Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Fenton Hill HDR Site References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Brookins_%26_Laughlin,_1983)&oldid=511281"

2

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration...

3

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration...

4

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

5

Scientific progress on the Fenton Hill HDR project since 1983  

DOE Green Energy (OSTI)

The modern HDR concept originated at the Los Alamos National Laboratory and was first demonstrated at Fenton Hill, NM. Experience gained during the development of the deeper HDR reservoir at Fenton Hill clearly showed that HDR reservoirs are formed by opening pre-existing, but sealed, multiply connected joint sets. Subsequent flow testing indicated that sustained operation of HDR systems under steady state conditions is feasible. The most significant remaining HDR issues are related to economics and locational flexibility. Additional field test sites are needed to advance the understanding of HDR technology so that the vast potential of this resource can be economically realized around the world.

Brown, D.W.; Duchane, D.V.

1998-02-01T23:59:59.000Z

6

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area (Redirected from Fenton Hill Hdr Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

7

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

8

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511285

9

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Fenton Hill Hdr Fenton Hill Hdr Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety of techniques (Laughlin and Eddy, 1977). The precision for SiO2 is + 1% relative; for the other oxides it is + 2% relative. Accuracy was monitored by using USGS standard rock samples. Where

10

Development Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Development Wells Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Development_Wells_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511310"

11

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511316"

12

Observation Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Observation_Wells_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511330"

13

Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity...

14

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Janik,_2002)&oldid=689255"

15

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1983 Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Groundwater_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689261"

16

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689258

17

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce, Andrea Kron (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff,_Et_Al.,_1981)&oldid=692519

18

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511318

19

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

20

Massive hydraulic fracture of Fenton Hill HDR Well EE-3  

DOE Green Energy (OSTI)

Subsequent to a 5.6 million gallon massive hydraulic fracturing (MHF) experiment in Fenton Hill Hot Dry Rock (HDR) Well EE-2, a 2 million gallon MHF was planned for Well EE-3. Although hydraulic communication between wells EE-2 and EE-3 was not established during the initial MHF, a large reservoir was created around EE-2 which seemed to be in proximity with EE-3. The objective of this 2nd MHF was two-fold, to test the reservoir and seismic characteristics of the EE-3 openhole region from 11,390 to 11,770 ft and to drive fractures into the fractured region created earlier by the EE-2 MHF experiment. This paper discusses well repairs to prepare EE-3 for the MHF, the pumping operations, and injection parameters and briefly summarizes seismic results. 2 refs., 6 figs.

Dash, Z.V.; Dreesen, D.S.; Walter, F.; House, L.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Petrography Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al.,  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Petrography Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety of techniques (Laughlin and Eddy, 1977). The

22

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken &  

Open Energy Info (EERE)

Heiken & Heiken & Goff, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Development of a geologically-based model of the thermal and hydrothermal potential of the Fenton Hill HDR area. References Grant Heiken, Fraser Goff (1983) Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Heiken_%26_Goff,_1983)&oldid=511328

23

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) (Redirected from Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce,

24

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J.

25

Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al.,  

Open Energy Info (EERE)

Laughlin, Et Al., Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run behind the drill bit provided material for characterizing the basement rocks. References A. W. Laughlin, A. C. Eddy, R. Laney, M. J. Aldrich Jr (1983) Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Laughlin,_Et_Al.,_1983)&oldid=511306"

26

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

27

Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) | Open  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511312" Category: Exploration Activities What links here Related changes

28

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

29

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Decker, 1983) Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511326"

30

Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Goff & Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511314"

31

Start-up operations at the Fenton Hill HDR Pilot Plant  

DOE Green Energy (OSTI)

With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

Ponden, R.F.

1991-01-01T23:59:59.000Z

32

Start-Up Operations at the Fenton Hill HDR Pilot Plant  

DOE Green Energy (OSTI)

With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

Ponden, Raymond F.

1992-03-24T23:59:59.000Z

33

1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico  

Science Conference Proceedings (OSTI)

Recent flow testing of the Fenton Hill HDR reservoir has demonstrated that engineered geothermal systems can be shut-in for extended periods of d= with apparently no adverse effects. However, when this particular reservoir at Venton Hill was shut-in for 2 years in a pressurized condition, natural convection within the open-jointed reservoir region appears to have leveled out the preexisting temperature gradient so that the gradient has now approached a condition more typical of liquid-dominated hydrothermal reservoirs which air invariably almost isothermal due to natural convection. As a result of the sudden flow impedance reduction that led to an almost 50% increase in Production flow new the end of the Second Phase of the LTFR in May 1993, we were uncertain as to the state of the reservoir after being shut-in for 2 years. The flow performance observed during the current testing was found to be intermediate between that at-the end of the Second Phase of the LTFT and that following, the subsequent sudden flow increase, implying that whatever caused the sudden reduction in impedance in the first place is probably somehow associated with the cooldown of the reservoir near the injection interval, since temperature recovery at the surfaces of the surrounding open joints is the most obvious phenomenon expected to occur over time within the reservoir.

Brown, D.

1995-01-01T23:59:59.000Z

34

Microearthquakes induced during hydraulic fracturing at the Fenton Hill HDR site: the 1982 experiments  

DOE Green Energy (OSTI)

The on-site real-time processing of microearthquake signals that occur during massive hydraulic fracturing provides a notion of the location and growth of the fracture system being created. This enables quick decisions to be made in regard to the ongoing operations. The analytical results and impact of the hypocenter mapping during the 1982 fracturing experiments in the Fenton Hill Phase II Hot Dry Rock geothermal reservoir are reported.

Keppler, H.; Pearson, C.F.; Potter, R.M.; Albright, J.N.

1983-01-01T23:59:59.000Z

35

Well completion and operations for MHF of Fenton Hill HDR Well EE-2  

DOE Green Energy (OSTI)

Previous attempts to connect Fenton Hill Hot Dry Rock Geothermal Site Wells EE-2 and EE-3 by pumping 150 thousand to 1.3 million gallons of water had not achieved a detectable hydraulic fracture connection. Therefore, preparations were made to conduct, in December 1983, a 4 to 6 million gallon, 50 BPM water injection in EE-2. The objective was to enlarge the previously created reservoir in EE-2 using massive hydraulic facturing (MHF). The planning, preparations, operations and results of the MHF are presented here. 4 refs., 7 figs.

Dreesen, D.S.; Nicholson, R.W.

1985-01-01T23:59:59.000Z

36

ICFT: An initial closed-loop flow test of the Fenton Hill Phase II HDR reservoir  

DOE Green Energy (OSTI)

A 30-day closed-loop circulation test of the Phase II Hot Dry Rock reservoir at Fenton Hill, New Mexico, was conducted to determine the thermal, hydraulic, chemical, and seismic characteristics of the reservoir in preparation for a long-term energy-extraction test. The Phase II heat-extraction loop was successfully tested with the injection of 37,000 m/sup 3/ of cold water and production of 23,300 m/sup 3/ of hot water. Up to 10 MW/sub t/ was extracted when the production flow rate reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, the water-loss rate had decreased to 26% and a significant portion of the injected water was recovered; 66% during the test and an additional 20% during subsequent venting. Analysis of thermal, hydraulic, geochemical, tracer, and seismic data suggests the fractured volume of the reservoir was growing throughout the test. 19 refs., 64 figs., 19 tabs.

Dash, Z.V. (ed.); Aguilar, R.G.; Dennis, B.R.; Dreesen, D.S.; Fehler, M.C.; Hendron, R.H.; House, L.S.; Ito, H.; Kelkar, S.M.; Malzahn, M.V.

1989-02-01T23:59:59.000Z

37

Three principal results from recent Fenton Hill flow testing  

DOE Green Energy (OSTI)

Results of recent flow testing at Fenton Hill, New Mexico, have been examined in light of their applicability to the development of commercial-scale hot dry rock (HDR) reservoirs at other sites. These test results, obtained during the cumulative 11 months of reservoir flow testing between 1992 and 1995, show that there was no significant production temperature drawdown during this time and that the reservoir flow became more dispersed as flow testing proceeded. Based on these test results together with previous HDR research at Fenton Hill and elsewhere, it is concluded that a three-well geometry, with one centrally located injection well and two production wells -- one at each end of the pressure-stimulated reservoir region -- would provide a much more productive system for future HDR development than the two-well system tested at Fenton Hill.

Brown, D. [Los Alamos National Lab., NM (United States); DuTeaux, R. [Stanford Univ., CA (United States)

1997-01-01T23:59:59.000Z

38

Hot Dry Rock at Fenton Hill, USA  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program, operated by the Los Alamos National Laboratory, has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the Precambrian basement rock at Fenton Hill, outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase 1, 1978--1980) producing up to 5 MWt at 132/degree/C. A second (Phase 2) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/degree/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development. 17 refs., 3 figs., 1 tab.

Hendron, R.H.

1988-01-01T23:59:59.000Z

39

Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Details Activities (4) Areas (1) Regions (0) Abstract: The Phase I prototype hot dry rock (HDR) geothermal system was developed in Precambrian basement rocks at Fenton Hill, New Mexico. Core and cuttings samples from the four deep wells indicate that the reservoir of this Phase I HDR system lies within a homogeneous biotite granodiorite body of very low permeability. Natural fractures, although present, are

40

Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site  

DOE Green Energy (OSTI)

An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

1984-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Water quality in the vicinity of Fenton Hill, 1987 and 1988. [Fenton Hill site  

DOE Green Energy (OSTI)

Water-quality data have been collected since 1974 from established surface- and ground-water stations at, and in the vicinity of, Fenton Hill (site of the Laboratory's Hot Dry Rock Geothermal Project). The site is located on the southwest edge of the Valles Caldera in the Jemez Mountains. To determine the chemical quality of water, data were collected in 1987 and 1988 from 13 surface-water stations and 19 ground-water stations. The classification of the water quality is made on the basis of predominated ions and total dissolved solids. There are four classifications of surface water (sodium and chloride, calcium and bicarbonate, calcium and sulfate, and sodium and bicarbonate) and three classifications of ground water (sodium and chloride, calcium and bicarbonate, and sodium and bicarbonate). Variations in the chemical quality of the surface and ground water in 1987 and 1988 are apparent when data are compared with each other and with previous analyses. These variations are not considered significant, as they are in the range of normal seasonal changes. Cumulative production since 1976 from the supply well at Fenton Hill has been about 63 {times} 10{sup 6} gal, with a decline in the water level of the well of about 14 ft, or about 1.4 ft/yr. The aquifer penetrated by the well is still capable of reliable supply to the site for a number of years, based on past production. The quality of water from the well has deteriorated slightly; however, the water quality is in compliance with drinking water standards. The effects of discharge from the storage ponds into an adjacent canyon have been monitored by trace metal analyses of vegetation and soil. The study indicates minimal effects, which will be undetectable in a few years if there are no further releases of effluents into the canyon. 19 refs., 6 figs., 3 tabs.

Purtymun, W.D.; Ferenbaugh, R.W.; Maes, M.N.; Williams, M.C.

1991-03-01T23:59:59.000Z

42

Pre-test estimates of temperature decline for the LANL Fenton Hill Long-Term Flow Test  

DOE Green Energy (OSTI)

Pre-test predications for the Long-Term Flow Test (LTFT) of the experimental Hot Dry Rock (HDR) reservoir at Fenton Hill were made using two models. Both models are dependent on estimates of the ``effective`` reservoir volume accessed by the fluid and the mean fracture spacing (MFS) of major joints for fluid flow. The effective reservoir volume was estimated using a variety of techniques, and the range of values for the MFS was set through experience in modeling the thermal cooldown of other experimental HDR reservoirs. The two pre-test predictions for cooldown to 210{degrees}C (a value taken to compare the models) from initial temperature of 240{degrees}C are 6.1 and 10.7 years. Assuming that a minimum of 10{degrees}C is required to provide an unequivocal indication of thermal cooldown, both models predict that the reservoir will not exhibit observable cooldown for at least two years.

Robinson, B.A. [Los Alamos National Lab., NM (United States); Kruger, P. [Stanford Univ., CA (United States). Stanford Geothermal Program

1992-06-01T23:59:59.000Z

43

Economic factors relevant for electric power produced from hot dry rock geothermal resources: a case study for the Fenton Hill, New Mexico, area  

SciTech Connect

The case study described here concerns an HDR system which provides geothermal fluids for a hypothetical electric plant located in the Fenton Hill area in New Mexico's Jemez Mountains. Primary concern is focused on the implications of differing drilling conditions, as reflected by costs, and differing risk environments for the potential commercialization of an HDR system. Drilling costs for best, medium and worst drilling conditions are taken from a recent study of drilling costs for HDR systems. Differing risk environments are represented by differing rate-of-return requirements on stocks and interest on bonds which the HDR system is assumed to pay; rate of return/interest combinations considered are 6%/3%, 9%/6%, 12%/9% and 15%/12%. The method of analysis used here is that of determining the minimum busbar cost for electricity for this case study wherein all costs are expressed in annual equivalent terms. The minimum cost design for the electric generating plant is determined jointly with the minimum cost design for the HDR system. The interdependence between minimum cost designs for the plant and HDR system is given specific attention; the optimum design temperature for the plant is shown here to be lower than one might expect for conventional power plants - in the range 225/sup 0/ to 265/sup 0/C. Major results from the analyses of HDR-produced electricity in the Fenton Hill area are as follows. With real, inflation-free debt/equity rates of 6% and 9%, respectively, the minimum busbar cost is shown to lie in the range 18 to 29 mills/kwh. When real debt/equity rates rise to 12% and 15%, busbar costs rise to 24 to 39 mills/kwh.

Cummings, R.G.; Morris, G.; Arundale, C.J.; Erickson, E.L.

1979-12-01T23:59:59.000Z

44

Core Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run...

45

Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run...

46

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal...  

Open Energy Info (EERE)

Accuracy was monitored by using USGS standard rock samples. Where necessary, the electron microprobe, scanning electron microscope, and X-ray diffractometer were used to...

47

Water quality in vicinity of Fenton Hill Site, 1975  

DOE Green Energy (OSTI)

Water quality at 9 surface water stations, 14 ground water stations, and drilling and testing operations at the Fenton Hill Site has been studied as a measure of the environmental impact on the Los Alamos Scientific Laboratory's geothermal site in the Jemez Mountains. Slight variations in the chemical quality of the water at individual stations were observed during the year. Predominant ions and total dissolved solids in the surface and ground water declined slightly in comparison to previous data. These variations in quality are not considered significant considering seasonal and annual stream flow variations. Surface water discharge records from three U.S. Geological Survey gaging stations on the Rio Guadalupe and Jemez River were analyzed to provide background data for the impact study. Direct correlations were determined between mean annual discharge at each of two stations in the upper reach of the drainage and at the station in the lower reach.

Purtymun, W.D.; Adams, W.H.; Stoker, A.K.; West, F.G.

1976-09-01T23:59:59.000Z

48

Water quality in vicinity of Fenton Hill Site, 1974  

DOE Green Energy (OSTI)

The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium. (auth)

Purtymun, W.D.; Adams, W.H.; Owens, J.W.

1975-09-01T23:59:59.000Z

49

Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico  

Science Conference Proceedings (OSTI)

This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

None

1998-12-01T23:59:59.000Z

50

Environmental analysis of the Fenton Hill Hot Dry Rock Geothermal Test Site  

DOE Green Energy (OSTI)

Techniques for the extraction of geothermal energy from hot dry rock within the earth's crust were tested at the first experimental system at Fenton Hill and proved successful. Because new concepts were being tried and new uses of the natural resources were being made, environmental effects were a major concern. Therefore, at all phases of development and operation, the area was monitored for physical, biological, and social factors. The results were significant because after several extended operations, there were no adverse environmental effects, and no detrimental social impacts were detected. Although these results are specific for Fenton Hill, they are applicable to future systems at other locations.

Kaufman, E.L.; Siciliano, C.L.B. (comps.)

1979-05-01T23:59:59.000Z

51

Anomalous earth stress measurements during a six-year sequence of pumping tests at Fenton Hill, New Mexico  

DOE Green Energy (OSTI)

Since 1982, the Los Alamos National Laboratory has been conducting fracturing and flow-through tests on a deep region of jointed Precambrian rock underlying the western flank of the Valles Caldera, in the Jemez Mountains of north-central New Mexico. These experiments have been conducted as part of the Laboratory's Hot Dry Rock (HDR) Geothermal Energy Project, at our Fenton Hill Test Facility, 30 km west of Los Alamos. During this time, the overall project goal has been to experimentally study (and model) the development and performance of a commercial-sized HDR reservoir -- created hydraulically by multiply-fracturing a very large region of hot crystalline rock. One of the primary objectives of this extensive series of fracturing tests has been to study how hard ''competent'' rock dilates and shears during the continuing injection of water under pressure. In association with these tests, a number of seemingly anomalous results have been observed which, if taken separately, would have been fairly easy to ignore or explain anyway. However, in concert, these disparate results have started to form a picture of rock deformation which is quite different from our previously accepted concepts of hydraulic fracturing, and the interpretation of the resulting stress measurements. Key to this better understanding is the realization that almost all bodies of deep crystalline rock are already flawed by one or more sets of joints or planes of weakness, and that it is the interaction between these joints and the existing stress field determines the nature of the pressure-induced deformation. 16 refs., 8 figs., 2 tabs.

Brown, D.W.

1988-01-01T23:59:59.000Z

52

Evidence for the existence of a stable, highly fluidized-pressurized region of deep, jointed crystalline rock from Fenton Hill hot dry rock test data  

DOE Green Energy (OSTI)

It has been demonstrated several times at Los Alamos National Laboratory`s Fenton Hill hot dry rock (HDR) geothermal test site, that large volumes of naturally jointed Precambrian crystalline rock can be stably maintained at pressures considerably above the least principal earth stress in the surrounding rock mass. In particular, for the deeper, larger, and tighter of the two HDR reservoirs tested at this site in the Jemez Mountains of north-central New Mexico, testing was carried out for a cumulative period of 11 months without evidence of fracture extension at the boundaries of the pressure-stimulated region, even though a very high reservoir inlet circulating pressure of 27.3 MPa (3960 psi) above hydrostatic was maintained throughout the testing, considerably in excess of the least principal stress in the surrounding rock mass of about 10 MPa above hydrostatic at a depth of 3500 m. The author reviews and summarizes information concerning the earth stresses at depth and the test data relative to the containment of pressurized fluid, particularly the data showing the declining rate of water loss and the absence of microseismicity--the two principal indicators of a stable, pressurized reservoir region. The author then provides a coherent and concise evaluation of this and other evidence supporting his assertion that one can indeed maintain large volumes of jointed rock at pressures considerably in excess of the least principal earth stress. In addition, a discussion is presented concerning the initial state of stress at depth beneath Fenton Hill and then possible changes to the stress state resulting from the very large volumes of injected high-pressure water and the accompanying shear displacements--and shear dilation--associated with these pressurizations.

Brown, D.W.

1999-06-01T23:59:59.000Z

53

Economics of a 75-MW(e) hot-dry-rock geothermal power station based upon the design of the Phase II reservoir at Fenton Hill  

DOE Green Energy (OSTI)

Based upon EE-2 and EE-3 drilling costs and the proposed Fenton Hill Phase II reservoir conditions the break-even cost of producing electricity is 4.4 cents per kWh at the bus bar. This cost is based upon a 9-well, 12-reservoir hot dry rock (HDR) system producing 75 MW(e) for 10 yr with only 20% drawdown, and an assumed annual finance charge of 17%. Only one-third of the total, potentially available heat was utilized; potential reuse of wells as well as thermal stress cracking and augmentation of heat transfer was ignored. Nearly half the bus bar cost is due to drilling expenses, which prompted a review of past costs for wells GT-2, EE-1, EE-2, and EE-3. Based on comparable depth and completion times it is shown that significant cost improvements have been accomplished in the last seven years. Despite these improvements it was assumed for this study that no further advancements in drilling technology would occur, and that even in commercially mature HDR systems, drilling problems would continue nearly unabated.

Murphy, H.; Drake, R.; Tester, J.; Zyvoloski, G.

1982-02-01T23:59:59.000Z

54

Data Review of the Hot Dry Rock Project at Fenton Hill, New Mexico  

DOE Green Energy (OSTI)

This report reviews the data collected during the hot dry rock experimental project conducted by the US Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico from about 1971 through 1995. Five main categories of data were reviewed: (1) geologic data; (2) flow test data; (3) reservoir modeling data; (4) chemical tracer data; and (5) seismic data. The review determines the important data sets from the project, determines where and how these data are stored, and evaluates whether further analyses of the data might be likely to yield additional information valuable to the geothermal industry or to the further development of enhanced geothermal systems.

GeothermEx, Inc.

1998-12-01T23:59:59.000Z

55

Water quality in the vicinity of Fenton Hill. Progress report 1981 and 1982  

DOE Green Energy (OSTI)

As part of a continuing program of environmental studies, water quality data have been collected from established surface and ground water stations and from ponds and pond discharges at Fenton Hill Site located in the Jemez Mountains. Most of these stations were established in 1973, and water quality data have been collected since that time. There have been slight variations in the chemical quality of water from the surface and ground water locations; however, these variations are within normal seasonal fluctuations. The discharge from ponds at Fenton Hill infiltrates into canyon alluvium within 400 m of the site. Monitoring surface and spring discharge downgradient from the ponds failed to detect any effects resulting from water released from the ponds. Total dissolved solids and calcium have increased in water from well FH-1, which furnishes the water supply for the site. This increase is caused by the decreasing water level in the well resulting in yield from beds with a slightly different quality than has been found in previous years.

Purtymun, W.D.; Ferenbaugh, R.W.; Becker, N.M.; Adams, W.H.; Maes, M.N.

1983-09-01T23:59:59.000Z

56

Geological structures from televiewer logs of GT-2, Fenton Hill, New Mexico: Part 1, Feature extraction  

DOE Green Energy (OSTI)

Patterns in reflected sonic intensity recognized during examination of televiewer logs of basement gneiss at the Hot Dry Rock Site, Fenton Hill, New Mexico, are due to geological fractures and foliations and to incipient breakouts. These features are obscured by artifacts caused by wellbore ellipticity, tool off-centering, and tool oscillations. An interactive method, developed for extraction of the structural features (fractures and foliations), uses human perception as a pattern detector and a chi-square test of harmonic form as a pattern discriminator. From imagery of GT-2, 733 structures were recovered. The acceptance rate of the discriminator was 54%. Despite these positive results, the general conclusion of this study is that intensity-mode imagery from Fenton Hill is not directly invertible for geological information because of the complexity of the televiewer imaging process. Developing a forward model of the intensity-imaging process, or converting to caliper-mode imagery, or doing both, will be necessary for high-fidelity feature extraction from televiewer data.

Burns, K.L.

1987-07-01T23:59:59.000Z

57

Next stages in HDR technology development. [Hot Dry Rock (HDR)  

DOE Green Energy (OSTI)

Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective fuel costs'' of 2--3[cents] per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

Duchane, D.V.

1993-01-01T23:59:59.000Z

58

Water quality in the vicinity of Fenton Hill: Progress report, 1983 and 1984  

DOE Green Energy (OSTI)

Water quality data have been collected since 1974 from established surface and groundwater stations at and in the vicinity of Fenton Hill (Hot Dry Rock Geothermal Demonstration Site) located in the Jemez Mountains. This is part of a continued program of environmental studies. There has been a slight variation in chemical quality of water from the surface and groundwater stations; however, these variations are within normal seasonal fluctuations. Water supply at the site is pumped from the aquifer in the Abiquiu Tuff. Cumulative production from 1976 through 1984 has been 41.5 x 10/sup 6/ gal. The water level in the supply well declined from 365 ft in 1976 to 379 ft in 1984.

Purtymun, W.D.; Ferenbaugh, R.W.; Becker, N.M.; Williams, M.C.; Maes, M.

1987-01-01T23:59:59.000Z

59

Geological structures from televiewer logs of GT-2, Fenton Hill, New Mexico: Part 2, Rectification  

DOE Green Energy (OSTI)

Televiewer logs from drill hole GT-2 at the Fenton Hill, New Mexico, Hot Dry Rock Site, have been rectified by conversion of structural traces on the scanner imagery to geographic location and orientation. The rectification method was direct inversion that consisted of mapping from the image to the wellbore, inverting the trace on the wellbore for principal points, and rotating from wellbore to geographic coordinates. From the test imagery of GT-2, 733 structures (fractures and foliations) were measured, compared with 42 structures from recovered core. The 733 new measurements listed in this report are a unique and unrepeatable collection of structural information from the Precambrian basement of northern New Mexico. This direct inversion method is accurate where the magnetic field vector is constant and the tool is centered and aligned in a circular wellbore. In other cases this method yields only approximate results.

Burns, K.L.

1987-08-01T23:59:59.000Z

60

The history of HDR research and development  

DOE Green Energy (OSTI)

An energy source rivaling the sun exists in the form of the heat emanating from the interior of the earth. Although limited quantities of this geothermal energy are produced today by bringing natural hot fluids to the surface, most of the earth`s heat is trapped in hot dry rock (HDR). The application of hydraulic fracturing technology to tap this vast HDR resource was pioneered by Los Alamos National Laboratory beginning in 1970. Since that time, engineered geothermal reservoirs have been constructed and operated at numerous locations around the world. Major work at the US HDR facility at Fenton Hill, NM, and at the British HDR site in Cornwall, UK, has been completed, but advanced HDR field work continues at two sites on the island of Honshu in Japan and at Soultz in northeastern France. In addition, plans are currently being completed for the construction of an HDR system on the continent of Australia. Over the past three decades the worldwide research and development effort has taken HDR from its early conceptual stage to its present state as a demonstrated technology that is on the verge of becoming commercially feasible. Extended flow tests in the United States, Japan, and Europe have proven that sustained operation of HDR reservoirs is possible. In support of these field tests, an international body of scientists and engineers have pursued a variety of innovative approaches for assessing HDR resources, constructing and characterizing engineered geothermal reservoirs, and operating HDR systems. Taken together, these developments form a strong base upon which to build the practical HDR systems that will provide clean energy for the world in the 21st century.

Duchane, D.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

62

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

63

Status and prospects for hot dry rock (HDR) in the United States  

DOE Green Energy (OSTI)

The vast majority of accessible geothermal energy exists in the form of heat stored in dry rock at depth. For nearly the last two decades, the Los Alamos National Laboratory has been engaged in a program to develop the technology to mine the thermal energy in this hot dry rock (HDR). The world's first heat mine was developed and operated at Fenton Hill, N.M. in the 1970's by using drilling and hydraulic fracturing techniques to create an artificial reservoir in hot rock and subsequently circulating water through this reservoir to mine the heat from the rock. Over the last ten years, a much larger, deeper, and hotter heat mine has been constructed at Fenton Hill and a permanent energy extraction plant has been built on the surface. A long-term testing program has recently begun to evaluate the potential for sustained energy extraction from the large Fenton Hill heat mine. This paper summarizes the history of HDR research and development at Los Alamos, reports the initial results of the long-term testing program at Fenton Hill, and discusses the possible future course of HDR technology.

Brown, D.; Duchane, D.

1992-01-01T23:59:59.000Z

64

Water quality in the vicinity of Fenton Hill, 1985 and 1986: Progress report  

DOE Green Energy (OSTI)

Water quality data have been collected since 1974 from established surface and groundwater stations at and in the vicinity of Fenton Hill (Hot Dry Rock Geothermal Demonstration Site) located in the Jemez Mountains. This is part of a continuing program of environmental studies. Data on chemical quality of water were determined for samples collected from 13 surface water and 19 groundwater stations in 1985 and 1986. There were slight variations in the chemical quality of the ground and surface water in 1985 and 1986 as compared with previous analyses; however, these variations are within normal seasonal fluctuations. Chemical uptake in soil, roots, and foliage is monitored in the canyon, which receives intermittent effluent release of water from tests in the geothermal circulation loop and occasional fluids from drilling operations. The chemical concentrations found in soil, roots, and vegetation as the result of effluent release have shown a decrease in concentration down-canyon and also have decreased in concentration with time since the larger releases that took place in the late 1970s and early 1980s. 18 refs., 7 figs., 9 tabs.

Purtymun, W.D.; Ferenbaugh, R.W.; Williams, M.C.; Maes, M.N.

1988-03-01T23:59:59.000Z

65

Next stages in HDR technology development  

DOE Green Energy (OSTI)

Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective ``fuel costs`` of 2--3{cents} per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

Duchane, D.V.

1993-03-01T23:59:59.000Z

66

Televiewer measurement of in-situ stress direction at the Fenton Hill Hot Dry Rock Site, New Mexico  

DOE Green Energy (OSTI)

The in situ stresses at Fenton Hill has been determined in drill hole EE-3A by observations of wellbore breakouts on imagery obtained with a televiewer logging tool. Wellbore shape, tool offcentering, and tool misalignment cause geometric distortions which have been treated by comparing imagery from two logging runs made six months apart. The comparison establishes that wellbore degradation in drill hole EE-3A is due to breakouts, which grow larger with time. The azimuth of the axis of minimum horizontal principal stress is estimated to be 110.7 +//minus/ 10.3 deg E of true N at a depth of 11,500 ft, increasing with depth at a rate of 1 deg per 50 ft. This method of measuring the orientation of horizontal principal axes is considerably more accurate than previous methods tried at Fenton Hill. The results agree generally with other stress indicators. The results support the concept that direction of reservoir growth during hydraulic stimulation favours the intermediate axis over other principal axes of stress. 11 figs., 1 tab.

Burns, K.L.

1988-01-01T23:59:59.000Z

67

HDR opportunities and challenges beyond the long-term flow test  

DOE Green Energy (OSTI)

The long term flow test (LTFT) of the world's largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

Duchane, D.V.

1992-01-01T23:59:59.000Z

68

HDR opportunities and challenges beyond the long-term flow test  

SciTech Connect

The long term flow test (LTFT) of the world's largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

Duchane, D.V.

1992-01-01T23:59:59.000Z

69

HDR Opportunities and Challenges Beyond the Long-Term Flow Test  

SciTech Connect

The long term flow test (LTFT) of the worlds largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. This facility should be designed and engineered to produce and market energy at competitive prices. At the same time, a wide variety of techniques to advance the state-of-the-art of HDR technology must be pursued to develop this infant technology rapidly to its maximum potential. A number of design and operational techniques have been conceived which may lead to improved economics in HDR systems. After careful technical and economic scrutiny, those showing merit should be vigorously pursued. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

Duchane, David

1992-03-24T23:59:59.000Z

70

Stress control of seismicity patterns observed during hydraulic fracturing experiments at the Fenton Hill hot dry rock geothermal energy site, New Mexico  

DOE Green Energy (OSTI)

Seismicity accompanying hydraulic injections into granitic rock is often diffuse rather than falling along a single plane. This diffuse zone of seismicity cannot be attributed to systematic errors in locations of the events. It has often been asserted that seismicity occurs along preexisting joints in the rock that are favorably aligned with the stress field so that slip can occur along them when effective stress is reduced by increasing pore fluid pressure. A new scheme for determining orientations and locations of planes along which the microearthquakes occurred was recently developed. The basic assumption of the method, called the three point method, is that many of the events fall along well defined planes; these planes are often difficult to identify visually in the data because planes of many orientations are present. The method has been applied to four hydraulic fracturing experiments conducted at Fenton Hill as part of a hot dry rock geothermal energy project. While multiple planes are found for each experiment; one plane is common to all experiments. The ratio of shear to normal stress along planes of all orientations is calculated using a best estimate of the current stress state at Fenton Hill. The plane common to all experiments has the highest ratio of shear to normal stress acting along it, so it is the plane most likely to slip. The other planes found by the three point method all have orientations with respect to current principal stresses that are favorable for slip to occur along preexisting planes of weakness. These results are consistent with the assertion that the rock contains pre-existing joints which slip when the effective stress is reduced by the increased pore fluid pressure accompanying the hydraulic injection. Microearthquakes occur along those planes that are favorably aligned with respect to the current stress field.

Fehler, M.C.

1987-04-13T23:59:59.000Z

71

HDR reservoir flow impedance and potentials for impedance reduction  

DOE Green Energy (OSTI)

The data from flow tests which employed two different production zones in a well at Fenton Hill indicates the flow impedance of a wellbore zone damaged by rapid depressurization was altered, possibly by pressure spallation, which appears to have mechanically propped the joint apertures of outlet flow paths intersecting the altered wellbore. The rapid depressurization and subsequent flow test data derived from the damaged well has led to the hypothesis that pressure spallation and the resultant mechanical propping of outlet flow paths reduced the outlet flow impedance of the damaged wellbore. Furthermore, transient pressure data shows the largest pressure drop between the injection and production wellheads occurs near the production wellbore, so lowering the outlet impedance by increasing the apertures of outlet flow paths will have the greatest effect on reducing the overall reservoir impedance. Fenton Hill data also reveals that increasing the overall reservoir pressure dilates the apertures of flow paths, which likewise serves to reduce the reservoir impedance. Data suggests that either pressure dilating the wellbore connected joints with high production wellhead pressure, or mechanically propping open the outlet flow paths will increase the near-wellbore permeability. Finally, a new method for calculating and comparing near-wellbore outlet impedances has been developed. Further modeling, experimentation, and engineered reservoir modifications, such as pressure dilation and mechanical propping, hold considerable potential for significantly improving the productivity of HDR reservoirs.

DuTeau, R.; Brown, D.

1993-06-01T23:59:59.000Z

72

HDR reservoir flow impedance and potentials for impedance reduction  

DOE Green Energy (OSTI)

The data from flow tests which employed two different production zones in a well at Fenton Hill indicates the flow impedance of a wellbore zone damaged by rapid depressurization was altered, possibly by pressure spallation, which appears to have mechanically propped the joint apertures of outlet flow paths intersecting the altered wellbore. The rapid depressurization and subsequent flow test data derived from the damaged well has led to the hypothesis that pressure spallation and the resultant mechanical propping of outlet flow paths reduced the outlet flow impedance of the damaged wellbore. Furthermore, transient pressure data shows the largest pressure drop between the injection and production wellheads occurs near the production wellbore, so lowering the outlet impedance by increasing the apertures of outlet flow paths will have the greatest effect on reducing the overall reservoir impedance. Fenton Hill data also reveals that increasing the overall reservoir pressure dilates the apertures of flow paths, which likewise serves to reduce the reservoir impedance. Data suggests that either pressure dilating the wellbore connected joints with high production wellhead pressure, or mechanically propping open the outlet flow paths will increase the near-wellbore permeability. Finally, a new method for calculating and comparing near-wellbore outlet impedances has been developed. Further modeling, experimentation, and engineered reservoir modifications, such as pressure dilation and mechanical propping, hold considerable potential for significantly improving the productivity of HDR reservoirs.

DuTeau, R.; Brown, D.

1993-01-01T23:59:59.000Z

73

Hot dry rock energy extraction field test: 75 days of operation of a prototype reservoir at Fenton Hill, Segment 2 of Phase I  

DOE Green Energy (OSTI)

Results from the first extensive field test of a man-made hot dry rock (HDR) geothermal reservoir in low permeability crystalline rock are presented. A reservoir with a small heat transfer area was utilized to study the characteristics of a prototype HDR system over a shortened lifetime. The resulting accelerated thermal drawdown was modeled to yield an effective area of 8000 m/sup 2/. In addition to the thermal effects, this test provided an opportunity to examine equipment operation, water permeation into the formation, geochemical interaction between the circulating fluid and the rock and flow characteristics including impedance and residence time distributions. Continuous monitoring for induced seismic effects showed that no activity to a Richter threshold of -1.0 was detected during the 75-day experiment.

Tester, J.W.; Albright, J.N. (eds.)

1979-04-01T23:59:59.000Z

74

Development of man-made geothermal reservoirs  

DOE Green Energy (OSTI)

Hot-dry-rock (HDR) systems and their resource potential are described. The HDR field program at the Fenton Hill site is discussed. (MHR)

Pettitt, R.A.

1981-01-01T23:59:59.000Z

75

Evaluation of the Fenton Hill Hot Dry Rock Geothermal Reservoir. Part I. Heat extraction performance and modeling. Part II. Flow characteristics and geochemistry. Part III. Reservoir characterization using acoustic techniques  

DOE Green Energy (OSTI)

On May 28, 1977, as the production well GT-2 at Fenton Hill was being redrilled along a planned trajectory, it intersected a low-impedance hydraulic fracture in direct communication with the injection well, EE-1. Thus, a necessary prerequisite for a full-scale test of the LASL Hot Dry Rock Concept, that of establishing a high flow rate between wells at low wellhead differential pressures, was satisified. Full-scale operation of the loop occurred for 75 days from January 27 to April 12, 1978. This test is referred to as Phase 1, Segment 2 and was designed to examine the thermal drawdown, flow characteristics, water losses, and fluid geochemistry of the system in detail. Results of these studies are the major topic of this paper which is divided into three separate parts covering first the heat extraction performance, second the flow characteristics and geochemistry and third the use of acoustic techniques to describe the geometry of the fracture system. In the third section, dual-well acoustic measurements used to detect fractures are described. These measurements were made using modified Dresser Atlas logging tools. Signals intersecting hydraulic fractures in the reservoir under both hydrostatic and pressurized conditions were simultaneously detected in both wells. Signal attenuation and characteristic waveforms can be used to describe the extent of fractured rock in the reservoir.

Murphy, H.D.; Grigsby, C.O.; Tester, J.W.; Albright, J.N.

1978-01-01T23:59:59.000Z

76

User's manual for HDR3 computer code  

DOE Green Energy (OSTI)

A description of the HDR3 computer code and instructions for its use are provided. HDR3 calculates space heating costs for a hot dry rock (HDR) geothermal space heating system. The code also compares these costs to those of a specific oil heating system in use at the National Aeronautics and Space Administration Flight Center at Wallops Island, Virginia. HDR3 allows many HDR system parameters to be varied so that the user may examine various reservoir management schemes and may optimize reservoir design to suit a particular set of geophysical and economic parameters.

Arundale, C.J.

1982-10-01T23:59:59.000Z

77

HDR (Heissdampfreaktor) Phase 2 vibrational experiments  

Science Conference Proceedings (OSTI)

As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level shaker tests (SHAG) were performed during June and July 1986. The purpose of these experiments is to investigate full-scale structural response, soil-structure interaction, and piping and equipment response under strong excitation conditions. While global safety considerations imposed load limitations, the HDR soil/structure system was nevertheless tested to its capacity limits. The performance of up to seven different multiple support pipe hanger configurations (ranging from flexible to stiff systems) was evaluated in the tests. Data obtained in the tests serve to validate analysis methods.

Malcher, L.; Kot, C.A.

1986-10-01T23:59:59.000Z

78

Aquarious Mountain Area, Arizona: APossible HDR Prospect  

DOE Green Energy (OSTI)

Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

West, F.G.; Laughlin, A.W.

1979-05-01T23:59:59.000Z

79

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...  

Open Energy Info (EERE)

Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A...

80

Fenton Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Fenton Wind Power Project Fenton Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Xcel Energy Location Murray and Nobles Counties near Chandler MN Coordinates 43.909806°, -95.965884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.909806,"lon":-95.965884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Expectations for a second US Hot Dry Rock Site  

DOE Green Energy (OSTI)

The worlds first hot dry rock (HDR) reservoir was created at Fenton Hill, NM in the late 1970`s. Today, Fenton Hill is the site of the largest, deepest, and hottest HDR reservoir. Over the past two decades, HDR systems have also been developed in a number of other countries. However, HDR reservoirs to date have always been created as part of research and development programs aimed at understanding the fundamentals of HDR technology. The time has come to begin planning the construction of a commercial-scale facility which will show the world that HDR can be a practical source of power. The second domestic HDR facility should demonstrate that commercial production of energy from HDR is feasible at a variety of locations. Day-today operating data should provide the cost figures needed in order to unambiguously design and build future commercial HDR power production plants. Successful construction and operation of the second HDR plant will both supply needed electric power at competitive costs and set the stage for the widespread application of HDR technology both domestically and throughout the world. If preliminary work is begun promptly, it should be possible to develop a fully operational second site by 1997. The Clearlake region of northern California may be an ideal area in which to locate the second HDR site.

Duchane, D.V.

1993-04-01T23:59:59.000Z

82

Expectations for a second US Hot Dry Rock Site  

DOE Green Energy (OSTI)

The worlds first hot dry rock (HDR) reservoir was created at Fenton Hill, NM in the late 1970's. Today, Fenton Hill is the site of the largest, deepest, and hottest HDR reservoir. Over the past two decades, HDR systems have also been developed in a number of other countries. However, HDR reservoirs to date have always been created as part of research and development programs aimed at understanding the fundamentals of HDR technology. The time has come to begin planning the construction of a commercial-scale facility which will show the world that HDR can be a practical source of power. The second domestic HDR facility should demonstrate that commercial production of energy from HDR is feasible at a variety of locations. Day-today operating data should provide the cost figures needed in order to unambiguously design and build future commercial HDR power production plants. Successful construction and operation of the second HDR plant will both supply needed electric power at competitive costs and set the stage for the widespread application of HDR technology both domestically and throughout the world. If preliminary work is begun promptly, it should be possible to develop a fully operational second site by 1997. The Clearlake region of northern California may be an ideal area in which to locate the second HDR site.

Duchane, D.V.

1993-01-01T23:59:59.000Z

83

Recent Developments in Japan's HDR Program  

DOE Green Energy (OSTI)

Japan is one of the most active volcanic countries in the world, and it is understood to have very abundant geothermal energy. In Japan, where only a limited amount of other natural energy resources are domestically available, geothermal energy is one of the nation's purely indigenous energy sources. Its development therefore, has, been anxiously urged. Geothermal energy is classified generally in several types: vapor dominated type resources, which are mainly used to generate electric power, and low grade hydrothermal fluid and hot dry rock type resources, most of which are not used at present in Japan. NEDO, the New Energy and Industrial Technology Development Organization, promotes the technological development of geothermal energy utilization in order to increase the use of this type of energy, particularly in such technical fields as the development of a power plant that uses hydrothermal fluids. This type of plant will enable the effective use for power generation of not only steam, but also geothermal fluid, so as to permit the use of hot water that flows out in great quantities together with useful geothermal steam. The vast volume of geothermal water with medium to high temperature left intact underground will also be possible to utilize. Research themes promoted by NEDO, the Geothermal Energy Technology Department and the budget for FY 1991 (from April 1991 to March 1992) are: (1) Development of 10MW Class Binary Cycle Power Plant ($2.0M); (2) Development of Down-hole Pump ($3.0M); (3) Development of Technology for increasing Geothermal Energy Recovery ($5.9M); (4) Development of Measurement While Drilling System ($0.4M); and (5) Development of Hot Dry Rock Power Generation Technology ($7.1M). The total amount of 18.4 Million dollars is allocated for FY 1991 ($1 = 130 yen). Figure 1 shows the budgets from FY 1990 to 1992 (requested). The total amount of budgets listed above is grouped into ''Technology R & D'' in Figure 1. Figure 1 also shows the budgets for ''Survey & Promotion'' items conducted by NEDO. This paper reviews the history of HDR development in Japan and summarizes the recent development of NEDO's HDR project. Since FY 1985, NEDO has been conducting research to develop basic technologies for hot dry rock geothermal power generation at Hijiori, Okura Village in Yamagata Prefecture. The main purpose of this research is developing a heat extracting circulation system in hot dry rock of depth and temperature similar to those expected for a commercial scale operation. Within this scope, NEDO developed fundamental technologies for creating an artificial geothermal reservoir, establishing hydraulic communication between wells, logging boreholes, observing acoustic emission (AE) events for fracture mapping, evaluating flow through the reservoir, and estimating geothermal heat recovery. In the hot dry rock geothermal project, especially in Japan, it is important to understand how pre-existing fractures affect hydrofracture development. At present, there are a number of methods that can be employed to understand the fractures, but it is necessary to evaluate which are, most appropriate and accurate. Since FY 1989, we have been performing small-scale fracture characterization experiments on-site in I-itate Village, Fukushima Prefecture, where the granite basement rock outcrops.

Yamaguchi, Tsutomu

1992-03-24T23:59:59.000Z

84

Hot dry rock geothermal energy development program. Semiannual report, October 1, 1978-March 31, 1979  

DOE Green Energy (OSTI)

The potential of energy extracted from hot dry rock (HDR) was investigated as a commercailly feasible alternate energy source. Run Segments 3 and 4 were completed in the prototype reservoir of the Phase I energy-extraction system at Fenton Hill, New Mexico. Results of these tests yielded significant data on the existing system and this information will be applicable to future HDR systems. Plans and operations initiating a Phase II system are underway at the Fenton Hill site. This system, a deeper, hotter commercial-size reservoir, is intended to demonstrate the longevity and economics of an HDR system. Major activity occurred in evaluation of the national resource potential and in characterizing possible future HDR geothermal sites. Work has begun in the institutional and industrial support area to assess the economics and promote commercial interest in HDR systems as an alternate energy source.

Brown, M.C.; Nunz, G.J.; Cremer, G.M.; Smith, M.C.

1979-09-01T23:59:59.000Z

85

Sand Hills EA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- - Office Name and State goes here Environmental Assessment Sand Hills Wind Energy Facility Albany County, Wyoming May 2011 High Desert District Rawlins Field Office The BLM's multiple-use mission is to sustain the health and productivity of the public lands for the use and enjoyment of present and future generations. The Bureau accomplishes this by managing such activities as outdoor recreation, livestock grazing, mineral development, and energy production, and by conserving natural, historical, cultural, and other resources on public lands. BLM/WY/PL-11/035+1430 WY-030-EA09-314 Contents Chapter Page Acronyms and Abbreviations .................................................................................................. ix

86

Chemical analysis and sampling techniques for geothermal fluids and gases at the Fenton Hill Laboratory  

DOE Green Energy (OSTI)

A general description of methods, techniques, and apparatus used for the sampling, chemical analysis, and data reporting of geothermal gases and fluids is given. Step-by-step descriptions of the procedures are included in the appendixes.

Trujillo, P.E.; Counce, D.; Grigsby, C.O.; Goff, F.; Shevenell, L.

1987-06-01T23:59:59.000Z

87

Sunny Hill Energy | Open Energy Information  

Open Energy Info (EERE)

Sunny Hill Energy Jump to: navigation, search Name Sunny Hill Energy Place San Jose, California Zip 95113 Sector Solar Product California-based solar financing and business support...

88

Spittal Hill Wind Farm | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Spittal Hill Wind Farm Jump to: navigation, search Name Spittal Hill Wind Farm Place United Kingdom...

89

Black Hills Corporation | Open Energy Information  

Open Energy Info (EERE)

Black Hills Corporation Jump to: navigation, search Name Black Hills Corporation Place Rapid City, South Dakota Zip 57709 Product Diversified energy and communications company....

90

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir  

Open Energy Info (EERE)

Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Details Activities (0) Areas (0) Regions (0) Abstract: A two-dimensional numerical model of coupled fluid flow, heat transfer and rock mechanics in naturally fractured rock is developed. The model is applicable to assessments of hot dry rock (HDR) geothermal reservoir characterisation experiments, and to the study of hydraulic stimulations and the heat extraction potential of HDR reservoirs. Modelling assumptions are based on the characteristics of the experimental HDR reservoir in the Carnmenellis granite in Cornwall, S. W. England. In

91

Designs of an HDR reservoir at Clearlake, California  

SciTech Connect

The Clearlake area of California lies within the Geysers/Clearlake geothermal anomaly, a region of some 270 square miles in Sonoma and Lake Counties exhibiting elevated heat flow. The bulk of the electric power generated from geothermal resources in the United States is produced from this geothermal anomaly. However, the quantity of the Hot Dry Rock (HDR) resource within the Geysers/Clearlake geothermal anomaly is vastly larger than that of the hydrothermal resource, and could provide the basis for significant further electric power production. Of most interest from the standpoint of demonstrating the Hot Dry Rock (HDR) resource in this region is the extremely high heat flow that surrounds the City of Clearlake, as attested to by the very high temperatures measured in numerous dry (i.e., hydrothermally nonproductive) holes drilled there over the past 20 years.

Brown, D.W.; Burns, K.L.

1994-08-01T23:59:59.000Z

92

Drilling and Completion of the Urach III HDR Test Well  

DOE Green Energy (OSTI)

The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

Meier, U.; Ernst, P. L.

1981-01-01T23:59:59.000Z

93

Vibrational experiments at the HDR (Heissdampfreaktor) German/US cooperation  

Science Conference Proceedings (OSTI)

As part of an overall effort on the validation of seismic calculational methods, the US NRC/RES is collaborating with the Kernforschungszentrum Karlsruhe, FRG, in the vibrational/earthquake experiments conducted at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG. In the most recent experiments (SHAG), high level excitations were produced in the HDR by means of an eccentric-mass coastdown shaker capable of developing 1000 tons of force. The purpose of the experiments was to investigate full-scale structural response, soil-structure interaction, and piping and equipment response. Data obtained in the tests serve to evaluate analysis methods. In the SHAG experiments, loadings of the HDR soil-structure system approached incipient failure levels as evidenced by high peak accelerations and displacements, local damage, nonlinear behavior, soil subsidence, and wall strains which exceeded estimated limit values. Also, the performance of different pipe hanger configurations for the VKL piping system was compared in these tests under high excitation levels. The support configurations ranged from very rigid systems (strut/snubbers) to very flexible configurations (spring and constant force supports). Pretest and post-test analyses for the building/soil and piping response were performed and are being validated with the test data.

Kot, C.A.; Malcher, L.; Costello, J.F.

1987-04-01T23:59:59.000Z

94

Record Hill | Open Energy Information  

Open Energy Info (EERE)

Record Hill Record Hill Jump to: navigation, search Name Record Hill Facility Record Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wagner Wind Energy - Independence Wind LLC Developer Wagner Wind Energy - Independence Wind LLC Location Roxbury ME Coordinates 44.66175478°, -70.63453674° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.66175478,"lon":-70.63453674,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Glacier Hills | Open Energy Information  

Open Energy Info (EERE)

Glacier Hills Glacier Hills Jump to: navigation, search Name Glacier Hills Facility Glacier Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner We Energies Developer We Energies Energy Purchaser We Energies Location Between Portage and Randolph above Highway 33 WI Coordinates 43.572059°, -89.111309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.572059,"lon":-89.111309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Cedro Hill | Open Energy Information  

Open Energy Info (EERE)

Cedro Hill Cedro Hill Jump to: navigation, search Name Cedro Hill Facility Cedro Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Energy Developer DKRW Wind LLC Location Located in Bruni TX Coordinates 27.56341162°, -98.91720772° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.56341162,"lon":-98.91720772,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Mustang Hills | Open Energy Information  

Open Energy Info (EERE)

Hills Hills Jump to: navigation, search Name Mustang Hills Facility Mustang Hills (Alta VI) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terra-Gen Power Developer Terra-Gen Power Energy Purchaser Southern California Edison Co Location Tehachapi Pass CA Coordinates 35.01917213°, -118.3031845° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.01917213,"lon":-118.3031845,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Bull Hill | Open Energy Information  

Open Energy Info (EERE)

Hill Hill Jump to: navigation, search Name Bull Hill Facility Bull Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser NSTAR Location Hancock County ME Coordinates 44.723076°, -68.170852° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.723076,"lon":-68.170852,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology  

E-Print Network (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

Tester, Jefferson W.

1990-01-01T23:59:59.000Z

100

Session: Hot Dry Rock  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PP-118 Hill County Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18 Hill County Electric Cooperative Inc PP-118 Hill County Electric Cooperative Inc Presidential permit authorizing Hill County Electric Cooperative Inc to construct, operate, and...

102

Trinity Hills | Open Energy Information  

Open Energy Info (EERE)

Trinity Hills Trinity Hills Facility Trinity Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Merchant Location Archer and Yound Counties TX Coordinates 33.401504°, -98.7115027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.401504,"lon":-98.7115027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Laurel Hill | Open Energy Information  

Open Energy Info (EERE)

Laurel Hill Laurel Hill Facility Laurel Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Duke Energy Developer Duke Enegy Energy Purchaser Delaware Municipal Electric Corp Location Lycoming County PA Coordinates 41.5245155°, -77.04111099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5245155,"lon":-77.04111099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Progress in making hot dry rock geothermal energy a viable renewable energy resource for America in the 21. century  

DOE Green Energy (OSTI)

An enormous geothermal energy resource exists in the form of rock at depth that is hot but essentially dry. For more than two decades, work has been underway at the Los Alamos National Laboratory to develop and demonstrate the technology to transport the energy in hot dry rock (HDR) to the surface for practical use. During the 1980`s, the world`s largest, deepest and hottest HDR reservoir was created at the Fenton Hill HDR test facility in northern New Mexico. The reservoir is centered in rock at a temperature of about 460 F at a depth of about 11,400 ft. After mating the reservoir to a fully automated surface plant, heat was mined at Fenton Hill for a total period of almost a year in a series of flow tests conducted between 1992 and 1995. These tests addressed the major questions regarding the viability of long-term energy extraction from HDR. The steady-state flow tests at Fenton Hill showed that energy can be produced from an HDR reservoir on a routine basis and that there are no major technical obstacles to implementation of this heat mining technology. Additional brief special flow tests also demonstrated that the energy output from HDR systems can be rapidly increased in a controlled manner to meet sudden changes in power demand.

Duchane, D.V. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1996-01-01T23:59:59.000Z

105

Seismic investigations of the HDR Safety Program. Summary report  

Science Conference Proceedings (OSTI)

The primary objective of the seismic investigations, performed at the HDR facility in Kahl/Main, FRG was to validate calculational methods for the seismic evaluation of nuclear-reactor systems, using experimental data from an actual nuclear plant. Using eccentric mass shaker excitation the HDR soil/structure system was tested to incipient failure, exhibiting highly nonlinear response and demonstrating that structures not seismically designed can sustain loads equivalent to a design basin earthquake (DBE). Load transmission from the structure to piping/equipment indicated significant response amplifications and shifts to higher frequencies, while the response of tanks/vessels depended mainly on their support conditions. The evaluation of various piping support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is important to limiting pipe greens. Piping at loads exceeding the DBE eightfold still had significant margins and failure is improbable inspite of multiple support failures. The mean value for pipe damping, even under extreme loads, was found to be about 4%. Comparison of linear and nonlinear computational results with piping response measurements showed that predictions have a wide scatter and do not necessarily yield conservative responses underpredicting, in particular, peak support forces. For the soil/structure system the quality of the predictions did not depend so much on the complexity of the modeling, but rather on whether the model captured the salient features and nonlinearities of the system.

Malcher, L.; Schrammel, D. [Kernforschungszentrum Karlsruhe GmbH (Germany); Steinhilber, H. [Fraunhofer-Institut fuer Betriebsfestigkeit (LBF), Darmstadt (Germany); Kot, C.A. [Argonne National Lab., IL (United States)

1994-08-01T23:59:59.000Z

106

Sandy Hill Case Study Packet 2004  

Science Conference Proceedings (OSTI)

Sandy Hill Case Study Packet 2004. The Baldrige Case Study Packet is composed of documents used to train Baldrige ...

2010-10-05T23:59:59.000Z

107

Smoky Hill and River Valleys  

E-Print Network (OSTI)

.............................................................................3 - 13 Wind Energy and the Meridian Way Wind Farm County. This location is the site of a new wind farm development by Westar Energy, Horizon Wind EnergySmoky Hill and Republican River Valleys Water, Wind, and Economic Development 2008 Field Conference

Peterson, Blake R.

108

Study and modeling of methylorange degradation with the Fenton reaction  

Science Conference Proceedings (OSTI)

Wastewater from textile industries is not satisfactorily depolluted by conventional wastewater treatments because of their refractory composition. The use of Advanced Oxidation Processes (AOPs) has shown to be very effective to degrade this type of wastewater. ... Keywords: Arrhenius law, Fenton reaction, degradation, methylorange, modeling, wastewater treatment

Orlando Garca-Rojas; Claudia Gmez-Quintero; Miguel Ros-Bolvar; Abel Romero; Antonio Rodrguez

2010-12-01T23:59:59.000Z

109

Union Hill-Novelty Hill, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

Novelty Hill, Washington: Energy Resources Novelty Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.6798082°, -122.016938° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6798082,"lon":-122.016938,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Long Hill Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Hill Energy Ltd Hill Energy Ltd Jump to: navigation, search Name Long Hill Energy Ltd Place United Kingdom Sector Wind energy Product JV formed by Snowmountain Eneterprises Ltd and Wind Direct Ltd to develop single wind turbine installations. References Long Hill Energy Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Long Hill Energy Ltd is a company located in United Kingdom . References ↑ "Long Hill Energy Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Long_Hill_Energy_Ltd&oldid=348446" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

111

Black Hills Power- Residential Customer Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

112

Black Hills Energy (Electric) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

unit Freezer: 30unit Dishwasher: 30unit RefrigeratorFreezer Recycling: 50unit CFLLED Bulbs: In-store rebates Black Hills Energy (BHE) offers rebates for residential...

113

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

114

Study on Further Treatment of Coal Coking Wastewater by Ultrasound Wave, Fenton's Reagent and Coagulation  

Science Conference Proceedings (OSTI)

The study on further treatment of coal coking wastewater by ultrasound wave, Fenton's reagent and coagulation was carried out in this paper at the first time, Furthermore, this paper discussed the optimum cooperative reaction condition of their combined ... Keywords: ultrasound wave, coke plant wastewater, Fenton reagent, coagulation

Jun Shi; Liangbo Zhang

2009-10-01T23:59:59.000Z

115

NUFO Science Exhibition on Capitol Hill Draws Congressmen, Crowds  

NLE Websites -- All DOE Office Websites (Extended Search)

NUFO Science Exhibition on Capitol Hill Draws Congressmen, Crowds NUFO Science Exhibition on Capitol Hill Draws Congressmen, Crowds Print At the invitation of the House Science and...

116

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well  

Open Energy Info (EERE)

Macroscopic Fractures In Granite In The Hdr Geothermal Well Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Details Activities (0) Areas (0) Regions (0) Abstract: An exhaustive analysis of 3000 macroscopic fractures encountered in the geothermal Hot Dry Rock borehole, EPS-1, located inside the Rhine graben (Soultz-sous-Forets, France), was done on a continuous core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are

117

Campbell Hill Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Campbell Hill Wind Farm Campbell Hill Wind Farm Jump to: navigation, search Name Campbell Hill Wind Farm Facility Campbell Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Duke Energy Carolinas LLC Developer Duke Energy Carolinas LLC Energy Purchaser PacifiCorp Location Northeast of Casper WY Coordinates 42.998955°, -106.021366° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.998955,"lon":-106.021366,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

NPP Grassland: Beacon Hill, U.K.  

NLE Websites -- All DOE Office Websites (Extended Search)

Beacon Hill, U.K., 1972-1973 Beacon Hill, U.K., 1972-1973 [PHOTOGRAPH] Photograph: General view of study site in 1973 (click on the photo to view a series of images from this site). Data Citation Cite this data set as follows: Williamson, P., and J. Pitman. 1998. NPP Grassland: Beacon Hill, U.K., 1972-1973. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of a chalk grassland was studied from 1972 to 1973 at Beacon Hill, West Sussex, U.K. Measurements of above-ground live biomass and total dead matter were made approximately bi-monthly. Above-ground net primary production was estimated by several methods, including peak live biomass, peak total live and dead, and accounting for turnover determined from

119

Mendota Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hills Wind Farm Hills Wind Farm Jump to: navigation, search Name Mendota Hills Wind Farm Facility Mendota Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GE Energy Developer Navitas Energy Energy Purchaser Exelon Location Near Paw Paw IL Coordinates 41.738291°, -89.044032° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.738291,"lon":-89.044032,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Canadian Hills (Mitsubishi) | Open Energy Information  

Open Energy Info (EERE)

Hills (Mitsubishi) Hills (Mitsubishi) Jump to: navigation, search Name Canadian Hills (Mitsubishi) Facility Canadian Hills (Mitsubishi) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Atlantic Power Corp Developer Apex Wind Energy Energy Purchaser Oklahoma Municipal Power Authority / SWEPCO Location Calumet OK Coordinates 35.69756036°, -98.20438385° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.69756036,"lon":-98.20438385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chandler Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Chandler Hills Wind Farm Chandler Hills Wind Farm Jump to: navigation, search Name Chandler Hills Wind Farm Facility Chandler Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terra-Gen Power Energy Purchaser Great River Energy Location Chandler Murray County MN Coordinates 43.916988°, -95.953898° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.916988,"lon":-95.953898,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Crofton Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crofton Hills Wind Farm Crofton Hills Wind Farm Facility Crofton Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Crofton Hills Wind Developer Juhl Wind Energy Purchaser NPPD Location South of Crofton NE Coordinates 42.700138°, -97.505236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.700138,"lon":-97.505236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Canadian Hills (Repower) | Open Energy Information  

Open Energy Info (EERE)

Canadian Hills (Repower) Canadian Hills (Repower) Jump to: navigation, search Name Canadian Hills (Repower) Facility Canadian Hills (Repower) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Atlantic Power Corp Developer Apex Wind Energy Energy Purchaser Oklahoma Municipal Power Authority / SWEPCO Location Calumet OK Coordinates 35.66212553°, -98.12820911° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.66212553,"lon":-98.12820911,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Sibley Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hills Wind Farm Hills Wind Farm Jump to: navigation, search Name Sibley Hills Wind Farm Facility Sibley Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Northern Alternative Energy Developer Northern Alternative Energy Energy Purchaser Alliant/IES Utilities Location Sibley IA Coordinates 43.4037°, -95.7417° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4037,"lon":-95.7417,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Combine Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Combine Hills Wind Farm Combine Hills Wind Farm Jump to: navigation, search Name Combine Hills Wind Farm Facility Combine Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Eurus Developer Eurus Energy Purchaser PacifiCorp Location Near Umapine OR Coordinates 45.94152°, -118.589137° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.94152,"lon":-118.589137,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Woodstock Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Woodstock Hills Wind Farm Woodstock Hills Wind Farm Jump to: navigation, search Name Woodstock Hills Wind Farm Facility Woodstock Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind and Edison Mission Group (owns majority) Developer Woodstock Windfarms Energy Purchaser Xcel Energy Location Pipestone County MN Coordinates 43.9948°, -96.3175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9948,"lon":-96.3175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Bishop Hill I | Open Energy Information  

Open Energy Info (EERE)

Bishop Hill I Bishop Hill I Jump to: navigation, search Name Bishop Hill I Facility Bishop Hill I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ivenergy Developer Ivenergy Energy Purchaser Tennessee Valley Authority Location Altona IL Coordinates 41.15978766°, -90.10059357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15978766,"lon":-90.10059357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Wilmont Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wilmont Hills Wind Farm Wilmont Hills Wind Farm Jump to: navigation, search Name Wilmont Hills Wind Farm Facility Wilmont Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Northern Alternative Energy Developer Northern Alternative Energy Energy Purchaser Alliant Energy Location Nobles County MN Coordinates 43.761108°, -95.8276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.761108,"lon":-95.8276,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Goodnoe Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goodnoe Hills Wind Farm Goodnoe Hills Wind Farm Jump to: navigation, search Name Goodnoe Hills Wind Farm Facility Goodnoe Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco/Power Holdings Developer EnXco/Power Holdings Energy Purchaser PacifiCorp Location Goldendale Coordinates 45.784293°, -120.552475° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.784293,"lon":-120.552475,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Arbor Hills Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hills Biomass Facility Hills Biomass Facility Jump to: navigation, search Name Arbor Hills Biomass Facility Facility Arbor Hills Sector Biomass Facility Type Landfill Gas Location Washtenaw County, Michigan Coordinates 42.3076493°, -83.8473015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3076493,"lon":-83.8473015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Bunker Hill Sediment Characterization Study  

SciTech Connect

The long history of mineral extraction in the Coeur dAlene Basin has left a legacy of heavy metal laden mine tailings that have accumulated along the Coeur dAlene River and its tributaries (U.S. Environmental Protection Agency, 2001; Barton, 2002). Silver, lead and zinc were the primary metals of economic interest in the area, but the ores contained other elements that have become environmental hazards including zinc, cadmium, lead, arsenic, nickel, and copper. The metals have contaminated the water and sediments of Lake Coeur dAlene, and continue to be transported downstream to Spokane Washington via the Spokane River. In 1983, the EPA listed the Bunker Hill Mining and Metallurgical Complex on the National Priorities List. Since that time, many of the most contaminated areas have been stabilized or isolated, however metal contaminants continue to migrate through the basin. Designation as a Superfund site causes significant problems for the economically depressed communities in the area. Identification of primary sources of contamination can help set priorities for cleanup and cleanup options, which can include source removal, water treatment or no action depending on knowledge about the mobility of contaminants relative to water flow. The mobility of contaminant mobility under natural or engineered conditions depends on multiple factors including the physical and chemical state (or speciation) of metals and the range of processes, some of which can be seasonal, that cause mobilization of metals. As a result, it is particularly important to understand metal speciation (National Research Council, 2005) and the link between speciation and the rates of metal migration and the impact of natural or engineered variations in flow, biological activity or water chemistry.

Neal A. Yancey; Debby F. Bruhn

2009-12-01T23:59:59.000Z

132

Treatment of SRS Tank 48H Simulants Using Fenton's Reagent  

DOE Green Energy (OSTI)

High-level-waste Tank 48H at the Savannah River Site (SRS) contains about 50,000 lb of tetraphenylborate (TPB), which must be destroyed to return the tank to active service. Laboratory-scale tests were conducted to evaluate the use of Fenton's Reagent (hydrogen peroxide and a metal catalyst) to treat simulants of the Tank 48H waste. Samples of the treated slurry and the off-gas were analyzed to determine the reaction products. Process parameters developed earlier by AEA Technology were used for these tests; namely (for 500 mL of waste simulant), reduce pH to 7.5 with nitric acid, heat to boiling, add hydrogen peroxide at 1 mL/min for 1 h, reduce pH to 3.5, and add the remaining peroxide at 2 mL/min. These parameters were developed to minimize the formation of tarry materials during the early part of the reaction and to minimize the concentration of total organic carbon in the final treated slurry. The treated samples contained low concentrations of total organic carbon (TOC) and no detectable TPB. Tests using a mixture of iron and copper salts as the Fenton's catalyst had a lower TOC concentration in the final treated slurry than did tests that used a copper-only catalyst. TPB is known to hydrolyze to benzene, particularly at high temperature and low pH, and copper is known to increase the rate of hydrolysis. Significant amounts of benzene were present in the off-gas from the tests, especially during the early portion of the treatment, indicating that the hydrolysis reaction was occurring in parallel with the oxidation of the TPB by Fenton's reagent. For the reaction conditions used in these tests, approximately equal fractions of the TPB were converted to benzene and carbon dioxide. Minimizing the formation of benzene is important to SRS personnel; however, this consideration was not addressed in the AEA-recommended parameters, since they did not analyze for benzene in the off-gas. Smaller amounts of carbon monoxide and other organics were also produced. One test used a simulant with much lower concentrations of salts, representing washed sludge, and this test produced much smaller amounts of benzene. The nitrite ions in the simulant were oxidized to nitrate, which would increase the amount of peroxide required to oxidize all of the organic carbon. Oxygen is the primary constituent of the off-gas produced from treatment of the samples.

Taylor, PA

2003-11-18T23:59:59.000Z

133

Loess Hills and Southern Iowa Development and Conservation (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loess Hills and Southern Iowa Development and Conservation (Iowa) Loess Hills and Southern Iowa Development and Conservation (Iowa) Loess Hills and Southern Iowa Development and Conservation (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Loess Hills Alliance The Loess Hills Development and Conservation Authority, the Loess Hills

134

Barren Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hills Geothermal Project Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Barren Hills Geothermal Project Project Location Information Coordinates 39.01°, -119.19° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01,"lon":-119.19,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Steamboat Hills Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat Hills Geothermal Facility General Information Name Steamboat Hills Geothermal Facility Facility Steamboat Hills Sector Geothermal energy Location Information Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5296329,"lon":-119.8138027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Sou Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Sou Hills Geothermal Project Sou Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Sou Hills Geothermal Project Project Location Information Coordinates 40.143055555556°, -117.72638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.143055555556,"lon":-117.72638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Combine Hills II | Open Energy Information  

Open Energy Info (EERE)

Combine Hills II Combine Hills II Facility Combine Hills II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Clark County PUD Location Near Milton-Freewater OR Coordinates 45.946742°, -118.56828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.946742,"lon":-118.56828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Golden Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Golden Hills Wind Farm Golden Hills Wind Farm Facility Golden Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner BP Alternative Energy Developer BP Alternative Energy Location Near Wasco in Sherman County OR Coordinates 45.547633°, -120.761232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.547633,"lon":-120.761232,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Red Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Hills Wind Farm Red Hills Wind Farm Facility Red Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Acciona Developer Acciona Energy Purchaser N/A Location North of Elk City OK Coordinates 35.531944°, -99.403889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.531944,"lon":-99.403889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Cedar Hills Wind Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Cedar Hills Wind Facility Facility Cedar Hills Wind Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MDU Utilities Developer MDU Utilities Energy Purchaser MDU Utilities Location Cedar Hills west of Rhame ND Coordinates 46.249235°, -103.756285° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.249235,"lon":-103.756285,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Repair, sidetrack, drilling, and completion of EE-2A for Phase 2 reservoir production service  

DOE Green Energy (OSTI)

Hot Dry Rock (HDR) geothermal energy well EE-2 at Fenton Hill, New Mexico, was sidetracked and redrilled into the HDR Phase II reservoir after two unsuccessful attempts to repair damage in the lower wellbore. Before sidetracking was begun, six cement slurries were pumped to plug the abandoned lower wellbore and to support the production casing where drilling wear was predicted and where sidetracking was to occur. This work and the redrill of EE-2A were completed in November 1987. Specifications were prepared for a state-of-the-art tie-back casing, which was procured, manufactured, and delivered to Fenton Hill in May 1988. The well was then completed in June 1988 for hot-water production service by cementing in a liner and the upper section of production casing and installing and cementing a tie-back casing string. 24 refs., 17 figs., 5 tabs.

Dreesen, D.S.; Cocks, G.G.; Nicholson, R.W.; Thomson, J.C.

1989-08-01T23:59:59.000Z

142

HDR (Hot Dry Rock) technology transfer activities in the Clear Lake Area, California  

DOE Green Energy (OSTI)

A large Hot Dry Rock resource has been recognized in northern California. It underlies the region extending NE of The Geysers to N of the City of Clearlake. The long-range productive potential is thousands of megawatts. The geothermal resource is heterogeneous. There are two mechanisms of heat flow occurring together. One is fluid transport, up natural zones of permeability, to outflows as surface springs. The other is conductive heat flow through impermeable rock. The temperature isotherms are thought to be nearly level surfaces, for example, the 300{degree}C isotherm is at about 8000 ft depth, with spikes'' or ridges'' occurring around narrow zones of fluid flow. While there is accessible heat at shallow depth in the naturally permeable rocks, the really substantial resource is in the impermeable rock. This is the HDR resource. The potential reservoir rocks are Franciscan greywackes and greenstones. Recorded drilling problems appear to be mainly due to intersection with serpentinites or to the effects of stimulation, so are potentially avoidable. Greywacke is favoured as a reservoir rock, and is expected to fail by brittle fracture. The water shortages in Northern California appear to be surmountable. Leakoff rates are expected to be low. Sewerage water may be available for fill and makeup. There is a possibility of combining HDR heat power production with sewerage disposal. To establish the first HDR producer in Northern California offers challenges in technology transfer. Two significant challenges will be creation of dispersed permeability in a greywacke reservoir, and pressure management in the vicinity of naturally permeable zones. A successful demonstration of HDR production technology will improve the long-term prospects for the geothermal power industry in California. 29 refs., 20 figs., 4 tabs.

Burns, K.; Potter, R.

1990-01-01T23:59:59.000Z

143

Vibrational experiments at the HDR (Heissdampfreaktor): SHAG results and planning for SHAM  

Science Conference Proceedings (OSTI)

As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level shaker tests (SHAG) were performed during June and July 1986 using a coast-down shaker capable of generating 1000 tons of force. The purpose of these experiments was to investigate full-scale structural response, soil/structure interaction, and piping and equipment response under strong excitation conditions. While global safety considerations imposed load limitations, the HDR soil/structure system was nevertheless tested to incipient failure. The performance of pipe support systems in as many as seven different multiple support pipe hanger configurations, ranging from flexible to stiff systems, was evaluated in the tests. Data obtained in the tests are used to validate analysis methods. The vibrational/earthquake investigations at the HDR are continuing with the SHAM experiments, planned for the spring of 1988. In these experiments the VKL piping loop will be subjected to direct multiple-point excitation at extremely high levels. The objective is to investigate different pipe support configurations at extreme loading, to establish seismic margins for piping, and to investigate possible failure/plastification modes in an in situ piping system.

Kot, C.A.; Malcher, L.; Steinhilber, H.

1987-01-01T23:59:59.000Z

144

Enforcement Letter, CH2M Hill- October 4, 2004  

Energy.gov (U.S. Department of Energy (DOE))

Issued to CH2M Hill related to at a Lapse in Dosimetry Accreditation at the Separations Process Research Unit

145

Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979  

DOE Green Energy (OSTI)

The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

1980-08-01T23:59:59.000Z

146

Shaokatan Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Shaokatan Hills Wind Farm Shaokatan Hills Wind Farm Jump to: navigation, search Name Shaokatan Hills Wind Farm Facility Shaokatan Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Northern Alternative Energy Energy Purchaser Xcel Energy Location Hendricks in Lincoln County MN Coordinates 44.4039°, -96.432767° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4039,"lon":-96.432767,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Rolling Hills (IA) | Open Energy Information  

Open Energy Info (EERE)

Rolling Hills (IA) Rolling Hills (IA) Jump to: navigation, search Name Rolling Hills (IA) Facility Rolling Hills (IA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Company Developer MidAmerican Energy Company Energy Purchaser MidAmerican Energy Company Location Massena IA Coordinates 41.230443°, -94.75459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.230443,"lon":-94.75459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Hill-climbing SMT processor resource distribution  

Science Conference Proceedings (OSTI)

The key to high performance in Simultaneous MultiThreaded (SMT) processors lies in optimizing the distribution of shared resources to active threads. Existing resource distribution techniques optimize performance only indirectly. They infer potential ... Keywords: Hill-climbing algorithm, SMT processor, limit study

Seungryul Choi; Donald Yeung

2009-02-01T23:59:59.000Z

149

Deferredlrotation Grazing with Steers in the Kansas Flint Hills  

E-Print Network (OSTI)

Deferredlrotation Grazing with Steers in the Kansas Flint Hills CLENTON E. OWENSBY, ED F. SMITH, AND KLING L. ANDERSON Highlight: Deferred-rotation grazing of Kansas Flint Hills' range grazed by steers May was in the Flint Hills region of the True Prairie, 5 miles northwest of Manhattan, Kans. (described by Herbel

Owensby, Clenton E.

150

Nutritive Value of Tree Leaves m the Kansas Flint Hills  

E-Print Network (OSTI)

w . 11 `c7 Nutritive Value of Tree Leaves m the Kansas Flint Hills JR. FORWOOD AND C.E. OWENSBY Flint Hills, the tons of tree leaves that fall to the ground each autumn are largely ignored MANAGEMENT 38(l), January 1985 We have observed cattle grazing Flint Hills rangeland in the fall selecting

Owensby, Clenton E.

151

Fractured Geothermal Growth Induced by Heat Extraction  

SciTech Connect

Field testing of a hydraulically stimulated, hot dry rock (HDR) geothermal system at the Fenton Hill site in northern New Mexico indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations that caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir hear-production capacity in an HDR system may be possible. [DJE 2005

Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Potter, R.M.; Robinson, B.A.

1989-02-01T23:59:59.000Z

152

Session: Hot Dry Rock  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

153

Developing hot dry rock reservoirs with inflatable open hole packers  

DOE Green Energy (OSTI)

An open hole packer system was designed for high pressure injection operations in high temperature wells at the Fenton Hill, Hot Dry Rock (HDR) Geothermal Site. The packer runs were required to verify that the HDR reservoir fractures had been penetrated during the drilling of well EE-3A. They were also used to stimulate fractures connecting EE-3A to the reservoir and to conduct two massive hydraulic fracture treatments at the bottom of EE-3A. An attempt to use a modified packer design as a temporary well completion system was not successful but with modification the system may prove to be an important HDR completion technique. The eleven packer runs have demonstrated that formation testing, stimulation and HDR reservoir development can now be conducted with an open hole inflatable packer operating over large temperature ranges and high differential pressures.

Dreesen, D.S.; Miller, J.R.; Nicholson, R.W.

1987-01-01T23:59:59.000Z

154

Candidate sites for future hot-dry-rock development in the United States  

DOE Green Energy (OSTI)

Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is cateogrized accoridng to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are described: The Geysers-Clear lake region in California, the Roosevelt Hot Springs area in Utah, and the White Mountains region in New Hampshire. These areas are singled out to illustrate the roles of significantly different geology and geophysics, reservoir rocks, and reservoir heat contents in possible HDR developments.

Goff, F.; Decker, E.R.

1982-12-01T23:59:59.000Z

155

Black Hills Energy (Gas) - Residential New Construction Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential New Construction Rebate Black Hills Energy (Gas) - Residential New Construction Rebate Program Black Hills Energy (Gas) - Residential New Construction Rebate Program < Back Eligibility Construction Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Builder Incentive: $800 - $2300 Provider Black Hills Energy Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into home construction. Qualifying homes must use natural gas and meet the minimum efficiency

156

Hammars Hill Energy HHE Ltd | Open Energy Information  

Open Energy Info (EERE)

Hammars Hill Energy HHE Ltd Hammars Hill Energy HHE Ltd Jump to: navigation, search Name Hammars Hill Energy (HHE) Ltd Place Scotland, United Kingdom Sector Wind energy Product UK-based wind power project developer. References Hammars Hill Energy (HHE) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hammars Hill Energy (HHE) Ltd is a company located in Scotland, United Kingdom . References ↑ "Hammars Hill Energy (HHE) Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hammars_Hill_Energy_HHE_Ltd&oldid=346359" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

157

Singaraya Hills Green Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Singaraya Hills Green Power Pvt Ltd Singaraya Hills Green Power Pvt Ltd Jump to: navigation, search Name Singaraya Hills Green Power Pvt. Ltd. Place Vijayawada, Andhra Pradesh, India Zip 520 010 Sector Biomass Product Vijayawada based biomass project developers. References Singaraya Hills Green Power Pvt. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Singaraya Hills Green Power Pvt. Ltd. is a company located in Vijayawada, Andhra Pradesh, India . References ↑ "Singaraya Hills Green Power Pvt. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Singaraya_Hills_Green_Power_Pvt_Ltd&oldid=351110" Categories: Clean Energy Organizations Companies Organizations Stubs

158

Bishop Hill II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Bishop Hill II Facility Bishop Hill II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Ivenergy Energy Purchaser Ameren Illinois Location Cambridge IL Coordinates 41.24438513°, -90.09338379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.24438513,"lon":-90.09338379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Rolling Hills (WY) | Open Energy Information  

Open Energy Info (EERE)

WY) WY) Jump to: navigation, search Name Rolling Hills (WY) Facility Rolling Hills (WY) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer PacifiCorp Location Converse WY Coordinates 43.08080003°, -105.8497953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.08080003,"lon":-105.8497953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Black Hills Power Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Black Hills Power Inc Place Rapid City, South Dakota Utility Id 19545 Utility Location Yes Ownership I NERC Location WECC NERC MRO Yes NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Black Hills Power, Inc. Smart Grid Project was awarded $9.576 Recovery Act Funding with a total project value of $19,153,256. Utility Rate Schedules Grid-background.png GL (General Service Large) Commercial GS (General Service - Total Electric) Commercial

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

On convergence of the Flint Hills series  

E-Print Network (OSTI)

It is not known whether the Flint Hills series $\\sum_{n=1}^{\\infty} \\frac{1}{n^3\\cdot\\sin(n)^2}$ converges. We show that this question is closely related to the irrationality measure of $\\pi$, denoted $\\mu(\\pi)$. In particular, convergence of the Flint Hills series would imply $\\mu(\\pi) \\leq 2.5$ which is much stronger than the best currently known upper bound $\\mu(\\pi)\\leq 7.6063...$. This result easily generalizes to series of the form $\\sum_{n=1}^{\\infty} \\frac{1}{n^u\\cdot |\\sin(n)|^v}$ where $u,v>0$. We use the currently known bound for $\\mu(\\pi)$ to derive conditions on $u$ and $v$ that guarantee convergence of such series.

Alekseyev, Max A

2011-01-01T23:59:59.000Z

162

EA-1581: Sand Hills Wind Project, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

The Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

163

Economic Predictions for Heat Mining: A Review and Analysis of Hot Dry Rock (HDR) Geothermal Energy Technology  

DOE Green Energy (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components. The economic models reviewed include the following studies sponsored by Electric Power Research Institute (EPRI)-Cummings and Morris (1979), Los Alamos National Laboratory (LANL)-Murphy, et al. (1982), United Kingdom (UK)-Shock (1986), Japan-Hori, et al. (1986), Meridian-Entingh (1987) and Bechtel (1988). A general evaluation of the technical feasibility of HDR technology components was also conducted in view of their importance in establishing drilling and reservoir performance parameters required for any economic assessment. In this review, only economic projections for base load electricity produced from HDR systems were considered. Bases of 1989 collars ($) were selected to normalize costs. Following the evaluation of drilling and reservoir performance, power plant choices and cost estimates are discussed in section 6 of the report. In Section 7, the six economics studies cited above are reviewed and compared in terms of their key resource, reservoir and plant performance, and cost assumptions. Based on these comparisons, the report estimates parameters for three composite cases. Important parameters include: (1) resource quality-average geothermal gradient (C/km) and well depth, (2) reservoir performance-effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components-drilling, reservoir formation, and power plant costs and (4) economic factors-discount and interest rates, taxes, etc. In Section 8, composite case conditions were used to reassess economic projections for HDR-produced electricity. In Section 9, a generalized economic model for HDR-produced electricity is presented to show the effects of resource grade, reservoir performance parameters, and other important factors on projected costs. A sensitivity and uncertainty analysis using this model is given in Section 10. Section 11 treats a modification of the economic model for predicting costs for direct, non-electric applications. HDR economic projections for the U.S. are broken down by region in Section 12. In Section 13, the report provides recommendations for continued research and development to reduce technical and economic uncertainties relevant to the commercialization of HDR. [DJE-2005

Tester, Jefferson W.; Herzog, Howard J.

1990-07-01T23:59:59.000Z

164

Microsoft Word - SPP_Success_Story_Hill_AFB_FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Hill Air Force Base Hill Air Force Base 1820 Midpark Road, Suite C, Knoxville, TN 37921 75 CES/CEEE, 7302 Wardleigh Road, Bldg 15, Hill AFB, UT 84056-5223 Business: Energy Services Company (ESCO) Business: United States Air Force Joseph T. Price Kent Nomura, Deputy, Maintenance Engineering Phone: (865) 330-7216 / Fax: (865) 330-7217 Phone: (801) 777-7268 / (801) 777-5946 Email: jprice@ameresco.com Email: kent.nomura@hill.af.mil Hill Air Force and Ameresco Landfill Gas Generator Energy Project is the First of its Kind for the Department of Defense and the State of Utah. Project Scope Hill Air Force Base and Ameresco teamed up to create a generating facility which is powered by landfill gasses. The landfill gas extracted from the Davis County Landfill is used to fuel two 1400kW generators. These produce

165

Black Hills Energy - Solar Power Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 7/1/2006 State Colorado Program Type Performance-Based Incentive Rebate Amount Systems up to 10 kW: $0.1267/kWh (only for first 5 kW) Systems larger than 10 kW up to 100 kW: $0.16/kWh Provider Black Hills Energy Black Hills Energy has a performance-based incentive (PBI) for photovoltaic (PV) systems up to 100 kilowatts (kW) in capacity. In exchange for these incentives, Black Hills Energy earns the right to the renewable energy credits (RECs) associated with the PV-generated electricity for a period of

166

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

167

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

168

DOE Settles Elk Hills Equity Claims | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Settles Elk Hills Equity Claims Settles Elk Hills Equity Claims DOE Settles Elk Hills Equity Claims April 22, 2011 - 4:58pm Addthis The Department of Energy announced today that it has settled a longstanding dispute over equity rights to the Naval Petroleum Reserve-1 (commonly referred to as "Elk Hills") located in Bakersfield, California. Under the agreement, Chevron U.S.A., Inc. has agreed to pay $108 million to the United States to resolve all outstanding equity claims. From World War II to 1998, the United States and Chevron (along with its predecessor Standard Oil of California) operated their respective interests in the Elk Hills oil field as a single unit. The Department sold its interest in Elk Hills in 1998. However, an agreement between Chevron and the Department allowed for equity interests in the field to be redetermined

169

Hot dry rock geothermal energy development program. Annual report, fiscal year 1980  

DOE Green Energy (OSTI)

Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

Cremer, G.M. (comp.)

1981-07-01T23:59:59.000Z

170

Preliminary geological and geophysical evaluation of the Castle Dome HDR geothermal prospect, Southwestern Arizona  

DOE Green Energy (OSTI)

The Castle Dome HDR geothermal prospect is located in Yuma County, Arizona, in a region centered about 80 km north of Yuma along US Rte. 95. The area of interest is broadly defined by a negative residual Bouguer gravity anomaly which is about 45 km across, steep-sided in many places, and as much as 30 mgals in magnitude. The geology of this Basin and Range area is poorly known, but the few published reports and current Los Alamos Scientific Laboratory (LASL) field studies indicate that the Castle Dome Mountains and adjacent ranges are chiefly a thick pile of welded ash-flow tuffs of probable mid-Tertiary age. The tuffs rest unconformably on Mesozoic metasedimentary rocks exposed only outside steep edges of the gravity low. This gravity anomaly may reflect the presence of a large caldera. A regional magnetotelluric study now in progress will define the depths to electrical conductors within the crust and upper mantle and contribute to understanding of crustal structure, the gravity anomaly, and the Hot Dry Rock (HDR) geothermal potential of the Castle Dome area.

Gutmann, J.T.; Aiken, C.L.V.; Ander, M.E.; Laney, R.T.

1980-01-01T23:59:59.000Z

171

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

172

Black Hills Energy (Gas) - Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Commercial Energy Efficiency Program Black Hills Energy (Gas) - Commercial Energy Efficiency Program Black Hills Energy (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate General: Contact Black Hills Energy; Rebates over $10,000 must be pre-approved Ceiling/Wall Insulation: $10,000 Infiltration Control: $1,500 Energy Evaluations: $1500 Custom: 50% of incremental cost Program Info Start Date 7/1/2010 State Colorado Program Type Utility Rebate Program

173

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

174

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ­ February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

175

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

176

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

177

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

178

Bunker Hill, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Bunker Hill, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

179

Town of Chapel Hill - Land-Use Management Ordinance | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land-Use Management Ordinance Town of Chapel Hill - Land-Use Management Ordinance Eligibility Residential Savings For Solar Buying & Making Electricity Heating & Cooling Commercial...

180

Green Hill, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Hill, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

182

Black Hills Energy (Gas)- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

183

Town of Chapel Hill - Worthwhile Investments Save Energy (WISE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners can choose from a list of pre-qualified contractors who will conduct energy...

184

Blue Hill Investment Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Investment Partners LLC Jump to: navigation, search Name Blue Hill Investment Partners LLC Place Philadelphia, Pennsylvania Zip PA 19118 Sector Renewable Energy Product A...

185

The Texas Hill Country and the looming water crisis.  

E-Print Network (OSTI)

??This report examines the cultural and economic growth of the Texas Hill Country resulting from the construction of the Highland Lake chain. It compares the (more)

Brah, Bryan Lewis

2011-01-01T23:59:59.000Z

186

Blue Hill Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Logo: Blue Hill Partners LLC Name Blue Hill Partners LLC Address 40 W. Evergreen Ave. Place Philadelphia, Pennsylvania Zip 19118 Region Northeast - NY NJ CT PA Area Product Invests equity capital in venture-stage companies in the advanced industrial technology sector Phone number (215) 247-2400 Website http://www.bluehillpartners.co Coordinates 40.075493°, -75.208266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.075493,"lon":-75.208266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Hot dry rock geothermal energy in the USA: Moving toward practical use  

DOE Green Energy (OSTI)

The technology for extracting geothermal energy from the vast hot dry rock (HDR) geothermal resource has been under development by the Los Alamos National Laboratory for about 25 years. In 1992--1993, an extensive flow-testing program was conducted at the Fenton Hill, New Mexico HDR Test Facility. During two segments of this test energy was produced at a rate of 4 thermal megawatts on a continuous basis for periods of 112 and 65 days, respectively. Surface and logging measurements showed no decline in the temperature of the water produced from the HDR reservoir during the flow testing. In fact, tracer evidence indicated that the circulating water was continually gaining access to additional hot rock as the testing proceeded. Water consumption was low and all other test data were positive. The encouraging results of the flow testing at Fenton Hill provided the incentive for the United States Department of Energy (USDOE) to solicit the interest of private industry in a jointly funded program to construct and operate a facility that would produce and sell energy derived from HDR resources. A number of organizations responded positively. On the basis of the interest expressed in these responses, the USDOE subsequently authorized the issuance of a formal solicitation to initiate the project.

Duchane, D.

1995-12-31T23:59:59.000Z

188

Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993  

DOE Green Energy (OSTI)

Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

Salazar, J.; Brown, M. [eds.

1995-03-01T23:59:59.000Z

189

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

190

McGuiness Hills Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McGuiness Hills Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

191

DOE - Office of Legacy Management -- ANC Gas Hills Site - 040  

NLE Websites -- All DOE Office Websites (Extended Search)

ANC Gas Hills Site - 040 ANC Gas Hills Site - 040 FUSRAP Considered Sites Site: ANC Gas Hills Site (040) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The ANC Gas Hills site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Gas Hills, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of Energy¿s

192

Town of Chapel Hill - Energy Conservation Requirements for Town Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Town of Chapel Hill - Energy Conservation Requirements for Town Town of Chapel Hill - Energy Conservation Requirements for Town Buildings Town of Chapel Hill - Energy Conservation Requirements for Town Buildings < Back Eligibility Construction Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Water Heating Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Town of Chapel Hill The Town of Chapel Hill's energy-conservation ordinance requires that all town-owned buildings be designed to achieve a goal of achieving a Silver level certification as defined by the Green Building Council's Leadership in Energy and Environmental Design (LEED) program.

193

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills  

Open Energy Info (EERE)

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Details Activities (0) Areas (0) Regions (0) Abstract: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow from the Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the

194

Prospects for the commercial development of hot dry rock geothermal energy in New Mexico  

DOE Green Energy (OSTI)

A vast store of energy is available to the world in the form of hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The Los Alamos National Laboratory has developed technology to mine the heat from HDR by using techniques developed in the petroleum industry. In practice, an artificial reservoir is created in the hot rock and water is circulated through the reservoir to extract the thermal energy and bring it to the surface. There are virtually no adverse environmental effects from an HDR plant when the system is operated in a closed-loop mode with the process water continually recirculated. An experimental plant at Fenton Hill, NM is now undergoing long-term testing to demonstrate that energy can be obtained from HDR on a sustained basis with operational procedures which are readily adaptable to industry. Significant HDR resources exist in the state of New Mexico. Resources in the Valles Caldera, Zuni Uplift, and Rio Grande Rift have been evaluated in detail. Studies indicate that it should be possible to economically develop high grade HDR resources with technology available today. As advanced concepts for developing and operating HDR systems are investigated, even more widespread utilization of the technology will be commercially feasible.

Duchane, D.V.; Goff, F.

1992-01-01T23:59:59.000Z

195

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary...

196

Joint Cross Well and Single Well Seismic Studies at Lost Hills, California  

E-Print Network (OSTI)

were con- ducted in a diatomite reservoir to monitor theWater Saturation in Diatomite using Wireline Logs, Losttechniques. Lost Hills Diatomite The reservoir at Lost Hills

Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

2002-01-01T23:59:59.000Z

197

Rolling Hills Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Electric Coop Jump to: navigation, search Name Rolling Hills Electric Coop Place Kansas Utility Id 16267 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Heat Pump Rider(single Phase) Residential Irrigation (I-10) Commercial Irrigation - Load Control (I-LC-10) Commercial Irrigation -Voluntary Load Management (I-VLM-10) Commercial Large Power (LP-10) Three phase for a demand of not less than 200 kW. Commercial Off Peak (OP-10), Three phase services >15kW Primary Power Service (PP-10) Commercial

198

High level seismic/vibrational tests at the HDR: An overview  

SciTech Connect

As part of the Phase II testing at the HDR Test Facility in Kahl/Main, FRG, two series of high-level seismic/vibrational experiments were performed. In the first of these (SHAG) a coast-down shaker, mounted on the reactor operating floor and capable of generating 1000 tonnes of force, was used to investigate full-scale structural response, soil-structure interaction (SSI), and piping/equipment response at load levels equivalent to those of a design basis earthquake. The HDR soil/structure system was tested to incipient failure exhibiting highly nonlinear response. In the load transmission from structure to piping/equipment significant response amplifications and shifts to higher frequencies occurred. The performance of various pipe support configurations was evaluated. This latter effort was continued in the second series of tests (SHAM), in which an in-plant piping system was investigated at simulated seismic loads (generated by two servo-hydraulic actuators each capable of generating 40 tonnes of force), that exceeded design levels manifold and resulted in considerable pipe plastification and failure of some supports (snubbers). The evaluation of six different support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is essential to limiting pipe stresses. Pipe strains at loads exceeding the design level eightfold were still tolerable, indicating that pipe failure even under extreme seismic loads is unlikely inspite of multiple support failures. Conservatively, an excess capacity (margin) of at least four was estimated for the piping system, and the pipe damping was found to be 4%. Comparisons of linear and nonlinear computational results with measurements showed that analytical predictions have wide scatter and do not necessarily yield conservative responses, underpredicting, in particular, peak support forces.

Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J. (Argonne National Lab., IL (United States)); Schrammel, D.; Malcher, L. (Kernforschungszentrum Karlsruhe GmbH (Germany)); Steinhilber, H. (Fachhochschule Giessen-Friedberg, Giessen (Germany)); Costello, J.F. (Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research)

1991-01-01T23:59:59.000Z

199

High level seismic/vibrational tests at the HDR: An overview  

Science Conference Proceedings (OSTI)

As part of the Phase II testing at the HDR Test Facility in Kahl/Main, FRG, two series of high-level seismic/vibrational experiments were performed. In the first of these (SHAG) a coast-down shaker, mounted on the reactor operating floor and capable of generating 1000 tonnes of force, was used to investigate full-scale structural response, soil-structure interaction (SSI), and piping/equipment response at load levels equivalent to those of a design basis earthquake. The HDR soil/structure system was tested to incipient failure exhibiting highly nonlinear response. In the load transmission from structure to piping/equipment significant response amplifications and shifts to higher frequencies occurred. The performance of various pipe support configurations was evaluated. This latter effort was continued in the second series of tests (SHAM), in which an in-plant piping system was investigated at simulated seismic loads (generated by two servo-hydraulic actuators each capable of generating 40 tonnes of force), that exceeded design levels manifold and resulted in considerable pipe plastification and failure of some supports (snubbers). The evaluation of six different support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is essential to limiting pipe stresses. Pipe strains at loads exceeding the design level eightfold were still tolerable, indicating that pipe failure even under extreme seismic loads is unlikely inspite of multiple support failures. Conservatively, an excess capacity (margin) of at least four was estimated for the piping system, and the pipe damping was found to be 4%. Comparisons of linear and nonlinear computational results with measurements showed that analytical predictions have wide scatter and do not necessarily yield conservative responses, underpredicting, in particular, peak support forces.

Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J. [Argonne National Lab., IL (United States); Schrammel, D.; Malcher, L. [Kernforschungszentrum Karlsruhe GmbH (Germany); Steinhilber, H. [Fachhochschule Giessen-Friedberg, Giessen (Germany); Costello, J.F. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1991-12-31T23:59:59.000Z

200

Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems  

SciTech Connect

Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

Seol, Yongkoo; Javandel, Iraj

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Water Heating Maximum Rebate Insulation: $750 Weather-Stripping and Caulking: $200 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Evaluation: Free Clothes Washers: $100 Dishwashers: $20 Replacement Furnaces: $250 - $400 Replacement Boilers: $150 or $400 Duct Repair/Sealing: $200 Duct Insulation (R-8): $150 Insulation/Weather-Stripping/Caulking: 70% of project cost

202

Candidate Sites For Future Hot Dry Rock Development In The United States |  

Open Energy Info (EERE)

Candidate Sites For Future Hot Dry Rock Development In The United States Candidate Sites For Future Hot Dry Rock Development In The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Candidate Sites For Future Hot Dry Rock Development In The United States Details Activities (8) Areas (4) Regions (0) Abstract: Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is categorized according to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are

203

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes

204

Settlers Hill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Settlers Hill Gas Recovery Biomass Facility Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Whitewater Hill Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Whitewater Hill Wind Farm I Whitewater Hill Wind Farm I Jump to: navigation, search Name Whitewater Hill Wind Farm I Facility Whitewater Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Cannon Power Corp. Energy Purchaser L.A. Department of Water Resources Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Davidson Hill Venturi DHV Turbine MHK Technologies/Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile Primary Organization Tidal Energy Pty Ltd Project(s) where this technology is utilized *MHK Projects/QSEIF Grant Sea Testing *MHK Projects/Stradbroke Island *MHK Projects/Tidal Energy Project Portugal Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Davidson Hill Venturi DHV Turbine is a horizontal axis turbine that utilizes a Venturi structure in front of the intake The device can be mounted on the seabed or can float slack moored in a tidal stream

207

Puente Hills Energy Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Puente Hills Energy Recovery Biomass Facility Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Edom Hills (repower) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Edom Hills (repower) Wind Farm Edom Hills (repower) Wind Farm Jump to: navigation, search Name Edom Hills (repower) Wind Farm Facility Edom Hills (repower) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative Energy Developer BP Alternative Energy Energy Purchaser Southern California Edison Co Location CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

City of Olive Hill, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Olive Hill, Kentucky (Utility Company) Olive Hill, Kentucky (Utility Company) Jump to: navigation, search Name Olive Hill City of Place Kentucky Utility Id 14103 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential Average Rates Residential: $0.0920/kWh Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Olive_Hill,_Kentucky_(Utility_Company)&oldid=410054

210

Golden Hills Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Hills Solar Power Plant Hills Solar Power Plant Jump to: navigation, search Name Golden Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Clean Cities: Triangle Clean Cities (Raleigh, Durham, Chapel Hill)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Triangle Clean Cities (Raleigh, Durham, Chapel Hill) Coalition Triangle Clean Cities (Raleigh, Durham, Chapel Hill) Coalition The Triangle Clean Cities (Raleigh, Durham, Chapel Hill) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Triangle Clean Cities (Raleigh, Durham, Chapel Hill) coalition Contact Information Lacey Jane Wolfe 919-558-2705 lacey@tjcog.org Coalition Website Clean Cities Coordinator Lacey Jane Wolfe Photo of Lacey Jane Wolfe Lacey Jane Wolfe began her work with Triangle Clean Cities Coalition in September 2009. She serves as the Energy and Environment Program Specialist at Triangle J Council of Governments. Her responsibilities include reporting for the Carolina Blue Skies and Green Jobs Initiative, directing the Turn Off Your Engine Campaign (idle reduction at public schools),

212

Energy Innovation Hub Directors Visit the Hill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Innovation Hub Directors Visit the Hill Energy Innovation Hub Directors Visit the Hill Energy Innovation Hub Directors Visit the Hill April 24, 2013 - 5:39pm Addthis Rep. Chaka Fattah (D-PA) and Acting Secretary of Energy Daniel Poneman speak during an event on Capitol Hill featuring the directors of the five energy innovation hubs. | Energy Department video. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What is an Energy Innovation Hub? Modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, the Energy Innovation Hubs are integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Yesterday, the directors of the Energy Department's Energy Innovation Hubs

213

Case Study - Hill Air Force Base, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hill Air Force Base, Utah Hill Air Force Base, Utah Case Study - Hill Air Force Base, Utah October 7, 2013 - 2:00pm Addthis Overview Energy savings performance contracting at Hill Air Force Base generated much interest during a recent training session on energy management that downlinked 12 Department of Defense sites. Energy systems in 940 buildings on the Base will be upgraded under an 18-year ESPC between the Government and the energy service company, CES/Way. Improvements are distributed over five task orders that will be completed in five years, with CES/Way providing $2.5 million in up-front costs for the first two task orders. Utah Power & Light will provide $8 million in rebates to help cover the contractor's initial investment, maintenance services, and interest costs.

214

Black Hills Power, Inc. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Black Hills Power, Inc. Smart Grid Project Black Hills Power, Inc. Smart Grid Project Jump to: navigation, search Project Lead Black Hills Power, Inc. Country United States Headquarters Location Rapid City, South Dakota Additional Benefit Places North Dakota, Minnesota Recovery Act Funding $9.576,628 Total Project Value $19,153,256 Coverage Area Coverage Map: Black Hills Power, Inc. Smart Grid Project Coordinates 44.0805434°, -103.2310149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

215

Smoky Hills II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Smoky Hills II Wind Farm Smoky Hills II Wind Farm Jump to: navigation, search Name Smoky Hills II Wind Farm Facility Smoky Hills II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel North America Developer TradeWind Energy Location Lincoln County KS Coordinates 38.886777°, -98.178906° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.886777,"lon":-98.178906,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Mars Hill (2006) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mars Hill (2006) Wind Farm Mars Hill (2006) Wind Farm Jump to: navigation, search Name Mars Hill (2006) Wind Farm Facility Mars Hill (2006) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind Partners Developer UPC Wind Partners Energy Purchaser Confidential Location Aroostook county ME Coordinates 46.551388°, -67.808333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.551388,"lon":-67.808333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Energy Innovation Hub Directors Visit the Hill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Directors Visit the Hill Directors Visit the Hill Energy Innovation Hub Directors Visit the Hill April 24, 2013 - 5:39pm Addthis Rep. Chaka Fattah (D-PA) and Acting Secretary of Energy Daniel Poneman speak during an event on Capitol Hill featuring the directors of the five energy innovation hubs. | Energy Department video. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What is an Energy Innovation Hub? Modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, the Energy Innovation Hubs are integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Yesterday, the directors of the Energy Department's Energy Innovation Hubs

219

CH2M HILL Plateau Remediation Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

220

Flint Hills Rural E C A, Inc | Open Energy Information  

Open Energy Info (EERE)

Flint Hills Rural E C A, Inc Place Kansas Utility Id 6431 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File...

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coupled Model Simulation of Snowfall Events over the Black Hills  

Science Conference Proceedings (OSTI)

Numerical simulations of two snowfall events over the Black Hills of South Dakota are made to demonstrate the use and potential of a coupled atmospheric and land surface model. The Coupled AtmosphericHydrologic Model System was used to simulate ...

J. Wang; M. R. Hjelmfelt; W. J. Capehart; R. D. Farley

2003-06-01T23:59:59.000Z

222

Steamboat Hills exploratory slimhole: Drilling and testing  

DOE Green Energy (OSTI)

During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

1994-10-01T23:59:59.000Z

223

SHAM: High-level seismic tests of piping at the HDR  

Science Conference Proceedings (OSTI)

As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) in-plant piping system with two servohydraulic actuators, each capable of generating 40 tons of force. The purpose of these experiments was to study the behavior of piping subjected to seismic excitation levels that exceed design levels manifold and may result in failure/plastification of pipe supports and pipe elements, and to establish seismic margins for piping and pipe supports. The performance of six different dynamic pipe support systems was compared in these tests and the response, operability, and fragility of dynamic supports and of a typical US gate valve were investigated. Data obtained in the tests are used to validate analysis methods. Very preliminary evaluations lead to the observation that, in general, failures of dynamic supports (in particular snubbers) occur only at load levels that substantially exceed the design capacity. Pipe strains at load levels exceeding the design level threefold are quite small, and even when exceeding the design level eightfold are quite tolerable. Hence, under seismic loading, even at extreme levels and in spite of multiple support failures, pipe failure is unlikely. 5 refs., 16 figs.

Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Malcher, L.; Schrammel, D.; Steinhilber, H.; Costello, J.F.

1988-01-01T23:59:59.000Z

224

High-level seismic tests of piping at the HDR (Heissdampfreaktor)  

Science Conference Proceedings (OSTI)

As part of the second-phase testing at the Heissdampfreaktor (HDR) Test Facility in Kahl/Main, Federal Republic of Germany (FRG), high-level seismic experiments, designated SHAM, were performed on an in-plant piping system during the period of 19 April to 27 May 1988. The objectives of the SHAM experiments were to (1) study the response of piping subjected to seismic excitation levels that exceed design levels manifold and which may result in failure/plastification of pipe supports and pipe elements; (2) provide data for the validation of linear and nonlinear pipe response analyses; (3) compare and evaluate, under identical loading conditions, the performance of various dynamic support system, ranging from very flexible to very stiff support configurations; (4) establish seismic margins for piping, dynamic pipe supports, and pipe anchorages; and (5) investigate the response, operability, and fragility of dynamic supports and of a typical US gate valve under extreme levels of seismic excitation. A brief description of the SHAM tests is provided, followed by highlights of the test results that are given primarily in the form of maximum response values. Also presented are very limited comparisons of experimental data and pretest analytical predictions. 6 refs., 8 figs.

Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

1989-01-01T23:59:59.000Z

225

Consent Order, Kaiser-Hill Company, LLC - EA 98-03 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kaiser-Hill Company, LLC - EA 98-03 Kaiser-Hill Company, LLC - EA 98-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 April 14, 1998 Price-Anderson Enforcement Consent Order issued to Kaiser-Hill Company, LLC related to three Radiological Events at the Rocky Flats Environmental Technology Site, (EA 98-03) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances presented to DOE by Kaiser-Hill Company, L.L.C.'s(Kaiser-Hill) internal investigation reports of three events that occurred at the Rocky Flats EnvironmentalTechnology Site between January 1996 and January 1998. Consent Order, Kaiser-Hill Company, LLC - EA 98-03 More Documents & Publications Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required

226

Consent Order, Kaiser-Hill Company, LLC - EA 98-03 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 April 14, 1998 Price-Anderson Enforcement Consent Order issued to Kaiser-Hill Company, LLC related to three Radiological Events at the Rocky Flats Environmental Technology Site, (EA 98-03) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances presented to DOE by Kaiser-Hill Company, L.L.C.'s(Kaiser-Hill) internal investigation reports of three events that occurred at the Rocky Flats EnvironmentalTechnology Site between January 1996 and January 1998. Consent Order, Kaiser-Hill Company, LLC - EA 98-03 More Documents & Publications Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required

227

Quantum theory of rotational isomerism and Hill equation  

SciTech Connect

The process of rotational isomerism of linear triatomic molecules is described by the potential with two different-depth minima and one barrier between them. The corresponding quantum-mechanical equation is represented in the form that is a special case of the Hill equation. It is shown that the Hill-Schroedinger equation has a Klein's quadratic group symmetry which, in its turn, contains three invariant subgroups. The presence of these subgroups makes it possible to create a picture of energy spectrum which depends on a parameter and has many merging and branch points. The parameter-dependent energy spectrum of the Hill-Schroedinger equation, like Mathieu-characteristics, contains branch points from the left and from the right of the demarcation line. However, compared to the Mathieu-characteristics, in the Hill-Schroedinger equation spectrum the 'right' points are moved away even further for some distance that is the bigger, the bigger is the less deep well. The asymptotic wave functions of the Hill-Schroedinger equation for the energy values near the potential minimum contain two isolated sharp peaks indicating a possibility of the presence of two stable isomers. At high energy values near the potential maximum, the height of two peaks decreases, and between them there appear chaotic oscillations. This form of the wave functions corresponds to the process of isomerization.

Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.; Abramishvili, R. [I. Javakhishvili Tbilisi State University, 3, I. Chavchavadze Avenue, 0179 Tbilisi (Georgia); Chotorlishvili, L. [Institut fuer Physik, Martin-Luther Universitat Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120 Halle (Germany)

2012-06-15T23:59:59.000Z

228

City of Hill City, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hill City Hill City Place Kansas Utility Id 8599 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Residential Service Residential Average Rates Residential: $0.1260/kWh Commercial: $0.1190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Hill_City,_Kansas_(Utility_Company)&oldid=409730

229

Black Hills Energy (Electric) - Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Electric) - Commercial Energy Efficiency Black Hills Energy (Electric) - Commercial Energy Efficiency Program Black Hills Energy (Electric) - Commercial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate All Incentives: 50% of equipment and labor cost Custom: 50% of the incremental cost Program Info Start Date 7/1/2010 Expiration Date 12/31/2013 State Colorado Program Type Utility Rebate Program Rebate Amount T8/T5 Fluorescent Fixtures: $4-$18/system High-Bay Fluorescent Fixtures: $40-$125/fixture

230

City of Rock Hill, South Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Rock Hill, South Carolina (Utility Company) Rock Hill, South Carolina (Utility Company) Jump to: navigation, search Name City of Rock Hill Place South Carolina Utility Id 16195 Utility Location Yes Ownership M NERC Location SERC Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 175 Watt HPS lighting Lighting Economic Development Rate (Schedule EDR -1) Commercial Economic Development Rate (Schedule EDR -2) Industrial Flood Lighting Rate 1000 Watt HPS Lighting Flood Lighting Rate 400 Watt HPS Lighting General Service/ Non Demand (Schedule GS) Commercial General Service/Demand (Schedule GD) Industrial

231

Auburn Hills, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Auburn Hills, Michigan: Energy Resources Auburn Hills, Michigan: Energy Resources (Redirected from Auburn Hills, MI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6875323°, -83.2341028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6875323,"lon":-83.2341028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

El Centro/Superstition Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Centro/Superstition Hills Geothermal Project Centro/Superstition Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: El Centro/Superstition Hills Geothermal Project Project Location Information Coordinates 33.020833333333°, -115.81305555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.020833333333,"lon":-115.81305555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

McGinness Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

McGinness Hills Geothermal Project McGinness Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: McGinness Hills Geothermal Project Project Location Information Coordinates 39.493055555556°, -117.06638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.493055555556,"lon":-117.06638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Rochester Hills, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, Michigan: Energy Resources Hills, Michigan: Energy Resources (Redirected from Rochester Hills, MI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6583661°, -83.1499322° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6583661,"lon":-83.1499322,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Southern Minnesota Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Southern Minnesota Hills Wind Farm Southern Minnesota Hills Wind Farm Facility Southern Minnesota Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Northern Alternative Energy Developer Northern Alternative Energy Energy Purchaser Southern Minnesota Municipal Power Agency Location Fairmont MN Coordinates 43.571537°, -94.449473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.571537,"lon":-94.449473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Laguna Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laguna Hills, California: Energy Resources Laguna Hills, California: Energy Resources (Redirected from Laguna Hills, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.599767°, -117.710878° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.599767,"lon":-117.710878,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)  

DOE Green Energy (OSTI)

This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

Not Available

2009-06-01T23:59:59.000Z

238

Black Hills Energy (Electric) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Residential Energy Efficiency Electric) - Residential Energy Efficiency Program Black Hills Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Attic Insulation: $500 Wall Insulation: $500 Air Sealing: $300 Program Info Start Date 7/1/2010 Expiration Date 12/31/2013 State Colorado Program Type Utility Rebate Program Rebate Amount Energy Star New Home: Contact Black Hills Energy Air-Source Heat Pump Split System: $400 Central A/C: $500-$700 Ground Source Heat Pumps: $1,200

239

Analysis of Subsidence Data for the Big Hill Site, Texas  

Science Conference Proceedings (OSTI)

The elevation change data measured at the Big Hill SPR site over the last 10 years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Big Hill is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

Bauer, Stephen J.

1999-06-01T23:59:59.000Z

240

DOE Selects CH2M Hill Plateau Remediation Company for Plateau...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its...

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation of Eastern Redcedar Infestations in theNorthern Kansas Flint Hills  

E-Print Network (OSTI)

Evaluation of Eastern Redcedar Infestations in theNorthern Kansas Flint Hills CLENTON E. OWENSBY than on loamy upland. The study area was in the True Prairie of northeast Kansas Flint Hills near Man

Owensby, Clenton E.

242

Reseeding "Go-Back" Land in The Flint Hills of Kansas'  

E-Print Network (OSTI)

224 Reseeding "Go-Back" Land in The Flint Hills of Kansas' CLENTON E. OWENSBY AND KLING L. ANDERSON in the Kansas Flint Hills, once cultivated, is now being allowed to "go-back" to grassland. Such areas have

Owensby, Clenton E.

243

Enforcement Letter, CH2M Hill Mound, Inc - December 22, 2004...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter, CH2M Hill Mound, Inc - December 22, 2004 December 22, 2004 Issued to CH2M Hill Mound, Inc. related to a Radioactive Contamination Event during Remediation Activities at...

244

Town of Chapel Hill- Worthwhile Investments Save Energy (WISE) Homes and Buildings Program  

Energy.gov (U.S. Department of Energy (DOE))

Chapel Hill is using money made available to it from the American Recovery and Reinvestment Act of 2009 to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners...

245

Federal Energy Management Program: Case Study - Hill Air Force Base, Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study - Hill Case Study - Hill Air Force Base, Utah to someone by E-mail Share Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Facebook Tweet about Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Twitter Bookmark Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Google Bookmark Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Delicious Rank Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Digg Find More places to share Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on AddThis.com... Energy Savings Performance Contracts Assistance & Contacts Resources Laws & Regulations Energy Service Companies Awarded Projects

246

Special Report Order, Issued to CH2M Hill Hanford Group, Inc.- October 22, 2001  

Energy.gov (U.S. Department of Energy (DOE))

Issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site

247

Loess Hills Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Loess Hills Wind Energy Center Loess Hills Wind Energy Center Jump to: navigation, search Name Loess Hills Wind Energy Center Facility Loess Hills Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group/John Deere Capital Developer Wind Capital Group/John Deere Capital Energy Purchaser Missouri Joint Municipal Electric Utility Commission Location Rock Port MO Coordinates 40.410864°, -95.514861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.410864,"lon":-95.514861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Moulton Chandler Hills Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Moulton Chandler Hills Wind Farm Phase II Moulton Chandler Hills Wind Farm Phase II Jump to: navigation, search Name Moulton Chandler Hills Wind Farm Phase II Facility Moulton Chandler Hills Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Great River Energy Developer EnXco Energy Purchaser Great River Energy Location Near Chandler MN Coordinates 43.9189°, -95.9557° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9189,"lon":-95.9557,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Whitewater Hill Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Whitewater Hill Wind Farm II Whitewater Hill Wind Farm II Jump to: navigation, search Name Whitewater Hill Wind Farm II Facility Whitewater Hill Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Cannon Power Corp. Developer Cannon Power Corp. Energy Purchaser Los Angeles Department of Water Resources/SDG&E Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Effects of Range Burning on Kansas Flint Hills Soil  

E-Print Network (OSTI)

Effects of Range Burning on Kansas Flint Hills Soil CLENTON E. OWENSBY AND JOHN BRUCE WYRILL, III Highlight: Two tallgrass prairie areas burned annually for 20 (grazed) nnd 48 (un. grazed) years ar-spring burned ungrared plots were generally higher in soil pH, organic ma~fer, and K than late-spring burned

Owensby, Clenton E.

251

Dutch Hill/Cohocton Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dutch Hill/Cohocton Wind Farm Dutch Hill/Cohocton Wind Farm Jump to: navigation, search Name Dutch Hill/Cohocton Wind Farm Facility Dutch Hill/Cohocton Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Market Location Steuben County NY Coordinates 42.52342°, -77.500303° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.52342,"lon":-77.500303,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,  

E-Print Network (OSTI)

Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

Mcdonough, William F.

253

Yield ResponsZs to Time of Burning in the Kansas Flint Hills1  

E-Print Network (OSTI)

Yield ResponsZs to Time of Burning in the Kansas Flint Hills1 CLENTON E. OWENSBY and KLING L Agricultural Experiment Station, Manhattan. Grazing managem,ent in the Kansas Flint Hills has tradition- ally, about 58 inches annually in central Louisiana and about 32 inches in the Flint Hills. Mc

Owensby, Clenton E.

254

Particle Size Changes in Rumens of Cattle Grazing Kansas Flint Hills Range  

E-Print Network (OSTI)

Particle Size Changes in Rumens of Cattle Grazing Kansas Flint Hills Range J.R. FORWOOD, C.E. OWENSBY, AND G. TOWNE Abstract A ruminally fistulated Hereford steer and heifer grazing Kansas Flint Hills particle size changes in rumens of cattle grazing native Kansas Flint Hills range forage. Materials

Owensby, Clenton E.

255

Intensive-Early Stocking and Season-Long Stocking of Kansas Flint Hills Range  

E-Print Network (OSTI)

Intensive-Early Stocking and Season-Long Stocking of Kansas Flint Hills Range ED F. SMITH AND CLENTON E. OWENSBY Highlight: Native Flint Hills bluestem range was stocked at twice the normal rate, 1 gains during the latter half of the growing season on Kansas Flint Hills range are barely one-half those

Owensby, Clenton E.

256

Stocking rate effects on intensive-early stocked Flint Hills bluestem range  

E-Print Network (OSTI)

Stocking rate effects on intensive-early stocked Flint Hills bluestem range CLENTON E. OWENSBY, ROBERT COCHRAN, AND ED F. SMITH Stocking rate effects on intensive-early stocked Kansas Flint Hills range- lands is limited to the first 2 1/ 2 months of the growing season in the Kansas Flint Hills. Grazing

Owensby, Clenton E.

257

Los Alamos hot-dry-rock project: recent results  

DOE Green Energy (OSTI)

A new deeper reservoir is presently being investigated at the Laboratory's Fenton Hill Hot Dry Rock (HDR) site. The region surrounding the lower of two inclined boreholes, directionally-drilled to about 4 km in hot crystalline rock, has been pressurized in a sequence of injection tests. Based primarily on the measurements made by two close-in microseismic detectors, two similar volumetric reservoir regions have been developed by massive hydraulic fracturing, but with no significant hydraulic communication with the upper borehole as yet.

Brown, D.W.

1982-01-01T23:59:59.000Z

258

Some approaches to rock mass hydrofracture theory  

Science Conference Proceedings (OSTI)

A new engineering method has been developed at the Leningrad Mining Institute for defining hot dry rock hydrofracturing parameters. It reflects the structural features of a real jointed rock mass, its gravity-tectonic components of the stress tensor and volume character of deformations, taking into account the inertial effects of hydrodynamics in the non-Darcy zone of radial fluid flow near the injection well, and conversion of the heat energy extracted from hot rock by circulating water partly into filtration-flow additional pressure. Results of calculations are compared to field experiments at Fenton Hill, NM, and are used for the first HDR circulation systems in the USSR.

Dyadkin, Yuri, D.

1991-01-01T23:59:59.000Z

259

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-09-01T23:59:59.000Z

260

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M Hill Hanford Group, Inc. - EA-2000-09 M Hill Hanford Group, Inc. - EA-2000-09 Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 July 25, 2000 Price-Anderson Enforcement Consent Order issued to CH2M Hill Hanford Group, Inc., related to Quality Problems at the Hanford Site Tank Farms, (EA-2000-09) This letter refers to the Department of Energy's (DOE) evaluation of an internal investigation conducted by CH2M Hill Group, Inc. (CHG) in February 2000. The investigation examined the facts and circumstances surrounding quality problems with the procurement of safety class piping for the W-314 Project at the Tank Farm Waste Remediation System. Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 More Documents & Publications Consent Order, Fluor Federal Services - EA-2000-10 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001

262

Hot dry rock: What does it take to make it happen  

DOE Green Energy (OSTI)

The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century.

Duchane, D.V.

1993-06-01T23:59:59.000Z

263

Hot dry rock: What does it take to make it happen  

DOE Green Energy (OSTI)

The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century.

Duchane, D.V.

1993-01-01T23:59:59.000Z

264

Cimarron Hills, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cimarron Hills, Colorado: Energy Resources Cimarron Hills, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8586057°, -104.6988617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8586057,"lon":-104.6988617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Shorewood Hills, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Shorewood Hills, Wisconsin: Energy Resources Shorewood Hills, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0774958°, -89.4456756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0774958,"lon":-89.4456756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Rocky Hill, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Connecticut: Energy Resources Hill, Connecticut: Energy Resources Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Coordinates 41.6648216°, -72.6392587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6648216,"lon":-72.6392587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Crest Hill, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Crest Hill, Illinois: Energy Resources Crest Hill, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.554753°, -88.0986709° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.554753,"lon":-88.0986709,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Beverly Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beverly Hills, California: Energy Resources Beverly Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0736204°, -118.4003563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0736204,"lon":-118.4003563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Society Hill, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, New Jersey: Energy Resources Hill, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5339927°, -74.4579304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5339927,"lon":-74.4579304,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Druid Hills, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Druid Hills, Georgia: Energy Resources Druid Hills, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7803832°, -84.3360359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7803832,"lon":-84.3360359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Chapel Hill, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chapel Hill, North Carolina: Energy Resources Chapel Hill, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9131996°, -79.0558445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9131996,"lon":-79.0558445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Marshfield Hills, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Marshfield Hills, Massachusetts: Energy Resources Marshfield Hills, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1459351°, -70.7397626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1459351,"lon":-70.7397626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Mint Hill, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mint Hill, North Carolina: Energy Resources Mint Hill, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1795892°, -80.6472904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1795892,"lon":-80.6472904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Agoura Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Agoura Hills, California: Energy Resources Agoura Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1363945°, -118.7745348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1363945,"lon":-118.7745348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Mars Hill (2007) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

7) Wind Farm 7) Wind Farm Jump to: navigation, search Name Mars Hill (2007) Wind Farm Facility Mars Hill (2007) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind Partners Developer UPC Wind Partners Energy Purchaser Confidential Location Aroostook county ME Coordinates 46.551388°, -67.808333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.551388,"lon":-67.808333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Cedar Hills, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, Utah: Energy Resources Hills, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4141174°, -111.7585414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4141174,"lon":-111.7585414,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

South San Jose Hills, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Jose Hills, California: Energy Resources Jose Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0127894°, -117.9047845° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0127894,"lon":-117.9047845,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Willoughby Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Willoughby Hills, Ohio: Energy Resources Willoughby Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5983823°, -81.4184471° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5983823,"lon":-81.4184471,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Signal Hill, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Signal Hill, California: Energy Resources Signal Hill, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8044614°, -118.1678456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8044614,"lon":-118.1678456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Moreland Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Moreland Hills, Ohio: Energy Resources Moreland Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4478312°, -81.4276153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4478312,"lon":-81.4276153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Inglewood-Finn Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Inglewood-Finn Hill, Washington: Energy Resources Inglewood-Finn Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7141386°, -122.2402528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7141386,"lon":-122.2402528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

View Park-Windsor Hills, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Park-Windsor Hills, California: Energy Resources Park-Windsor Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9929545°, -118.3491169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9929545,"lon":-118.3491169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Lea Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Washington: Energy Resources Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3262117°, -122.1815078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3262117,"lon":-122.1815078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Pleasant Hill, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, California: Energy Resources Hill, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9479786°, -122.0607963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9479786,"lon":-122.0607963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Clyde Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Washington: Energy Resources Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.6317656°, -122.2179015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6317656,"lon":-122.2179015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Homa Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homa Hills, Wyoming: Energy Resources Homa Hills, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9799661°, -106.3608619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9799661,"lon":-106.3608619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Fountain Hills, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fountain Hills, Arizona: Energy Resources Fountain Hills, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.60535°, -111.741113° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.60535,"lon":-111.741113,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Waite Hill, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waite Hill, Ohio: Energy Resources Waite Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6186592°, -81.3840001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6186592,"lon":-81.3840001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Vine Hill, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, California: Energy Resources Hill, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0085326°, -122.0960753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0085326,"lon":-122.0960753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Gold Hill, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Oregon: Energy Resources Hill, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4317894°, -123.0506035° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4317894,"lon":-123.0506035,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Tara Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, California: Energy Resources Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9935337°, -122.3163591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9935337,"lon":-122.3163591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Hidden Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hidden Hills, California: Energy Resources Hidden Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1602832°, -118.6523096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1602832,"lon":-118.6523096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

North College Hill, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

College Hill, Ohio: Energy Resources College Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2183911°, -84.5507778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2183911,"lon":-84.5507778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Farmington Hills, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Farmington Hills, Michigan: Energy Resources Farmington Hills, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4853125°, -83.3771553° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4853125,"lon":-83.3771553,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Barrington Hills, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, Illinois: Energy Resources Hills, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.13375°, -88.211186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.13375,"lon":-88.211186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Bunker Hill Village, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bunker Hill Village, Texas: Energy Resources Bunker Hill Village, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7674508°, -95.5299427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7674508,"lon":-95.5299427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Fruit Hill, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fruit Hill, Ohio: Energy Resources Fruit Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0756169°, -84.3643835° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0756169,"lon":-84.3643835,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Nichols Hills, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nichols Hills, Oklahoma: Energy Resources Nichols Hills, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5508903°, -97.5489293° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5508903,"lon":-97.5489293,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Black Hills Power Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name Black Hills Power Inc Place Wyoming Utility Id 19545 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0867/kWh Commercial: $0.0948/kWh Industrial: $0.0627/kWh The following table contains monthly sales and revenue data for Black Hills Power Inc (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

300

Turpin Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Turpin Hills, Ohio: Energy Resources Turpin Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1100606°, -84.3799397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1100606,"lon":-84.3799397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Raleigh Hills, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Raleigh Hills, Oregon: Energy Resources Raleigh Hills, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4806734°, -122.7620422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4806734,"lon":-122.7620422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Country Club Hills, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Club Hills, Illinois: Energy Resources Club Hills, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5680898°, -87.7203257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5680898,"lon":-87.7203257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

The Village of Indian Hill, Ohio: Energy Resources | Open Energy  

Open Energy Info (EERE)

Indian Hill, Ohio: Energy Resources Indian Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.180136°, -84.347958° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.180136,"lon":-84.347958,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Kirtland Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kirtland Hills, Ohio: Energy Resources Kirtland Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6239365°, -81.3070506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6239365,"lon":-81.3070506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Wesley Hills, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wesley Hills, New York: Energy Resources Wesley Hills, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1592618°, -74.0698645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1592618,"lon":-74.0698645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

McGraw-Hill dictionary of science and engineering  

Science Conference Proceedings (OSTI)

This dictionary contains over 35,000 terms representing more than 100 fields of science and engineering. It was derived from the comprehensive McGraw-Hill Dictionary of Scientific and Technical terms (Third Edition, 1984). Since it is much smaller and less than half the price of the comprehensive reference, it is suitable for personal collections of students, teachers, writers, and general readers. It provides definitions not available in standard dictionaries.

Parker, S.P.

1984-01-01T23:59:59.000Z

307

Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).  

Science Conference Proceedings (OSTI)

3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Sobolik, Steven Ronald (Sandia National Laboratories, Albuquerque, NM); Lee, Moo Yul (Sandia National Laboratories, Albuquerque, NM)

2005-07-01T23:59:59.000Z

308

Black Hills Power Inc (Montana) | Open Energy Information  

Open Energy Info (EERE)

Black Hills Power Inc Black Hills Power Inc Place Montana Utility Id 19545 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0851/kWh Commercial: $0.0941/kWh Industrial: $0.0496/kWh The following table contains monthly sales and revenue data for Black Hills Power Inc (Montana). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 0.727 9.649 13 1.313 12.983 20 129.126 2,874.645 1 131.166 2,897.277 34

309

The European HDR project at Soultz sous forets: Stimulation of the second deep well and first circulation experiments  

Science Conference Proceedings (OSTI)

By February 1995 the European HDR project at Soultz was operating 6 boreholes: 2 deep hydraulic test wells (GPK-1, 3590 m & GPK-2, 3876 m) and 4 seismic observation wells with depths between 1500 and 2200 m. In 1993 the first section of a deep underground exchanger had been created through massive stimulation (injection of some 45000 m of water). Between November 1994 until January 1995 a second deep well, GPK-2, was drilled at the periphery of this exchanger. A complex test programme involving the stimulation of GPK-2 (connecting it to the existing exchanger) and various circulation experiments with different production techniques (flash throttled and unthrottled, submersible pump) and varying injection rates was performed between June and August 1995.

Baumgartner, J.; Jung, R.; Gerard, A.; Baria, R.; Garnish, J.

1996-01-24T23:59:59.000Z

310

Present status of hot dry rock technology  

DOE Green Energy (OSTI)

The field experiments have been conducted principally at Fenton Hill, New Mexico. The completed phase I confirmed the technical feasibility of the HDR concept by creating a small hydraulically fractured reservoir and extracting heat from it for over a year at rates up to 5 megawatts. The second phase extends the technology to the creation and operation of an industrial-scale HDR system that will produce heat at a temperature and rate suitable for producing electricity, with thermal drawdown of less than 20% in 10 years. Operations have created three-dimensional fractured volumes capable of producing at least 35 MW(t) for not less than 10 years. Design, procurement, and construction of the phase II surface system is proceeding in preparation for an initial closed-loop flow test of two to four weeks duration in the third quarter of FY 1986. (ACR)

Nunz, G.J.; Franke, P.R.

1985-01-01T23:59:59.000Z

311

Fracture network modeling of a Hot Dry Rock geothermal reservoir  

DOE Green Energy (OSTI)

Fluid flow and tracer transport in a fractured Hot Dry Rock (HDR) geothermal reservoir are modeled using fracture network modeling techniques. The steady state pressure and flow fields are solved for a two-dimensional, interconnected network of fractures with no-flow outer boundaries and constant-pressure source and sink points to simulate wellbore-fracture intersections. The tracer response is simulated by particle tracking, which follows the progress of a representative sample of individual tracer molecules traveling through the network. Solute retardation due to matrix diffusion and sorption is handled easily with these particle tracking methods. Matrix diffusion is shown to have an important effect in many fractured geothermal reservoirs, including those in crystalline formations of relatively low matrix porosity. Pressure drop and tracer behavior are matched for a fractured HDR reservoir tested at Fenton Hill, NM.

Robinson, B.A.

1988-01-01T23:59:59.000Z

312

Hot Dry Rock Overview at Los Alamos  

DOE Green Energy (OSTI)

The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. Having extracted energy from the first Fenton Hill HDR reservoir for about 400 days, and from the second reservoir for 30 days in a preliminary test, Los Alamos is focusing on the Long Term Flow Test and reservoir studies. Current budget limitations have slowed preparations thus delaying the start date of that test. The test is planned to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other salient information will address geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to pumping power requirements. During this year of ''preparation'' we have made progress in modeling studies, in chemically reactive tracer techniques, in improvements in acoustic or microseismic event analysis.

Berger, Michael; Hendron, Robert H.

1989-03-21T23:59:59.000Z

313

U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement The U.S. Department of Energy (DOE) Richland Operations Office (DOE-RL) and CH2M HILL Plateau Remediation Company (CHPRC) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to enhance teaming to further execute the Plateau Remediation Contract. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement More Documents & Publications CH2M HILL Plateau Remediation Company

314

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations March 7, 2013 - 12:00pm Addthis The Justice Department, in conjunction with the U.S. Attorney's Office for the Eastern District of Washington, announced today that Colorado-based CH2M Hill Hanford Group Inc. (CHG) and its parent company, CH2M Hill Companies Ltd. (CH2M Hill) have agreed that CHG committed federal criminal violations, defrauding the public by engaging in years of widespread time

315

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

316

Hot Dry Rock energy annual report fiscal year 1992  

DOE Green Energy (OSTI)

Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

Duchane, D.V.; Winchester, W.W.

1993-04-01T23:59:59.000Z

317

Hot Dry Rock energy annual report fiscal year 1992  

DOE Green Energy (OSTI)

Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

Winchester, W.W. [ed.; Duchane, D.V.

1993-04-01T23:59:59.000Z

318

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

319

The Sweet Grass Hills and Blackfeet Indians: Sacredness, Land, and Institutional Discrimination.  

E-Print Network (OSTI)

??The Sweet Grass Hills of north-central Montana are part of the four Tribes of the Blackfoot Confederacys traditional territory and play a vital role in (more)

Sheets, Cassie

2013-01-01T23:59:59.000Z

320

Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel  

DOE Green Energy (OSTI)

The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment related to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)

Not Available

1977-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect  

DOE Green Energy (OSTI)

On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

Vuataz, F.D.; Goff, F.

1987-12-01T23:59:59.000Z

322

Hot Dry Rock Heat Mining Geothermal Energy Development Program - Annual Report Fiscal Year 1990  

DOE Green Energy (OSTI)

This was a year of significant accomplishment in the Hot Dry Rock (HDR) Program. Most importantly, the design, construction, and installation of the surface plant for the Phase II system neared completion by the end of the year. Basic process design work has been completed, and all major components of the system except the gas/particle separator have been procured. For this component, previous design problems have been resolved, and purchase during the first half of FY91 is anticipated. Installation of the surface plant is well underway. The system will be completed and ready for operation by the end of FY91 under the current funding scenario. The operational schedule to be followed will then depend upon the program funding level. Our goal is to start long-term flow testing as soon as possible. Of equal importance, from the standpoint of the long-term viability of HDR technology, during this year, for the first time, it has been demonstrated in field testing that it should be possible to operate HDR reservoirs with water losses of 1-3%, or even less. Our experience in the deep, hot, Phase II reservoir at Fenton Hill is in sharp contrast to the significant water losses seen by Japanese and British scientists working in shallower, cooler, HDR reservoirs. Calculations and modeling based on field data have shown that water consumption declines with the log of time in a manner related to water storage in the reservoir. This work may be crucial in proving that HDR can be an economically viable means for producing energy, and that it is useful even in areas where water is in short supply. In addition, an engineering model was developed to predict and explain water consumption in HDR reservoirs under pressure, the collection and processing of seismic information was more highly automated, and the detection limits for reactive tracers were lowered to less than 1 part per billion. All of these developments will add greatly to our ability to conduct, analyze, and understand the long-term test (LTFT). Water-rights acquisition activities, site clean-up, and improvements in the 1 million gallon storage pond at Fenton Hill have assured that we will have adequate water to carry out a vigorous testing program in a safe and environmentally-sound manner. The 1 million gallon pond was recontoured, and lined with a sophisticated multi-layer plastic barrier. A large part of the work on the pond was paid for with funds from the Laboratory's Health, Safety and Environment Division. Almost all the expected achievements set forth in the FY90 Annual Operating Plan were substantially accomplished this past year, in spite of a $300,000 shortfall in funding. This funding shortfall did delay some work and result in some projects not being completed, however. They have had to go more slowly than they would like on some aspects of the installation of the surface plant for the LTFT, purchase of non-critical equipment, such as a back-up electric generator for Fenton Hill, has been delayed, and some work has not been brought to an adequate conclusion. The fracture healing work, for example, was completed but not written up. they simply did not have the funds to pay for the effort needed to fully document this work. As the program enters FY91, the completion of the surface plant at Fenton Hill is within sight. The long-awaited LTFT can then begin, and the large investment in science and technology represents by the HDR Program will begin to bear still greater dividends.

Duchane, David

1991-01-01T23:59:59.000Z

323

The Application of Fuzzy Technique to Coal Gangue Hills Reliability Analysis  

Science Conference Proceedings (OSTI)

Gangue hill is a production in mining area which piles up by the disordered accumulation of coal waste. Because of its poor stability, landslide may easily arise when meet disadvantages and accordingly cause enormous destruction of geological hazard. ... Keywords: gangue hills, stability, fuzzy-random reliability, fuzzy point evaluation

Kun Yang; Zhichao Ma

2010-12-01T23:59:59.000Z

324

Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - October 22, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 October 22, 2001 Special Report Order ssued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site On September 18, 2001, the Office of Price-Anderson Enforcement (OE) in coordination with the DOE Office of River Protection (ORP) conducted a review of the actions taken by CH2M Hill Hanford Group (CHG) in response to an Enforcement Letter dated April 24, 2001. This Enforcement Letter referenced three Noncompliance Tracking System (NTS) reports submitted by CHG which collectively suggested weaknesses in your nuclear safety operations related to (1) corrective action management, (2) worker training

325

U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy, Richland Operations Office And CH2M HILL U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement The U.S. Department of Energy (DOE) Richland Operations Office (DOE-RL) and CH2M HILL Plateau Remediation Company (CHPRC) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to enhance teaming to further execute the Plateau Remediation Contract. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement

326

Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 19, 2002 June 19, 2002 Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 June 19, 2002 Enforcement Letter issued to Kaiser-Hill Company, LLC related to Unplanned Radioactive Material Uptakes at the Rocky Flats Environmental Technology Site This letter refers to the Department of Energy's evaluation of facts and circumstances concerning the October 2001 unplanned uptakes of radioactive material by two Radiological Control Technicians (RCT) in Building [ ]. These issues were reported into the Noncompliance Tracking System (NTS) by your staff (NTS-RFO--KHLL-[ ] 2002-0001) on February 11, 2002. Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 More Documents & Publications Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998

327

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind December 21, 2011 - 11:26am Addthis These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid Waste Management Authority. These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid

328

Town of Kill Devil Hills - Wind Energy Systems Ordinance | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Town of Kill Devil Hills - Wind Energy Systems Ordinance Town of Kill Devil Hills - Wind Energy Systems Ordinance Town of Kill Devil Hills - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Kill Devil Hills Planning and Inspections In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to obtain a zoning permit from the town planning board. '''Size Requirements:''' Wind turbine towers are restricted to a height of 80 feet with a maximum rotor size of 23 feet in diameter. The combined

329

Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - April 24, 2001 CH2M Hill Hanford Group, Inc. - April 24, 2001 Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 April 24, 2001 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms This letter refers to a recent investigation by the Department of Energy (DOE), regarding potential noncompliances with the requirements of 10 CFR 830, "Nuclear Safety Management," occurring at the Hanford Tank Farms. The investigation reviewed three issues that were reported into the Noncompliance Tracking System (NTS) by CH2M Hill Hanford Group, Inc. Two of the NTS reports involve the failure to perform the Technical Safety Requirement (TSR) for [ ] gas monitoring. The initial potential noncompliance occurred in January 2000, in which a Zip Cord was installed

330

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - CH2M Hill Hanford Group, Inc. - EA-2003-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 August 29, 2003 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Quality Assurance Issues at the Hanford Site Tank Farms This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances concerning quality assurance issues affecting nuclear safety at the Hanford Tank Farms. These issues involve the inadvertent deenergization of annulus leak detectors, dilution tank overfills, and dome loading control, over the period August 2002 to November 2002. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 More Documents & Publications

331

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site CH2M Hill Plateau Site CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes This report documents the independent review of implementation verification review (IVR) processes at the Hanford Site CH2M Hill Plateau Remediation Company that were conducted by the Office of Enforcement and Oversight (Independent Oversight), which is within the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS). The onsite review was performed by the HSS Office of Safety and Emergency Management Evaluations from August 13 to17, 2012. The objective of this assessment was to evaluate

332

Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HILL Hanford Group, Inc. - HILL Hanford Group, Inc. - NEA-2008-02 Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. - NEA-2008-02 June 5, 2008 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to a Radioactive Waste Spill at the Hanford Site Tank Farms This letter refers to the Department of Energy's (DOE) investigation into the facts and circumstances associated with the July 27, 2007, spill of radioactive waste in the vicinity of the S-102 retrieval pump discharge at the Hanford Tank Farm. The results of the onsite investigation were provided in an Investigation Report dated March 5, 2008. Press Release Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. - NEA-2008-02 More Documents & Publications Preliminary Notice of Violation, Bechtel National, Inc. - NEA-2008-04

333

Effects of dormant-season herbage removal on Flint Hills LISA M. AUEN AND CLENTON E. OWENSBY  

E-Print Network (OSTI)

Effects of dormant-season herbage removal on Flint Hills rangeland LISA M. AUEN AND CLENTON E. OWENSBY Ab8trWt Intensive-early stocking in the Kansas Flint Hills has greatly increased livestock production efficiency.The potential grrziap of regrowth on intensive-early stocked Flint Hills pastures

Owensby, Clenton E.

334

City of Blue Hill, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Nebraska (Utility Company) Nebraska (Utility Company) Jump to: navigation, search Name City of Blue Hill Place Nebraska Utility Id 20848 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Electric Service Industrial Industrial Electric Service(Primary Service) Industrial Non-Residential Electric Rate- Single Phase Commercial Non-Residential Electric Rate- Single Phase(Primary Metering) Commercial Non-Residential Electric Rate- Three Phase Commercial Non-Residential Electric Rate- Three Phase(Primary Metering) Commercial

335

Loess Hills Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Loess Hills Wind Energy LLC Address PO Box 198 Place Malvern, Iowa Zip 51551 Sector Wind energy Product ReDriven Wind Energy Systems Year founded 2009 Number of employees 1-10 Phone number 712.527.0412 Website http://www.loesshillswindenerg Coordinates 41.0052059°, -95.5827334° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0052059,"lon":-95.5827334,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Hill Airforce Base Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Airforce Base Geothermal Project Airforce Base Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hill Airforce Base Geothermal Project Project Location Information Coordinates 41.238888888889°, -111.97277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.238888888889,"lon":-111.97277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Black Hills Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Utility Id 1769 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Rate Commercial General Commercial Irrigation Commercial Large Commercial Commercial Residential Residential Residential All-Electric Rate Residential Seasonal Commercial Small Commercial Three Phase Commercial Average Rates Residential: $0.0901/kWh Commercial: $0.0960/kWh The following table contains monthly sales and revenue data for Black Hills

338

El Centro/Superstition Hills Geothermal Project (2) | Open Energy  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: El Centro/Superstition Hills Geothermal Project (2) Project Location Information Coordinates 33.020833333333°, -115.81305555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.020833333333,"lon":-115.81305555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Cookson Hills Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Elec Coop, Inc Elec Coop, Inc Jump to: navigation, search Name Cookson Hills Elec Coop, Inc Place Oklahoma Utility Id 4296 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Service, Rate 18 Industrial Commercial and Small Power - Single Phase, Rate 2 Commercial Commercial and Small Power - Three Phase, Rate 3 Commercial Farm and Home, Rate 1 Residential Irrigation Service - Single Phase, Rate 27 Industrial Irrigation Service - Three Phase, Rate 28 Industrial Security Light Lighting

340

Hot dry rock: A climate change action opportunity for industry  

DOE Green Energy (OSTI)

Geothermal resources in the form of heat found in rock that is hot but is not in contact with sufficient mobile fluid to transport that heat to the surface are a large, as yet virtually unexploited, source of clean energy. The technology to extract useful amounts of energy from this ubiquitous hot dry rock (HDR) geothermal resource has been under development for more than twenty years. During the last two years, flow testing at the Fenton Hill HDR pilot facility in New Mexico has answered many of the questions about the viability of HDR heat mining. While the most important issue of thermal longevity of the artificial geothermal reservoir that is the heart of an HDR energy system was not fully resolved, the test results provided good reasons to be optimistic that such reservoirs can have long lifetimes. No decline was observed in the temperature of the fluid produced during the relatively short test period and tracer testing indicated that the reservoir may be thermally self sustaining. In addition, water consumption during the circulation test was reduced to very low levels, the production of significant excess energy over that required simply to operate the system was verified, and routine energy production with virtually no emissions to the environment, except waste heat, was demonstrated.

Duchane, D.V.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The geothermal analog of pumped storage for electrical demand load following  

Science Conference Proceedings (OSTI)

A 6 day cycle Load-Following Experiment, conducted in July 1995 at the Fenton Hill Hot Dry Rock (HDR) test site in New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, rapid increase in thermal power output upon demand. The objective was to study the behavior of the HDR reservoir in a high-production- backpressure (2200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4 hour period each day. In practice, this enhanced production, an increase of 65%, was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial 2200 psi down to 500 psi. The rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode, there would be no increase in the reservoir size of number of wells (the {ital in situ} capital investment) for a significant amount of peaking power production for a few hours each day. Thus, one of the advantages of geothermal load following over utility options such as pumped storage or compressed air storage is that the HDR power plant would be operated during off-peak hours in a baseline mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods. The surface power plant and the geofluid reinjection pumps would need to be sized for the peak rate of thermal energy production, adding somewhat to the overall HDR system capital costs when compared to a simple baseload power plant design.

Brown, D.W.

1996-09-01T23:59:59.000Z

342

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-05 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-05 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-05 May 19, 2000 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to an Unplanned, Radioactive Material Uptake at the Rocky Flats Environmental Technology Site, (EA-2000-05) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances concerning an event, which occurred on February 2, 1999, in Building 779 at the Rocky Flats Environmental Technology Site. During this event, which involved glovebox decontamination and decommissioning (D&D) activities, a worker received an unplanned, uncontrolled radiological uptake of [ ] radioactive material. As a result

343

Department of Energy Finalizes $102 Million Loan Guarantee to Record Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finalizes $102 Million Loan Guarantee to Finalizes $102 Million Loan Guarantee to Record Hill Wind, LLC for Maine Wind Project Department of Energy Finalizes $102 Million Loan Guarantee to Record Hill Wind, LLC for Maine Wind Project August 15, 2011 - 11:08am Addthis Project Expected to Fund Approximately 200 Jobs and Provide Improvements to Wind Turbine Performance Washington D.C. - U.S. Energy Secretary Steven Chu today announced the Department of Energy finalized a $102 million loan guarantee to Record Hill Wind, LLC. The loan guarantee, in conjunction with an investment by the Yale University Endowment, will support the Record Hill wind project, which consists of a 50.6 megawatt wind power plant, an eight mile transmission line and associated interconnection equipment near the town of Roxbury,

344

Preliminary Notice of Violation, Kaiser-Hill Company,LLC - EA-1999-06 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC - LLC - EA-1999-06 Preliminary Notice of Violation, Kaiser-Hill Company,LLC - EA-1999-06 August 18, 1999 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to the Procurement of Waste Containers at the Rocky Flats Environmental Technology Site, August 18, 1999 This letter refers to the Department of Energy's (DOE) evaluation of a number of deficiencies related to the procurement, design control, work processes, and quality improvement aspects of nuclear waste containers and nuclear waste components during 1997 and 1998. Kaiser-Hill Company, L.L.C. (KHLL) procured many of these items for initial use at the Rocky Flats Environmental Technology Site and for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Preliminary Notice of Violation, Kaiser-Hill Company,LLC - EA-1999-06

345

Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky  

E-Print Network (OSTI)

This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

Isaacs, Mark Andrew

1980-01-01T23:59:59.000Z

346

An Observational Analysis and Evaluation of Land Surface Model Accuracy in the Nebraska Sand Hills  

Science Conference Proceedings (OSTI)

In this study, the influence of subsurface water on the energy budget components of three locations with heterogeneous land surfaces in the Nebraska Sand Hills are examined through observations and use of the Noah land surface model (LSM). ...

David B. Radell; Clinton M. Rowe

2008-08-01T23:59:59.000Z

347

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Inc. - EA-2003-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 August 29, 2003 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Quality Assurance Issues at the Hanford Site Tank Farms This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances concerning quality assurance issues affecting nuclear safety at the Hanford Tank Farms. These issues involve the inadvertent deenergization of annulus leak detectors, dilution tank overfills, and dome loading control, over the period August 2002 to November 2002. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 More Documents & Publications Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06

348

Black Hills/Colorado Electric Utility Co. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Hills/Colorado Electric Utility Co. Smart Grid Project Hills/Colorado Electric Utility Co. Smart Grid Project Jump to: navigation, search Project Lead Black Hills/Colorado Electric Utility Co. Country United States Headquarters Location Pueblo, Colorado Recovery Act Funding $6,142,854.00 Total Project Value $12,285,708.00 Coverage Area Coverage Map: Black Hills/Colorado Electric Utility Co. Smart Grid Project Coordinates 38.2544472°, -104.6091409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

349

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2001-04 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2001-04 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2001-04 July 17, 2001 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to Nuclear Safety, Work Control, and Radiation Protection Deficiencies at the Rocky Flats Environmental Technology Site This letter refers to the Department of Energy's (DOE, Department) evaluation of the facts and circumstances concerning a number of events and programmatic failures affecting nuclear safety at the Department's Rocky Flats Environmental Technology Site. The DOE Office of Price-Anderson Enforcement, in coordination with the DOE Rocky Flats Field Office (RFFO), conducted an on-site investigation during April 3-5, 2001. The results of

350

Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issued to Kaiser-Hill Company, LLC related to Failure to Perform Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required Surveillances at the Rocky Flats Environmental Technology Site, August 2, 2000 Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required Surveillances at the Rocky Flats Environmental Technology Site, August 2, 2000 This letter refers to the Department of Energy's (DOE) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The potential noncompliances involved inadequate implementation of work controls, specifically failure to perform required combustible gas surveillances. The failure to fully perform the required surveillances was identified by the contractor during a comprehensive Kaiser-Hill (KHLL) Implementation Validation Review

351

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc - CH2M Hill Hanford Group, Inc - EA-2005-01 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and

352

Enforcement Letter, Kaiser-Hill Company - August 12, 2004 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kaiser-Hill Company - August 12, 2004 Kaiser-Hill Company - August 12, 2004 Enforcement Letter, Kaiser-Hill Company - August 12, 2004 August 12, 2004 Enforcement Letter issued to Kaiser-Hill Company, LLC related to a Water Treatment System Breach and Foam Fire at the Rocky Flats Environmental Technology Site The Office of Price-Anderson Enforcement (OE) has reviewed the details and circumstances regarding two recent site events: the Building 771 unauthorized breach of the Water Treatment System in December 2003; and the February 2004 Building 991 foam fire. Both of these events represent significant breakdowns in your safety programs. Additionally, the general failure to adequately recognize hazards and implement effective controls observed in association with the Building 991 foam fire was an underlying deficiency in the 2003 Building

353

Asymptotics of instability zones of the Hill operator with a two term potential  

E-Print Network (OSTI)

Let $\\gamma_n $ denote the length of the $n$-th zone of instability of the Hill operator $Ly= -y^{\\prime \\prime} - [4t\\alpha \\cos2x + 2 \\alpha^2 \\cos 4x ] y,$ where $\\alpha \

Plamen Djakov; Boris Mityagin

2005-09-16T23:59:59.000Z

354

A Modified Logarithmic Law for Neutrally Stratified Flow over Low-Sloped Hills  

Science Conference Proceedings (OSTI)

The study of the atmospheric boundary layer flow over two-dimensional low-sloped hills under a neutral atmosphere finds numerous applications in meteorology and engineering, such as the development of large-scale atmospheric models, the siting of ...

Cludio C. Pellegrini; Gustavo C. R. Bodstein

2005-06-01T23:59:59.000Z

355

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5...

356

CH2M Hill Hanford Group Inc (CHG) Information Resource Management (IRM) Strategic Plan  

SciTech Connect

The CH2M Hill Hanford Group, Inc., Information Resource Management Strategic Plan is the top-level planning document for applying information and information resource management to achieve the CHG mission for the management of the River Protection Project

NELSON, R.L.

2000-05-08T23:59:59.000Z

357

DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Violating Nuclear Safety Rules for Violating Nuclear Safety Rules DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules March 10, 2005 - 10:44am Addthis Hanford Tank Farm Contractor Faces Fine of more than $300,000 WASHINGTON, DC - The Department of Energy (DOE) today notified the CH2M Hill Hanford Group, Inc. (CH2M Hill) - that it will fine the company $316,250 for violations of the department's nuclear safety requirements. CH2M Hill is the department's contractor responsible for storage of highly radioactive and hazardous liquid waste at the Hanford Tank Farms near Richland, Wash. The Preliminary Notice of Violation (PNOV) issued today, cites four events that took place in 2003 and 2004. These events include the contamination of several workers while removing equipment from a valve pit

358

Focusing Mechanisms in the Texas Hill Country Flash FIOMS of 1978  

Science Conference Proceedings (OSTI)

During the early morning of 2 August 1978, a stationary thunderstorm complex drenched the Balcones Escarpment of Texas and unleashed flash floods in the Hill Country which killed 27 people and produced extensive damage. After the storm, an ...

F. Caracena; J. M. Fritsch

1983-12-01T23:59:59.000Z

359

Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah  

DOE Green Energy (OSTI)

Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

1980-03-01T23:59:59.000Z

360

Barriers to faulting in the Basin-Range province: evidence from the Sou Hills transverse block  

Science Conference Proceedings (OSTI)

Transverse structural blocks may inhibit the propagation of fault ruptures in the Basin-Range province. The Sou Hills, between Dixie and Pleasant Valleys, is a block of uplifted Tertiary bedrock transverse to the NNE-SSW trend of the central Nevada seismic belt. Three lines of evidence indicate that offset due to normal faulting is much less in the Sou Hills compared to adjacent segments of the seismic belt. First, estimates of total late Cenozoic offsets of pre-extension basalts show that the total offset is less in the Sou Hills. Second, analyses of landforms that reflect rates of relative uplift show that Quaternary tectonic activity on range-bounding faults declines where faults join the Sou Hills. Third, measurements of late Quaternary fault scarps show that individual rupture segments in the Sou Hills are shorter in length and have smaller displacements compared to the nearly continuous ruptures of several meters offset found along the Tobin and Stillwater Ranges to the north and south. The Sou Hills rupture pattern is distinctive: ruptures are dispersed over a wide zone rather than being concentrated along well-defined range fronts. Normal faulting patterns produced by the 1915 Pleasant Valley, Nevada and the 1983 Borah Peak, Idaho earthquakes indicate that a discontinuous, spatially dispersed faulting style typifies ruptures which die out in transverse bedrock features. These historic analogues support a model for prehistoric faulting in which ruptures have repeatedly died out in the Sou Hills. Transverse blocks such as the Sou Hills appear to present barriers to propagating ruptures.

Fonseca, J.E.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Orebody Modelling for Exploration: The Western Mineralisation, Broken Hill, NSW  

Science Conference Proceedings (OSTI)

The Western Mineralisation in the Broken Hill deposit was studied to identify the zonation sequence of lithogeochemical haloes along and across the strike of the orebody. Samples used are from 77 drill holes and the samples were assayed for Pb, Zn, Fe, S, Cu, Ag, Cd, Sb, Bi and As. Variogram analyses were calculated for all the elements and kriging was used to construct the 3D block model. Analysis of cross sections along and across the strike of the orebody shows that Bi and Sb form broader halos around sulphide masses and this suggests that they are pathfinder elements for the Pb and Zn elements of this orebody. The threshold concentrations (minimum anomaly) of the 10 elements were determined using the concentration-area analysis. On east-west vertical cross sections, the values of linear productivity, variability gradient and zonality index were calculated for each element. Based on the maximum zonality index of each element, the sequence of geochemical zonation pattern was determined from top to bottom of the orebody. The result shows that S, Pb, Zn and Cd tend to concentrate in the upper part of the mineralisation whereas Ag, Cu, Bi and As have a tendency to concentrate in the lower part of the mineralised rocks. Also, an empirical product ratio index was developed based on the position of the elements in the zonation sequence. The methods and results of this research are applicable to exploration of similar Zn and Pb sulphide ore deposits.

Lotfolah Hamedani, Mohammad, E-mail: mlotfham@gmail.com; Plimer, Ian Rutherford [University of Adelaide, School of Earth and Environmental Sciences (Australia); Xu Chaoshui [University of Adelaide, School of Civil, Environmental and Mining Engineering (Australia)

2012-09-15T23:59:59.000Z

362

The economics of heat mining: An analysis of design options and performance requirements of hot dry rock (HDR) geothermal power systems  

SciTech Connect

A generalized economic model was developed to predict the breakeven price of HDR generated electricity. Important parameters include: (1) resource quality--average geothermal gradient ({sup o}C/km) and well depth, (2) reservoir performance--effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components--drilling, reservoir formation, and power plant costs and (4) economic factors--discount and interest rates, taxes, etc. Detailed cost correlations based on historical data and results of other studies are presented for drilling, stimulation, and power plant costs. Results of the generalized model are compared to the results of several published economic assessments. Critical parameters affecting economic viability are drilling costs and reservoir performance. For example, high gradient areas are attractive because shallower well depths and/or lower reservoir production rates are permissible. Under a reasonable set of assumptions regarding reservoir impedance, accessible rock volumes and surface areas, and mass flow rates (to limit thermal drawdown rates to about 10 C per year), predictions for HDR-produced electricity result in competitive breakeven prices in the range of 5 to 9 cents/kWh for resources having average gradients above 50 C/km. Lower gradient areas require improved reservoir performance and/or lower well drilling costs.

Tester, Jefferson W.; Herzog, Howard J.

1991-01-25T23:59:59.000Z

363

Boundary layer eddies at the Goodnoe Hills site  

DOE Green Energy (OSTI)

Data from nine instrumented meteorological towers at the MOD-2 wind turbine site at Goodnoe Hills in Washington State were analyzed to evaluate high-frequency perturbations, which were observed in the lower boundary-layer flow. Horizontal winds and temperature measurements for a period of 8 min, undisturbed by turbine operation, were available for this study. The data are in 1-s values from June 27, 1985. Throughout the study, departures from the mean for the period and for each sensor were used on area maps and on line-time and tower-time cross sections. Conventional streamline and isotach analyses were employed; they show highly organized flow fields with embedded perturbations traversing the site. Most of the flow fields have a well-developed vortical structure that reaches from the surface through the top level of the highest tower. These structures consist of a system of clockwise and counter-clockwise circulations. The wave length is about 500 to 600 m. Their wave speed is slightly greater than the mean wind speed and their movement is in the general direction of the mean flow. The results of the study show two main reasons why wind conditions and turbine power output in a wind farm may vary in a remarkable and abrupt fashion in space and time under certain circumstances: (1) The boundary-layer flow contains highly organized coherent perturbations with a typical size of 300 {times} 300 M{sup 2}. (2) The transition zones between the perturbations moving through a wind farm are associated with very definitive changes in the wind field that are on the order of meters and seconds. 2 refs., 11 figs.

Aspliden, C.I.; Wendell, L.L.; Clem, K.S.; Gower, G.L.

1991-05-01T23:59:59.000Z

364

Objective method to report planner-independent skin/rib maximal dose in balloon-based high dose rate (HDR) brachytherapy for breast cancer  

Science Conference Proceedings (OSTI)

Purpose: An objective method was proposed and compared with a manual selection method to determine planner-independent skin and rib maximal dose in balloon-based high dose rate (HDR) brachytherapy planning. Methods: The maximal dose to skin and rib was objectively extracted from a dose volume histogram (DVH) of skin and rib volumes. A virtual skin volume was produced by expanding the skin surface in three dimensions (3D) external to the breast with a certain thickness in the planning computed tomography (CT) images. Therefore, the maximal dose to this volume occurs on the skin surface the same with a conventional manual selection method. The rib was also delineated in the planning CT images and its maximal dose was extracted from its DVH. The absolute (Abdiff=|D{sub max}{sup Man}-D{sub max}{sup DVH}|) and relative (Rediff[%]=100x(|D{sub max}{sup Man}-D{sub max}{sup DVH}|)/D{sub max}{sup DVH}) maximal skin and rib dose differences between the manual selection method (D{sub max}{sup Man}) and the objective method (D{sub max}{sup DVH}) were measured for 50 balloon-based HDR (25 MammoSite and 25 Contura) patients. Results: The average{+-}standard deviation of maximal dose difference was 1.67%{+-}1.69% of the prescribed dose (PD). No statistical difference was observed between MammoSite and Contura patients for both Abdiff and Rediff[%] values. However, a statistically significant difference (p value dose difference compared with maximal skin dose difference for both Abdiff (2.30%{+-}1.71% vs 1.05%{+-}1.43%) and Rediff[%] (2.32%{+-}1.79% vs 1.21%{+-}1.41%). In general, rib has a more irregular contour and it is more proximally located to the balloon for 50 HDR patients. Due to the inverse square law factor, more dose difference was observed in higher dose range (D{sub max}>90%) compared with lower dose range (D{sub max}low dose ranges. Conclusions: The objective method using volumetric information of skin and rib can determine the planner-independent maximal dose compared with the manual selection method. However, the difference was dose point in 3D planning CT images.

Kim, Yongbok; Trombetta, Mark G. [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212 (United States) and Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212 (United States)

2011-04-15T23:59:59.000Z

365

Black Hills as a green area sink for atmospheric pollutants: first annual report  

SciTech Connect

A study of small particle pollution in the Black Hills area of western South Dakota has been initiated. The sampling was conducted over thirteen hills and surrounding plains stations for a period of twelve months using a Gardner small particle counter. The concentrations of both Aitken and near-CCN particles were obtained and supplemented by meteorological observations. The results of the analysis of these data indicate that the Black Hills area is a significant reservoir of clean air and that the observed low particle concentrations are the result of a) the natural decrease in concentration with elevation, b) the reduction in count due to frequent precipitation events over the Black Hills; and c) the true green area effect due to the particle removal mechanisms of vegetation. Several tests were developed to assess the magnitude of the green area effect. After corrections were applied for elevation changes, precipitation scavenging, and local pollution sources, the present analysis suggests the presence of significant particulate filtering by the heavy vegetation covering of the Black Hills. Additional data are needed to increase our understanding of the green area effect, but present indications are that a reduction in particulate concentration by as much as a factor of two (relative to plains concentrations) may be taking place as a result of these filtering processes.

Davis, B.L.; Blair, D.N.; Johnson, L.R.; Haggard, S.J.

1975-01-01T23:59:59.000Z

366

Enforcement Letter, CH2M Hill Hanford Group Inc, - September 6, 2007 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group Inc, - September 6, Group Inc, - September 6, 2007 Enforcement Letter, CH2M Hill Hanford Group Inc, - September 6, 2007 September 6, 2007 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Quality Improvement Deficiencies at the Hanford Tank Farms The Department of Energy (DOE) held an Enforcement Conference on August 29, 2006, with CH2M Hill Hanford Group (CHG) to discuss potential violations of nuclear safety requirements described in our Investigation Summary Report dated July 26, 2006. At that time, DOE elected to defer a decision on a potential quality improvement violation related to recurring radiological events and deficiencies in the identification and control of radiological hazards at the Tank Farms. This decision was based upon the fact that CHG senior management had initiated radiological work

367

Independent Oversight Review, Richland Operations Office and CH2M Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and CH2M and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 April 2012 Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), was to observe and shadow1 a DOE Richland Operations Office (DOE-RL) assessment of its contractors at the Hanford Site. The HSS reviewer observed the implementation and effectiveness of the DOE-RL assessment of two of the contractors (CHPRC and

368

Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 1998 0, 1998 Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 July 20, 1998 Issued to Kaiser-Hill Company, LLC related to Recurring Weaknesses in Implementing Quality Assurance Rule Requirements at the Rocky Flats Environmental Technology Site This letter refers to the Department of Energy's (DOE) evaluation of noncompliances reported in four Noncompliance Tracking System (NTS) entries, identified in the subject line above. The four NTS reports were submitted between September 24, 1997, and March 3, 1998. The reports identified potential noncompliances with requirements of 10 CFR 830.120 (Quality Assurance Rule) and 10 CFR 835 (Radiation Protection Rule). Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 More Documents & Publications

369

Up-Hill ET in (NH3)5Ru(III)-Modified Ferrocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Ferrocytochrome c: Rates, Thermodynamics, and the Mediating Role of the Ruthenium Moiety Ji Sun, James F. Wishart, and Stephan S. Isied Inorg. Chem. 34, 3998-4000 (1995) Abstract: At moderate to high ionic strengths (>0.1 M), Co(oxalate)33- oxidizes native cytochrome c very slowly, however it undergoes a rapid reaction with pendant ruthenium complexes covalently attached to the surface of the protein. Under these conditions, the rate of the thermodynamically unfavorable (up-hill) FeII-to-RuIII electron transfer process in pentaammineruthenium-modified horse-heart cytochrome c can be revealed using sufficiently high Co(oxalate) 33- concentrations. Rate measurements performed over a wide range of CoIII concentrations confirm the proposed

370

Independent Oversight Review, Richland Operations Office and CH2M Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Operations Office and CH2M Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 April 2012 Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), was to observe and shadow1 a DOE Richland Operations Office (DOE-RL) assessment of its contractors at the Hanford Site. The HSS reviewer observed the implementation and effectiveness of the DOE-RL assessment of two of the contractors (CHPRC and

371

Microsoft Word - CX - Olallie Yellow Lake Sea Lea Hill.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Olallie, Yellow Lake, Sea Lea Hill Wireless Communication Projects Olallie, Yellow Lake, Sea Lea Hill Wireless Communication Projects Budget Information: Work Order #254675, Task 01; WO#255947, Task 01; WO#258439, Task 01 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Acquisition, installation, operation, and removal of communication systems... B1.19 Siting, construction, and operation of microwave and radio communication towers and associated facilities... Location: All three projects will be located in King County, Washington Olallie Township 25 North, Range 5 East, Section 35 Yellow Lake Township 24 North, Range 6 East, Section 11 Sea Lea Hill Township 21 North, Range 5 East, Section 4 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to attach wireless communication

372

Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 21, 1998 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 1998 1, 1998 Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 21, 1998 This letter refers to the Department of Energy's (DOE) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The potential noncompliances involved inadequate implementation of work controls, specifically failure of workers to perform required surveillance of the Fire Protection System. The failure to fully perform the required surveillance was identified by Safe Sites of Colorado (SSOC) on June 2, 1997, and reported to DOE in the subject Noncompliance Tracking System report on June 26, 1997. Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 21, 1998 More Documents & Publications Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998

373

A Touch of Green for Des Moines' Sherman Hill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Touch of Green for Des Moines' Sherman Hill A Touch of Green for Des Moines' Sherman Hill A Touch of Green for Des Moines' Sherman Hill November 3, 2011 - 4:47pm Addthis This 1930s grocery store is currently under renovation by the Green & Main initiative. When complete in Spring 2012, the previously abandoned building will be LEED Platinum certified and feature a green roof and 54 original windows retrofitted to achieve high energy efficiency standards. | Photo courtesy of Green & Main. This 1930s grocery store is currently under renovation by the Green & Main initiative. When complete in Spring 2012, the previously abandoned building will be LEED Platinum certified and feature a green roof and 54 original windows retrofitted to achieve high energy efficiency standards. | Photo courtesy of Green & Main.

374

Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - April 24, 2001 Inc. - April 24, 2001 Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 April 24, 2001 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms This letter refers to a recent investigation by the Department of Energy (DOE), regarding potential noncompliances with the requirements of 10 CFR 830, "Nuclear Safety Management," occurring at the Hanford Tank Farms. The investigation reviewed three issues that were reported into the Noncompliance Tracking System (NTS) by CH2M Hill Hanford Group, Inc. Two of the NTS reports involve the failure to perform the Technical Safety Requirement (TSR) for [ ] gas monitoring. The initial potential noncompliance occurred in January 2000, in which a Zip Cord was installed

375

Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome  

Science Conference Proceedings (OSTI)

Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

1981-09-01T23:59:59.000Z

376

Water quality impacts from mining in the Black Hills, South Dakota, USA  

Science Conference Proceedings (OSTI)

The focus of this research was to determine if abandoned mines constitute a major environmental hazard in the Black Hills. Many abandoned gold mines in the Black Hills contribute acid and heavy metals to streams. In some areas of sulfide mineralization local impacts are severe, but in most areas the impacts are small because most ore deposits consist of small quartz veins with few sulfides. Pegmatite mines appear to have negligible effects on water due to the insoluble nature of pegmatite minerals. Uranium mines in the southern Black Hills contribute some radioactivity to surface water, but he impact is limited because of the dry climate and lack of runoff in that area. 26 refs.

Rahn, P.H.; Davis, A.D.; Webb, C.J. [South Dakota School of Mines and Technology, Rapid City, SD (United States)] [South Dakota School of Mines and Technology, Rapid City, SD (United States); Nichols, A.D. [Versar, Inc., Eden Prairie, MN (United States)] [Versar, Inc., Eden Prairie, MN (United States)

1996-02-01T23:59:59.000Z

377

Ameresco and Hill Air Force Base: SPP Success Story | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Hill Air Force Base: SPP Success Story Hill Air Force Base: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

378

The method of Hill determinants in PT-symmetric quantum mechanics  

E-Print Network (OSTI)

Hill-determinant method is described and shown applicable within the so called PT-symmetric quantum mechanics. We demonstrate that in a way paralleling its traditional Hermitian applications and proofs the method guarantees the necessary asymptotic decrease of wave functions as resulting from a fine-tuned mutual cancellation of their asymptotically growing exponential components. Technically, the rigorous proof is needed/offered that in a quasi-variational spirit the method allows us to work, in its numerical implementations, with a sequence of truncated forms of the rigorous Hill-determinant power series for the normalizable bound states.

Miloslav Znojil

2004-10-04T23:59:59.000Z

379

Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels  

DOE Green Energy (OSTI)

The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

Not Available

1979-05-16T23:59:59.000Z

380

Hot dry rock: A new energy source for clean power  

DOE Green Energy (OSTI)

Volcanic eruptions provide a vivid illustration of the vast amount of thermal energy stored within the earth, while geysers, hot springs, and related geothermal features demonstrate that this energy can be brought to the surface in a more benign manner over extended time periods. These latter phenomena have, in fact, been utilized as sources of heat since ancient ones. During the second half of this century, the use of natural geothermal fluids to generate electricity has rapidly expanded. Today, in excess of 5,000 megawatts of electric power are produced from geothermal energy sources around the world. The vast majority of geothermal energy is found, not in the form of hot fluids, but rather as hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The object of this paper is to review and summarize the current state of development of HDR technology in the United States and around the world, including preliminary results of a long-term test now underway at the HDR heat mine in Fenton Hill, NM.

Duchane, D.V.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Consent Order between Department of Energy and Kaiser-Hill Company, LLC, EA 98-03, April 14, 1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1998 1998 Mr. Robert Card [ ] Kaiser-Hill Company, L.L.C. Rocky Flats Environmental Technology Site P.O. Box 464 Golden, CO 80402-0464 EA 98-03 Subject: Consent Order Incorporating Agreement between U.S. Department of Energy and Kaiser-Hill Company, L.L.C. This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances presented to DOE by Kaiser-Hill Company, L.L.C.'s (Kaiser-Hill) internal investigation reports of three events that occurred at the Rocky Flats Environmental Technology Site between January 1996 and January 1998. These events involved (1) an unplanned [radioactive material] uptake by two workers during a CERCLA Tank Remediation Project conducted by Rocky Mountain Remediation Service (RMRS), a sub-contractor to Kaiser-Hill; (2) seventeen workers

382

Painted Hills B&C Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Painted Hills B&C Wind Farm I Painted Hills B&C Wind Farm I Jump to: navigation, search Name Painted Hills B&C Wind Farm I Facility Painted Hills B&C Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Zond Systems Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Painted Hills B&C Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Painted Hills B&C Wind Farm II Painted Hills B&C Wind Farm II Jump to: navigation, search Name Painted Hills B&C Wind Farm II Facility Painted Hills B&C Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Zond Systems Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

VBA-0033 - In the Matter of Kaiser-Hill Company, L.L.C. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L.L.C. On August 26 and 27, 1999, Kaiser-Hill Company, L.L.C. (K-H) and EG&G Rocky Flats, Inc. (EG&G) respectively filed Notices of Appeal from an Initial Agency Decision...

385

Geology and alteration of the Baltazor Hot Springs and Painted Hills Thermal Areas, Humboldt County, Nevada  

DOE Green Energy (OSTI)

The Baltazor Hot Springs KGRA and nearby Painted Hills thermal area are situated in Humboldt County, northwestern Nevada along the northwestern margin of the Basin and Range province. The oldest rocks exposed in the Baltazor area are eugeosynclinal metasedimentary and subordinate metavolcanic rocks of Permian to Triassic age intruded by Cretaceous diorite and quartz diorite. These are overlain by a thick volcanic and volcaniclastic sequence of Miocene through Pliocene age. Pre-Tertiary rocks are not exposed in the Painted Hills. Principal structures in the Baltazor area are intersecting high-angle normal faults which trend northerly and northwesterly. Quaternary landslides are dominant in the Painted Hills, although northerly- and northwesterly-trending high-angle faults are also present. Hydrothermal alteration and mineralization at Baltazor and in the Painted Hills are of several different styles and ages. Copper-bearing quartz veins in pre-Tertiary rocks antedate Cenozoic volcanism and sedimentation. The heat source for thermal phenomena and alteration in both areas is probably deep fault-controlled fluid circulation coupled with an abnormally high regional thermal gradient. (MHR)

Hulen, J.B.

1979-12-01T23:59:59.000Z

386

Analysis of fracturing pressures in the South Belridge and Lost Hills Fields  

Science Conference Proceedings (OSTI)

A presentation is made of both theories and rules of thumb believed applicable to everyday fracturing situations in the Lost Hills and South Belridge fields. Pressure analysis is featured with emphasis on bottom hole fracturing pressure calculation and interpretation. Suggestions for the application of findings are offered in hopes of increasing the efficiency of current frac completion and treating methods. 3 refs.

Swanson, G.S.; Meeken, R.B.

1981-01-01T23:59:59.000Z

387

Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota  

E-Print Network (OSTI)

isotope geochemistry by documenting the Li isotopic variations in different geological reservoirsLithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang. Geochemistry Laboratory, Department of Geology, University of Maryland, College Park, MD 20742, U.S.A. 2

Rudnick, Roberta L.

388

Bottom Currents near a Small Hill on the Maderia Abyssal Plain  

Science Conference Proceedings (OSTI)

Near-bottom currents at depths in exceeds of 5000 m have been measured in the Great Meteor East study area (near 3130?N, 25W) over a 3 year period. The sites selected were on top of a small abyssal hill, on its flank, and on the abyssal plain ...

Peter M. Saunders

1988-06-01T23:59:59.000Z

389

CH2M Hill Hanford Group Inc (CHG) Information Resource Management (IRM) Strategic Plan  

SciTech Connect

The CH2M HILL Hanford Group, Inc. (CHG), Information Resource Management Strategic Plan is the top-level planning document for applying information and information resource management to achieve the CHG mission for the management of the River Protection Project waste tank farm.

NELSON, R.L.

2000-06-06T23:59:59.000Z

390

Numerical Simulation of the 910 June 1972 Black Hills Storm Using CSU RAMS  

Science Conference Proceedings (OSTI)

Strong easterly flow of low-level moist air over the eastern slopes of the Black Hills on 910 June 1972 generated a storm system that produced a flash flood, devastating the area. Based on observations from this storm event, and also from the ...

U. S. Nair; Mark R. Hjelmfelt; Roger A. Pielke Sr.

1997-08-01T23:59:59.000Z

391

Fertilizing and Burning Flint Hills Bluestem CLENTON E. OWENSBY AND ED F. SMITH  

E-Print Network (OSTI)

Fertilizing and Burning Flint Hills Bluestem CLENTON E. OWENSBY AND ED F. SMITH Abstract Burned of nitrogen applied more than 80 lb N/acre did. Maintenance of good quality range was favored by burning and 0 and 40 lb N/acre compared to not burning and the same fertilizer rates. Eighty lb N/acre produced poor

Owensby, Clenton E.

392

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

393

Exploration for hot dry rock geothermal resources in the Midcontinent USA. Hot dry rock conceptual models for exploration, HDR test site investigations, and the Illinois Deep Drill Hole Project. Volume 2  

DOE Green Energy (OSTI)

Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation with ad hoc exploration strategies. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high, local, upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. There appear to be much more widespread possibilities for similar HDR sites in the Great Plains area. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket. There is no direct information on the presence of abnormally high temperatures in this area, but the study does show that a combination of gravity and magnetic anomaly mapping with regional geological information derived from sparse drill holes in the Phanerozoic rocks is useful on a widespread basis for focusing on local areas for detailed evaluation.

Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

1986-02-01T23:59:59.000Z

394

Quartz dissolution and silica deposition in hot-dry-rock geothermal systems  

DOE Green Energy (OSTI)

The kinetics of quartz dissolution control the produced fluid dissolved silica concentration in geothermal systems in which the downhole residence time is finite. The produced fluid of the Phase I, Run Segment 5 experimental Hot Dry Rock (HDR) geothermal system at Fenton Hill, NM, was undersaturated with respect to quartz in one pass through the reservoir, suggesting that the rate of granite dissolution governed the outlet dissolved silica concentration in this system. The literature data for the rate of quartz dissolution in water from 65 to 625/sup 0/C is correlated using an empirical rate law which is first order in quartz surface area and degree of undersaturation of the fluid. The Arrhenius plot (ln k vs T/sup -1/) is linear over eight orders of magnitude of the rate constant, verifying the validity of the proposed rate expression. Carefully performed quartz dissolution experiments in the present study duplicated the literature data and completed the data base in the temperature range from 150 to 250/sup 0/C. Identical experiments using crushed granite indicate that the rate of quartz dissolution in the presence of granite could be as much as 1 to 2 orders of magnitude faster than the rates observed in the pure quartz experiments. A temperature dependent HDR reservoir model incorporates the quartz dissolution rate law to simulate the dissolved silica behavior during the Fenton Hill Run Segment 5 experiment. For this low-permeability, fracture-dominated reservoir, the assumptions of one-dimensional plug flow through a vertically-inclined rectangular fracture and one-dimensional rock heat conduction perpendicular to the direction of flow are employed. These simplifications lead to an analytical solution for the temperature field in the reservoir.

Robinson, B.A.

1982-07-01T23:59:59.000Z

395

DOE Cites CH2M Hill Hanford Group for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group for Price-Anderson Violations Group for Price-Anderson Violations DOE Cites CH2M Hill Hanford Group for Price-Anderson Violations November 17, 2006 - 9:25am Addthis WASHINGTON, DC - The Department of Energy (DOE) today notified CH2M Hill Hanford Group (CHG) that it will fine the company $82,500 for violations of the Department's nuclear safety requirements. CHG is the prime contractor responsible for managing the storage and retrieval of highly radioactive and hazardous waste at the DOE Hanford Tank Farm site. The Preliminary Notice of Violation (PNOV) issued today cited a series of violations associated with two separate events involving the radioactive contamination of multiple CHG employees. The first event occurred on September 21, 2005, during disassembly and removal of auxiliary equipment

396

Sale of the Elk Hills Naval Petroleum Reserve | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Hills Naval Petroleum Reserve Sale of the Elk Hills Naval Petroleum Reserve Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. On February 5, 1998, the Department of Energy and Occidental Petroleum Corporation concluded the largest divestiture of federal property in the history of the U.S. government.

397

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Inc. - EA-2006-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06 November 16, 2006 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological Contamination Events at the Hanford Site Tank Farms This letter refers to the recent investigation at the Hanford Tank Farms by the Department of Energy's (DOE) Office of Enforcement, now within the Office of Health, Safety and Security. The investigation involved (1) the September 2005 Tank C-202 Mobile Retrieval System (MRS) multi-personnel contamination event, (2) the March 2006 ER-311 catch tank camera removal radiological event, and (3) additional radiological contamination events that occurred between 2003-2006 as they relate to quality improvement

398

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-01 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2000-01 2000-01 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-01 January 24, 2000 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to Recurring Procurement Quality Problems at the Rocky Flats Environmental Technology Site, January 24, 2000 (EA-2000-01) This letter refers to the Department of Energy's (DOE) evaluation of recurring procurement quality problems identified to you in Preliminary Notice of Violation (PNOV) EA-1999-06 and the effectiveness of corrective actions you identified in your response to the PNOV. Our letter of August 18, 1999, transmitting PNOV EA-1999-06 stated that DOE would defer enforcement action on additional similar violations contingent upon your taking corrective actions that effectively prevent recurrence of the

399

MEMORANDUM TO: File FROM: David R. Hill RE: Meeting Concerning Potential Test Procedures and Energy Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEMORANDUM MEMORANDUM TO: File FROM: David R. Hill RE: Meeting Concerning Potential Test Procedures and Energy Conservation Standards for Set-Top Boxes and Network Equipment DATE: March 14, 2012 In compliance with the Department of Energy's guidance on ex parte communications (74 Fed. Reg. 52795 (Oct. 14, 2009)), this memorandum provides a summary of a March 7, 2012, meeting with DOE officials concerning potential test procedures and energy conservation standards for set-top boxes and network equipment. Meeting attendees: John Cymbalski (DOE - EE) Jeremy Dommu (DOE - EE) Ashley Armstrong (DOE - EE) Dan Cohen (DOE - GC) Celia Sher (DOE - GC) Cecilia Martaus (AT&T) Mike Pfau (AT&T) Jeff Dygert (AT&T) David Hill (Sidley Austin) The AT&T representatives discussed a number of concerns with DOE's potential promulgation

400

DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group, Inc. for Price-Anderson Group, Inc. for Price-Anderson Violations DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations June 5, 2008 - 12:51pm Addthis WASHINGTON, DC - The Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to CH2M Hill Hanford Group, Inc. (CHG) for nuclear safety violations. CHG is the tank operations contractor for the tank farms located at DOE's Hanford Site in southeastern Washington State. The PNOV cites a series of violations that occurred on July 27, 2007, when waste being pumped out of tank S-102 spilled in the vicinity of the tank's retrieval pump. During waste transfer operations, a supply line became over-pressurized with tank waste, causing a rupture in the dilution water supply line and resulted in a spill of approximately 85 gallons of

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Enforcement Letter, Kaiser-Hill Company, L.L.C - September 11, 2000 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C - September 11, 2000 C - September 11, 2000 Enforcement Letter, Kaiser-Hill Company, L.L.C - September 11, 2000 September 11, 2000 Issued to Kaiser-Hill Company, LLC related to Noncompliances with Design and Procurement Requirements at the Rocky Flats Environmental Technology Site This letter refers to an evaluation by the Department of Energy (DOE) of noncompliance report number NTS-RFO--KHLL-SITEWIDE-2000-0005, which describes noncompliances with the design and procurement requirements of 10 CFR 830.120 (Quality Assurance Rule). 10 CFR 830.120(c)(2)(iii) requires that procured items and services shall meet established requirements and perform as required; 10 CFR 830.120(c)(2)(ii) requires that design work including changes, shall incorporate applicable requirements and design

402

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - March 10,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc - Inc - March 10, 2005 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - March 10, 2005 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and

403

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc - Inc - EA-2005-01 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and (4) the July 2004 extremity exposure during hermocouple removal activities.

404

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-96-04 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

96-04 96-04 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-96-04 October 7, 1996 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC related to Radiological and Work Control Deficiencies associated with Two Radiological Release Events at the Rocky Flats Environmental Technology Site, (EA-96-04) This letter refers to the Department of Energy's (DOE) evaluation of the circumstances surrounding a number of radiological and work control deficiencies associated with two incidents: one in [a building] on March 4, 1996, and the other in [a different building] on April 18, 1996. The evaluation also considered a substantial number of other recent failures to adhere to your established worker radiological protection program requirements. On June 5-7, 1996, the DOE Office of Enforcement and

405

Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California  

Science Conference Proceedings (OSTI)

The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

Not Available

1989-04-01T23:59:59.000Z

406

Enforcement Letter, Kaiser-Hill Company - August 12, 2004 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company - August 12, 2004 Company - August 12, 2004 Enforcement Letter, Kaiser-Hill Company - August 12, 2004 August 12, 2004 Enforcement Letter issued to Kaiser-Hill Company, LLC related to a Water Treatment System Breach and Foam Fire at the Rocky Flats Environmental Technology Site The Office of Price-Anderson Enforcement (OE) has reviewed the details and circumstances regarding two recent site events: the Building 771 unauthorized breach of the Water Treatment System in December 2003; and the February 2004 Building 991 foam fire. Both of these events represent significant breakdowns in your safety programs. Additionally, the general failure to adequately recognize hazards and implement effective controls observed in association with the Building 991 foam fire was an underlying deficiency in the 2003 Building

407

InertiaGravity Wave and Neutral Eady Wave Trains Forced by Directionally Sheared Flow over Isolated Hills  

Science Conference Proceedings (OSTI)

Analytical solutions are obtained to the linearized equations describing a particular class of directionally sheared flow over isolated hills or ridges. The flows are characterized by constant buoyancy frequency and vertical wind shear, though ...

Glenn Shutts

2003-02-01T23:59:59.000Z

408

Water Balance of a Stock-Watering Pond in the Flint Hills of Kansas J. L. Duesterhaus,1  

E-Print Network (OSTI)

Water Balance of a Stock-Watering Pond in the Flint Hills of Kansas J. L. Duesterhaus,1 J. M. Ham,2 in the Flint Hills region of east-central Kansas from June 2005 to October 2006. The 0.35-ha pond supplied´n de las colinas de Flint en la regio´n central del este de Kansas a partir de junio del 2005 hasta

Owensby, Clenton E.

409

Geothermal exploration assessment and interpretation, Klamath Basin, Oregon: Swan Lake and Klamath Hills area  

DOE Green Energy (OSTI)

A synthesis and preliminary interpretation of predominantly geophysical information relating to the Klamath Basin geothermal resource is presented. The Swan Lake Valley area, northeast of Klamath Falls, and the Klamath Hills area, south of Klamath Falls, are discussed in detail. Available geophysical data, including gravity, magnetic, electrical resistivity, microearthquake, roving dipole resistivity, audio-magnetotelluric (AMT) and magnetotelluric (MT) data sets, are examined and reinterpreted for these areas. One- and two-dimensional modeling techniques are applied, and general agreement among overlapping data sets is achieved. The MT method appears well suited to this type of exploration, although interpretation is difficult in the complex geology. Roving dipole and AMT are useful in reconnaissance, while gravity and magnetics help in defining structure. For the Swan Lake Valley the data suggest buried electrically conductive zones beneath Meadow Lake Valley and Swan Lake, connected by a conductive layer at 1 kilometer depth. In the Klamath Hills area, the data suggest a conductive zone centered near the northwestern tip of Stukel Mountain, associated with a concealed northeast-trending cross-fault. Another conductive zone appears near some producing hot wells at the southwestern edge of the Klamath Hills. These conductive zones may represent geothermal reservoirs. Follow-up work is recommended for each target area.

Stark, M.; Goldstein, N.; Wollenberg, H.; Strisower, B.; Hege, H.; Wilt, M.

1979-05-01T23:59:59.000Z

410

Geothermal resource exploration assessment and data interpretation, Klamath Basin, Oregon: Swan Lake and Klamath Hills area  

DOE Green Energy (OSTI)

A synthesis and preliminary interpretation of predominantly geophysical information relating to the Klamath Basin geothermal resource is presented. The Swan Lake Valley area, northeast of Klamath Falls, and the Klamath Hills area, south of Klamath Falls, are discussed in detail. Available geophysical data, including gravity, magnetic, electrical resistivity, microseismic, roving dipole resistivity, audio-magnetotelluric (AMT) and magnetotelluric (MT) data sets, are examined and reinterpreted for these areas. One- and two-dimensional modeling techniques are applied, and general agreement among overlapping data sets is achieved. The MT method appears well suited to this type of exploration, although interpretation is difficult in the complex geology. Roving dipole and AMT are useful in reconnaissance, while gravity and magnetics help in defining structure. For the Swan Lake Valley the data suggest buried electrically conductive zones beneath Meadow Lake Valley and Swan Lake, connected by a conductive layer at 1 kilometer depth. In the Klamath Hills area, the data suggest a conductive zone centered near the northwestern tip of Stukel Mountain, associated with a concealed northeast-trending cross-fault. Another conductive zone appears near some producing hot wells at the southwestern edge of the Klamath Hills. These conductive zones may represent geothermal reservoirs. Specific types of follow-up work are recommended for each target area.

Stark, M.; Goldstein, N.; Wollenberg, H.; Strisower, B.; Hege, M.

1978-10-01T23:59:59.000Z

411

Rb-Sr Geochronologic Investigation Of Precambrian Samples From...  

Open Energy Info (EERE)

Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rb-Sr...

412

Mineralogical and geochemical characterisation of phosphogypsum waste material and its potential for use as backfill at WMC Fertilizers' Mine site, Phosphate Hill, N-W Queensland.  

E-Print Network (OSTI)

??The WMC Fertilizers operation at Phosphate Hill, north-west Queensland, began production of ammonium phosphate fertilizer in late 1999. In the production process, Cambrian marine phosphorites (more)

Dippel, Susan Katherine

2004-01-01T23:59:59.000Z

413

Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California  

SciTech Connect

A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

Reid, S.A.; Thompson, T.W. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

1996-01-01T23:59:59.000Z

414

Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California  

Science Conference Proceedings (OSTI)

Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

Janice Gillespie

2004-11-01T23:59:59.000Z

415

Microsoft Word - Roosevelt-HW-Hill_Landfill-G0335-I0019-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2009 1, 2009 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum James Hall Customer Service Engineer - TPC-TPP-4 Proposed Action: H.W. Hill / Roosevelt Landfill Gas Generation Expansion Project (#I0019 and #G0335) Budget Information: Work Order # 244620, Task # 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7: "Acquisition, installation, operation, and removal of communication systems..." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Klickitat County, Washington Proposed by: Klickitat County Public Utility District No.1 (KPUD) and Bonneville Power

416

Seven Mile Hill I & II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I & II Wind Farm I & II Wind Farm Jump to: navigation, search Name Seven Mile Hill I & II Wind Farm Facility Seven Mile Hill I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Energy Purchaser PacifiCorp Location Between Hanna and Medicine Bow WY Coordinates 41.939079°, -106.372225° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.939079,"lon":-106.372225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Bald eagle habitat suitability on Melton Hill Reservoir and the Clinch River  

Science Conference Proceedings (OSTI)

The area around Melton Hill Reservoir and sections of the Clinch River along the Oak Ridge Reservation (ORR) provide suitable habitat for bald eagles for both breeding and wintering activities. Primary limitations on habitat suitability appear to be human activity in aquatic habitats and along shoreline areas, and human development along shoreline areas. ORR provides the majority of the suitable habitat because shoreline development is very limited. Four eagle management strategies discussed for ORR include planning development away from high-quality habitats, allowing forest stands near water to mature, conducting timber stand improvement to foster growth and development in pines and hardwoods, and using introductions to foster the development of a breeding population. The primary objective of this project was to make a qualitative assessment of bald eagle habitat suitability along Melton Hill Reservoir and the Clinch River and in adjacent areas on the ORR, including the proposed Advanced Neutron Source site. This survey`s aim was to provide ORR managers with an indication of whether suitable habitat exists and, if so, where it occurs on ORR. This information should provide the basis for incorporating eagle management into the overall ORR land management plan.

Buehler, D.A. [Univ., of Knoxville, TN (United States)

1994-09-01T23:59:59.000Z

418

Radon in Soil Gas Above Bedrock Fracture Sets at the Shepleys Hill Superfund Site  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepleys Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrock outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or detection time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepleys Hill site.

J.R. Giles; T.L. McLing; M.V. Carpenter; C.J. Smith; W. Brandon

2012-12-01T23:59:59.000Z

419

HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel  

SciTech Connect

Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

Albright, B J [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

420

Progress of the US Hot-Dry-Rock Program  

DOE Green Energy (OSTI)

While other geologic environments and possible heat-extraction methods are recognized, the US Hot Dry Rock (HDR) Program has so far concentrated on the use of hydraulic fracturing to create flow passages and heat-transfer surface between two wells drilled into hot crystalline rock of low initial permeability. A recirculating pressurized-water loop has been used at Fenton Hill, New Mexico, to extract heat at rates up to 5MW(t) from a system of this type in granitic rock at a depth of 2600 m. The two wells for a larger, deeper, hotter system have now been drilled at the same location. They will be connected during 1982 by a set of hydraulic fractures, and the resulting heat-extraction loop is expected to yield the engineering experience and performance data required to demonstrate the commercial usefulness of such systems. Meanwhile, an evaluation of the HDR resource base of the United States is continuing, together with detailed investigation of local areas that appear especially promisng either for future heat-extraction experiments or for eventual commercial development.

Smith, M.C.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fenton hill hdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Directional drilling equipment and techniques for deep hot granite wells  

DOE Green Energy (OSTI)

Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

1980-01-01T23:59:59.000Z

422

Experimental verification of the load-following potential of a Hot Dry Rock geothermal reservoir  

Science Conference Proceedings (OSTI)

A recent 6-day flow experiment conducted at the Los Alamos National Laboratory's Fenton Hill Hot Dry Rock (HDR) test site in north-central New Mexico has verified that an HDR reservoir has the capability for a significant, and very rapid, increase in power output upon demand. The objective of this cyclic load-following experiment was to investigate the performance of the reservoir in a nominal high-backpressure (2200 psi) baseload operating condition upon which was superimposed greatly increased power production for a 4-hour period each day. In practice, this enhanced production was accomplished by dropping the production well backpressure from the preexisting level of 2200 psi down to about 500 psi to rapidly drain the fluid stored in the pressure-dilated joints surrounding the production well. During the last cycle of this six-cycle test, the mean production conditions were 146.6 gpm for 4 hours at a temperature of 189C followed by 92.4 gpm for 20 hours at a temperature of 183C. These flow and temperature values indicate a flow enhancement of 59%, and a power enhancement of 65% during the high-production period. The time required to increase the reservoir power output from the baseload to the peaking rate was about 2 minutes.

Brown, Donald

1996-01-24T23:59:59.000Z

423

Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California  

Science Conference Proceedings (OSTI)

Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

NONE

1998-01-01T23:59:59.000Z

424

A petrophysics and reservoir performance-based reservoir characterization of Womack Hill (Upper Smackover) Field (Alabama)  

E-Print Network (OSTI)

Womack Hill is one of the 57 Smackover fields throughout the Gulf Coast region. Since its discovery in 1970, Womack Hill Field has produced 30 million STB from the Upper Smackover sequence of carbonate reservoirs. Since production reached its peak in 1977, oil and gas rates have declined substantially. During the last ten years, the production decline has accelerated despite an increase in the water injection rate. This production decline along with the increase in the operating costs has caused a considerable drop in profitability of the field. The field currently produces 640 STB/D of oil and 330 MSCF/D of gas, along with 6,700 STB/D of water, which implies a water cut of over 90 percent. In order to optimize the reservoir management strategies for Womack Hill Field, we need to develop an integrated reservoir study. This thesis addresses the creation of an integrated reservoir study and specifically provides a detailed reservoir description that represents the high level of heterogeneity that exists within this field. Such levels of heterogeneity are characteristic of carbonate reservoirs. This research should serve as a guide for future work in reservoir simulation and can be used to evaluate various scenarios for additional development as well as to optimize the operating practices in the field. We used a non-parametric regression algorithm (ACE) to develop correlations between the core and well log data. These correlations allow us to estimate reservoir permeability at the "flow unit" scale. We note that our efforts to reach an overall correlation were unsuccessful. We generated distributions of porosity and permeability throughout the reservoir area using statistically derived estimates of porosity and permeability. The resulting reservoir description indicates a clear contrast in reservoir permeability between the western and eastern areas - and in particular, significant variability in the reservoir. We do note that we observed an essentially homogenous porosity distribution. We provided analysis of the production and injection data using various techniques (history plots, EUR plots, and decline type curve analysis) and we note this effort yielded a remaining recoverable oil of 1.9 MMSTB (under the current operating conditions). This analysis suggests a moderate flow separation between the western and eastern areas and raised some questions regarding the suitability of the hydraulic "jet pumps" (the water rate increased coincidentally with the installation of the jet pumps).

Avila Urbaneja, Juan Carlos

2002-01-01T23:59:59.000Z

425

Smart infrastructure for carbon foot print analysis of Electric Vehicles V Suresh, G Hill, Prof P T Blythe  

E-Print Network (OSTI)

Smart infrastructure for carbon foot print analysis of Electric Vehicles V Suresh, G Hill, Prof P of electric vehicles through on-road testing, user led trials and the analysis of the data collected from, trip profile, auxiliary loads and driving styles to determine how the battery discharges and recharges

Newcastle upon Tyne, University of

426

FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.  

Science Conference Proceedings (OSTI)

A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

RICH, LAUREN

2013-09-30T23:59:59.000Z

427

Microsoft Word - CX-HillsCreek-LookoutPointWoodPolesFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEP-Alvey SUBJECT: Environmental Clearance Memorandum Chad Hamel Project Manager - TEP-TPP-1 Proposed Action: Hills Creek-Lookout Point No. 1 wood pole replacements PP&A Project No.: 2315 (WO# 297311) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Lane County, Oregon Proposed by: Bonneville Power Administration (BPA), Alvey District Description of the Proposed Action: BPA proposes to replace four deteriorating wood pole structures and associated structural/electrical components (e.g. cross arms, insulators, guy anchors) along the subject transmission line. The poles are located on private residential and US Forest Service land. Landowners will be notified prior to replacement activities. Replacement will be in-

428

Television interference measurements near the MOD-2 WT array at Goodnoe Hills, Washington  

DOE Green Energy (OSTI)

Electromagnetic interference to television reception caused by the MOD-2 wind turbine (WT) array at Goodnoe Hills, Washington, was studied by means of detailed measurements at a number of test sites in the vicinity of the WT array. The commercial television signals available in the area were used as the radio frequency sources during the measurements. The dynamic measurements indicated that varying amounts of TVI were produced at all sites and on some or all of the available TV channels; with the directional antenna in use, most of the backward region interference produced video distortion that was judged to be acceptable; at one test location about 1-1/2 miles from the WT array site, forward region interference was observed; when the blades of the WTs rotate in synchronism, they tend to increase the amplitude of the interference pulses, thereby producing more TVI effects; and when the blades do not rotate in synchronism, each WT produces interference effects individually.

Sengupta, D L; Senior, T B.A.; Ferris, J E

1983-11-01T23:59:59.000Z

429

Case Study Walnut Hill United Methodist Church - Dallas, Texas, Chiller Replacement Analysis  

E-Print Network (OSTI)

In March of 1992 Walnut Hill United Methodist Church in Dallas, Tx. decided that their existing thermal storage and electric reciprocating chiller system were both in need of replacement. After analyzing several options, they chose to install 150 tons of gas-fired double-effect absorption chillers. This case study will show the original HVAC operation cost analysis and compare it to the present day operation costs and it will describe how unexpected changes occurred that caused the initial analysis to be questioned. Finally, this case study will show how today's operational costs are lower than originally projected. This presentation is not about the reasons the church chose this particular system, but about the analysis itself and its accuracy.

Phillips, J.

1998-01-01T23:59:59.000Z

430

Crosshole EM for oil field characterization and EOR monitoring: Field examples from Lost Hills, California  

SciTech Connect

A steamflood recently initiated by Mobil Development and Production U.S. at the Lost Hills No 3 oil field in California is notable for its shallow depth and the application of electromagnetic (EM) geophysical techniques to monitor the subsurface steam flow. Steam was injected into three stacked eastward-dipping unconsolidated oil sands at depths from 60 to 120 m; the plume is expected to develop as an ellipsoid aligned with the regional northwest-southeast strike. Because of the shallow depth of the sands and the high viscosity of the heavy oil, it is important to track the steam in the unconsolidated sediments for both economic and safety reasons. Crosshole and surface-to-borehole electromagnetic imaging were applied for reservoir characterization and steamflood monitoring. The crosshole EM data were collected to map the interwell distribution of the high-resistivity oil sands and to track the injected steam and hot water. Measurements were made in two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the steam drive, to map the distribution of the oil sands, and then 6 and 10 months after steam was injected, to monitor the expansion of the steam chest. Resistivity images derived from the collected data clearly delineated the distribution and dipping structure of the target oil sands. Difference images from data collected before and during steamflooding indicate that the steam chest has developed only in the middle and lower oil sands, and it has preferentially migrated westward in the middle oil sand and eastward in the deeper sand. Surface-to-borehole field data sets at Lost Hills were responsive to the large-scale subsurface structure but insufficiently sensitive to model steam chest development in the middle and lower oil sands. As the steam chest develops further, these data will be of more use for process monitoring.

Wilt, M.; Schenkel, C.; Wratcher, M.; Lambert, I.; Torres-Verdin, C.; Tseng H.W.

1996-07-16T23:59:59.000Z

431

The Photosphere HDR Image Browser  

NLE Websites -- All DOE Office Websites (Extended Search)

with EETD scientists on cooperative research? Get a job in EETD? Make my home more energy-efficient? Find a source within EETD for a news story I'm writing, shooting, or...

432

Conserving the rural landscape of the texas hill country: a place identity-based approach  

E-Print Network (OSTI)

Landscape change induced by population growth and urban development is impacting the ecosystem goods and services provided by open space, which is essential to supporting many urban and rural populations. Conserving open space cannot be attained without obtaining public support especially in a state like Texas where most open space is privately owned. This dissertation was aimed at exploring the role of place identity as an intrinsic incentive for landowner involvement in conserving open space threatened by landscape change. Four objectives addressed in this research include: 1) defining place identity and identifying its underlying dimensions; 2) developing and refining a place-identity scale; 3) developing and testing a conceptual framework to explain the relationships among commitment, place identity, behavior/behavioral intention to manifest place identity, and perception of landscape change; and 4) drawing implications for open space conservation. Identity theory and identity control theory were applied to conceptualize place identity and develope structural models for hypothesis testing. Place identity was defined as comprising meanings that individuals ascribe to a place through their interaction with that place and become defining elements of their self-identity. Both qualitative and quantitative methods were used in this research. Results from semi-structured interviews with a convenience sample of landowners in the Texas Hill Country were used to develop the place-identity scale. Survey data from randomly selected Hill Country landowners were used in confirmatory factor analysis, mean and covariance structure analysis, and invariance testing based on the covariance structure to test and refine measures, to compare differences between landowner groups, and to test hypotheses. Findings suggested that identity theory and identity control theory provided valuable insight to place identity in the face of change. Results also supported a model of place identity comprised of cognitive and affective dimensions, and identified variations among individuals in their affective place-identity. Moreover, findings indicated that both dimensions exhibited different effects on identity-related behavior/behavioral intention under the influence of landscape change. Implications were provided for engaging landowners in open space conservation. This dissertation addresses several research gaps, and also raises questions important in understanding and applying place identity to promoting conservation.

Lai, Po-Hsin

2007-12-01T23:59:59.000Z

433

Enforcement Letter, September 6, 2007, CH2M Hill Hanford Group Potential Violations of Nuclear Safety Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2007 6, 2007 Mr. John Fulton Chief Executive Officer CH2M Hill Hanford Group, Inc. 2440 Stevens Drive Richland, Washington 99352 Dear Mr. Fulton: The Department of Energy (DOE) held an Enforcement Conference on August 29, 2006, with CH2M Hill Hanford Group (CHG) to discuss potential violations of nuclear safety requirements described in our Investigation Summary Report dated July 26, 2006. At that time, DOE elected to defer a decision on a potential quality improvement violation related to recurring radiological events and deficiencies in the identification and control of radiological hazards at the Tank Farms. This decision was based upon the fact that CHG senior management had initiated radiological work improvements but insufficient data was available to assess their effectiveness. On July 12, 2007, Office of Enforcement

434

Green area effect and other aerosol scavenging processes in the Black Hills of South Dakota: final report  

SciTech Connect

Bi-weekly air sampling for particulates in the Black Hills has revealed several important scavenging mechanisms. A Gardner condensation nucleus counter was used to determine these particulate counts at fourteen stations. Analysis of the data has indicated that the forested Black Hills are a source of clean air when compared to the surrounding plains due mainly to greater precipitation and in-cloud scavenging events, an elevation variation, and the filtering effects of vegetation (green area sink effect). Little or no scavenging was indicated by certain meteorological variables when considered separately. The green area sink effect was substantiated after performing several tests on the data with a cleanup of as much as 50% evidenced.

Haggard, S.J.

1976-01-01T23:59:59.000Z

435

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review Independent Oversight Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope...................................................................................................................................................... 2

436

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes, November 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Review Independent Oversight Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope...................................................................................................................................................... 2

437

Detailed analysis of the wake and free-flow characteristics at the Goodnoe Hills MOD-2 site  

DOE Green Energy (OSTI)

Wind data collected at nine meteorological towers at the Goodnoe Hills MOD-2 wind turbine site were analyzed to characterize the wind flow over the site both in the absence and presence of wind turbine wakes. Although previous studies have examined the wake and free-flow characteristics at the site, data collected in 1985 from nine towers permitted a much more detailed and accurate analysis than was previously possible. 13 refs., 25 figs., 7 tabs.

Elliott, D.L.; Barnard, J.C.

1989-07-01T23:59:59.000Z

438

TVA Melton Hill Dam Sustainable Recreation Area: Analysis of Field Data from Renewable and Energy Efficiency Technologies  

Science Conference Proceedings (OSTI)

This report describes the culmination of activities, analyses, and results from EPRI's evaluation of TVA's Sustainable Recreation Area at Melton Hill Dam in East Tennessee. The recreation area includes renewable energy generation, energy and water efficiency, and other environmentally-driven enhancements throughout the area's visitor and campground facilities.EPRI has collected time-series data from a specific subset of technologies to evaluate energy and related performance ...

2013-11-19T23:59:59.000Z

439

Summary of Degas II performance at the US Strategic Petroleum Reserve Big Hill site.  

Science Conference Proceedings (OSTI)

Crude oil stored at the US Strategic Petroleum Reserve (SPR) requires mitigation procedures to maintain oil vapor pressure within program delivery standards. Crude oil degasification is one effective method for lowering crude oil vapor pressure, and was implemented at the Big Hill SPR site from 2004-2006. Performance monitoring during and after degasification revealed a range of outcomes for caverns that had similar inventory and geometry. This report analyzed data from SPR degasification and developed a simple degas mixing (SDM) model to assist in the analysis. Cavern-scale oil mixing during degassing and existing oil heterogeneity in the caverns were identified as likely causes for the range of behaviors seen. Apparent cavern mixing patterns ranged from near complete mixing to near plug flow, with more mixing leading to less efficient degassing due to degassed oil re-entering the plant before 100% of the cavern oil volume was processed. The report suggests that the new cavern bubble point and vapor pressure regain rate after degassing be based on direct in-cavern measurements after degassing as opposed to using the plant outlet stream properties as a starting point, which understates starting bubble point and overstates vapor pressure regain. Several means to estimate the cavern bubble point after degas in the absence of direct measurement are presented and discussed.

Rudeen, David K. (GRAM, Inc., Albuquerque, NM); Lord, David L.

2007-10-01T23:59:59.000Z

440

Observations of wake characteristics at the Goodnoe Hills MOD-2 array  

DOE Green Energy (OSTI)

The array of three MOD-2 wind turbines and two meteorological towers at Goodnoe Hills, Washington, provides an opportunity to evaluate turbine and wake interactions in a real environment. The triangular arrangement of the three turbines provides opportunities to study the effect of wakes on the performance of a downwind turbine at three different distances: 5, 7, and 10 rotor diameters (D), where 1 D is 300 ft. The information obtained from this test configuration is critical to future wind farm activities and is a key objective of the MOD-2 test program. This report describes the analysis of data measured at the turbines and towers from August 29 to November 12, 1982. The data are 2-min averages of 1-s values. Background flow characteristics were also examined to determine if flow variations across the site could mask wake measurements. For this analysis, one year's data gathered at the meteorological towers were analyzed. The results show some differences between characteristics measured at the towers, but these differences were not great enough to consider in evaluating wakes at the towers.

Buck, J.W.; Renne, D.S.

1985-08-01T23:59:59.000Z