performing operation testing with water of the modified E-F11 concentrator in PUREX on water. The test was performed to determine the effects of the following concentrator modifications; routing concentrator off-gasses via the PUREX air tunnel to the main stack, blanking of condenser cooling water, blanking of process condensate route to a crib, restricting flow to steam tube bundles, and routing of steam condensate to TK-F12. The test was successful. Concentrator boil-off rates of 6--7 gpm were achieved while the overheads exited the PUREX plant in vapor form. With minor recommended modifications, this process is recommended for use in processing PUREX deactivation flush solutions and other miscellaneous wastes accumulated during the completion of the deactivation project.

Ethington, P.R.

1994-02-25T23:59:59.000Z

195

Characterization of a novel EF-hand homologue, CnidEF, in the sea anemone Anthopleura elegantissima  

E-Print Network [OSTI]

of a helix-loop-helix structure formed by a highly conserved 12 residue calcium- binding loop, flanked on both sides by -helices (Nelson and Chazin, 1998). This loop binds calcium with the coordination-hand calcium-binding domains. This study describes and characterizes a novel EF-hand cDNA, CnidEF, from the sea

196

Theory of ultracold atomic Fermi gases  

SciTech Connect (OSTI)

The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the s-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.

Giorgini, Stefano; Pitaevskii, Lev P.; Stringari, Sandro [Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento (Italy); Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento, Italy and Kapitza Institute for Physical Problems, ul. Kosygina 2, 117334 Moscow (Russian Federation); Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento (Italy)

2008-10-15T23:59:59.000Z

197

E-Print Network 3.0 - atic fermi egret Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gamma-ray Burst Monitor (GBM) - Large Area Telescope (LAT) The High... -Energy Gamma-ray Sky Bursts, blazars, pulsars, and more Fermi LAT Searches ... Source: Maryland at...

198

Magnetic refrigeration, based on the magnetocaloric ef-fect, has great promise for domestic and industrial use and is at-  

E-Print Network [OSTI]

energy consumption. Furthermore, it would reduce the use of greenhouse-effect gases the industrial development of the materials, McPHy Energy for powder treatments, and Cooltech ApplicationsMagnetic refrigeration, based on the magnetocaloric ef- fect, has great promise for domestic

Canet, Léonie

199

Fermi LARGE AREA TELESCOPE DETECTION OF TWO VERY-HIGH-ENERGY (E > 100 GeV) ?-RAY PHOTONS FROM THE z = 1.1 BLAZAR PKS 0426380  

SciTech Connect (OSTI)

We report the Fermi Large Area Telescope (LAT) detection of two very-high-energy (VHE, E > 100 GeV) ?-ray photons from the directional vicinity of the distant (redshift, z = 1.1) blazar PKS 0426380. The null hypothesis that both the 134 and 122 GeV photons originate from unrelated sources can be rejected at the 5.5? confidence level. We therefore claim that at least one of the two VHE photons is securely associated with PKS 0426380, making it the most distant VHE emitter known to date. The results are in agreement with recent Fermi-LAT constraints on the extragalactic background light (EBL) intensity, which imply a z ? 1 horizon for ? 100 GeV photons. The LAT detection of the two VHE ?-rays coincided roughly with flaring states of the source, although we did not find an exact correspondence between the VHE photon arrival times and the flux maxima at lower ?-ray energies. Modeling the ?-ray continuum of PKS 0426380 with daily bins revealed a significant spectral hardening around the time of the first VHE event detection (LAT photon index ? ? 1.4) but on the other hand no pronounced spectral changes near the detection time of the second one. This combination implies a rather complex variability pattern of the source in ?-rays during the flaring epochs. An additional flat component is possibly present above several tens of GeV in the EBL-corrected Fermi-LAT spectrum accumulated over the ?8 month high state.

Tanaka, Y. T.; Mizuno, T. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)] [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Cheung, C. C.; Dermer, C. D. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)] [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Inoue, Y. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)] [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Stawarz, ?. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States)] [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Wood, D. L. [Praxis Inc., Alexandria, VA 22303 (United States)] [Praxis Inc., Alexandria, VA 22303 (United States); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States)] [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Fukazawa, Y.; Ohno, M. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)] [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Paneque, D. [Max-Planck-Institut fr Physik, D-80805 Mnchen (Germany)] [Max-Planck-Institut fr Physik, D-80805 Mnchen (Germany); Thompson, D. J., E-mail: ytanaka@hep01.hepl.hiroshima-u.ac.jp [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2013-11-01T23:59:59.000Z

200

Fermi National Accelerator Laboratory / Kirk and Pine Street / P.O. Box 500 / Batavia, IL 60510 / 630.840.3000 / www.fnal.gov / fermilab@fnal.gov Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science  

E-Print Network [OSTI]

/ 630.840.3000 / www.fnal.gov / fermilab@fnal.gov Managed by Fermi Research Alliance, LLC for the U responsibility to notify Fermilab within 30 days if my dependent no longer meets the requirements as outlined

Quigg, Chris

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Investigation of the deformed fermi surfaces  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 viii LIST OF FIGURES FIGURE Page 1 Gap of Sarma?s solution III with N(0)V=0.3, ?T = 1k BT = 1000/?BCS 6 2 Energy ofSarma?s solution III with N(0)V=0.3, ?T = 1k BT = 1000/?BCS 6 3 A rough picture of fermi surfaces of FF states... relative to the chemical potential ??. This Hamiltonian reduces to the corresponding one in 4 the BCS theory if h ? ?BH is set to zero. As in the BCS theory, which is for an s-wave superconductor, Sarma assumed: Vkk? = ? ?? ?? V if |?k| < planckover2pi1?D...

Lu, Jianxu

2009-05-15T23:59:59.000Z

202

Emergent Fermi surfaces, fractionalization and duality in supersymmetric QED  

E-Print Network [OSTI]

We study the physics of 3d supersymmetric abelian gauge theories (with small supersymmetry breaking perturbations) at finite density. Using mirror symmetry, which provides a natural generalization of the duality between the XY model and the abelian Higgs model but now including fermionic fields, we see many dynamical phenomena conjectured to be of relevance in condensed matter systems. In particular, we find examples of the emergence of a Fermi surface at low energies from hybridization of fermions localized at magnetic defects at high energies, as well as fractionalization of charged fermions into spinon-holon pairs with the concomitant appearance of emergent gauge fields. We also find dual descriptions for Fermi surfaces coupled to critical bosons, which give rise to non-Fermi liquids.

Anson Hook; Shamit Kachru; Gonzalo Torroba; Huajia Wang

2014-07-13T23:59:59.000Z

203

EIA-176 Electronic Filing System (EFS)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683Diesel pricesArkansas ElectricityEIA-176 Electronic

204

Ultracold Fermi gas with repulsive interactions  

E-Print Network [OSTI]

This thesis presents results from experiments of ultracold atomic Fermi gases with repulsive interaction. Itinerant ferromagnetism was studied by simulating the Stoner model with a strongly interacting Fermi gas of ultracold ...

Lee, Ye-Ryoung

2012-01-01T23:59:59.000Z

205

Fermi velocity renormalization and dynamical gap generation in graphene  

E-Print Network [OSTI]

We study the renormalization of the Fermi velocity by the long-range Coulomb interactions between the charge carriers in the Dirac-cone approximation for the effective low-energy description of the electronic excitations in graphene at half filling. Solving the coupled system of Dyson-Schwinger equations for the dressing functions in the corresponding fermion propagator with various approximations for the particle-hole polarization we observe that Fermi velocity renormalization effects generally lead to a considerable increase of the critical coupling for dynamical gap generation and charge-density wave formation at the semimetal-insulator transition.

C. Popovici; C. S. Fischer; L. von Smekal

2015-01-12T23:59:59.000Z

206

Extremely Correlated Fermi Liquids B. Sriram Shastry  

E-Print Network [OSTI]

Extremely Correlated Fermi Liquids B. Sriram Shastry Physics Department, University of California the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an underlying auxiliary Fermi liquid Green's function that is further caparisoned by extreme correlations. The theory leads to two

California at Santa Cruz, University of

207

Home Performance with Energy Star Financing  

Broader source: Energy.gov [DOE]

NYSERDA offers several options for homeowners to finance energy efficiency improvements made under the Home Performance with Energy Star program. NYSERDA partners with Energy Finance Solutions (EFS...

208

Enrico Fermi Patents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future EnergyEnolSpectrometryEnrico

209

Fermi LAT Observations of LS 5039  

SciTech Connect (OSTI)

The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U. /Stockholm U., OKC /DAPNIA, Saclay /NASA, Goddard /CSST, Baltimore /SLAC /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /Grenoble Observ. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U.; /more authors..

2012-03-29T23:59:59.000Z

210

Fermi Large Area Telescope Third Source Catalog  

E-Print Network [OSTI]

We present the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100~MeV--300~GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse gamma-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4 sigma significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 232 sources are considered as identifie...

,

2015-01-01T23:59:59.000Z

211

Fermi Site Office Jobs  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScatteringFacilitiesU.S. DOE

212

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging withDots) -08

213

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging withDots) -0810

214

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging withDots) -08103,

215

FermiNews  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08 AFermi SiteNews

216

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab spent

217

Enrico Fermi - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGas SeparationsRelevant to

218

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane SJuly 2007Fermi NationalFermiFermi

219

Enrico Fermi and the Dolomites  

E-Print Network [OSTI]

Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.

Giovanni Battimelli; Alessandro De Angelis

2014-07-15T23:59:59.000Z

220

Fermi Timing and Synchronization System  

SciTech Connect (OSTI)

The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

2006-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Quasiparticle spectrum and dynamical stability of an atomic Bose-Einstein condensate coupled to a degenerate Fermi gas  

E-Print Network [OSTI]

The quasiparticle excitations and dynamical stability of an atomic Bose-Einstein condensate coupled to a quantum degenerate Fermi gas of atoms at zero temperature is studied. The Fermi gas is assumed to be either in the normal state or to have undergone a phase transition to a superfluid state by forming Cooper pairs. The quasiparticle excitations of the Bose-Einstein condensate exhibit a dynamical instability due to a resonant exchange of energy and momentum with quasiparticle excitations of the Fermi gas. The stability regime for the bosons depends on whether the Fermi gas is in the normal state or in the superfluid state. We show that the energy gap in the quasiparticle spectrum for the superfluid state stabilizes the low energy energy excitations of the condensate. In the stable regime, we calculate the boson quasiparticle spectrum, which is modified by the fluctuations in the density of the Fermi gas.

C. P. Search; H. Pu; W. Zhang; P. Meystre

2001-12-20T23:59:59.000Z

222

Momentum sharing in imbalanced Fermi systems  

E-Print Network [OSTI]

The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

O. Hen; M. Sargsian; L. B. Weinstein; E. Piasetzky; H. Hakobyan; D. W. Higinbotham; M. Braverman; W. K. Brooks; S. Gilad; K. P. Adhikari; J. Arrington; G. Asryan; H. Avakian; J. Ball; N. A. Baltzell; M. Battaglieri; A. Beck; S. May-Tal Beck; I. Bedlinskiy; W. Bertozzi; A. Biselli; V. D. Burkert; T. Cao; D. S. Carman; A. Celentano; S. Chandavar; L. Colaneri; P. L. Cole; V. Crede; A. DAngelo; R. De Vita; A. Deur; C. Djalali; D. Doughty; M. Dugger; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; L. Elouadrhiri; G. Fedotov; S. Fegan; T. Forest; B. Garillon; M. Garcon; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; F. X. Girod; J. T. Goetz; R. W. Gothe; K. A. Griffioen; M. Guidal; L. Guo; K. Hafidi; C. Hanretty; M. Hattawy; K. Hicks; M. Holtrop; C. E. Hyde; Y. Ilieva; D. G. Ireland; B. I. Ishkanov; E. L. Isupov; H. Jiang; H. S. Jo; K. Joo; D. Keller; M. Khandaker; A. Kim; W. Kim; F. J. Klein; S. Koirala; I. Korover; S. E. Kuhn; V. Kubarovsky; P. Lenisa; W. I. Levine; K. Livingston; M. Lowry; H. Y. Lu; I. J. D. MacGregor; N. Markov; M. Mayer; B. McKinnon; T. Mineeva; V. Mokeev; A. Movsisyan; C. Munoz Camacho; B. Mustapha; P. Nadel-Turonski; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; L. L. Pappalardo; R. Paremuzyan; K. Park; E. Pasyuk; W. Phelps; S. Pisano; O. Pogorelko; J. W. Price; S. Procureur; Y. Prok; D. Protopopescu; A. J. R. Puckett; D. Rimal; M. Ripani; B. G. Ritchie; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatie; D. Schott; R. A. Schumacher; Y. G. Sharabian; G. D. Smith; R. Shneor; D. Sokhan; S. S. Stepanyan; S. Stepanyan; P. Stoler; S. Strauch; V. Sytnik; M. Taiuti; S. Tkachenko; M. Ungaro; A. V. Vlassov; E. Voutier; D. Watts; N. K. Walford; X. Wei; M. H. Wood; S. A. Wood; N. Zachariou; L. Zana; Z. W. Zhao; X. Zheng; I. Zonta

2014-11-29T23:59:59.000Z

223

Momentum sharing in imbalanced Fermi systems  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.q

Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S M -T; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

2014-10-30T23:59:59.000Z

224

Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals  

E-Print Network [OSTI]

High-ef?ciency direct conversion of heat to electricalreports on direct thermal to electrical energy conversion by

McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

2012-01-01T23:59:59.000Z

225

Experimental reconstruction of primary hot isotopes and characteristic properties of the fragmenting source in the heavy ion reactions near the Fermi energy  

E-Print Network [OSTI]

The characteristic properties of the hot nuclear matter existing at the time of fragment formation in the multifragmentation events produced in the reaction $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon are studied. A kinematical focusing method is employed to determine the multiplicities of evaporated light particles, associated with isotopically identified detected fragments. From these data the primary isotopic yield distributions are reconstructed using a Monte Carlo method. The reconstructed yield distributions are in good agreement with the primary isotope distributions obtained from AMD transport model simulations. Utilizing the reconstructed yields, power distribution, Landau free energy, characteristic properties of the emitting source are examined. The primary mass distributions exhibit a power law distribution with the critical exponent, $A^{-2.3}$, for $A \\geq 15$ isotopes, but significantly deviates from that for the lighter isotopes. Landau free energy plots show no strong signature of the first order phase transition. Based on the Modified Fisher Model, the ratios of the Coulomb and symmetry energy coefficients relative to the temperature, $a_{c}/T$ and $a_{sym}/T$, are extracted as a function of A. The extracted $a_{sym}/T$ values are compared with results of the AMD simulations using Gogny interactions with different density dependencies of the symmetry energy term. The calculated $a_{sym}/T$ values show a close relation to the symmetry energy at the density at the time of the fragment formation. From this relation the density of the fragmenting source is determined to be $\\rho /\\rho_{0} = (0.63 \\pm 0.03 )$. Using this density, the symmetry energy coefficient and the temperature of fragmenting source are determined in a self-consistent manner as $a_{sym} = (24.7 \\pm 3.4) MeV$ and $T=(4.9 \\pm 0.2)$ MeV.

W. Lin; X. Liu; M. R. D. Rodrigues; S. Kowalski; R. Wada; M. Huang; S. Zhang; Z. Chen; J. Wang; G. Q. Xiao; R. Han; Z. Jin; J. Liu; P. Ren; F. Shi; T. Keutgen; K. Hagel; M. Barbui; C. Bottosso; A. Bonasera; J. B. Natowitz; T. Materna; L. Qin; P. K. Sahu; H. Zheng

2014-09-14T23:59:59.000Z

226

Fermi liquid theory for high temperature superconductors  

SciTech Connect (OSTI)

In this article the Fermi liquid theory of metals is discussed starting from Luttinger's theorem. The content of Luttinger's Theorem and its implications for microscopic theories of high temperature superconductors are discussed. A simple quasi-2d Fermi liquid theory is introduced and some of its properties are calculated. It is argued that a number of experiments on YBa/sub 2/Cu/sub 3/O/sub 6+x/, x > 0.5, strongly suggest the existence of a Fermi surface and thereby a Fermi liquid normal state. 25 refs., 1 fig.

Bedell, K.S.

1988-01-01T23:59:59.000Z

227

Data:Ef391a09-ea3a-43ef-b229-b1afdcb8a8ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310cc Nobeedba3b42c No revision has been approved for

228

2009 Fermi Symposium, Washington, D.C., Nov. 2-5 1 Photon dispersion in causal sets  

E-Print Network [OSTI]

of light may be observable in Fermi time- and energy-tagged data on variable sources, such as gamma-ray by the Fermi Gamma Ray Space Telescope [1]. The expectation from general considerations [2] is that the scale bursts (GRB) and active galactic nuclei (AGN). We describe a method to compute the size of this effect

Simi, Slobodan N.

229

EMEF DMC EFS-95-004 GDP TURNOVER CONTINGENCY PLANNING POWER CONTRACTIN...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

111111111111111111111111 EMEF DMC EFS-95-004 GDP TURNOVER CONTINGENCY PLANNING POWER CONTRACTING OPTIONS This document is approved f()i puolic release per review by: er "-...

230

atomic fermi gas: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

atomic Fermi gases. G. M. Bruun 2002-10-29 4 Fermi excitations in a trapped atomic Fermi gas with a molecular Bose condensate Condensed Matter (arXiv) Summary: We discuss the...

231

#k Fermi National Accelerator Laboratory FRRMILAEFPub-90/198-A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and Sense Committee)Energyk Fermi National

232

On the higher ef ciency of parallel Reed-Solomon turbo-decoding  

E-Print Network [OSTI]

On the higher ef ciency of parallel Reed-Solomon turbo-decoding Camille LEROUX, Christophe JEGO.lastname@telecom-bretagne.eu Abstract-- In this paper, we demonstrate the higher hardware ef ciency of Reed-Solomon (RS) parallel turbo decoding compared with BCH parallel turbo decoding. Based on an innovative ar- chitecture, this is the rst

Paris-Sud XI, Université de

233

Data:5d60ef1e-f970-4546-9106-3036000818f8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page. It1f847bdc66 No revision has been approved for6000818f8 No

234

Data:D0095775-eabf-4ef0-ba55-67831f29ef77 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved for this page.D0039bd5-d4e4-4f2e-a325-e7c3cccd7cbf No revision has

235

THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG  

SciTech Connect (OSTI)

In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (?> 20 MeV) ?-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ?20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Universit di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universit Paris Diderot, Service d'Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bechtol, K.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhat, P. N. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Bissaldi, E. [Institut fr Astro- und Teilchenphysik and Institut fr Theoretische Physik, Leopold-Franzens-Universitt Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bonnell, J.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bouvier, A., E-mail: nicola.omodei@stanford.edu, E-mail: giacomov@slac.stanford.edu [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); and others

2013-11-01T23:59:59.000Z

236

Enrico Fermi's Impact on Science - John Marburger Speech  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future EnergyEnolSpectrometryEnricoFermi

237

Continuous transitions between composite Fermi liquid and Landau Fermi liquid: A route to fractionalized Mott insulators  

E-Print Network [OSTI]

One of the most successful theories of a non-Fermi-liquid metallic state is the composite Fermi-liquid (CFL) theory of the half-filled Landau level. In this paper, we study continuous quantum phase transitions out of the ...

Barkeshli, Maissam

238

EMEF DMC EFS-95-003 GDP TuRNOVER CONTINGENCY PLANNING POWER CONTRACT...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 11111111 EMEF DMC EFS-95-003 GDP TuRNOVER CONTINGENCY PLANNING POWER CONTRACT TERMINATION PROVISIONS AND CONSEQUENCES I JULY 1995 B. J. Kirby Power Systems Technology Program...

239

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane SJuly 2007Fermi NationalFermi

240

Generalized charge-screening in relativistic ThomasFermi model  

SciTech Connect (OSTI)

In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}?r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.

Akbari-Moghanjoughi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz, Iran and International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Quantum thermodynamic fluctuations of a chaotic Fermi-gas model  

E-Print Network [OSTI]

We investigate the thermodynamics of a Fermi gas whose single-particle energy levels are given by the complex zeros of the Riemann zeta function. This is a model for a gas, and in particular for an atomic nucleus, with an underlying fully chaotic classical dynamics. The probability distributions of the quantum fluctuations of the grand potential and entropy of the gas are computed as a function of temperature and compared, with good agreement, with general predictions obtained from random matrix theory and periodic orbit theory (based on prime numbers). In each case the universal and non--universal regimes are identified.

P. Leboeuf; A. G. Monastra

2003-02-28T23:59:59.000Z

242

Emergent quantum criticality, Fermi surfaces, and AdS{sub 2}  

SciTech Connect (OSTI)

Gravity solutions dual to d-dimensional field theories at finite charge density have a near-horizon region, which is AdS{sub 2}xR{sup d-1}. The scale invariance of the AdS{sub 2} region implies that at low energies the dual field theory exhibits emergent quantum critical behavior controlled by a (0+1)-dimensional conformal field theories (CFT). This interpretation sheds light on recently-discovered holographic descriptions of Fermi surfaces, allowing an analytic understanding of their low-energy excitations. For example, the scaling behavior near the Fermi surfaces is determined by conformal dimensions in the emergent IR CFT. In particular, when the operator is marginal in the IR CFT, the corresponding spectral function is precisely of the ''marginal Fermi liquid'' form, postulated to describe the optimally doped cuprates.

Faulkner, Thomas; Liu Hong; Vegh, David [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McGreevy, John [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); KITP, Santa Barbara, California 93106 (United States)

2011-06-15T23:59:59.000Z

243

Soliton trains in Bose-Fermi mixtures  

E-Print Network [OSTI]

We theoretically consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases. While we assume the forces between atoms in a pure Bose component to be effectively repulsive, their character can be changed from repulsive to attractive in the presence of fermions provided the Bose and Fermi gases attract each other strongly enough. In such a regime the Bose component becomes a gas of effectively attractive atoms. Hence, generating bright solitons in the bosonic gas is possible. Indeed, after a sudden increase of the strength of attraction between bosons and fermions (realized by using a Feshbach resonance technique or by firm radial squeezing of both samples) soliton trains appear in the Bose-Fermi mixture.

T. Karpiuk; M. Brewczyk; S. Ospelkaus-Schwarzer; K. Bongs; M. Gajda; K. Rzazewski

2004-04-14T23:59:59.000Z

244

2013 Annual Planning Summary for the FERMI Site Office  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the FERMI Site Office.

245

FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GRB 110625A  

SciTech Connect (OSTI)

Gamma-ray bursts (GRBs) that emit photons at GeV energies form a small but significant population of GRBs. However, the number of GRBs whose GeV-emitting period is simultaneously observed in X-rays remains small. We report {gamma}-ray observations of GRB 110625A using Fermi's Large Area Telescope in the energy range 100 MeV-20 GeV. Gamma-ray emission at these energies was clearly detected using data taken between 180 s and 580 s after the burst, an epoch after the prompt emission phase. The GeV light curve differs from a simple power-law decay, and probably consists of two emission periods. Simultaneous Swift X-Ray Telescope observations did not show flaring behaviors as in the case of GRB 100728A. We discuss the possibility that the GeV emission is the synchrotron self-Compton radiation of underlying ultraviolet flares.

Tam, P. H. T.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fan Yizhong, E-mail: phtam@phys.nthu.edu.tw [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

2012-08-01T23:59:59.000Z

246

Milagro Observations of TeV Emission from Galactic Sources in the Fermi Bright Source List  

E-Print Network [OSTI]

We present the result of a search of Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly-optimized gamma-hadron separation and utilizes the full 8-year Milagro dataset. Milagro is sensitive to gamma rays above 1 TeV and these results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, TeV emission is definitively observed associated with the Fermi pulsar J2229.0+6114, in the the Boomerang Pulsar Wind Nebula (PWN). Furthermore, an extended region of TeV emission is...

Abdo, A A; Aune, T; Berley, D; Chen, C; Christopher, G E; DeYoung, T; Dingus, B L; Ellsworth, R W; Gonzlez, M M; Goodman, J A; Hays, E; Hoffman, C M; Huentemeyer, P H; Kolterman, B E; Linnemann, J T; McEnery, J E; Morgan, T; Mincer, A I; Nmethy, P; Pretz, J; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

2009-01-01T23:59:59.000Z

247

The Enrico Fermi Award Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHome The Enrico Fermi Award Fermi

248

Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)  

E-Print Network [OSTI]

Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

2010-03-23T23:59:59.000Z

249

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home »FermiFermi

250

2FHL: The second Catalog of hard {\\it Fermi}-LAT sources  

E-Print Network [OSTI]

The {\\it Fermi} Large Area Telescope (LAT) has been routinely gathering science data since August 2008, surveying the full sky every three hours. The first Fermi-LAT catalog of sources detected above 10 GeV (1FHL) relied on three years of data to characterize the $>$10 GeV sky. The improved acceptance and point-spread function of the new Pass 8 event reconstruction and classification together with six years of observations now available allow the detection and characterization of sources directly above 50 GeV. This closes the gap between ground-based Cherenkov telescopes, which have excellent sensitivity but small fields of view and short duty cycles, and all-sky observations at GeV energies from orbit. In this contribution we present the second catalog of hard Fermi-LAT sources detected at $>$50\\,GeV.

Ajello, M; Gasparrini, D; Cutini, S

2015-01-01T23:59:59.000Z

251

FermiGrid - experience and future plans  

SciTech Connect (OSTI)

Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

2007-09-01T23:59:59.000Z

252

EfG KMOJ- United States Government I@,&  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGY MEASUREMENTS;/:4,4 (; . 1.; e octo:

253

Confrence EF 2007 ENSEEIHT, Toulouse, 6-7 Septembre 2007  

E-Print Network [OSTI]

(electrical, energy, and system aging) are simulated over a 15-year life cycle. The objectives (optimization, batteries and converter) and energy management are taken into account. The models featured herein criteria) considered in this approach are not limited to the classical notion of financial costs

Boyer, Edmond

254

MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST  

SciTech Connect (OSTI)

We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.

Abdo, A. A.; Linnemann, J. T. [Department of Physics and Astronomy, Michigan State University, 3245 BioMedical Physical Sciences Building, East Lansing, MI 48824 (United States); Allen, B. T.; Chen, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Aune, T. [Santa Cruz Institute for Particle Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Berley, D.; Goodman, J. A. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P. [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); DeYoung, T. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Dingus, B. L.; Hoffman, C. M. [Group P-23, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ellsworth, R. W. [Department of Physics and Astronomy, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Gonzalez, M. M. [Instituto de AstronomIa, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F. (Mexico); Hays, E.; McEnery, J. E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Huentemeyer, P. H. [Department of Physics, University of Utah, Salt Lake City, UT 84112 (United States); Morgan, T. [Department of Physics, University of New Hampshire, Morse Hall, Durham, NH 03824 (United States)] (and others)

2009-08-01T23:59:59.000Z

255

Detroit Edison's Fermi 1 - Preparation for Reactor Removal  

SciTech Connect (OSTI)

This paper is intended to provide information about the ongoing decommissioning tasks at Detroit Edison's Fermi 1 plant, and in particular, the work being performed to prepare the reactor for removal and disposal. In 1972 Fermi 1 was shutdown and the fuel returned to the Atomic Energy Commission. By the end of 1975, a retirement plan was prepared, the bulk sodium removed, and the plant placed in a safe store condition. The plant systems were left isolated with the sodium containing systems inert with carbon dioxide in an attempt to form a carbonate layer, thus passivating the underlying reactive sodium. In 1996, Detroit Edison determined to evaluate the condition of the plant and to make recommendations in relation to the Fermi 1 future plans. At the end of 1997 approval was obtained to remove the bulk asbestos and residual alkali-metals (i.e., sodium and sodium potassium (NaK)). In 2000, full nuclear decommissioning of the plant was approved. To date, the bulk asbestos insulation has been removed, and the only NaK remaining is located in six capillary instrument tubes. The remaining sodium is contained within the reactor, two of the three primary loops, and miscellaneous removed pipes and equipment to be processed. The preferred method for removing or reacting sodium at Fermi 1 is by injecting superheated steam into a heated, nitrogen inert system. The byproducts of this reaction are caustic sodium hydroxide, hydrogen gas, and heat. The decision was made to separate the three primary loops from the reactor for better control prior to processing each loop and the reactor separately. The first loop has already been processed. The main focus is now to process the reactor to allow removal and disposal of the Class C waste prior to the anticipated June 2008 closure of the Barnwell radioactive waste disposal facility located in South Carolina. Lessons learnt are summarized and concern: the realistic schedule and adherence to the schedule, time estimates, personnel accountability, back up or fill in work, work packages, condensation control, radiological contamination control, and organization of the waste stream.

Swindle, Danny [Sargent and Lundy Engineers, LLC, 55 E. Monroe Street, Chicago, IL 60603 (United States)

2008-01-15T23:59:59.000Z

256

On the thermalization of the $?$-Fermi-Pasta-Ulam system  

E-Print Network [OSTI]

We study theoretically the original $\\alpha$-Fermi-Pasta-Ulam (FPU) system with $N=16,32$ and $64$ masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave-wave interaction theory. We show that the route to thermalization consists of three stages. The first one is associated with non-resonant three-wave interactions. At this short time scale, the dynamics is reversible; this stage coincides with the observation of recurrent phenomena in numerical simulations of the $\\alpha$-FPU. On a larger time scale, exact four-wave resonant interactions start to take place; however, we find that all quartets are isolated, preventing a full mixing of energy in the spectrum and thermalization. The last stage corresponds to six-wave resonant interactions. Those are responsible for the energy equipartition recently observed in numerical simulations. A key role in our finding is played by the {\\it Umklapp} (flip over) resonant interactions, typical of discrete systems.

Miguel Onorato; Lara Vozella; Davide Proment; Yuri V. Lvov

2014-02-07T23:59:59.000Z

257

SLAC All Access: Fermi Gamma-ray Space Telescope  

ScienceCinema (OSTI)

Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

Romani, Roger

2014-06-24T23:59:59.000Z

258

FermiCulture Subscription Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, ScientistsThe

259

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department ofAn Inside Look atAn

260

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department ofAn Inside Look atAnAn

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department ofAn Inside Look atAnAnAn

262

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department ofAn Inside Look atAnAnAnAn

263

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department ofAn Inside Look

264

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross BloodU.S.informationAnSpectroscopy.An

265

An Iridate with Fermi Arcs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross

266

Comments on Fermi Liquid from Holography  

E-Print Network [OSTI]

We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7 brane dynamics in AdS_5 x S^5 background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In case of vanishing hypermultiplet mass, Karch, Son and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling.

Manuela Kulaxizi; Andrei Parnachev

2008-10-13T23:59:59.000Z

267

Comments on Fermi Liquid from Holography  

E-Print Network [OSTI]

We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7 brane dynamics in AdS_5 x S^5 background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In case of vanishing hypermultiplet mass, Karch, Son and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling.

Kulaxizi, Manuela

2008-01-01T23:59:59.000Z

268

Nuclear response beyond the Fermi gas model  

E-Print Network [OSTI]

The Fermi gas model, while providing a reasonable qualitative description of the continuum nuclear response, does not include the effects of dynamical nucleon-nucleon correlations in the initial and final states, that have long been recognized to play a critical role in specific kinematical regions. We review a many-body approach in which these effects are consistently taken into account and discuss the results of a calculation of the quasielastic neutrino-oxygen cross section as an illustrative example.

Omar Benhar

2003-07-14T23:59:59.000Z

269

Refining the associations of the Fermi Large Area Telescope Source Catalogs  

E-Print Network [OSTI]

The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in February 2010 and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in April 2012, based on data from 24 months of operation. Since their releases, many follow up observations of unidentified gamma-ray sources (UGSs) were performed and new procedures to associate gamma-ray sources with potential counterparts at other wavelengths were developed. Here we review and characterize all the associations as published in the 1FGL and 2FGL catalog on the basis of multifrequency archival observations. In particular we located 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of 8 gamma-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of "candidate associations" and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned coun...

Massaro, F; Landoni, M; Paggi, A; Masetti, N; Giroletti, M; Ot-Floranes, H; Chavushyan, V; Jimnez-Bailn, E; Patio-lvarez, V; Digel, S W; Smith, Howard A; Tosti, G

2015-01-01T23:59:59.000Z

270

MICU1 encodes a mitochondrial EF hand protein required for Ca21  

E-Print Network [OSTI]

proteins1618 . Because we lack specific, cell-permeant small molecules with which to interrogateARTICLES MICU1 encodes a mitochondrial EF hand protein required for Ca21 uptake Fabiana Perocchi1 of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we

South Bohemia, University of

271

Effective interaction approach to the Fermi hard-sphere system  

E-Print Network [OSTI]

The formalism based on correlated basis functions and the cluster expansion technique has been recently employed to derive an effective interaction from a realistic nuclear hamiltonian. To gauge the reliability of this scheme, we perform a systematic comparison between the results of its application to the Fermi hard-sphere system and the predictions obtained from low-density expansions, as well as from other many-body techniques. The analysis of a variety of properties, including the ground state energy, the effective mass and the momentum distribution, shows that the effective interaction approach is remarkably accurate, thus suggesting that it may be employed to achieve a consistent description of the structure and dynamics of nuclear matter in the density region relevant to astrophysical applications.

Angela Mecca; Alessandro Lovato; Omar Benhar; Artur Polls

2014-10-31T23:59:59.000Z

272

PROBING CURVATURE EFFECTS IN THE FERMI GRB 110920  

SciTech Connect (OSTI)

Curvature effects in gamma-ray bursts (GRBs) have long been a source of considerable interest. In a collimated relativistic GRB jet, photons that are off-axis relative to the observer arrive at later times than on-axis photons and are also expected to be spectrally softer. In this work, we invoke a relatively simple kinematic two-shell collision model for a uniform jet profile and compare its predictions to GRB prompt-emission data for observations that have been attributed to curvature effects such as the peak-flux-peak-frequency relation, i.e., the relation between the ?F{sub ?} flux and the spectral peak, E{sub pk} in the decay phase of a GRB pulse, and spectral lags. In addition, we explore the behavior of pulse widths with energy. We present the case of the single-pulse Fermi GRB 110920 as a test for the predictions of the model against observations.

Shenoy, A.; Maximon, L. C.; Dhuga, K. S.; Parke, W. C.; Maclachlan, G. A.; Eskandarian, Ali [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Sonbas, E. [Department of Physics, University of Adiyaman, 02040 Adiyaman (Turkey); Dermer, C. [Space Science Division, Code 7653, Naval Research Laboratory, Washington, DC 20375 (United States); Bhat, P. N. [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Hakkila, J. [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Ukwatta, T. N., E-mail: ashwinsp469@gmail.com [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

2013-11-20T23:59:59.000Z

273

The free states-related Fermi pocket of cuprate superconductors  

E-Print Network [OSTI]

To stress the effect of the pairing position deviating from the Fermi level, we must investigate the pairs in the wave vector space, and then we use the dynamic equation to study some correlation functions. This article shows that the Fermi pocket is related to the effect of free electron states on the ARPES experiment. This also leads us to understand why the Fermi arc appears in Bi2212 while the Fermi pocket appears in Bi2201 with the valence bandwidth and the work function known for them.

Tian De Cao

2010-07-13T23:59:59.000Z

274

Fermi-LAT Observation of Supernova Remnant S147  

SciTech Connect (OSTI)

We present an analysis of gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region around SNR S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) x 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 x 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with prominent H{alpha} filaments of S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. Reacceleration of pre-existing CRs and subsequent adiabatic compression in the filaments is sufficient to provide the required energy density of high-energy protons.

Katsuta, J.; Uchiyama, Y.; Tanaka, T.; /SLAC /KIPAC, Menlo Park; Tajima, H.; /SLAC /KIPAC, Menlo Park /Nagoya U., Solar-Terrestrial Environ. Lab.; Bechtol, K.; Funk, S.; Lande, J.; /SLAC /KIPAC, Menlo Park; Ballet, J.; /AIM, Saclay; Hanabata, Y.; /Hiroshima U.; Lemoine-Goumard, M.; /CENBG, Gradignan; Takahashi, T.; /JAXA, Sagamihara

2012-08-17T23:59:59.000Z

275

ABJM theory as a Fermi gas  

E-Print Network [OSTI]

The partition function on the three-sphere of many supersymmetric Chern-Simons-matter theories reduces, by localization, to a matrix model. We develop a new method to study these models in the M-theory limit, but at all orders in the 1/N expansion. The method is based on reformulating the matrix model as the partition function of an ideal Fermi gas with a non-trivial, one-particle quantum Hamiltonian. This new approach leads to a completely elementary derivation of the N^{3/2} behavior for ABJM theory and N=3 quiver Chern-Simons-matter theories. In addition, the full series of 1/N corrections to the original matrix integral can be simply determined by a next-to-leading calculation in the WKB or semiclassical expansion of the quantum gas, and we show that, for several quiver Chern-Simons-matter theories, it is given by an Airy function. This generalizes a recent result of Fuji, Hirano and Moriyama for ABJM theory. It turns out that the semiclassical expansion of the Fermi gas corresponds to a strong coupling expansion in type IIA theory, and it is dual to the genus expansion. This allows us to calculate explicitly non-perturbative effects due to D2-brane instantons in the AdS background.

Marcos Marino; Pavel Putrov

2012-03-14T23:59:59.000Z

276

Towards measuring the ionisation and dissociation energies of molecular hydrogen with  

E-Print Network [OSTI]

Towards measuring the ionisation and dissociation energies of molecular hydrogen with sub and dissociation energies of molecular hydrogen H2 was carried out recently by measuring three intervals independently: the X / EF interval, the EF / n ¼ 54p interval, and the electron binding energy of the n ¼ 54p

277

Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs  

E-Print Network [OSTI]

We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fe...

Cheng, K S; Dogiel, V A; Ko, C M

2015-01-01T23:59:59.000Z

278

The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope  

ScienceCinema (OSTI)

The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

Isabelle Grenier

2010-01-08T23:59:59.000Z

279

Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters  

SciTech Connect (OSTI)

We analyze the impact of Fermi gamma-ray observations (primarily non-detections) of selected nearby galaxies, including dwarf spheroidals, and of clusters of galaxies on decaying dark matter models. We show that the fact that galaxy clusters do not shine in gamma rays puts the most stringent limits available to-date on the lifetime of dark matter particles for a wide range of particle masses and decay final states. In particular, our results put strong constraints on the possibility of ascribing to decaying dark matter both the increasing positron fraction reported by PAMELA and the high-energy feature in the electron-positron spectrum measured by Fermi. Observations of nearby dwarf galaxies and of the Andromeda Galaxy (M31) do not provide as strong limits as those from galaxy clusters, while still improving on previous constraints in some cases.

Dugger, Leanna; Profumo, Stefano [Department of Astronomy and Department of Physics, University of California Berkeley, 601 Campbell Hall, Berkeley, CA (United States); Jeltema, Tesla E., E-mail: greentee01@gmail.com, E-mail: tesla@ucolick.org, E-mail: profumo@scipp.ucsc.edu [UCO/Lick Observatories, 1156 High St., Santa Cruz, CA 95064 (United States)

2010-12-01T23:59:59.000Z

280

The first full orbit of Eta Carinae seen by Fermi  

E-Print Network [OSTI]

The binary system eta Carinae has completed its first 5.54y orbit since the beginning of science operation of the Fermi Large Area Telescope (LAT). We are now able to investigate the high-energy gamma-ray source at the position of eta Carinae over its full orbital period. By this, we can address and confirm earlier predictions for temporal and spectral variability. Newer versions of the LAT datasets, instrument response functions and background models allow for a more accurate analysis. Therefore it is important to re-evaluate the previously analyzed time period along with the new data to further constrain location, spectral shape, and flux time history of the gamma-ray source. We confirm earlier predictions of increasing flux values above 10 GeV toward the next periastron passage. For the most recent part of the data sample, flux values as high as those before the first periastron passage in 2008 are recorded. A comparison of spectral energy distributions around periastron and apastron passages reveals stron...

Reitberger, K; Reimer, O; Takahashi, H

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fermi-surface reconstruction and the origin of high-temperature superconductivity.  

SciTech Connect (OSTI)

In crystalline lattices, the conduction electrons form waves, known as Bloch states, characterized by a momentum vector k. The defining characteristic of metals is the surface in momentum space that separates occupied from unoccupied states. This 'Fermi' surface may seem like an abstract concept, but it can be measured and its shape can have profound consequences for the thermal, electronic, and magnetic properties of a material. In the presence of an external magnetic field B, electrons in a metal spiral around the field direction, and within a semiclassical momentum-space picture, orbit around the Fermi surface. Physical properties, such as the magnetization, involve a sum over these orbits, with extremal orbits on the Fermi surface, i.e., orbits with minimal or maximal area, dominating the sum [Fig. 1(a)]. Upon quantization, the resulting electron energy spectrum consists of Landau levels separated by the cyclotron energy, which is proportional to the magnetic field. As the magnetic field causes subsequent Landau levels to cross through the Fermi energy, physical quantities, such as the magnetization or resistivity, oscillate in response. It turns out that the period of these oscillations, when plotted as a function of 1/B, is proportional to the area of the extremal orbit in a plane perpendicular to the applied field [Fig. 1(b)]. The power of the quantum oscillation technique is obvious: By changing the field direction, one can map out the Fermi surface, much like a blind man feeling an elephant. The nature and topology of the Fermi surface in high-T{sub c} cuprates has been debated for many years. Soon after the materials were discovered by Bednorz and Mueller, it was realized that superconductivity was obtained by doping carriers into a parent insulating state. This insulating state appears to be due to strong electronic correlations, and is known as a Mott insulator. In the case of cuprates, the electronic interactions force the electrons on the copper ion lattice into a d{sup 9} configuration, with one localized hole in the 3d shell per copper site. Given the localized nature of this state, it was questioned whether a momentum-space picture was an appropriate description of the physics of the cuprates. In fact, this question relates to a long-standing debate in the physics community: Since the parent state is also an antiferromagnet, one can, in principle, map the Mott insulator to a band insulator with magnetic order. In this 'Slater' picture, Mott physics is less relevant than the magnetism itself. It is therefore unclear which of the two, magnetism or Mott physics, is more fundamentally tied to superconductivity in the cuprates. After twenty years of effort, definitive quantum oscillations that could be used to map the Fermi surface were finally observed in a high-temperature cuprate superconductor in 2007. This and subsequent studies reveal a profound rearrangement of the Fermi surface in underdoped cuprates. The cause of the reconstruction, and its implication for the origin of high-temperature superconductivity, is a subject of active debate.

Norman, M. R.; Materials Science Division

2010-01-01T23:59:59.000Z

282

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane SJuly 2007Fermi National

283

Sobre a viagem de Enrico Fermi ao Brasil em 1934  

E-Print Network [OSTI]

Enrico Fermi was one of the greater physicists of the XX century. In 1934, he gave several lectures in Brazil. Invited by Theodoro Ramos to work in S\\~ao Paulo, he preferred to stay in Rome and went to the USA in 1938. However, Fermi recommended Gleb Wataghin to come in his place. Wataghin made history in Brazil, becoming one of the first Professors of the future S\\~ao Paulo University. Besides his relevance to the History of Science, Fermi eventually leaved an indelible mark on the creation and institutionalization of national scientific research due to the indication of Wataghin. Despite this fact, very little is known about Fermi's trip to Brazil. This work tries to reconstruct the fullest possible steps of the famous Italian physicist in our lands.

Caruso, Francisco

2014-01-01T23:59:59.000Z

284

888r 2009 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 888896 : DOI:10.1021/ef901047r  

E-Print Network [OSTI]

,24 There has been limited development of detailed chemical kinetic models of bio- diesel molecules due neat or in blends with their petroleum-based counterparts, gaso- line and diesel, with only minor

Lee, Tonghun

285

4912r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 49124918 : DOI:10.1021/ef1007962  

E-Print Network [OSTI]

fractions of binary mixtures of butane isomers, ethylene-butane isomers, and propane- butane isomers were components under the same flame conditions. Binary mixtures of propane and butane isomers, however, did associated with potential interactions between pyrolysis pro- ducts of the hydrocarbons in the mixture

Gülder, ?mer L.

286

Data:Ef6065a6-832e-43ef-9fa9-475dde6e3b81 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310cc Nobeedba3b42c No revision has beenea0dc187

287

Data:F4da8077-ef2f-4ef3-8495-a636f8cf0bc6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It6d-bcfb5222116e Noe0e2fa091ee4 No revision has

288

3589r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 35893594 : DOI:10.1021/ef100402g  

E-Print Network [OSTI]

of Asphaltenes and Model Compounds Hassan Sabbah,*, Amy L. Morrow, Andrew E. Pomerantz, Oliver C. Mullins, Xiaoli of the asphaltene fraction of petroleum is rapidly becoming more constrained, but the molecular architecture remains of asphaltenes: the "island" model and the "archipelago" model. Here, nine compounds were synthesized

Zare, Richard N.

289

4937r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 49374943 : DOI:10.1021/ef100622p  

E-Print Network [OSTI]

. The low tempera- ture may result in the formation of gas hydrates from methane and some other species in the gas and co-produced water. The hydrates may plug gas pipelines. To prevent hydrate forma- tion, large forms structure II hydrates and is much more soluble in water than any species in natural gas

Firoozabadi, Abbas

290

Data:C07547de-92ef-491e-99aa-d9ef4e28824d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has been approvedcf16e2831 No revisionef4e28824d No revision has been

291

Data:4ef6a5a4-d0f5-4077-a922-ef3d646840c1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revisionf377c06978a3bcce-0d410894aead2-1b6c68d2566b

292

Data:8ef049bb-f801-4ef9-a62d-ebf57f2d7c61 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db58-e7b51f638865 No revision has73e24484a54 No revision78b31b0795ba

293

Data:Cd7c35b5-82ef-4ef6-a477-bb106e5609a0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742e80b26cc4 No revision5d06fb2b0ba No revision has been approvedfd8f55f38f0 No

294

Data:Cf112cb8-f664-4b26-92ef-805d9251ef7a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved for this page. It is currently under review by our subject matter

295

Data:81b4934e-f14c-46ef-abf9-14a8575704ee | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revision has9-c45258b300ac No revision hase-40d8-baa3-5f8282fd5165

296

Data:4067fa0b-ef7a-44d8-ab4d-ef35ca83f5f0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1d No8-b13b41761ee4 Nof4bf7241 No revision

297

On the construction of Fermi-Walker transported frames  

E-Print Network [OSTI]

We consider tetrad fields as reference frames adapted to observers that move along arbitrary timelike trajectories in spacetime. By means of a local Lorentz transformation we can transform these frames into Fermi-Walker transported frames, which define a standard of non-rotation for accelerated observers. Here we present a simple prescription for the construction of Fermi-Walker transported frames out of an arbitrary set of tetrad fields.

J. W. Maluf; F. F. Faria

2008-04-15T23:59:59.000Z

298

New pulsars detected in gamma-rays with the Fermi-LAT  

E-Print Network [OSTI]

The Fermi Large Area Telescope (LAT) is a powerful pulsar detector, as demonstrated by the over one hundred objects in its second catalog of pulsars. Pass 8 is a new reconstruction and event selection strategy developed by the Fermi-LAT collaboration. Due to the increased acceptance at low energy, Pass 8 improves the pulsation detection sensitivity. Ten new pulsars rise above the 5 sigma threshold and are presented in this work, as well as one previously seen with the former Pass 7 reconstruction. More than 60$\\%$ of the known pulsars with spin-down power ($\\dot{E}$) greater than $10^{36}$ erg/s show pulsations in gamma-rays, as seen with the Fermi Large Area Telescope. Many non-detections of these energetic pulsars are thought to be a consequence of a high background level, or a large distance leading to a flux below the sensitivity limit of the instrument. The gamma-ray beams of the others probably miss the Earth. The new Pass 8 data now allows the detection of gamma ray pulsations from three of these high ...

Laffon, H; Guillemot, L

2015-01-01T23:59:59.000Z

299

Fermi/LAT broad emission line blazars  

E-Print Network [OSTI]

We study the broad emission line blazars detected in the gamma-ray band by the Large Area Telescope onboard the Fermi satellite and with the optical spectrum studied by Shaw et al. (2012, 2013). The observed broad line strength provides a measure of the ionizing luminosity of the accretion disk, while the gamma-luminosity is a proxy for the bolometric non-thermal beamed jet emission. The resulting sample, composed by 217 blazars, is the best suited to study the connection between accretion and jet properties. We compare the broad emission line properties of these blazars with those of radio-quiet and radio-loud quasars present in the Sloan Digital Sky Survey, to asses differences and similarities of the disc luminosity and the virial black hole mass. For most sources, we could derive the black hole mass by reproducing the IR-optical-UV data with a standard accretion disc spectrum, and we compared the black hole masses derived with the two methods. The distributions of the masses estimated in the two ways agre...

Ghisellini, G

2015-01-01T23:59:59.000Z

300

PMC-EF2. U.S. DEPARTlYIENT OF ENERGY EERE PROJECT MANAGEMENT...  

Broader source: Energy.gov (indexed) [DOE]

A9 Information gathering (including , but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such...

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment ofProgram(S3TEC ) | Department of

302

Data:32ef3936-3150-4116-a907-99bcb4567300 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4a No revision has been approved567300 No revision has been

303

Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method  

E-Print Network [OSTI]

Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

Gubler, Philipp; Hatsuda, Tetsuo; Nishida, Yusuke

2015-01-01T23:59:59.000Z

304

Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method  

E-Print Network [OSTI]

Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

Philipp Gubler; Naoki Yamamoto; Tetsuo Hatsuda; Yusuke Nishida

2015-01-24T23:59:59.000Z

305

The Needle in the 100 deg2 Haystack: Uncovering Afterglows of Fermi GRBs with the Palomar Transient Factory  

E-Print Network [OSTI]

The Fermi Gamma-Ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi Gamma-ray Burst Monitor (GBM) instrument have posed a formidable obstacle to locating the bursts' host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target of opportunity mode for the intermediate Palomar Transient Factory (iPTF) in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: eight afterglow discoveries, two of which (GRBs 130702A and 140606B) were at low redshift (z=0.145 and 0.384 respectively) and had spectroscopically confirmed broad-line type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samp...

Singer, Leo P; Cenko, S Bradley; Perley, Daniel A; Anderson, Gemma E; Anupama, G C; Arcavi, Iair; Bhalerao, Varun; Bue, Brian D; Cao, Yi; Connaughton, Valerie; Corsi, Alessandra; Cucchiara, Antonino; Fender, Rob P; Fox, Derek B; Gehrels, Neil; Goldstein, Adam; Gorosabel, J; Horesh, Assaf; Hurley, Kevin; Johansson, Joel; Kann, D A; Kouveliotou, Chryssa; Huang, Kuiyun; Kulkarni, S R; Masci, Frank; Nugent, Peter; Rau, Arne; Rebbapragada, Umaa D; Staley, Tim D; Svinkin, Dmitry; Thne, C C; Postigo, A de Ugarte; Urata, Yuji; Weinstein, Alan

2015-01-01T23:59:59.000Z

306

FINALREPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)  

SciTech Connect (OSTI)

The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

Erika Bailey

2011-07-07T23:59:59.000Z

307

Superscaling and Neutral Current Quasielastic Neutrino-Nucleus Scattering beyond the Relativistic Fermi Gas Model  

E-Print Network [OSTI]

The superscaling analysis is extended to include quasielastic (QE) scattering via the weak neutral current of neutrinos and antineutrinos from nuclei. The scaling function obtained within the coherent density fluctuation model (used previously in calculations of QE inclusive electron and charge-changing (CC) neutrino scattering) is applied to neutral current neutrino and antineutrino scattering with energies of 1 GeV from $^{12}$C with a proton and neutron knockout (u-channel inclusive processes). The results are compared with those obtained using the scaling function from the relativistic Fermi gas model and the scaling function as determined from the superscaling analysis (SuSA) of QE electron scattering.

A. N. Antonov; M. V. Ivanov; M. B. Barbaro; J. A. Caballero; E. Moya de Guerra; M. K. Gaidarov

2007-06-01T23:59:59.000Z

308

The Life of Enrico Fermi | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHome The Enrico Fermi AwardThe Life

309

Fermi Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumentingFermi Site Office CX Determinations

310

2011 Annual Planning Summary for Fermi Site Office (FSO) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of0225145750414.pdfDepartment ofMachinesEnergy Fermi

311

Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |Endecaheme c-Type|Iltt: Fermi National Accelerator

312

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home » 2010Fermi

313

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home »Fermi

314

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF HomeFermi National

315

Fermi Orbital Derivatives in Self-Interaction Corrected Density Functional Theory: Applications to Closed Shell Atoms  

E-Print Network [OSTI]

A recent modification of the Perdew-Zunger self-interaction-correction (SIC) to the density-functional formalism (Pederson, Ruzsinszky, Perdew) has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Lowdin orthonormalized Fermi-orbitals (Luken et al) which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested here on atoms. Total energies and ionization energies in closed-shell atoms, where correlation is less important, using the PW92 LDA functional are in very good to excellent agreement with experiment and non-relativistic Quantum-Monte-Carlo (QMC) results.

Mark R. Pederson

2014-12-13T23:59:59.000Z

316

Emission vs Fermi coordinates: applications to relativistic positioning systems  

E-Print Network [OSTI]

A 4-dimensional relativistic positioning system for a general spacetime is constructed by using the so called "emission coordinates". The results apply in a small region around the world line of an accelerated observer carrying a Fermi triad, as described by the Fermi metric. In the case of a Schwarzschild spacetime modeling the gravitational field around the Earth and an observer at rest at a fixed spacetime point, these coordinates realize a relativistic positioning system alternative to the current GPS system. The latter is indeed essentially conceived as Newtonian, so that it necessarily needs taking into account at least the most important relativistic effects through Post-Newtonian corrections to work properly. Previous results concerning emission coordinates in flat spacetime are thus extended to this more general situation. Furthermore, the mapping between spacetime coordinates and emission coordinates is completely determined by means of the world function, which in the case of a Fermi metric can be explicitly obtained.

Donato Bini; Andrea Geralico; Matteo Luca Ruggiero; Angelo Tartaglia

2008-09-05T23:59:59.000Z

317

Exponential Fermi acceleration in general time-dependent billiards  

E-Print Network [OSTI]

It is shown, that under very general conditions, a generic time-dependent billiard, for which a phase-space of corresponding static (frozen) billiards is of the mixed type, exhibits the exponential Fermi acceleration in the adiabatic limit. The velocity dynamics in the adiabatic regime is represented as an integral over a path through the abstract space of invariant components of corresponding static billiards, where the paths are generated probabilistically in terms of transition-probability matrices. We study the statistical properties of possible paths and deduce the conditions for the exponential Fermi acceleration. The exponential Fermi acceleration and theoretical concepts presented in the paper are demonstrated numerically in four different time-dependent billiards.

Benjamin Batisti?

2014-04-07T23:59:59.000Z

318

The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission  

SciTech Connect (OSTI)

The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic {gamma}-ray background up to TeV energies, and (7) explore the discovery space for dark matter.

Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors.; ,

2009-05-15T23:59:59.000Z

319

Gamma-ray Spectral Evolution of NGC1275 Observed with Fermi-LAT  

E-Print Network [OSTI]

We report on a detailed investigation of the high-energy gamma-ray emission from NGC\\,1275, a well-known radio galaxy hosted by a giant elliptical located at the center of the nearby Perseus cluster. With the increased photon statistics, the center of the gamma-ray emitting region is now measured to be separated by only 0.46' from the nucleus of NGC1275, well within the 95% confidence error circle with radius ~1.5'. Early Fermi-LAT observations revealed a significant decade-timescale brightening of NGC1275 at GeV photon energies, with a flux about seven times higher than the one implied by the upper limit from previous EGRET observations. With the accumulation of one-year of Fermi-LAT all-sky-survey exposure, we now detect flux and spectral variations of this source on month timescales, as reported in this paper. The average >100 MeV gamma-ray spectrum of NGC1275 shows a possible deviation from a simple power-law shape, indicating a spectral cut-off around an observed photon energy of E = 42.2+-19.6 GeV, with...

Kataoka, J; Cheung, C C; Tosti, G; Cavazzuti, E; Celotti, A; Nishino, S; Fukazawa, Y; Thompson, D J; McConville, W F

2010-01-01T23:59:59.000Z

320

Domain Motions of EF-G Bound to the 70S Ribosome: Insights from a Hand-Shaking between Multi-Resolution Structures  

E-Print Network [OSTI]

, Health Research, Inc. at the § Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509 USA of translo- case (EF-G) in the ribosome-bound form against data from cryoelectron microscopy (cryo-EM). We that gives excellent agreement between the flexibly docked structure of GDP EF-G and the cryo-EM density map

Wriggers, Willy

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS  

SciTech Connect (OSTI)

This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Yamaoka, Kazutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sayamihara 229-8558 (Japan); Tashiro, Makoto S., E-mail: urata@astro.ncu.edu.tw [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan)

2012-03-20T23:59:59.000Z

322

Fermi Discovery of Gamma-Ray Emission from NGC 1275  

SciTech Connect (OSTI)

We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Asano, K.; /Tokyo Inst. Tech.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /SISSA, Trieste /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /ASDC, Frascati /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

2009-05-15T23:59:59.000Z

323

Abstract. We present a method to treat the solvent ef-ficiently in hybrid quantum mechanical/molecular me-  

E-Print Network [OSTI]

Abstract. We present a method to treat the solvent ef- ficiently in hybrid quantum mechanical, the central reactive region is treated quan- tum mechanically to allow key bonds to be made and broken, while the surrounding non-reactive region is treated classically to make the calculations computa- tionally feasible

Dinner, Aaron

324

Superscaling and Charge-Changing Neutrino Scattering from Nuclei in the $\\boldsymbol ?$-Region beyond the Relativistic Fermi Gas Model  

E-Print Network [OSTI]

The superscaling analysis using the scaling function obtained within the coherent density fluctuation model is extended to calculate charge-changing neutrino and antineutrino scattering on $^{12}$C at energies from 1 to 2 GeV not only in the quasielastic but also in the delta excitation region. The results are compared with those obtained using the scaling functions from the relativistic Fermi gas model and from the superscaling analysis of inclusive scattering of electrons from nuclei.

M. V. Ivanov; M. B. Barbaro; J. A. Caballero; A. N. Antonov; E. Moya de Guerra; M. K. Gaidarov

2008-02-29T23:59:59.000Z

325

Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas  

E-Print Network [OSTI]

Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a superconductor. We ...

Ku, Mark Jen-Hao

326

Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems  

E-Print Network [OSTI]

We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4$\\pi$ detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.

P. Marini; H. Zheng; M. Boisjoli; G. Verde; A. Chbihi; G. Ademard; L. Auger; C. Bhattacharya; B. Borderie; R. Bougault; J. Frankland; E. Galichet; D. Gruyer; S. Kundu; M. La Commara; I. Lombardo; O. Lopez; G. Mukherjee; P. Napolitani; M. Parlog; M. F. Rivet; E. Rosato; R. Roy; G. Spadaccini; M. Vigilante; P. C. Wigg; A. Bonasera

2015-01-03T23:59:59.000Z

327

Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems  

E-Print Network [OSTI]

We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4$\\pi$ detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.

Marini, P; Boisjoli, M; Verde, G; Chbihi, A; Ademard, G; Auger, L; Bhattacharya, C; Borderie, B; Bougault, R; Frankland, J; Galichet, E; Gruyer, D; Kundu, S; La Commara, M; Lombardo, I; Lopez, O; Mukherjee, G; Napolitani, P; Parlog, M; Rivet, M F; Rosato, E; Roy, R; Spadaccini, G; Vigilante, M; Wigg, P C; Bonasera, A

2015-01-01T23:59:59.000Z

328

The Fermi blazars' divide based on the diagnostic of the SEDs peak frequencies  

E-Print Network [OSTI]

We have studied the quasi-simultaneous Spectral Energy Distributions (SED) of 48 LBAS blazars, detected within the three months of the LAT Bright AGN Sample (LBAS) data taking period, combining Fermi and Swift data with radio NIR-Optical and hard-X/gamma-ray data. Using these quasi-simultaneous SEDs, sampling both the low and the high energy peak of the blazars broad band emission, we were able to apply a diagnostic tool based on the estimate of the peak frequencies of the synchrotron (S) and Inverse Compton (IC) components. Our analysis shows a Fermi blazars' divide based on the peak frequencies of the SED. The robust result is that the Synchrotron Self Compton (SSC) region divides in two the plane were we plot the peak frequency of the synchrotron SED vs the typical Lorentz factor of the electrons most contributing to the synchrotron emission and to the inverse Compton process. Objects within or below this region, radiating likely via the SSC process, are high-frequency-peaked BL Lac object (HBL), or low/in...

Tramacere, A; Giommi, P; Mazziotta, N; Monte, C

2010-01-01T23:59:59.000Z

329

VERITAS OBSERVATIONS OF SIX BRIGHT, HARD-SPECTRUM FERMI-LAT BLAZARS  

SciTech Connect (OSTI)

We report on VERITAS very high energy (VHE; E {>=} 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.

Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Boettcher, M. [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A., E-mail: afurniss@ucsc.edu, E-mail: pafortin@cfa.harvard.edu, E-mail: deirdre@llr.in2p3.fr [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Collaboration: VERITAS Collaboration; and others

2012-11-10T23:59:59.000Z

330

Uso del conocimiento de la arquitectura Fermi para mejorar el rendimiento en aplicaciones  

E-Print Network [OSTI]

Uso del conocimiento de la arquitectura Fermi para mejorar el rendimiento en aplicaciones CUDA Yuri arquitectura Fermi de NVIDIA introduce nuevos criterios a la hora de selec- cionar los tama~nos y la geometr arquitectura para aplicar adecua- damente t´ecnicas de optimizaci´on de c´odigo. Fermi [2] [3] [4] es la

Llanos, Diego R.

331

General Properties of Fermi/LAT Active Galactic Nuclei  

E-Print Network [OSTI]

The Second Catalog of Blazars and other Active Galactic Nuclei detected by the Fermi/LAT (2LAC) includes about 1100 sources, 886 of which comprise the Clean Sample. The general properties of the different populations of sources classified according to the strength of their emission lines (FSRQs, BL Lacs) or the estimated position of the synchrotron peak are reviewed.

Lott, B; Cutini, S; Gasparrini, D; Dermer, C D

2012-01-01T23:59:59.000Z

332

BCS-BEC Crossover and the Unitary Fermi Gas  

E-Print Network [OSTI]

The crossover from weak coupling Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein condensate (BEC) of tightly bound pairs, as a function of the attractive interaction in Fermi systems, has long been of interest to theoretical physicists. The past decade has seen a series of remarkable experimental developments in ultracold Fermi gases that has realized the BCS-BEC crossover in the laboratory, bringing with it fresh new insights into the very strongly interacting unitary regime in the middle of this crossover. In this review, we start with a pedagogical introduction to the crossover and then focus on recent progress in the strongly interacting regime. While our focus is on new theoretical developments, we also describe three key experiments that probe the thermodynamics, transport and spectroscopy of the unitary Fermi gas. We discuss connections between the unitary regime and other areas of physics -- quark-gluon plasmas, gauge-gravity duality and high temperature superconductivity -- and conclude with open questions about strongly interacting Fermi gases.

Mohit Randeria; Edward Taylor

2014-04-08T23:59:59.000Z

333

Gamma-ray Sky Observed with Fermi Large Area Telescope  

E-Print Network [OSTI]

detection reported Flare activity reported via ATel Gamma Ray Bursts reported via GCN Giant MC imageGamma-ray Sky Observed with Fermi Large Area Telescope RESCEU Symposium on Astroparticle Physics) Measure the photon direction Identification of the gamma-ray shower 36 planes of Si strip detectors (228 m

Yamamoto, Hirosuke

334

The role of Causality in Tunable Fermi Gas Condensates  

E-Print Network [OSTI]

We develop a new formalism for the description of the condensates of cold Fermi atoms whose speed of sound can be tuned with the aid of a narrow Feshbach resonance. We use this to look for spontaneous phonon creation that mimics spontaneous particle creation in curved space-time in Friedmann-Robertson-Walker and other model universes.

Jen-Tsung Hsiang; Chi-Yong Lin; Da-Shin Lee; Ray J. Rivers

2013-09-17T23:59:59.000Z

335

Nature of superfluidity in ultracold Fermi gases near Feshbach resonances  

SciTech Connect (OSTI)

We study the superfluid state of atomic Fermi gases using a BCS-Bose-Einstein-condensation crossover theory. Our approach emphasizes noncondensed fermion pairs which strongly hybridize with their (Feshbach-induced) molecular boson counterparts. These pairs lead to pseudogap effects above T{sub c} and non-BCS characteristics below. We discuss how these effects influence the experimental signatures of superfluidity.

Stajic, Jelena; Levin, K. [James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Milstein, J.N.; Holland, M.J. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309 (United States); Chen Qijin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Chiofalo, M.L. [Classe di Scienze and INFM, Scuola Normale Superiore, Piazza dei Cavelieri 7, I-56126 Pisa (Italy)

2004-06-01T23:59:59.000Z

336

Fermi Surface of SrFe2P2 Determined by the de Haasvan Alphen Effect J. G. Analytis,1,2  

E-Print Network [OSTI]

1 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA 2 Geballe Laboratory for Advanced Materials 10 August 2009) We report measurements of the Fermi surface (FS) of the ternary iron-phosphide SrFe2P

Fisher, Ian

337

REVISITING THE LONG/SOFT-SHORT/HARD CLASSIFICATION OF GAMMA-RAY BURSTS IN THE FERMI ERA  

SciTech Connect (OSTI)

We perform a statistical analysis of the temporal and spectral properties of the latest Fermi gamma-ray bursts (GRBs) to revisit the classification of GRBs. We find that the bimodalities of duration and the energy ratio (E{sub peak}/Fluence) and the anti-correlation between spectral hardness (hardness ratio (HR), peak energy, and spectral index) and duration (T{sub 90}) support the long/soft-short/hard classification scheme for Fermi GRBs. The HR-T{sub 90} anti-correlation strongly depends on the spectral shape of GRBs and energy bands, and the bursts with the curved spectra in the typical BATSE energy bands show a tighter anti-correlation than those with the power-law spectra in the typical BAT energy bands. This might explain why the HR-T{sub 90} correlation is not evident for those GRB samples detected by instruments like Swift with a narrower/softer energy bandpass. We also analyze the intrinsic energy correlation for the GRBs with measured redshifts and well-defined peak energies. The current sample suggests E{sub p,rest} = 2455 Multiplication-Sign (E{sub iso}/10{sup 52}){sup 0.59} for short GRBs, significantly different from that for long GRBs. However, both the long and short GRBs comply with the same E{sub p,rest}-L{sub iso} correlation.

Zhang Fuwen; Yan Jingzhi; Wei Daming [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Shao Lang, E-mail: fwzhang@pmo.ac.cn [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China)

2012-05-10T23:59:59.000Z

338

Testing dissipative magnetosphere model light curves and spectra with FERMI pulsars  

E-Print Network [OSTI]

We explore the emission properties of a dissipative pulsar magnetosphere model introduced by Kalapotharakos et al. (2014), comparing its high energy light curves and spectra, due to curvature radiation, with data collected by the Fermi LAT. The magnetosphere structure is assumed to be near the force-free solution. The accelerating electric field, inside the light-cylinder, is assumed to be negligible, while outside the light-cylinder it rescales with a finite conductivity ({\\sigma}). In our approach we calculate the corresponding high energy emission by integrating the trajectories of test particles that originate from the stellar surface, taking into account both the accelerating electric field components and the radiation reaction forces. First we explore the parameter space assuming different value sets for the stellar magnetic field, stellar period, and conductivity. We show that the general properties of the model are in a good agreement with observed emission characteristics of young {\\gamma}-ray pulsar...

Brambilla, Gabriele; Harding, Alice K; Kazanas, Demosthenes

2015-01-01T23:59:59.000Z

339

THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS  

SciTech Connect (OSTI)

This catalog summarizes 117 high-confidence ?0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Universit di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universit Paris Diderot, Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Universit di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ''M. Merlin'' dell'Universit e del Politecnico di Bari, I-70126 Bari (Italy); and others

2013-10-01T23:59:59.000Z

340

2015_April.FermiOrgChart_FINAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2 6 3

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fermi National Accelerator Laboratory April 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging withDots) -08103,2

342

Fermi National Accelerator Laboratory FY 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08 A national

343

Fermi National Accelerator Laboratory FY 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08 A national10 A

344

Fermi National Accelerator Laboratory February 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08 A national10 A3

345

Fermi National Accelerator Laboratory June 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08 A national10

346

I Fermi National Accelerator Laboratory I I  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure eind ExcBAECC: - _; .b

347

Enrico Fermi: Audio/Video Clips  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future

348

Graphic Standards Fermi National Accelerator Laboratory 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print

349

Fermi National Accelerator Laboratory September 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab spent2

350

Fermi National Accelerator Laboratory September 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab spent23 A

351

Fermi National Accelerator Laboratory April 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab spent23 A5

352

Fermi National Accelerator Laboratory August 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab spent23

353

Fermi National Accelerator Laboratory February 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab

354

Fermi National Accelerator Laboratory February 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab5 Fostering

355

Fermi National Accelerator Laboratory July 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab5July 2012

356

Fermi National Accelerator Laboratory June 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab5July

357

Fermi National Accelerator Laboratory March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab5July3

358

Fermi National Accelerator Laboratory March 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab5July35

359

Fermi National Accelerator Laboratory November 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab5July35Muon

360

Fermi National Accelerator Laboratory October 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Scientists use this

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PROSPECTS FOR GRB SCIENCE WITH THE FERMI LARGE AREA TELESCOPE  

SciTech Connect (OSTI)

The Large Area Telescope (LAT) instrument on the Fermi mission will reveal the rich spectral and temporal gamma-ray burst (GRB) phenomena in the >100 MeV band. The synergy with Fermi's Gamma-ray Burst Monitor detectors will link these observations to those in the well explored 10-1000 keV range; the addition of the >100 MeV band observations will resolve theoretical uncertainties about burst emission in both the prompt and afterglow phases. Trigger algorithms will be applied to the LAT data both onboard the spacecraft and on the ground. The sensitivity of these triggers will differ because of the available computing resources onboard and on the ground. Here we present the LAT's burst detection methodologies and the instrument's GRB capabilities.

Band, D. L. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Axelsson, M. [Stockholm Observatory, Albanova, SE-106 91 Stockholm (Sweden); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Battelino, M. [Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm (Sweden); Bissaldi, E. [Max-Planck Institut fuer extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Bogaert, G. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Bonnell, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Chiang, J.; Do Couto e Silva, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305 (United States); Cohen-Tanugi, J. [Laboratoire de Physique Theorique et Astroparticules, Universite Montpellier 2, CNRS/IN2P3, Montpellier (France); Connaughton, V. [University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cutini, S. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); De Palma, F. [Dipt. di Fisica 'M. Merlin' dell'Universita e del Politecnico di Bari, I-70126 Bari (Italy); Dingus, B. L. [Los Alamos National Lab., Los Alamos, NM 87545 (United States); Fishman, G. [NASA Marshall Space Flight Center, Huntsville, AL 35805 (United States)], E-mail: nicola.omodei@pi.infn.it (and others)

2009-08-20T23:59:59.000Z

362

Prospects for GRB Science with the Fermi Large Area Telescope  

E-Print Network [OSTI]

The LAT instrument on the Fermi mission will reveal the rich spectral and temporal gamma-ray burst phenomena in the > 100 MeV band. The synergy with Fermi's GBM detectors will link these observations to those in the well explored 10-1000 keV range; the addition of the > 100 MeV band observations will resolve theoretical uncertainties about burst emission in both the prompt and afterglow phases. Trigger algorithms will be applied to the LAT data both onboard the spacecraft and on the ground. The sensitivity of these triggers will differ because of the available computing resources onboard and on the ground. Here we present the LAT's burst detection methodologies and the instrument's GRB capabilities.

Band, D L; Baldini, L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Bellazzini, R; Bissaldi, E; Bogaert, G; Bonnel, J; Chiang, J; Cohen-Tanugi, J; Connaughton, V; Cutini, S; de Palma, F; Dingus, B L; Silva, E do Couto e; Fishman, G; Galli, A; Gehrels, N; Giglietto, N; Granot, J; Guiriec, S; Hughes, R E; Kamae, T; Komin, N; Khn, F; Kuss, M; Longo, F; Lubrano, P; Kippen, R M; Mazziotta, M N; McEnery, J E; McGlynn, S; Moretti, E; Nakamori, T; Norris, J P; Ohno, M; Olivo, M; Omodei, N; Pelassa, V; Piron, F; Preece, R; Razzano, M; Russell, J J; Ryde, F; Parkinson, P M Saz; Scargle, J D; Sgr, C; Shimokawabe, T; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Winer, B L; Yamazaki, R

2009-01-01T23:59:59.000Z

363

Absorption by cold Fermi atoms in a harmonic trap  

E-Print Network [OSTI]

We study the absorption spectrum for a strongly degenerate Fermi gas confined in a harmonic trap. The spectrum is calculated using both the exact summation and also the Thomas-Fermi (TF) approximation. In the latter case, relatively simple analytical expressions are obtained for the absorption lineshape at large number of trapped atoms. At zero temperature, the approximated lineshape is characterized by a $(1-z^2)^{5/2}$ dependence which agrees well with the exact numerical calculations. At non-zero temperature, the spectrum becomes broader, although remains non-Gaussian as long as the fermion gas is degenerate. The changes in the trap frequency for an electronically excited atom can introduce an additional line broadening.

Gediminas Juzeliunas; Marius Masalas

2000-11-10T23:59:59.000Z

364

Holographic non-Fermi liquid in a background magnetic field  

SciTech Connect (OSTI)

We study the effects of a nonzero magnetic field on a class of 2+1 dimensional non-Fermi liquids, recently found in [Hong Liu, John McGreevy, and David Vegh, arXiv:0903.2477.] by considering properties of a Fermionic probe in an extremal AdS{sup 4} black hole background. Introducing a similar fermionic probe in a dyonic AdS{sup 4} black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion's charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasiparticle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de-Haas-van Alphen effect.

Basu, Pallab; He Jianyang; Mukherjee, Anindya; Shieh, Hsien-Hang [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada)

2010-08-15T23:59:59.000Z

365

Realization of SU(2)*SU(6) Fermi System  

E-Print Network [OSTI]

We report the realization of a novel degenerate Fermi mixture with an SU(2)*SU(6) symmetry in a cold atomic gas. We successfully cool the mixture of the two fermionic isotopes of ytterbium 171Yb with the nuclear spin I=1/2 and 173Yb with I=5/2 below the Fermi temperature T_ F as 0.46T_F for 171Yb and 0.54T_F for 173Yb. The same scattering lengths for different spin components make this mixture featured with the novel SU(2)*SU(6) symmetry. The nuclear spin components are separately imaged by exploiting an optical Stern-Gerlach effect. In addition, the mixture is loaded into a 3D optical lattice to implement the SU(2)*SU(6) Hubbard model. This mixture will open the door to the study of novel quantum phases such as a spinor Bardeen-Cooper-Schrieffer-like fermionic superfluid.

Taie, Shintaro; Sugawa, Seiji; Yamazaki, Rekishu; Tsujimoto, Takuya; Murakami, Ryo; Takahashi, Yoshiro

2010-01-01T23:59:59.000Z

366

The spectral problem of the ABJ Fermi gas  

E-Print Network [OSTI]

The partition function on the three-sphere of ABJ theory can be rewritten into a partition function of a non-interacting Fermi gas, with an accompanying one-particle Hamiltonian. We study the spectral problem defined by this Hamiltonian. We determine the exact WKB quantization condition, which involves quantities from refined topological string theory, and test it successfully against numerical calculations of the spectrum.

Johan Kallen

2014-07-02T23:59:59.000Z

367

The composition of the Fermi-LAT IGRB intensity: emission from extragalactic point sources and dark matter annihilations  

E-Print Network [OSTI]

A new estimation of the isotropic diffuse gamma-ray background (IGRB) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) has been presented for 50 months of data, in the energy range 100 MeV-820 GeV and for different modelings of the Galactic foreground. We attempt here the interpretation of the Fermi-LAT IGRB data in terms of the gamma-ray unresolved emission from different extragalactic populations. We find very good fits to the experimental IGRB, obtained with theoretical predictions for the emission from active galactic nuclei and star forming galaxies. In addition, we probe a possible emission coming from the annihilation of weakly interacting dark matter (DM) particles in the halo of our Galaxy. We set stringent limits on its annihilation cross section into gamma-rays, which are about the thermal relic value for a wide range of DM masses. We also identify regions in the DM mass and annihilation cross section parameter space which can significantly improve the...

Di Mauro, Mattia

2015-01-01T23:59:59.000Z

368

Revisiting variable gamma-ray sky at 1 GeV with 6 years of Fermi-LAT data  

E-Print Network [OSTI]

We perform a blind search for the variability of the gamma-ray sky in the energy range E>1 GeV using 308 weeks of the Fermi-LAT data. We use the technique based on the comparison of the weekly photon counts and exposures in sky pixels by means of the Kolmogorov-Smirnov test. We consider the flux variations in the region significant if statistical probability of uniformity is less than $4\\times10^{-6}$, which corresponds to 0.05 false detections in the whole set of 12288 pixels. Close inspection of the detected variable regions result in identification of 8 sources without previous known variability. Two of them are included in the second Fermi LAT source catalogue (FBQS J122424.1+243623 and GB6 J0043+3426) and one (3EG J1424+3734) was reported by EGRET and also was included in the First Fermi LAT source catalogue (1FGL), but is missing in the 2FGL. Possible identifications of five other sources are obtained using NED and SIMBAD databases (1RXS J161939.9+765515, PMN J2320-6447, PKS 0226-559, PKS J0030-0211, PM...

Pshirkov, M S

2015-01-01T23:59:59.000Z

369

The Fermi-Pasta-Ulam problem revisited: stochasticity thresholds in nonlinear Hamiltonian systems  

E-Print Network [OSTI]

The Fermi-Pasta-Ulam $\\alpha$-model of harmonic oscillators with cubic anharmonic interactions is studied from a statistical mechanical point of view. Systems of N= 32 to 128 oscillators appear to be large enough to suggest statistical mechanical behavior. A key element has been a comparison of the maximum Lyapounov coefficient $\\lambda_{max}$ of the FPU $\\alpha$-model and that of the Toda lattice. For generic initial conditions, $\\lambda_{max}(t)$ is indistinguishable for the two models up to times that increase with decreasing energy (at fixed N). Then suddenly a bifurcation appears, which can be discussed in relation to the breakup of regular, soliton-like structures. After this bifurcation, the $\\lambda_{max}$ of the FPU model appears to approach a constant, while the $\\lambda_{max}$ of the Toda lattice appears to approach zero, consistent with its integrability. This suggests that for generic initial conditions the FPU $\\alpha$-model is chaotic and will therefore approach equilibrium and equipartition of energy. There is, however, a threshold energy density $\\epsilon_c(N)\\sim 1/N^2$, below which trapping occurs; here the dynamics appears to be regular, soliton-like and the approach to equilibrium - if any - takes longer than observable on any available computer. Above this threshold the system appears to behave in accordance with statistical mechanics, exhibiting an approach to equilibrium in physically reasonable times. The initial conditions chosen by Fermi, Pasta and Ulam were not generic and below threshold and would have required possibly an infinite time to reach equilibrium.

Lapo Casetti; Monica Cerruti-Sola; Marco Pettini; E. G. D. Cohen

1998-04-21T23:59:59.000Z

370

Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential  

E-Print Network [OSTI]

The one-dimensional (1D) Fermi gas with repulsive short-range interactions provides an important model of strong correlations and is often amenable to exact methods. However, in the presence of confinement, no exact solution is known for an arbitrary number of strongly interacting fermions. Here, we propose a novel ansatz for generating the lowest-energy wavefunctions of the repulsive 1D Fermi gas in a harmonic potential near the Tonks-Girardeau (TG) limit of infinite interactions. We specialize to the case of a single impurity interacting with $N$ majority particles, where we may derive analytic forms of the approximate wavefunctions. Comparing with exact numerics, we show that the overlap between the wavefunctions from our ansatz and the exact ones in the ground-state manifold exceeds 0.9997 for $N\\leq8$. Moreover, the overlap for the ground-state wavefunction extrapolates to 0.9999 as $N\\to\\infty$. Thus our ansatz is essentially indistinguishable from numerically exact results in both the few- and many-body limits. In the large $N$ limit, we find that the impurity probability density in the ground state is only slightly perturbed by the infinitely repulsive interactions, while the quasiparticle residue vanishes as the many-body limit is approached, reflecting the Anderson orthogonality catastrophe. We derive an effective Heisenberg spin-chain model for the regime near the TG limit, within which our ansatz is exact. Here, we find that the impurity eigenstates in the spin basis correspond to discrete Chebyshev polynomials. The energy of states in excited manifolds is calculated using a dynamical SO(2,1) symmetry, which provides an exact relation between states related by a scaling transformation. We finally show how our results for the wavefunctions and the energy spectrum can be detected in cold atomic gases via collective-mode, tunneling, and radio-frequency experiments.

Jesper Levinsen; Pietro Massignan; Georg M. Bruun; Meera M. Parish

2014-08-29T23:59:59.000Z

371

October 200524 F E A T U R EF E A T U R E  

E-Print Network [OSTI]

, such as solar, wind, and geothermal energy, are attractive from an ecological viewpoint, these do not pro- vide technologically challenging, a fusion-power reactor would offer significant advantages over existing energy], experts predict an energy shortfall in less than 50 years at our present rate of use (Figure 1). Energy

372

The Greening of the Middle Kingdom: The Story of Energy Efficiency in China  

E-Print Network [OSTI]

1/2/a7612e71ef7f84b4cade01abbd34106b. Sinton, J. , and M.promote energy efficiency see Sinton and Levine (1998). It

Zhou, Nan

2010-01-01T23:59:59.000Z

373

Handling model uncertainty in model predictive control for energy efficient buildings  

E-Print Network [OSTI]

trol for the operation of building cooling systems, IEEEK. Wirth, Energy ef?cient building climate control usingSagerschnig, E. Z ? ?cekov, Building [8] J. Pr vara, S.

Maasoumy, Mehdi; Razmara, M; Shahbakhti, M; Sangiovanni-Vincentelli, Alberto

2014-01-01T23:59:59.000Z

374

Holographic Thermalization, stability of AdS, and the Fermi-Pasta-Ulam-Tsingou paradox  

E-Print Network [OSTI]

For a real massless scalar field in general relativity with a negative cosmological constant, we uncover a large class of spherically symmetric initial conditions that are close to AdS, but whose numerical evolution does not result in black hole formation. According to the AdS/CFT dictionary, these bulk solutions are dual to states of a strongly interacting boundary CFT that fail to thermalize at late times. Furthermore, as these states are not stationary, they define dynamical CFT configurations that do not equilibrate. We develop a two-timescale perturbative formalism that captures both direct and inverse cascades of energy and agrees with our fully nonlinear evolutions in the appropriate regime. We also show that this formalism admits a large class of quasi-periodic solutions. Finally, we demonstrate a striking parallel between the dynamics of AdS and the classic Fermi-Pasta-Ulam-Tsingou problem.

Venkat Balasubramanian; Alex Buchel; Stephen R. Green; Luis Lehner; Steven L. Liebling

2014-06-16T23:59:59.000Z

375

Fermi Limit on the Neutrino Flux from Gamma-ray Bursts  

E-Print Network [OSTI]

If gamma-ray bursts (GRBs) produce high energy cosmic rays, neutrinos are expected to be generated in GRBs due to photo-pion productions. However we stress that the same process also generates electromagnetic (EM) emission induced by the production of secondary electrons and photons, and that the EM emission is expected to be correlated to the neutrino flux. Using the Fermi/LAT observational results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be below ~20 GeV/m^2 per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that the full IceCube needs stacking more than 130 GRBs in order to detect one GRB muon neutrino.

Zhuo Li

2013-06-14T23:59:59.000Z

376

Spectrometer for X-ray emission experiments at FERMI free-electron-laser  

SciTech Connect (OSTI)

A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

Poletto, L., E-mail: poletto@dei.unipd.it; Frassetto, F.; Miotti, P. [CNR - Institute of Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, I-35131 Padova (Italy); Di Cicco, A.; Iesari, F. [Physics Division, School of Science and Technology, Universit di Camerino, I-62032 Camerino (Italy); Finetti, P. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); Grazioli, C. [Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Kivimki, A. [CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Stagira, S. [Politecnico di Milano Department of Physics, I-20133 Milano (Italy); Coreno, M. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); CNR Istituto di Struttura della Materia (CNR-ISM), UOS Basovizza, I-34149 Trieste (Italy)

2014-10-15T23:59:59.000Z

377

Medium effects and the shear viscosity of the dilute Fermi gas away from the conformal limit  

E-Print Network [OSTI]

We study the shear viscosity of a dilute Fermi gas as a function of the scattering length in the vicinity of the unitarity limit. The calculation is based on kinetic theory, which provides a systematic approach to transport properties in the limit in which the fugacity $z=n\\lambda^3/2$ is small. Here, $n$ is the density of the gas and $\\lambda$ is the thermal wave length of the fermions. At leading order in the fugacity expansion the shear viscosity is independent of density, and the minimum shear viscosity is achieved at unitarity. At the next order medium effects modify the scattering amplitude as well as the quasi-particle energy and velocity. We show that these effects shift the minimum of the shear viscosity to the Bose-Einstein condensation (BEC) side of the resonance, in agreement with the result of recent experiments.

Marcus Bluhm; Thomas Schaefer

2014-10-10T23:59:59.000Z

378

FERMI LIMIT ON THE NEUTRINO FLUX FROM GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

If gamma-ray bursts (GRBs) produce high-energy cosmic rays, neutrinos are expected to be generated in GRBs via photo-pion productions. However, we stress that the same process also generates electromagnetic (EM) emission induced by the secondary electrons and photons, and that the EM emission is expected to be correlated with neutrino flux. Using Fermi/Large Area Telescope results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be <20 GeV m{sup -2} per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that IceCube, operating at full scale, requires stacking of more than 130 GRBs in order to detect one GRB muon neutrino.

Li Zhuo [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing (China); Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming (China)

2013-06-20T23:59:59.000Z

379

Dark matter annihilation and the PAMELA, FERMI, and ATIC anomalies  

SciTech Connect (OSTI)

If dark matter annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS, and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic dark matter abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of nonstandard cosmological scenarios; plausibly allowing for large cross sections, while maintaining relic abundances in accord with current observations.

El Zant, A. A.; Okada, H. [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, Post Office Box 43 (Egypt); Khalil, S. [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, Post Office Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo, 11566 (Egypt)

2010-06-15T23:59:59.000Z

380

Coherent state of a weakly interacting ultracold Fermi gas  

E-Print Network [OSTI]

We examine the weakly interacting atoms in an ultracold Fermi gas leading to a state of macroscopic coherence, from a theoretical perspective. It has been shown that this state can be described as a fermionic coherent state. These coherent states are the eigenstates of fermionic annihilation operators, the eigenvalues being anti-commuting numbers or Grassmann numbers. By exploiting the simple rules of Grassmann algebra and a close kinship between relations evaluated for more familiar bosonic fields and those for fermionic fields, we derive the thermodynamic limit, the spontaneous symmetry breaking and the quasi-particle spectrum of the fermionic system.

Arnab Ghosh; Sudarson Sekhar Sinha; Deb Shankar Ray

2013-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PHOTOMETRICALLY TRIGGERED KECK SPECTROSCOPY OF FERMI BL LACERTAE OBJECTS  

SciTech Connect (OSTI)

We report on Keck spectra of 10 Fermi blazars. J0622+3326, previously unobserved, is shown to be a flat-spectrum radio quasar at redshift z = 1.062. The others are known BL Lac type objects that have resisted previous attempts to secure redshifts. Using a photometric monitoring campaign with the 0.76 m Katzman Automatic Imaging Telescope at Lick Observatory, we identified epochs when the relativistic jet emission was fainter than usual, thus triggering the Keck spectroscopy. This strategy gives improved sensitivity to stars and ionized gas in the host galaxy, thereby providing improved redshift constraints for seven of these sources.

Shaw, Michael S.; Romani, Roger W. [Department of Physics/KIPAC, Stanford University, Stanford, CA 94305 (United States); Filippenko, Alexei V.; Cenko, S. Bradley; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

2013-11-01T23:59:59.000Z

382

Observations of MilkyWay Dwarf Spheroidal galaxies with the Fermi-LAT detector and  

SciTech Connect (OSTI)

We report on the observations of 14 dwarf spheroidal galaxies with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope, which is conducting an all-sky {gamma}-ray survey in the 20 MeV to >300 GeV energy range, provides a new opportunity to test particle dark matter models through the expected {gamma}-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf spheroidal galaxies, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant {gamma}-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the {gamma}-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10{sup -9} photons cm{sup -2}s{sup -1}. Using recent stellar kinematic data, the {gamma}-ray flux limits are combined with improved determinations of the dark matter density profile in 8 of the 14 candidate dwarfs to place limits on the pair annihilation cross-section ofWIMPs in several widely studied extensions of the standard model, including its supersymmetric extension and other models that received recent attention. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e.g. in models where supersymmetry breaking occurs via anomaly mediation. The {gamma}-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e{sup +}e{sup -} data, including low-mass wino-like neutralinos and models with TeV masses pair-annihilating into muon-antimuon pairs.

Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Buson, S.; Caliandro, G.A.; /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /UC, Santa Cruz /INFN, Pisa /DAPNIA, Saclay /INFN, Trieste /Trieste U. /INFN, Padua /Padua U. /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /IASF, Milan /George Mason U. /NASA, Goddard

2010-05-26T23:59:59.000Z

383

A fermi liquid electric structure and the nature of the carriers in high-T/sub c/ cuprates: A photoemission study  

SciTech Connect (OSTI)

We have performed angle-integrated and angle-resolved photoemission measurements at 20 K on well-characterized single crystals of high-T/sub c/ cuprates (both 1:2:3-type and 2:2:1:2-type) cleaved in situ, and find a relatively large, resolution limited Fermi edge which shows large amplitude variations with photon energy, indicative of band structure final state effects. The lineshapes of the spectra of the 1:2:3 materials as a function of photon energy are well reproduced by band structure predictions, indicating a correct mix of 2p and 3d orbitals on the calculations, while the energy positions of the peaks agree with calculated bands only to within /approx/0.5 eV. This may yet prove to reflect the effects of Coulomb correlation. We nevertheless conclude that a Fermi liquid approach to conductivity is appropriate. Angle-resolved data, while still incomplete, suggest agreement with the Fermi surface predicted by the LDA calculations. A BCS-like energy gap is observed in the 2:2:1:2 materials, whose magnitude is twice the weak coupling BCS value (i.e., 2/Delta/ = 7 KT/sub c/). 49 refs., 11 figs.

Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Fisk, Z.; Thompson, J.D.; Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C.; Veal, B.W.; Liu, J.Z.; Paulikas, A.P.; Vandervoort, K.; Claus, H.; Campuzano, J.C.; Schirber, J.E.; Shinn, N.D.

1989-01-01T23:59:59.000Z

384

LONGTIME ENERGY CONSERVATION OF NUMERICAL METHODS FOR OSCILLATORY DIFFERENTIAL EQUATIONS  

E-Print Network [OSTI]

LONG­TIME ENERGY CONSERVATION OF NUMERICAL METHODS FOR OSCILLATORY DIFFERENTIAL EQUATIONS ERNST­time energy conservation, second­order symmetric methods, frequency expansion, backward error analysis, Fermi

Tübingen, Universität

385

Measuring the bulk Lorentz factors of gamma-ray bursts with Fermi  

E-Print Network [OSTI]

Gamma-ray bursts (GRBs) are powered by ultra-relativistic jets. Usually a minimum value of the Lorentz factor of the relativistic bulk motion is obtained based on the argument that the observed high energy photons ($\\gg {\\rm MeV}$) can escape without suffering from absorption due to pair production. The exact value, rather than a lower limit, of the Lorentz factor can be obtained if the spectral cutoff due to such absorption is detected. With the good spectral coverage of the Large Area Telescope (LAT) on {\\em Fermi}, measurements of such cutoff become possible, and two cases (GRB 090926A and GRB 100724B) have been reported to have high-energy cutoffs or breaks. We systematically search for such high energy spectral cutoffs/breaks from LAT and GBM observations of the prompt emission of GRBs detected since August 2011. Seven more GRBs are found to have cutoff-like spectral feature at energies of $\\sim20-300$ MeV. Assuming that these cutoffs are caused by pair-production absorption within the source, the bulk L...

Tang, Qing-Wen; Wang, Xiang-Yu; Tam, Pak-Hin Thomas

2014-01-01T23:59:59.000Z

386

Fermi LAT Observations of LS I +61 303: First Detection of an Orbital Modulation in GeV Gamma Rays  

SciTech Connect (OSTI)

This Letter presents the first results from the observations of LS I +61{sup o}303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 {+-} 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 {+-} 0.03(stat) {+-} 0.07(syst) 10{sup -6} ph cm{sup -2} s{sup -1}, with a cutoff at 6.3 {+-} 1.1(stat) {+-} 0.4(syst) GeV and photon index {Gamma} = 2.21 {+-} 0.04(stat) {+-} 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial.

Abdo, A.A.; /Federal City Coll. /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /DAPNIA, Saclay /NASA, Goddard /CSST, Baltimore /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Grenoble, CEN; /more authors..

2012-04-02T23:59:59.000Z

387

Investigation of the deformed fermi surfaces mechanism for pairing of two species of fermions with mismatched fermi surfaces  

E-Print Network [OSTI]

(Fulde and Ferrell) state, and give our reasons why we need to investigate the DFS(Deformed Fermi Surface) states for superconductor. In chapter II, we will find depairing(or blocking) regions of the the DFS state. In chapter III, we use a trial ground state wave... function to investigate the chemical potential and minimize the original Hamiltonian of S-wave superconductor. And some computer programs used in Chapter III are attached to the appendix. Chapter IV is the conclusion. B. BCS Theory In 1957, John Bardeen...

Lu, Jianxu

2008-10-10T23:59:59.000Z

388

Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: From Theory to Fermi Observations  

E-Print Network [OSTI]

We compute the patterns of $\\gamma$-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed $\\gamma$-ray light-curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near Force-Free. Using these solutions, we generate model $\\gamma$-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles, under the influence of both the accelerating electric fields and curvature radiation-reaction. We further constrain our models using the observed dependence of the phase-lags between the radio and $\\gamma$-ray emission on the $\\gamma$-ray peak-separation. We perform a statistical comparison of our model radio-lag vs peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity; specifically, infinite conductivity interior to the light-cylinder and high but finite conductivity on the outside. In these models the $\\gamma$-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio-lags near the observed values and statistically best reproduce the observed light-curve phenomenology. Additionally, these models produce GeV photon cut-off energies.

Constantinos Kalapotharakos; Alice K. Harding; Demosthenes Kazanas

2014-07-27T23:59:59.000Z

389

THE LUMINOSITY FUNCTION OF FERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS  

SciTech Connect (OSTI)

Fermi has provided the largest sample of {gamma}-ray-selected blazars to date. In this work we use a complete sample of flat spectrum radio quasars (FSRQs) detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similar to that of radio-quiet active galactic nuclei. Also, using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution (SED) of FSRQs in the 10 keV-300 GeV band and show that there is no correlation between the luminosity at the peak of the {gamma}-ray emission component and its peak frequency. Using this luminosity-independent SED with the derived LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sup +1.6}{sub -1.0}% ({+-}3% systematic uncertainty) in the 0.1-100 GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sup +3.3}{sub -2.2}, that most are seen within 5 Degree-Sign of the jet axis, and that they represent only {approx}0.1% of the parent population.

Ajello, M.; Shaw, M. S.; Romani, R. W.; Costamante, L.; Reimer, A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Dermer, C. D. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); King, O. G.; Max-Moerbeck, W.; Readhead, A.; Richards, J. L.; Stevenson, M., E-mail: majello@slac.stanford.edu, E-mail: msshaw@stanford.edu, E-mail: rwr@astro.stanford.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

2012-06-01T23:59:59.000Z

390

Simulating strongly correlated electrons with a strongly interacting Fermi gas  

SciTech Connect (OSTI)

The quantum many-body physics of strongly-correlated fermions is studied in a degenerate, strongly- interacting atomic Fermi gas, first realized by our group with DOE support in 2002. This system, which exhibits strong spin pairing, is now widely studied and provides an important paradigm for testing predictions based on state-of-the-art many-body theory in fields ranging from nuclear matter to high temperature superfluidity and superconductivity. As the system is strongly interacting, both the superfluid and the normal fluid are nontrivial and of great interest. A central part of our program on Fermi gases is the connection between the study of thermodynamics, supported by DOE and the study of hydrodynamic transport, supported by NSF. This connection is especially interesting in view of a recent conjecture from the string theory community on the concept of nearly perfect normal fluids, which exhibit a minimum ratio of shear viscosity to entropy density in strongly-interacting, scale-invariant systems.

Thomas, John E. [North Carolina State University

2013-05-28T23:59:59.000Z

391

Energy from Waste November 4, 2011  

E-Print Network [OSTI]

Generation of renewable electrical power and/or steam U.S. EPA has stated that Energy from Waste is one Waste Combustion (MWC) Power plant that combusts MSW and other non-hazardous wastes as fuel/Covanta JV Own / operate 4 EfW facilities 5 #12;6 A typical Contains enough energy to power a 50 watt light

Columbia University

392

ccsd00000540 Production of Long-Lived Ultracold Li 2 Molecules from a Fermi gas  

E-Print Network [OSTI]

and sign of the scattering length. In bosonic samples, the collapse of Bose-Einstein condensates (BEC a Fermi gas J. Cubizolles 1 , T. Bourdel 1 , S. J. J. M. F. Kokkelmans 1 , G.V. Shlyapnikov 1;2;3 and C-bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic #12;eld across

393

PHYSICAL REVIEW A 87, 012703 (2013) Feshbach-molecule formation in a Bose-Fermi mixture  

E-Print Network [OSTI]

-degenerate Fermi gas of polar molecules would be an important step toward achieving novel quantum phases of matter molecules with a conversion efficiency as high as 45%. In the limit of fast magnetic sweeps and small of bosonic molecules from either Bose or Fermi gases. However, for quantum degenerate atom gas mixtures, we

Jin, Deborah

394

FermiQCD: A tool kit for parallel lattice QCD applications  

SciTech Connect (OSTI)

We present here the most recent version of FermiQCD, a collection of C++ classes, functions and parallel algorithms for lattice QCD, based on Matrix Distributed Processing. FermiQCD allows fast development of parallel lattice applications and includes some SSE2 optimizations for clusters of Pentium 4 PCs.

Di Pierro, Massimo

2002-03-01T23:59:59.000Z

395

Fermi Surface of Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

Fermi Surface of ­Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility User Program The fermi surface of ­Uranium has been measured surface of alpha-uranium at ambient pressure, Phys. Rev. B Rapid Commun., 80, 241101 (2009). B//c-axis B

Weston, Ken

396

Implication of Tsallis entropy in the ThomasFermi model for self-gravitating fermions  

SciTech Connect (OSTI)

The ThomasFermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the FermiDirac distribution function, a generalized ThomasFermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: ThomasFermi approach for self-gravitating fermions. A generalized ThomasFermi equation is derived. Nonextensivity preserves a scaling property of this equation. Nonextensive approach to Jeans instability of self-gravitating fermions. It is found that nonextensivity makes the Fermionic system unstable at shorter scales.

Ourabah, Kamel; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr

2014-03-15T23:59:59.000Z

397

A Vlasov-Maxwell Solver to Study Microbunching Instability in the FERMI@ELETTRA First Bunch Compressor System  

E-Print Network [OSTI]

A Vlasov-Maxwell Solver to Study Microbunching Instability in the FERMI@ELETTRA First Bunch Compressor System

Bassi, G; Ellison, J A; Heinemann, K A

2008-01-01T23:59:59.000Z

398

Fermi-LAT gamma-ray anisotropy and intensity explained by unresolved Radio-Loud Active Galactic Nuclei  

E-Print Network [OSTI]

Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic gamma-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the gamma-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations.

Mattia Di Mauro; Alessandro Cuoco; Fiorenza Donato; Jennifer M. Siegal-Gaskins

2014-07-11T23:59:59.000Z

399

Genuine tripartite entanglement in the non-interacting Fermi gas  

E-Print Network [OSTI]

We study genuine tripartite entanglement shared among the spins of three localized fermions in the non-interacting Fermi gas at zero temperature. Firstly, we prove analytically with the aid of entanglement witnesses that in a particular configuration the three fermions are genuinely tripartite entangled. Then various three-fermion configurations are investigated in order to quantify and calculate numerically the amount of genuine tripartite entanglement present in the system. Further we give a lower and an upper limit to the maximum diameter of the three-fermion configuration below which genuine tripartite entanglement exists and find that this distance is comparable with the maximum separation between two entangled fermions. The upper and lower limit turn to be very close to each other indicating that the applied witness operator is well suited to reveal genuine tripartite entanglement in the collection of non-interacting fermions.

T. Vrtesi

2007-01-31T23:59:59.000Z

400

Fermi GBM Observations of Terrestrial Gamma-ray Flashes  

SciTech Connect (OSTI)

Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 km of the sub-spacecraft point.

Briggs, Michael S. [CSPAR, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

2011-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Kolmogorov Complexity, String Information, Panspermia and the Fermi Paradox  

E-Print Network [OSTI]

Bit strings rather than byte files can be a mode of transmission both for intelligent signals and for travels of extraterrestrial life. Kolmogorov complexity, i.e. the minimal length of a binary coded string completely defining a system, can then, due to its universality, become a key concept in the strategy of the search of extraterrestrials. Evaluating, for illustration, the Kolmogorov complexity of the human genome, one comes to an unexpected conclusion that a low complexity compressed string - analog of Noah's ark - will enable the recovery of the totality of terrestrial life. The recognition of bit strings of various complexity up to incompressible Martin-L\\"{o}f random sequences, will require a different strategy for the analysis of the cosmic signals. The Fermi paradox "Where is Everybody?" can be viewed under in the light of such information panspermia, i.e. a Universe full of traveling life streams.

V. G. Gurzadyan

2005-09-26T23:59:59.000Z

402

Fermi Normal Coordinates and Fermion Curvature Couplings in General Relativity  

E-Print Network [OSTI]

We study gravitational curvature effects in circular and radial geodesics in static, spherically symmetric space-times, using Fermi normal coordinates. We first set up these coordinates in the general case, and then use this to study effective magnetic fields due to gravitational curvature in the exterior and interior Schwarzschild, Janis-Newman-Winicour, and Bertrand space-times. We show that these fields can be large for specific parameter values in the theories, and thus might have observational significance. We discuss the qualitative differences of the magnetic field for vacuum space-times and for those seeded by matter. We estimate the magnitude of these fields in realistic galactic scenarios and discuss their possible experimental relevance. Gravitational curvature corrections to the Hydrogen atom spectrum for these space-times are also discussed briefly.

Anshuman Dey; Abhisek Samanta; Tapobrata Sarkar

2014-03-18T23:59:59.000Z

403

Data:Eec988f9-dc0d-45ef-9789-a7781dc1934b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310cc No revision has been approved for this81dc1934b No revision

404

Data:Ef11cbff-9bad-43c0-a187-152647b4639b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310cc No

405

Data:Ef303637-53dd-4066-a4bc-3bc9294274b7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310cc Nobeedba3b42c No revision has been approved for this

406

Data:Ef520280-734c-4693-a94d-571725b68a2b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310cc Nobeedba3b42c No revision has beenea0dc187 No

407

Data:Ef923738-19b7-4128-937e-e2345383d833 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310cc Nobeedba3b42c No revision hasf666a7881

408

Data:66235ed0-ec15-4ef2-9207-566be49065e2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved fore6e8eee4495-afb210887c9bf3ac6ed3cc6f836fd42ce6 Noea30d708bc

409

Data:67feebe8-8792-4929-b6ef-556c47325ace | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 No revision has1574de6f

410

Data:7055839b-95cc-43a5-8051-2ef09929b68a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No-4eca-bf68-a0cb8e6f39cbef09929b68a No revision has been approved

411

Data:7160826e-dd5f-4852-9597-710ef492b817 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63cfd4f0-e47e-4d0c-bf46-09878b282c9064de77e8a1a1c75a8f13657eef492b817

412

Data:20532235-d044-4b54-b9ef-2b73451791cb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 No revision9f51-3428f5d69a69

413

Data:209ec110-3647-4263-98b6-0f03280536ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 Noe-ed85d9cb7f6f No revision

414

Data:22a8487d-55ef-4224-b737-fcfe40579c2b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9 No6eee65cb81db No-afe5-98419c22f2d2 Nofcfe40579c2b

415

Data:282237ef-c07c-4642-b5a2-701633f78809 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf0e85488a7f No revision has been

416

Data:2a37681e-f5dd-4fcc-8752-abc9b912fbac | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 Nobcf-1b589b1c9a42 Noa9c4572a Noabc9b912fbac No

417

Data:B82570a8-ecad-41f2-8830-ef451f841066 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 Nocadf-323f-4b6f-9089-15e8154a5fd9 No revisionbfc87b5274e No

418

Data:Bb850dec-62ae-48ef-9705-a7c013e0220d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244d9f062625d8 No revision has been approvedca43a239c No

419

Data:C1827ef4-a783-450b-8434-16534dfdc785 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has beena032db6d83 No revision has been approved for this-16534dfdc785 No

420

Data:5f73ef15-6dbb-47bc-9308-d7055142088e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page.f9b87a5 No9c38a3bad1d4 No revision hase50da3cdbfb

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Data:63247ef8-4397-47ba-8ee9-780041b4d216 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved fore6e8eee44 No revision has been8efe6555aea3e672ae5f0cc3

422

Data:03157ef4-b8e7-4349-82c9-415f10184579 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLCd32fc5a84 No revision has beenaca8-b236f7afb4b0

423

Data:03646d60-e9be-4222-b6ef-2908ec960753 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLCd32fc5a84 No revision has3e2dae0d7012908ec960753 No revision has

424

Data:040d6974-0fca-4caa-88ef-1a570dd45919 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLCd32fc5a84 Noade9-f289aea29999 No revision

425

Data:05971f8f-ef9f-451d-97ed-708452de2636 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision has been approved for thised-708452de2636 No

426

Data:0723832b-93c2-44b4-af87-ef74561b618e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b2cdf28ec1 No revisioncaafc7f0cadc

427

Data:0797cba2-dce1-4274-9b79-ef1588c282a6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fb No revision has

428

Data:42e7a416-d7ef-49c0-8052-172981434dd3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae Nobbe81d2e60ba829f4e Noe69edb6a695f

429

Data:4764654b-2894-4bee-9ef0-80173b66ff38 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revisione18fe97cb-14d199c51f2d No revisione57f3ac050adb66ff38

430

Data:48117c90-bfd1-418c-94ab-ef93865d753c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No revision has been0-b44b58c684c2

431

Data:4a5d4cb7-3462-4244-89ef-939773da871d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7d25b394 No revision has been

432

Data:4b59e79a-7ef2-4111-bdff-877f5625568f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7d25b394 Noc98dd29320 No revision has877f5625568f No revision has

433

Data:50692118-53ef-4dfc-9f78-c390ce194962 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 Noecd-9c04-2d9a8c2fc998aa0-9c1e87e57c40

434

Data:09f910bd-0291-4478-97ef-e995942ca4b2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable-1a29da98863b No revision has been approved for this2414fc2c No revision

435

Data:0a34ed33-740f-4965-9979-213915ef413e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable-1a29da98863b No revision has been approved for2dab659e No

436

Data:10fbb8cf-358b-41cf-9f79-b0874ef3687d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for720c8ec90dba Noc8-52ffe80cce2e No revision has been approved

437

Data:1482ef04-5574-4414-9d32-7c02327d4135 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision78ced93e0 No revision has beenef136e5ab03 No2327d4135 No

438

Data:9ed5174e-17ef-4a01-a227-f25240458504 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb Noaa-1a453d4653d0 No revision4ead9d71d2f25240458504 No

439

Data:948e447a-710b-4727-b375-88997ef8eaaf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1 No789501c8a3b5 No revision has been98fd341f1 No revision

440

Data:985aa958-dc79-49ff-b289-a154898711ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1de-f2ac9a2bd9c0 No revisionc69285db444 Noe2eb958b89df No revision

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Data:99e16137-7fad-42ef-ad28-9119246bb627 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for this page. It is8-9119246bb627 No revision has been

442

Data:Cc155446-240b-45ef-ab27-7755ecb9857c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742e80b26cc4 No revision has been930896a No revision has beenfd0e3b6109f No

443

Data:Daf7968b-8ef1-4878-afca-823db77c2dee | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has

444

Data:Dde82cf7-fadd-49ef-9682-e25bc37c885a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 NoDce066cd-9c07-4949-aa43-5e5007829464 No revisionDde6ed62-e484-4ffc-a3dc-f6680a6b86c5 No revision has

445

Data:799912ef-cdaa-4889-ac46-9b26517ae68c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de No revision has been

446

Data:80556be1-9e59-4ef4-956e-25580029aeda | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revision has been approveddf99225215d No revision

447

Data:889cfa17-17b3-4059-864b-229ef3157294 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098eef61148ac7 Nof90d746d2387 No revision has been

448

Data:89541ccd-ef6b-471d-9ab8-421797269e2a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098eef61148ac7f3f3e3da48 No revision has been

449

Data:8a1ef921-1212-4524-bf03-b459f77eb101 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098eef61148ac7f3f3e3da48a488-92de97657554b89fecb01bde No

450

Data:3189c1ef-bf62-4fcb-95b4-cd0007328dcd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1f38825451 No revision has been approved007328dcd No

451

Data:33090037-2ef4-4735-999b-7526b96058a6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4a No revision has been approved567300 No26b96058a6 No revision

452

Data:33411558-e68a-476c-9682-9a3ef850ca47 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4a No revision has beenc5cbd9e68da6 No

453

Data:36062625-ef49-4b9e-983b-5a608940ca9d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79193a29b0f90 No revision23120f125 No

454

Data:38037271-1279-4ec6-ad4a-8ef021acc6ca | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revision has beenbf1e-891fe0a8853a No revision has been

455

Data:3c81875d-9882-4ed5-abda-2be9807d16ef | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved for this page. It is currently-500c450bc22d

456

Data:3fea5419-ef94-4fbc-8368-b13b41761ee4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1d No8-b13b41761ee4 No revision has been approved for

457

The Swift/Fermi GRB 080928 from 1 eV to 150 keV  

E-Print Network [OSTI]

We present the results of a comprehensive study of the Gamma-Ray Burst 080928 and of its afterglow. GRB 080928 was a long burst detected by Swift/BAT and Fermi/GBM. It is one of the exceptional cases where optical emission was already detected when the GRB itself was still radiating in the gamma-ray band. For nearly 100 seconds simultaneous optical, X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. Here we analyze the prompt emission, constrain its spectral properties, and set lower limits on the initial Lorentz factor of the relativistic outflow. In particular, we show that the SED during the main prompt emission phase is in agreement with synchrotron radiation. We construct the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT, ROTSE-IIIa (Australia) and GROND (La Silla) data and compare it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape ca...

Rossi, A; Klose, S; Kann, D A; Rau, A; Krimm, H A; Jhannesson, G; Panaitescu, A; Yuan, F; Ferrero, P; Krhler, T; Greiner, J; Schady, P; Pandey, S B; Amati, L; Afonso, P M J; Akerlof, C W; Arnold, L; Clemens, C; Filgas, R; Hartmann, D H; Yolda?, A Kpc; McBreen, S; McKay, T A; Guelbenzu, A Nicuesa; E., F Olivares; Paciesas, B; Rykoff, E S; Szokoly, G; Updike, A C; Yolda?, A

2010-01-01T23:59:59.000Z

458

Controlled Population of Floquet-Bloch States via Coupling to Bose and Fermi Baths  

E-Print Network [OSTI]

External driving is emerging as a promising tool for exploring new phases in quantum systems. The intrinsically non-equilibrium states that result, however, are challenging to describe and control. We study the steady states of a periodically driven one-dimensional electronic system, including the effects of radiative recombination, electron-phonon interactions, and the coupling to an external fermionic reservoir. Using a kinetic equation for the populations of the Floquet eigenstates, we show that the steady-state distribution can be controlled using the momentum and energy relaxation pathways provided by the coupling to phonon and Fermi reservoirs. In order to utilize the latter, we propose to couple the system and reservoir via an energy filter which suppresses photon-assisted tunneling. Importantly, coupling to these reservoirs yields a steady state resembling a band insulator in the Floquet basis. The system exhibits incompressible behavior, while hosting a small density of excitations. We discuss transport signatures, and describe the regimes where insulating behavior is obtained. Our results give promise for realizing Floquet topological insulators.

Karthik I. Seetharam; Charles-Edouard Bardyn; Netanel H. Lindner; Mark S. Rudner; Gil Refael

2015-02-09T23:59:59.000Z

459

FERMI-LAT AND WMAP OBSERVATIONS OF THE PUPPIS A SUPERNOVA REMNANT  

SciTech Connect (OSTI)

We report the detection of GeV {gamma}-ray emission from the supernova remnant (SNR) Puppis A with the Fermi Gamma-Ray Space Telescope. Puppis A is among the faintest SNRs yet detected at GeV energies, with a luminosity of only 2.7 Multiplication-Sign 10{sup 34} (D/2.2 kpc){sup 2} erg s{sup -1} between 1 and 100 GeV. The {gamma}-ray emission from the remnant is spatially extended, with a morphology matching that of the radio and X-ray emission, and is well described by a simple power law with an index of 2.1. We attempt to model the broadband spectral energy distribution (SED), from radio to {gamma}-rays, using standard nonthermal emission mechanisms. To constrain the relativistic electron population we use 7 years of Wilkinson Microwave Anisotropy Probe data to extend the radio spectrum up to 93 GHz. Both leptonic- and hadronic-dominated models can reproduce the nonthermal SED, requiring a total content of cosmic-ray electrons and protons accelerated in Puppis A of at least W {sub CR} Almost-Equal-To (1-5) Multiplication-Sign 10{sup 49} erg.

Hewitt, J. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Grondin, M.-H. [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany); Lemoine-Goumard, M.; Reposeur, T. [Centre d'Etudes Nucleaires de Bordeaux-Gradignan, Universite Bordeaux 1, CNRS/IN2p3, F-33175 Gradignan (France); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Tanaka, T., E-mail: john.w.hewitt@nasa.gov, E-mail: marie-helene.grondin@mpi-hd.mpg.de, E-mail: lemoine@cenbg.in2p3.fr [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

2012-11-10T23:59:59.000Z

460

Greenlight Energy Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384°,AES GE EFS JumpGreenleeEnergy

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The EF-hand motif is the most common calcium-binding motif found in proteins. Several high-resolution structures  

E-Print Network [OSTI]

. This sequence forms a loop that can accommodate calcium or magnesium with distinct geometries: magnesium is usu637 The EF-hand motif is the most common calcium-binding motif found in proteins. Several high matter © 2000 Elsevier Science Ltd. All rights reserved. Introduction Calcium is among life's most

Yue, David

462

Characterization of the Deoxynucleotide Triphosphate Triphosphohydrolase (dNTPase) Activity of the EF1143 Protein from Enterococcus faecalis and Crystal Structure of the Activator-Substrate Complex  

SciTech Connect (OSTI)

The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.

Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga; Brunzelle, Joseph S.; Shuvalova, Ludmilla; Anderson, Wayne F. (NWU)

2012-06-19T23:59:59.000Z

463

Fermi-Boltzmann statistics of neutrinos and relativistic effective degrees of freedom  

E-Print Network [OSTI]

We investigate the effect of the presence of non-pure fermionic neutrinos on the relativistic effective degrees of freedom in the early universe. The statistics of neutrinos is transformed continuously from Fermi-Dirac to Maxwell-Boltzmann statistics. We find that the relativistic degrees of freedom decreases with the deviation from pure Fermi-Dirac statistics of neutrinos if there are constant and large lepton asymmetries. Additionally, we confirm that the change of the statistics of neutrinos from Fermi-Dirac to Maxwell-Boltzmann is not sufficient to cover the excess of the effective number of neutrinos.

Jun Iizuka; Teruyuki Kitabayashi

2014-11-22T23:59:59.000Z

464

Greenlight Energy Resources Inc GER | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384°,AES GE EFS

465

Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background  

E-Print Network [OSTI]

We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ~20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the n...

Ackermann, M; Albert, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bregeon, J; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Guiriec, S; Gustafsson, M; Hewitt, J W; Hou, X; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Malyshev, D; Massaro, F; Mayer, M; Mazziotta, M N; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Negro, M; Nemmen, R; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Raino, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sanchez-Conde, M; Schulz, A; Sgro, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G

2015-01-01T23:59:59.000Z

466

Index of /research/alcator/documentation/EF2_Power_System_Upgrade_Docs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270Energyradsafe/files [ICO]

467

Search for evidence of cosmic ray acceleration by supernova Remnant Kes 41 using the Fermi LAT  

E-Print Network [OSTI]

The analysis presented in this paper incorporated photon events received during the full run time of the Fermi Gamma Space Telescope (FGST) Large Area Telescope (LAT) to date. By studying the [gamma]y emission of the ...

Joubert, Timothy Robert

2013-01-01T23:59:59.000Z

468

Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases  

SciTech Connect (OSTI)

A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behavior in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.

Chen Shu; Yin Xiangguo; Guan Liming [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Guan Xiwen [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, M. T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia)

2010-03-15T23:59:59.000Z

469

Improved Measurement of the Muon Lifetime and Determination of the Fermi Constant  

E-Print Network [OSTI]

The MuLan collaboration has measured the lifetime of the positve muon to a precision of 1.0 parts per million. The Fermi constant is determined to a precision of 0.6 parts per million.

P. T. Debevec

2011-08-22T23:59:59.000Z

470

Experiences with string matching on the Fermi Architecture  

SciTech Connect (OSTI)

String matching is at the core of many real-world applications, such as security, bioinformatic, data mining. All these applications requires the ability to match always growing data sets against large dictionaries effectively, fastly and possibly in real time. Unfortunately, string matching is a computationally intensive procedure which poses significant challenges on current software and hardware implementations. Graphic Processing Units (GPU) have become an interesting target for such high-throughput applications, but the algorithms and the data structures need to be redesigned to be parallelized and adapted to the underlining hardware, coping with the limitations imposed by these architectures. In this paper we present an efficient implementation of the Aho-Corasick string matching algorithm on GPU, showing how we progressively redesigned the algorithm and the data structures to fit on the architecture. We then evaluate the implementation on single and multiple Tesla C2050 (T20 ``Fermi'' based) boards, comparing them to the previous Tesla C1060 (T10 based) solutions and equivalent multicore implementations on x86 CPUs. We discuss the various tradeoffs of the different architectures.

Tumeo, Antonino; Secchi, Simone; Villa, Oreste

2011-02-25T23:59:59.000Z

471

Finite-temperature study of Bose-Fermi superfluid mixtures  

SciTech Connect (OSTI)

Ultracold atom experiments offer the unique opportunity to study mixing of different types of superfluid states. Our interest is in superfluid mixtures comprising of particles with different statistics--Bose and Fermi. Such scenarios occur naturally, for example, in dense quantum chromodynamics (QCD) matter. Interestingly, cold atomic experiments are performed in traps with finite spatial extent, thus critically destabilizing the occurrence of various homogeneous phases. Critical to this analysis is the understanding that the trapped system can undergo phase separation, resulting in a unique situation where phase transition in either species (bosons or fermions) can overlap with the phase separation between possible phases. In the present work, we illustrate how this intriguing interplay manifests in an interacting two-species atomic mixture--one bosonic and another fermionic with two spin components--within a realistic trap configuration. We further show that such interplay of transitions can render the nature of the ground state to be highly sensitive to the experimental parameters and the dimensionality of the system.

Ramachandhran, B.; Pu, H. [Department of Physics and Astronomy, and Rice Quantum Institute, Rice University, Houston, Texas 77005 (United States); Bhongale, S. G. [Department of Physics and Astronomy, and Rice Quantum Institute, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, George Mason University, MS 3F3, Fairfax, Virginia 22030 (United States)

2011-03-15T23:59:59.000Z

472

Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes  

SciTech Connect (OSTI)

The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

2012-04-11T23:59:59.000Z

473

Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids  

SciTech Connect (OSTI)

We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the EulerLagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrdinger equation for the pair amplitude ?(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from JastrowFeenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the HartreeFock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuationdissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical densitydensity response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. We have calculated the effective inter-particle interaction and the dynamical densitydensity response function. We have shown that an undamped zero sound mode exists at any value of the interaction strength.

Abedinpour, Saeed H., E-mail: abedinpour@iasbs.ac.ir [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531 (Iran, Islamic Republic of); Asgari, Reza [School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531 (Iran, Islamic Republic of)] [School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531 (Iran, Islamic Republic of); Tanatar, B. [Department of Physics, Bilkent University, Bilkent, 06800 Ankara (Turkey)] [Department of Physics, Bilkent University, Bilkent, 06800 Ankara (Turkey); Polini, Marco [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa (Italy)] [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa (Italy)

2014-01-15T23:59:59.000Z

474

Pulsed Gamma-rays from PSR J2021+3651 with the Fermi Large Area Telescope  

E-Print Network [OSTI]

We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 +/- 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 +/- 0.004 +/- 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 +/- 3 +/- 11) x 10^{-8} /cm2/s. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE^{-\\Gamma} e^(-E/E_c) where the energy E is expressed in GeV. The photon index is \\Gamma = 1.5 +/- 0.1 +/- 0.1 and the exponential cut-off is E_c = 2.4 +/- 0.3 +/- 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is <10% o...

Abdo, A A

2009-01-01T23:59:59.000Z

475

Phase structure of mass- and spin-imbalanced unitary Fermi gases  

E-Print Network [OSTI]

We study the phase diagram of mass- and spin-imbalanced unitary Fermi gases, in search for the emergence of spatially inhomogeneous phases. To account for fluctuation effects beyond the mean-field approximation, we employ renormalization group techniques. We thus obtain estimates for critical values of the temperature, mass and spin imbalance, above which the system is in the normal phase. In the unpolarized, equal-mass limit, our result for the critical temperature is in accordance with state-of-the-art Monte Carlo calculations. In addition, we estimate the location of regions in the phase diagram where inhomogeneous phases are likely to exist. We show that an intriguing relation exists between the general structure of the many-body phase diagram and the binding energies of the underlying two-body bound-state problem, which further supports our findings. Our results suggest that inhomogeneous condensates form for mass ratios of the spin-down and spin-up fermions greater than three. The extent of the inhomoge...

Roscher, Dietrich; Drut, Joaqun E

2015-01-01T23:59:59.000Z

476

Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant  

SciTech Connect (OSTI)

We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is {approx} 1 x 10{sup 33} erg s{sup -1} between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 {+-} 0{sup o}.1 and 1{sup o}.6 {+-} 0{sup o}.1. Given the association among X-ray rims, H{alpha} filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

Katagiri, H.; /Ibaraki U., Mito; Tibaldo, L.; /INFN, Padua /Padua U. /Paris U., VI-VII; Ballet, J.; /Paris U., VI-VII; Giordano, F.; /Bari U. /Bari Polytechnic /INFN, Bari; Grenier, I.A.; /Paris U., VI-VII; Porter, T.A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Roth, M.; /Washington U., Seattle; Tibolla, O.; /Wurzburg U.; Uchiyama, Y.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Yamazaki, R.; /Sagamihara, Aoyama Gakuin U.

2011-11-08T23:59:59.000Z

477

FERMI-LAT OBSERVATIONS AND A BROADBAND STUDY OF SUPERNOVA REMNANT CTB 109  

SciTech Connect (OSTI)

CTB 109 (G109.1-1.0) is a Galactic supernova remnant (SNR) with a hemispherical shell morphology in X-rays and in the radio band. In this work, we report the detection of {gamma}-ray emission coincident with CTB 109, using 37 months of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. We study the broadband characteristics of the remnant using a model that includes hydrodynamics, efficient cosmic-ray (CR) acceleration, nonthermal emission, and a self-consistent calculation of the X-ray thermal emission. We find that the observations can be successfully fit with two distinct parameter sets, one where the {gamma}-ray emission is produced primarily by leptons accelerated at the SNR forward shock and the other where {gamma}-rays produced by forward shock accelerated CR ions dominate the high-energy emission. Consideration of thermal X-ray emission introduces a novel element to the broadband fitting process, and while it does not rule out either the leptonic or the hadronic scenarios, it constrains the parameter sets required by the model to fit the observations. Moreover, the model that best fits the thermal and nonthermal emission observations is an intermediate case, where both radiation from accelerated electrons and hadrons contribute almost equally to the {gamma}-ray flux observed.

Castro, Daniel [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Slane, Patrick; Patnaude, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ellison, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States)

2012-09-01T23:59:59.000Z

478

IDENTIFYING BREAKS AND CURVATURE IN THE FERMI SPECTRA OF BRIGHT FLAT SPECTRUM RADIO QUASARS  

SciTech Connect (OSTI)

Knowing the site of {gamma}-ray emission in active galactic nucleus jets will do much for our understanding of the physics of the source. In particular, if the emission region is close to the black hole then absorption of {gamma}-rays with photons from the broad-line region could become significant. Such absorption is predicted to produce two specific spectral breaks in the {gamma}-ray spectra of Flat Spectrum Radio Quasars (FSRQs). We test this hypothesis using three years of Fermi observations of nine bright FSRQs. A simple power-law fit to the spectrum of each source can be significantly improved by introducing a break, but the break energies are inconsistent with those predicted by the double-absorber model. In some cases the fit can be further improved by a log-parabola. In addition, by dividing the data from each source into two equal epochs we find that the best description of an object's spectrum often varies between a log-parabola and a broken power law.

Harris, J.; Daniel, M. K.; Chadwick, P. M., E-mail: j.d.harris@durham.ac.uk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

2012-12-10T23:59:59.000Z

479

Gamma-ray halo around the M31 galaxy as seen by the Fermi LAT  

E-Print Network [OSTI]

Theories of galaxy formation predict the existence of extended gas halo around spiral galaxies. If there are 10-100 nG magnetic fields at several ten kpc distances from the galaxies, extended galactic cosmic ray (CR) haloes could also exist. Galactic CRs could interact with the tenuous hot halo gas to produce observable $\\gamma$-rays. In this paper we have performed search for such a halo around the M31 galaxy -- the closest large spiral galaxy. Our analysis of 5.5 years of the Fermi LAT data revealed the presence of a spatially extended emission excess around M31. The data can be fitted using the simplest morphology of a uniformly bright circle. The best fit gave a 4.4$\\sigma$ significance for a $3^{\\circ}$ (40 kpc) halo with photon flux of $\\sim (1.9\\pm1.1)\\times 10^{-9} ~\\mathrm{cm^{-2}s^{-1}}$ and luminosity $(8.4\\pm4.6)\\times 10^{38} ~\\mathrm{erg~s^{-1}}$ in the energy range 0.3--100 GeV. The presence of such a halo compellingly shows that a 10-100 nG magnetic field should extend around M31 up to a 40 kp...

Pshirkov, M S; Postnov, K A

2015-01-01T23:59:59.000Z

480

atom kinetic energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.self-consistent Thomas Fermi TF atom discussed w Kais, Sabre 3 Towards an exact orbital-free single-particle kinetic energy density for the inhomogeneous electron liquid in the...

Note: This page contains sample records for the topic "fermi energy ef" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C  

SciTech Connect (OSTI)

The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.

Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Baring, M.G.; /Rice U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bouvier, A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique; /more authors..

2012-03-30T23:59:59.000Z

482

Fitting the Fermi-LAT GeV excess: on the importance of the propagation of electrons from dark matter  

E-Print Network [OSTI]

An excess of gamma rays at GeV energies has been detected in the Fermi-LAT data. This signal comes from a narrow region around the Galactic Center and has been interpreted as possible evidence for light (30 GeV) dark matter particles. Focussing on the prompt gamma-ray emission, previous works found that the best fit to the data corresponds to annihilations proceeding into b quarks, with a dark matter profile going as r^{-1.2}. We show that this is not the only possible annihilation set-up. More specifically, we show how including the contributions to the gamma-ray spectrum from inverse Compton scattering and bremsstrahlung from electrons produced in dark matter annihilations, and undergoing diffusion through the Galactic magnetic field, significantly affects the spectrum for leptonic final states. This drastically changes the interpretation of the excess in terms of dark matter.

Lacroix, Thomas

2015-01-01T23:59:59.000Z

483

The Local Dimension of Energy  

E-Print Network [OSTI]

andinternationalexperience,severalbespokeenergystrategiesareidentified thathavesignificantpotentialtocontributetolocalenergydemandreductionandlower CO2emissions in theUK.The strategies identified include,CombinedHeatandPower with District Heating (CHP?DH), Energy from Waste Facilities (Ef... . Monitoring and managing own energy and carbon emissions. Implementation of energy efficiency schemes within local government buildings such as schools, halls and sporting facilities etc. Using CHP (Combined Heat and Power) to supply heat and power...

Kelly, Scott

2011-01-31T23:59:59.000Z

484

A one-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator  

E-Print Network [OSTI]

A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass $m$, confined to bounce elastically between two rigid walls where one is described by a non-linear van der Pol type oscillator while the other one is fixed, working as a re-injection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional non-linear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; (ii) the case where collisions of the particle does affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter ($\\c{hi}$) controlling the non-linearity of the moving wall. For large $\\c{hi}$, a diffusion on the velocity is observed leading us to conclude that Fermi acceleration is taking place. On the other hand for case (ii), the motion of the moving wall is affected by collisions with the particle. However due to the properties of the van der Pol oscillation, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicate organization.

Tiago Botari; Edson Denis Leonel

2012-06-18T23:59:59.000Z

485

Energy Proportionality of an Enterprise Network Priya Mahadevan, Sujata Banerjee, and Puneet Sharma  

E-Print Network [OSTI]

efficient. However, compared to other IT devices such as servers and laptops, energy ef- ficiencyEnergy Proportionality of an Enterprise Network Priya Mahadevan, Sujata Banerjee, and Puneet Sharma.banerjee@hp.com,puneet.sharma@hp.com ABSTRACT Energy efficiency is becoming increasingly important in the operation of networking infrastructure

Badrinath, B. R.

486

Energy-efcient Route-aware MAC protocols for Diffusion-based Sensor Networks  

E-Print Network [OSTI]

Energy-efcient Route-aware MAC protocols for Diffusion-based Sensor Networks Injong Rhee, Jangwon Route-awareness allows sensor nodes to save energy by "sleep- ing" opportunistically when choices, especially over low energy budget, than existing schemes. Our simulation results show that route-aware

Young, R. Michael

487

SPITZER INFRARED SPECTROGRAPH SPECTROSCOPY OF THE 10 Myr OLD EF Cha DEBRIS DISK: EVIDENCE FOR PHYLLOSILICATE-RICH DUST IN THE TERRESTRIAL ZONE  

SciTech Connect (OSTI)

We describe Spitzer Infrared Spectrograph spectroscopic observations of the {approx}10 Myr old star, EF Cha. Compositional modeling of the spectra from 5 {mu}m to 35 {mu}m confirms that it is surrounded by a luminous debris disk with L{sub D} /L{sub *} {approx} 10{sup -3}, containing dust with temperatures between 225 K and 430 K, characteristic of the terrestrial zone. The EF Cha spectrum shows evidence for many solid-state features, unlike most cold, low-luminosity debris disks but like some other 10-20 Myr old luminous, warm debris disks (e.g., HD 113766A). The EF Cha debris disk is unusually rich in a species or combination of species whose emissivities resemble that of finely powdered, laboratory-measured phyllosilicate species (talc, saponite, and smectite), which are likely produced by aqueous alteration of primordial anhydrous rocky materials. The dust and, by inference, the parent bodies of the debris also contain abundant amorphous silicates and metal sulfides, and possibly water ice. The dust's total olivine to the pyroxene ratio of {approx}2 also provides evidence of aqueous alteration. The large mass volume of grains with sizes comparable to or below the radiation blow-out limit implies that planetesimals may be colliding at a rate high enough to yield the emitting dust but not so high as to devolatize the planetesimals via impact processing. Because phyllosilicates are produced by the interactions between anhydrous rock and warm, reactive water, EF Cha's disk is a likely signpost for water delivery to the terrestrial zone of a young planetary system.

Currie, Thayne [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099 (United States); Sicilia-Aguilar, Aurora [Max-Planck-Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany); Rieke, George H.; Su, Kate Y. L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm. N204, Tucson, AZ 85721-0065 (United States)

2011-06-20T23:59:59.000Z

488

Revised FINALREPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1  

SciTech Connect (OSTI)

The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education (ORISE) site visit to Fermi 1 in November 2010. The survey was strategically planned during a Unit 2 (Fermi 2) outage to take advantage of decreased radiation levels that were observed and attributed to Fermi 2 from the operating unit during the first site visit. However, during the second visit there were elevated radiation levels observed and attributed to the partially dismantled Fermi 1 reactor vessel and a waste storage box located on the 3rd floor of the Fermi 1 Turbine Building. Confirmatory surveys (unshielded) performed directly in the line of sight of these areas were affected. The objective of the confirmatory survey was to verify that the final radiological conditions were accurately and adequately described in Final Status Survey (FSS) documentation, relative to the established release criteria. This objective was achieved by performing document reviews, as well as independent measurements and sampling. Specifically, documentation of the planning, implementation, and results of the FSS were evaluated; side-by-side FSS measurement and source comparisons were performed; site areas were evaluated relative to appropriate FSS classification; and areas were assessed for residual, undocumented contamination.

Erika Bailey

2011-10-27T23:59:59.000Z

489

Short Terms: ECNS: embryonic central nervous system; VNC: ventral nerve cord; EH: embryonic hindgut; EM: embryonic midgut; EDE: embryonic dorsal epidermis; EF: embryonic foregut; EVE: embryonic ventral epidermis; ELMS: embryonic/larval muscle system; EP:  

E-Print Network [OSTI]

ventral epidermis; ELMS: embryonic/larval muscle system; EP: embryonic proventriculus; ELVM: embryonic EM EDE EF EVE ELMS EP ELVM VM EMT LC ELSM ECBN ELPS LCN SNSP 1 CG5545 0.98 1 0 VNC VM SNSP 10 CG17786 0.96 - - 0.99 - 0.97 0.91 1 - 0.99 - - - - - - 0.99 - - EH EDE EF EVE EP ELPS

Peng, Hanchuan

490

Simultaneous Planck, Swift, and Fermi observations of X-ray and gamma-ray selected blazars  

E-Print Network [OSTI]

We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands. Our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi-LAT, whereas ~40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-mm spectral slope of blazars is quite flat up to ~70GHz, above which it steepens to ~-0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (\

Giommi, P; Lahteenmaki, A; Thompson, D J; Capalbi, M; Cutini, S; Gasparrini, D; Gonzalez-Nuevo, J; Leon-Tavares, J; Lopez-Caniego, M; Mazziotta, M N; Monte, C; Perri, M; Raino, S; Tosti, G; Tramacere, A; Verrecchia, F; Aller, H D; Aller, M F; Angelakis, E; Bastieri, D; Berdyugin, A; Bonaldi, A; Bonavera, L; Burigana, C; Burrows, D N; Buson, S; Cavazzuti, E; Chincarini, G; Colafrancesco, S; Costamante, L; Cuttaia, F; D'Ammando, F; de Zotti, G; Frailis, M; Fuhrmann, L; Galeotta, S; Gargano, F; Gehrels, N; Giglietto, N; Giordano, F; Giroletti, M; Keihanen, E; King, O; Krichbaum, T P; Lasenby, A; Lavonen, N; Lawrence, C R; Leto, C; Lindfors, E; Mandolesi, N; Massardi, M; Max-Moerbeck, W; Michelson, P F; Mingaliev, M; Natoli, P; Nestoras, I; Nieppola, E; Nilsson, K; Partridge, B; Pavlidou, V; Pearson, T J; Procopio, P; Rachen, J P; Readhead, A; Reeves, R; Reimer, A; Reinthal, R; Ricciardi, S; Richards, J; Riquelme, D; Saarinen, J; Sajina, A; Sandri, M; Savolainen, P; Sievers, A; Sillanpaa, A; Sotnikova, Y; Stevenson, M; Tagliaferri, G; Takalo, L; Tammi, J; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tornikoski, M; Trigilio, C; Turunen, M; Umana, G; Ungerechts, H; Villa, F; Wu, J; Zacchei, A; Zensus, J A; Zhou, X

2011-01-01T23:59:59.000Z

491

Expansion of a Fermi gas interacting with a Bose-Einstein condensate  

E-Print Network [OSTI]

We study the expansion of an atomic Fermi gas interacting attractively with a Bose-Einstein condensate. We find that the interspecies interaction affects dramatically both the expansion of the Fermi gas and the spatial distribution of the cloud in trap. We observe indeed a slower evolution of the radial-to-axial aspect ratio which reveals the importance of the mutual attraction between the two samples during the first phase of the expansion. For large atom numbers, we also observe a bimodal momentum distribution of the Fermi gas, which reflects directly the distribution of the mixture in trap. This effect allows us to extract information on the dynamics of the system at the collapse.

F. Ferlaino; E. de Mirandes; G. Roati; G. Modugno; M. Inguscio

2003-12-10T23:59:59.000Z

492

Increasing Energy Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of| DepartmentIncreasing Energy

493

International Energy Forum Ministerial | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment ofEnergy as PreparedIn

494

THE FERMI BUBBLES AS A SCALED-UP VERSION OF SUPERNOVA REMNANTS  

SciTech Connect (OSTI)

In this study, we treat Fermi bubbles as a scaled-up version of supernova remnants (SNRs). The bubbles are created through activities of the super-massive black hole (SMBH) or starbursts at the Galactic center (GC). Cosmic-rays (CRs) are accelerated at the forward shocks of the bubbles like SNRs, which means that we cannot decide whether the bubbles were created by the SMBH or starbursts from the radiation from the CRs. We follow the evolution of CR distribution by solving a diffusion-advection equation, considering the reduction of the diffusion coefficient by CR streaming. In this model, gamma rays are created through hadronic interaction between CR protons and the gas in the Galactic halo. In the GeV band, we can well reproduce the observed flat distribution of gamma-ray surface brightness because some amount of gas is left behind the shock. The edge of the bubbles is fairly sharp owing to the high gas density behind the shock and the reduction of the diffusion coefficient there. The latter also contributes the hard gamma-ray spectrum of the bubbles. We find that the CR acceleration at the shock began when the bubbles were small, and the time scale of the energy injection at the GC was much smaller than the age of the bubbles. We predict that if CRs are accelerated to the TeV regime, the apparent bubble size should be larger in the TeV band, which could be used to discriminate our hadronic model from other leptonic models. We also present neutrino fluxes.

Fujita, Yutaka [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)] [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ohira, Yutaka; Yamazaki, Ryo, E-mail: fujita@vega.ess.sci.osaka-u.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan)] [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan)

2013-09-20T23:59:59.000Z

495

Quantum mechanics in phase space: First order comparison between the Wigner and the Fermi function  

E-Print Network [OSTI]

The Fermi g_F(x,p) function provides a phase space description of quantum mechanics conceptually different from that based on the the Wigner function W(x,p). In this paper, we show that for a peaked wave packet the g_F(x,p)=0 curve approximately corresponds to a phase space contour level of the Wigner function and provides a satisfactory description of the wave packet's size and shape. Our results show that the Fermi function is an interesting tool to investigate quantum fluctuations in the semiclassical regime.

G. Benenti; G. Strini

2009-09-08T23:59:59.000Z

496

Natural orbits of atomic Cooper pairs in a nonuniform Fermi gas  

E-Print Network [OSTI]

We examine the basic mode structure of atomic Cooper pairs in an inhomogeneous Fermi gas. Based on the properties of Bogoliubov quasi-particle vacuum, the single particle density matrix and the anomalous density matrix share the same set of eigenfunctions. These eigenfunctions correspond to natural pairing orbits associated with the BCS ground state. We investigate these orbits for a Fermi gas in a spherical harmonic trap, and construct the wave function of a Cooper pair in the form of Schmidt decomposition. The issue of spatial quantum entanglement between constituent atoms in a pair is addressed.

Y. H. Pong; C. K. Law

2006-05-08T23:59:59.000Z

497

The Search for Dark Matter with the Fermi Gamma Ray Space Telescope  

SciTech Connect (OSTI)

The Fermi Gamma-Ray Space Telescope has been scanning the gamma ray sky since it was launched by NASA in June 2008 and has a mission lifetime goal of 10 years. Largely due to our particle physics heritage, one of the main physics topics being studied by the Fermi LAT Collaboration is the search for dark matter via indirect detection. My talk will review the progress of these studies, something on how the LAT detector enables them, and expectations for the future. I will discuss both gamma-ray and (electron + positron) searches for dark matter, and some resulting theoretical implications.

Bloom, Elliott (SLAC) [SLAC

2011-03-30T23:59:59.000Z

498

The Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

understanding of key microbial processes is being gained by coupling existing genomics, transcrip- tomics, and proteomics ef- forts with new metabolomic techniques and...

499

Synchrotron Cooling in Energetic Gamma-Ray Bursts Observed by the Fermi Gamma-Ray Burst Monitor  

E-Print Network [OSTI]

We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence $f>1.0\\times10^{-4}$ erg cm$^{-2}$ and signal-to-noise level $\\text{S/N}\\geq10.0$ above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index $\\alpha$, the high-energy power-law index $\\beta$, the peak energy in the observed $\

Yu, Hoi-Fung; van Eerten, Hendrik; Burgess, J Michael; Bhat, P Narayana; Briggs, Michael S; Connaughton, Valerie; Diehl, Roland; Goldstein, Adam; Gruber, David; Jenke, Peter A; von Kienlin, Andreas; Kouveliotou, Chryssa; Paciesas, William S; Pelassa, Veronique; Preece, Robert D; Roberts, Oliver J; Zhang, Bin-Bin

2014-01-01T23:59:59.000Z

500

Photons from Heavy-Ion Collisions at Fermi Velocity  

E-Print Network [OSTI]

Ni at an incident energy of 35 MeV/nucleon. The solid curve is from the theoretical calculation while the histogram is the data from Ref. 16. both a soft and a stiA' equation of state, corresponding to a nuclear compressibility of 200 and 380 MeV, respectively... for compressing the nuclear matter is not available for creating particles. A soft equation of state implies that nucleons have more kinetic energies than the case of a stiA' FIG. 4. Angular distribution for photon energies 35 MeV~ co~55 MeV for the same...

Ko, Che Ming; Alchelin, J.

1987-01-01T23:59:59.000Z