Sample records for fenestration system energy

  1. COMFEN Early Design Tool for Commercial Facades and Fenestration Systems

    E-Print Network [OSTI]

    COMFEN ­ Early Design Tool for Commercial Facades and Fenestration Systems Stephen Selkowitz Sustainable IQ, Inc. Building Technologies Department Environmental Energy Technologies Division CEC PIER

  2. Fenestration System Performance Research, Testing, and Evaluation

    SciTech Connect (OSTI)

    Jim Benney

    2009-11-30T23:59:59.000Z

    The US DOE was and is instrumental to NFRC's beginning and its continued success. The 2005 to 2009 funding enables NFRC to continue expanding and create new, improved ratings procedures. Research funded by the US DOE enables increased fenestration energy rating accuracy. International harmonization efforts supported by the US DOE allow the US to be the global leader in fenestration energy ratings. Many other governments are working with the NFRC to share its experience and knowledge toward development of their own national fenestration rating process similar to the NFRC's. The broad and diverse membership composition of NFRC allows anyone with a fenestration interest to come forward with an idea or improvement to the entire fenestration community for consideration. The NFRC looks forward to the next several years of growth while remaining the nation's resource for fair, accurate, and credible fenestration product energy ratings. NFRC continues to improve its rating system by considering new research, methodologies, and expanding to include new fenestration products. Currently, NFRC is working towards attachment energy ratings. Attachments are blinds, shades, awnings, and overhangs. Attachments may enable a building to achieve significant energy savings. An NFRC rating will enable fair competition, a basis for code references, and a new ENERGY STAR product category. NFRC also is developing rating methods to consider non specular glazing such as fritted glass. Commercial applications frequently use fritted glazing, but no rating method exists. NFRC is testing new software that may enable this new rating and contribute further to energy conservation. Around the world, many nations are seeking new energy conservation methods and NFRC is poised to harmonize its rating system assisting these nations to better manage and conserve energy in buildings by using NFRC rated and labeled fenestration products. As this report has shown, much more work needs to be done to continues research to improve existing ratings and develop new ones. NFRC needs to continue the work it has begun in several nations to implement the NFRC rating system that has been introduced. Many nations are eager to accept the expertise NFRC can offer to achieve energy conservation goals. NFRC looks forward to a continues partnership with the US Department of Energy to cooperatively achieve both.

  3. Simulating the Daylight Performance of Complex Fenestration Systems Using

    E-Print Network [OSTI]

    LBNL-4414E Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional, January 21, 2011. 1 Simulating the Daylight Performance of Complex Fenestration Systems Using (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater

  4. High Performance Commercial Fenestration Framing Systems

    SciTech Connect (OSTI)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31T23:59:59.000Z

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial fenestration framing systems, by investigating new technologies that would improve the thermal performance of aluminum frames, while maintaining their structural and life-cycle performance. The project targeted an improvement of over 30% (whole window performance) over conventional commercial framing technology by improving the performance of commercial framing systems.

  5. Comprehensive performance metrics for Complex Fenestration Systems using a relative approach

    E-Print Network [OSTI]

    Dave, Shreya H

    2012-01-01T23:59:59.000Z

    Buildings account for over 40% of the energy consumption in the United States, nearly 40% of which is attributed to lighting. The selection of a fenestration system for a building is a critical decision as it offsets ...

  6. Fenestration Software Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department ofDistribution Infrastructure |Federal LongDepartmentFenestration

  7. Advanced fenestration systems for improved daylight performance

    E-Print Network [OSTI]

    Selkowitz, S.; Lee, E.S.

    1998-01-01T23:59:59.000Z

    SPIE Optical Materials Technology for Energy Efficiency andon Optical Materials Technology for Energy Efficiency andon Optical Materials Technology for Energy Efficiency and

  8. Fenestration Software Tools | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5FederalFeds feed

  9. Advanced fenestration systems for improved daylight performance

    E-Print Network [OSTI]

    Selkowitz, S.; Lee, E.S.

    1998-01-01T23:59:59.000Z

    daylighting designs is a lack of systems perspective that accounts for, and provides an integrated solution

  10. AUTOMATING THE SELECTION OF FENESTRATION SYSTEMS TO BEST MEET DAYLIGHTING PERFORMANCE GOALS

    E-Print Network [OSTI]

    AUTOMATING THE SELECTION OF FENESTRATION SYSTEMS TO BEST MEET DAYLIGHTING PERFORMANCE GOALS Luís closer to producing the desired flux distribution from the outdoor daylight distribution. INTRODUCTION The selection of fenestration systems for daylighting is traditionally done by trial and error. Designers try

  11. Advanced fenestration systems for improved daylight performance

    E-Print Network [OSTI]

    Selkowitz, S.; Lee, E.S.

    1998-01-01T23:59:59.000Z

    Systems for Improved Daylight Performance S. Selkowitz, E.S.Systems for Improved Daylight Performance S. Selkowitz, E.S.Introduction The use of daylight to replace or supplement

  12. Advanced Facades, Daylighting, and Complex Fenestration Systems |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.208-006Energy

  13. Advanced Facades, Daylighting, and Complex Fenestration Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzyme

  14. SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: PROCEDURES FOR ESTIMATING

    E-Print Network [OSTI]

    SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: PROCEDURES FOR ESTIMATING that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about

  15. SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: SUMMARY OF PROCEDURES FOR

    E-Print Network [OSTI]

    SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: SUMMARY OF PROCEDURES that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about

  16. Comparison of Simulation Methods for Evaluating Improved Fenestration Using the DOE-2.1E Building Energy Simulation Program

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Haberl, J. S.

    2006-01-01T23:59:59.000Z

    - performance glazing technology pushed researchers at LBNL to develop new and more sophisticated algorithms for fenestration simulation software (Arasteh et al. 1998). Research by Rubin (1982a, 1982b) and later Arasteh et al. (1989) played a key role... performance of fenestration systems under realistic conditions and compared the results with those obtained from the Lawrence Berkeley National Laboratories (LBNL) simulation models (Klems 1989; Klems et al. 1995). DOE-2.1e gives several options...

  17. COMFEN 3.0 - Evolution of an Early Design Tool for Commercial Facades and Fenestration Systems

    SciTech Connect (OSTI)

    McClintock Facade Consulting LLC, Walnut Creek, CA; McQuillen Interactive LLC, Santa Cruz, CA; Selkowitz, Stephen; Mitchell, Robin; McClintock, Maurya; McQuillen, Daniel; McNeil, Andrew; Yazdanian, Mehry

    2011-03-09T23:59:59.000Z

    Achieving a net-zero energy building cannot be done solely by improving the efficiency of the engineering systems. It also requires consideration of the essential nature of the building including factors such as architectural form, massing, orientation and enclosure. Making informed decisions about the fundamental character of a building requires assessment of the effects of the complex interaction of these factors on the resulting performance of the building. The complexity of these interactions necessitates the use of modeling and simulation tools to dynamically analyze the effects of the relationships, yet decisions about the building fundamentals are often made in the earliest stages of design, before a `building? exists to model. To address these issues, Lawrence Berkeley National Laboratory (LBNL) has developed an early-design energy modeling tool (COMFEN) specifically to help make informed decisions about building facade fundamentals by considering the design of the building envelope, orientation and massing on building performance. COMFEN focuses on the concept of a ?space? or ?room? and uses the EnergyPlus, and RadianceTM engines and a simple, graphic user interface to allow the user to explore the effects of changing key early-design input variables on energy consumption, peak energy demand, and thermal and visual comfort. Comparative results are rapidly presented in a variety of graphic and tabular formats to help users move toward optimal facade and fenestration design choices.While COMFEN 1.0 utilized an ExcelTM-based user interface, COMFEN 3.0 has been reworked to include a simple, more intuitive, yet powerful Graphic User Interface (GUI), a broader range of libraries for associated system and component choices and deliver a wider range of graphic outputs and options. This paper (and presentation) outlines the objectives in developing and further refining COMFEN, the mechanics of the program, and plans for future development.

  18. Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance

    SciTech Connect (OSTI)

    Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

    2011-01-21T23:59:59.000Z

    We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

  19. STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION CEC-CF-6R-ENV-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope Insulation; Roofing:__________________________________ Brand Name:_______________________________ Thickness (inches):_________________________ Thermal

  20. Certification and Rating of Attachments for Fenestration Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rate fenestration attachment energy performance and provide accurate and useful product comparison criteria, allowing end users in residential and commercial markets to assess...

  1. A characterization of the nonresidential fenestration market

    SciTech Connect (OSTI)

    Shehabi, Arman; Eley, Charles; Arasteh, Dariush; Degens, Phil

    2002-07-25T23:59:59.000Z

    The purpose of this report is to characterize the nonresidential fenestration market in order to better understand market barriers to, and opportunities for, energy-efficient fenestration products. In particular, the goal is to: (1) Better understand how glazing products flow between industry groups. (2) Identify major decision makers directing the product flow. (3) Understand industry trends for certain technologies or products. (4) Characterize the role of energy codes and standards in influencing industry trends. (5) Assess the impact of product testing and certification programs on the industry. The U.S. glass industry is a $27 billion enterprise with both large producers and small firms playing pivotal roles in the industry. While most sectors of the glass industry have restructured and consolidated in the past 20 years, the industry still employs 150,000 workers. Nonresidential glazing accounts for approximately 18% of overall U.S. glass production. In 1999, nonresidential glazing was supplied to approximately 2.2 billion ft{sup 2} of new construction and additions. That same year, nonresidential glazing was also supplied to approximately 1.1 billion ft{sup 2} of remodeling construction. With an industry this large and complex, it is to be expected that many market participants can influence fenestration selection. If market barriers to the selection of high performance fenestration products are better understood, then the U. S. Department of Energy (USDOE), the Northwest Energy Efficiency Alliance (NEEA), and others can develop programs and policies that promote greater energy efficiency in commercial glazing products.

  2. STATE OF CALIFORNIA FENESTRATION ACCEPTANCE CERTIFICATE

    E-Print Network [OSTI]

    the Fenestration Certified Products Directory number that matches the CPD-ID number at http://cpd.nfrc.org/search/search with the building permit(s) issued for the building. Company Name: Field Technician's Name: Field Technician's Signature: Date Signed: Position With Company (Title): RESPONSIBLE PERSON'S DECLAR

  3. A validation of the Radiance three-phase simulation method for modeling annual daylight performance of optically-complex fenestration systems

    E-Print Network [OSTI]

    McNeil, Andrew

    2013-01-01T23:59:59.000Z

    J. , 2011. Simulating the Daylight Performance of Complexof dynamic RADIANCE-based daylight simulations for a testS.E. , 1998. Energy and Daylight Performance of Angular

  4. Advanced fenestration systems for improved daylight performance

    E-Print Network [OSTI]

    Selkowitz, S.; Lee, E.S.

    1998-01-01T23:59:59.000Z

    technology for dynamic, smart glazings has the potential toSwitchable Glazing: Towards the Development of the Smart

  5. Development of Design Guidance for K-12 Schools from 30% to 50% Energy Savings: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Long, N.

    2008-07-01T23:59:59.000Z

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating.

  6. CEC4002012005CMF CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    APPENDICES THE BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS JOINT For Occupant Controlled Smart Thermostats JA6 HVAC System Fault Detection and Diagnostic Technology JA7 Procedures for Relocatable Public School Buildings NA5 RESERVED NA6 Alternate Default Fenestration

  7. INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope Insulation; Roofing; Fenestration (Page 1 of 3)

    E-Print Network [OSTI]

    INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope Insulation; Roofing; Fenestration (Page 1 of 3:__________________________________ Brand Name:_______________________________ Thickness (inches):_________________________ Thermal:_______________________________ Thickness (inches):_________________________ Thermal Resistance (R-Value):_________________ Perimeter

  8. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    Other: Thermal properties of envelope; air-tightness; energyof Overall Thermal Transfer Value to Building Envelope Hongenvelope provisions: Roof Wall system Fenestration system Infiltration Other: Thermal

  9. ELECTRICAL ENERGY SYSTEMS ELECTRICAL ENERGY SYSTEMS

    E-Print Network [OSTI]

    Strathclyde, University of

    countries to install solar energy technologies into local schools and hospitals. In its Energy PolicyMEng ELECTRICAL ENERGY SYSTEMS #12;MEng ELECTRICAL ENERGY SYSTEMS Electrical energy is vital aspects of modern life. One of the biggest challenges facing society is the need for reliable energy

  10. National Renewable Energy Laboratory's Energy Systems Integration...

    Broader source: Energy.gov (indexed) [DOE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  11. Energy Management Systems

    E-Print Network [OSTI]

    Ferland, K.

    2007-01-01T23:59:59.000Z

    This presentation will address results from a pilot project with 10 chemical plants on energy management systems and the development of an energy efficiency plant certification program....

  12. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  13. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28T23:59:59.000Z

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  14. REDUCING ENERGY USE IN FLORIDA BUILDINGS

    E-Print Network [OSTI]

    Raustad, R.; Basarkar, M.; Vieira, R.

    to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

  15. Renewable Energy Systems | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Systems SHARE Renewable Energy Systems Develop methods and models, conduct analyses and produce tools that address the potential and sustainability of biomass...

  16. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design DocumentationModular Integrated Energy Systems Prepared for: Oak Ridge National Laboratory P.O. Box 2008 Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive

  17. Certification and Rating of Attachments for Fenestration Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents Heal thePrepared for EnergyEnergyNativeA

  18. Wind Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

  19. Solar Energy System Exemption

    Broader source: Energy.gov [DOE]

    In Louisiana, any equipment attached to an owner-occupied residential building or swimming pool as part of a solar energy system is considered personal property that is exempt from ad valorem...

  20. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1 Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Hawai`i Distributed

  1. Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter...

    Broader source: Energy.gov (indexed) [DOE]

    Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave...

  2. Integrated Energy System Dispatch Optimization

    E-Print Network [OSTI]

    Firestone, Ryan; Stadler, Michael; Marnay, Chris

    2006-01-01T23:59:59.000Z

    Energy System Dispatch Optimization Ryan Firestone, MichaelEnergy System Dispatch Optimization Ryan Firestone - Studentthe real-time dispatch optimization problem for a generic

  3. Systems Engineering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Systems Engineering Systems Engineering Project objectives: to create an interactive, physics based, systems analysis tool for geothermal energy development that will: Identify...

  4. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  5. Generation IV Nuclear Energy Systems ...

    E-Print Network [OSTI]

    Kemner, Ken

    Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

  6. NETL: Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions forEnergy Systems Program

  7. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  8. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10T23:59:59.000Z

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  9. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  10. Solar Energy Control System Design.

    E-Print Network [OSTI]

    Yang, Sun

    2013-01-01T23:59:59.000Z

    ?? This thesis covers design, simulation and implementation of a solar energy control system for an on grid energy storage device. The design covers several (more)

  11. Advancing Energy Systems through Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and...

  12. IBM and Energy Efficiency: Energy Managemnt Systems

    E-Print Network [OSTI]

    Veilleux, Y.

    2013-01-01T23:59:59.000Z

    IBM and Energy Efficiency Energy management systems IBM has a long standing commitment for the Environment and energy efficiency. An environmental policy has been in place for over 40 years and the corporation is certified to both the ISO... 14001 and ISO 50001 standards. The outcome of these commitments has been outstanding results in various spheres of activity related to environmental management and energy efficiency. At the root of our success is the corporate commitment to Energy...

  13. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1987-01-01T23:59:59.000Z

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  14. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16T23:59:59.000Z

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  15. Systems Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems Integration Through the SunShot Initiative, the U.S. Department of Energy (DOE) supports the development of innovative, cost-effective solutions that...

  16. Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

    /expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

  17. Beyond Energy Monitors: Interaction, Energy, and Emerging Energy Systems

    E-Print Network [OSTI]

    Paulos, Eric

    Beyond Energy Monitors: Interaction, Energy, and Emerging Energy Systems James Pierce, Eric Paulos, paulos} @ cs.cmu.edu ABSTRACT Motivated by a recent surge of research related to energy and sustainability, this paper presents a review of energy- related work within HCI as well as from literature

  18. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  19. Wind energy conversion system

    SciTech Connect (OSTI)

    Longrigg, P.

    1987-03-17T23:59:59.000Z

    This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

  20. Hybrid Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with other energy conversion processes enables: Efficient, stable deployment of renewable energy Improved carbon usage during conversion of fossil and biomass into transportation...

  1. Energy, Environmental & Economic Systems Analysis

    E-Print Network [OSTI]

    Energy, Environmental & Economic Systems Analysis ENPEP-BALANCE: A Tool for Long-term Nuclear Power, Environmental & Economic Systems Analysis A resurgence of interest in nuclear energy is taking place Market Simulations Opportunity Decision and Information Sciences Division Center for Energy

  2. Photon Energy Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) |FacilityPhoenixPhoton Energy Systems Ltd

  3. System for controlling a hybrid energy system

    DOE Patents [OSTI]

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29T23:59:59.000Z

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  4. Energy Management and Information Systems

    E-Print Network [OSTI]

    Conraud, J.

    2013-01-01T23:59:59.000Z

    ?infrastructure energy?audits,?HVAC?upgrades,? heat?recovery,?etc. Improve?operations processes?and?day?to?day? operations,?retro? commissioning ENERGY?MANAGEMENT?INFORMATION?SYSTEM the?project Hardware ? $3.0?million?investment ? 400+?meters...

  5. NETL: Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and increase the efficiency of producing syngas. Gasifipedia | Feed Systems | Gasifier Optimization | Syngas Processing | Systems Analyses | Gasification Plant Databases...

  6. Optimizing performance of energy systems

    SciTech Connect (OSTI)

    Stricker, S.

    1985-01-01T23:59:59.000Z

    This book discusses optimizing performance of energy systems. Topics covered include a test station, heat flow integrator, microcomputer control of MIMIC operation, and microcomputer control of simulation operation.

  7. Transforming our Nation's Energy System, Energy Systems Integration Facility (ESIF)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will soon be the nation's first facility that can conduct integrated megawatt-scale testing of the components and strategies needed in order to safely move clean energy technologies onto the electrical grid 'in-flight' at the speed and scale required to meet national goals.

  8. Global Energy Management System

    E-Print Network [OSTI]

    Eidt, B. D.

    2005-01-01T23:59:59.000Z

    ? Prize continues to grow -- 500-1000 M$/yr depending on energy prices ? Higher energy prices -- crude oil and natural gas ? Identification of additional and new opportunities ? Adds outpacing drops by greater than 2.5 : 1 margin ? Benefit capture... approaching 50 % -- mainly no/low cost optimizations ? Potential to reduce GHG emissions about 10 million tonnes per year GEMS PRIZE CAPTURE 1998 2004 Prices Drops Adds $ 500-1000 M$/yr Depending on Energy Prices Benefit Capture ~ 45 % Remaining...

  9. Renewable Energy System Exemption

    Broader source: Energy.gov [DOE]

    In March 2010, South Dakota established a new property tax incentive that replaced two existing property tax incentives for renewable energy. Facilities that generate electricity using wind, solar,...

  10. Energy Systems and Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

  11. Energy trading and information systems

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This document contains reports which were presented at the meeting on Energy Trading and Information Systems. Topics were concerned with the importance and use of information systems to the natural gas industry. Individual papers have been processed separately for the United States Department of Energy databases.

  12. Orion Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan:OregonTransmissionHeader.pngOrion Energy Systems Jump to:

  13. Alstom Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstom Energy Systems Jump to:

  14. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    at the Ft. Bragg site consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat buildings with steam for heating and domestic hot water, and chilled water for cooling. This project, the Honeywell Energy Services Team at Ft. Bragg is also collaborating with the U.S. DOE's Federal Energy

  15. Advancing Energy Systems through Integration | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Energy Systems through Integration Advancing Energy Systems through Integration This presentation was given by Ever-Green Energy's Ken Smith as part of the November 20,...

  16. Renewable Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Montana's property tax exemption for recognized non-fossil forms of energy generation or low emission wood or biomass combustion devices may be claimed for 10 years after installation of the...

  17. Seamless Energy Management Systems Part I: Assessment of Energy

    E-Print Network [OSTI]

    Seamless Energy Management Systems Part I: Assessment of Energy Management Systems and Key to Engineer the Future Electric Energy System #12;#12;Seamless Energy Management Systems Part I: Assessment of Energy Management Systems and Key Technological Requirements Final Project Report Project Faculty Team

  18. NREL: Systems Engineering - 2015 Wind Energy Systems Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Systems Engineering Printable Version 2015 Wind Energy Systems Engineering Workshop The third NREL Wind Energy Systems Engineering Workshop took place on the 14th and 15th...

  19. National Energy Modeling System (NEMS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  20. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat fired absorption. Bragg, NC. The 82nd plant serves a large number of barracks and other buildings with steam for heating. Bragg is also collaborating with the U.S. DOE's Federal Energy Management (FEMP) Program (thru Oak Ridge

  1. Energy Systems Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVACEnergy Storage6

  2. Wind Energy Conversion Systems (Minnesota)

    Broader source: Energy.gov [DOE]

    This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion...

  3. American Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy SystemsAmerican Energy Systems Inc Place: Minnesota Zip:

  4. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  5. Energy optimization system

    DOE Patents [OSTI]

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22T23:59:59.000Z

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  6. West Virginia University 1 Energy Systems Engineering

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    personnel with advanced training in specialized areas of energy systems and energy supply-chain management in the area of conversion Distribution/storage 3 Examples include: #12;2 Energy Systems Engineering EE 533West Virginia University 1 Energy Systems Engineering The Master of Science in Energy Systems

  7. Maricopa County- Renewable Energy Systems Zoning Ordinance

    Broader source: Energy.gov [DOE]

    The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

  8. Pilot Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska:Pilgrim HotSystems Place: London,

  9. American Alternative Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-EnergyAmbene Jump to:Corp JumpAmdaSystems

  10. SolidEnergy Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmartPortal

  11. Systems Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S.Improve Emitter4-0140,details theSystem for Award

  12. Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance

    E-Print Network [OSTI]

    Ward, Gregory

    2011-01-01T23:59:59.000Z

    761-81. Tregenza PR. 1983. Daylight coefficients. Lighting773. Reinhart CF. 2001. Daylight availability and manualA visualization of an incident daylight matrix (cumulative

  13. Enhanced distributed energy resource system

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Clark, Nancy H. (Corrales, NM); Boyes, John D. (Albuquerque, NM); Ranade, Satishkumar J. (Las Cruces, NM)

    2007-07-03T23:59:59.000Z

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  14. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisition System Supervisory

  15. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31T23:59:59.000Z

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. MnO? nanowires, which are a promising replacement for RuO?, were synthesized PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. PVDF films were developed with breakdown strengths of > 600MVm?, a maximum energy density of approximately 15 Jcm?, and an average dielectric constant of 9.8 (1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m?. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  16. Aruna Ravinagarajan System Energy Efficiency Lab

    E-Print Network [OSTI]

    Wang, Deli

    · Daily weather and seasons change the total input energy System Energy Efficiency Lab 7 The task scheduler needs toThe task scheduler needs to manage energy consumptionmanage energy consumption Scheduler needs to manage: ·Energy Consumption ·Accuracy of computation System Energy Efficiency Lab 13

  17. ESIF 2014 (Energy Systems Integration Facility) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

  18. NREL: Energy Systems Integration - Energy Systems Integration Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials ScienceEnergy Systems

  19. Energy State Amplification in an Energy Harvesting Communication System

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy State Amplification in an Energy Harvesting Communication System Omur Ozel Sennur Ulukus@umd.edu ulukus@umd.edu Abstract--In energy harvesting communication systems, the energy required for message transmission is maintained by an exogenous energy arrival process independent of the message. This links

  20. USDA Renewable Energy Systems and Energy Efficiency Improvement...

    Office of Environmental Management (EM)

    Department of Agriculture's (USDA's) Rural Business Cooperative-Service Agency, under the Rural Energy for America Program, is accepting applications for Renewable Energy Systems...

  1. Cumberland System | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarterinto PARSCriteria2/00Services

  2. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01T23:59:59.000Z

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  3. Advanced Energy Efficient Roof System

    SciTech Connect (OSTI)

    Jane Davidson

    2008-09-30T23:59:59.000Z

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

  4. Energy Systems and Population Health

    SciTech Connect (OSTI)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12T23:59:59.000Z

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy to rural and urban health facilities allows increased delivery and coverage of 3 various health services and interventions such as tests and treatments, better storage of medicine and vaccines, disinfection of medical equipment by boiling or radiation, and more frequent and efficient health system encounters through mobile clinics or longer working hours; and so on. In fact, while the dominant view of development-energy-health linkages has been that improvements in energy and health are outcomes of the socioeconomic development process (e.g., the ''energy ladder'' framework discussed below), it has even been argued that access to higher quality energy sources and technologies can initiate a chain of demographic, health, and development outcomes by changing the household structure and socioeconomic relationships. For example, in addition to increased opportunities for food and income production, reduced infant mortality as a result of transition to cleaner fuels or increased coverage of vaccination with availability of refrigerators in rural clinics may initiate a process of ''demographic transition'' to low-mortality and low-fertility populations (14). Such a transition has historically been followed with further improvements in maternal and child health and increased female participation in the labor markets and other economic activities.

  5. Technical Support Document: Development of the Advanced Energy Design Guide for Medium Box Retail -- 50% Energy Savings

    SciTech Connect (OSTI)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01T23:59:59.000Z

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of medium box retail buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004. The recommendations are given by climate zone and address building envelope, fenestration, lighting systems, HVAC systems, building automation and controls, outside air treatment, service water heating, plug loads, and photovoltaic systems. The report presents several paths to 50% savings, which correspond to different levels of integrated design. These are recommendations only, and are not part of a code or standard. The recommendations are not exhaustive, but we do try to emphasize the benefits of integrated building design, that is, a design approach that analyzes a building as a whole system, rather than as a disconnected collection of individually engineered subsystems.

  6. Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities

    E-Print Network [OSTI]

    Petter Jelle, Bjorn

    2013-01-01T23:59:59.000Z

    M.F. Demirbas, Thermal energy storage and phase changeon sustainable thermal energy storage technologies, Part I:energy conservation in building applications with thermal storage

  7. Midwest Renewable Energy Tracking System (Multiple States)

    Broader source: Energy.gov [DOE]

    The Midwest Renewable Energy Tracking System (M-RETS) tracks renewable energy generation in participating States and Provinces and assists in verifying compliance with individual state/provincial...

  8. Energy Department Issues Green Building Certification System...

    Broader source: Energy.gov (indexed) [DOE]

    Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

  9. Save Energy Now in Your Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial steam systems.

  10. Renewable Energy Systems Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Utah's individual income tax credit for renewable energy systems includes provisions for both residential and commercial applications. The Utah Office of Energy Development administers the tax...

  11. Models of National Energy Systems -focusing on biomass energy

    E-Print Network [OSTI]

    Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

  12. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01T23:59:59.000Z

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  13. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    L ABORATORY Integrated Building Energy Systems Design7301 Integrated building energy systems design considering

  14. Energy Systems Group ESCO Qualification Sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Group ESCO Qualification Sheet Energy Systems Group ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Energy Systems...

  15. Energy Systems Integration A Convergence of Ideas

    E-Print Network [OSTI]

    Energy Systems Integration A Convergence of Ideas July 2012 Ben Kroposki, Bobi Garrett, Stuart Macmillan, Brent Rice, and Connie Komomua National Renewable Energy Laboratory Mark O'Malley University of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy

  16. Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities

    E-Print Network [OSTI]

    Petter Jelle, Bjorn

    2013-01-01T23:59:59.000Z

    Energy Materials & Solar Cells, 96 (2012) 1-28 energy control. Reflecting ECWs avoid any heating problems

  17. INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE

    E-Print Network [OSTI]

    Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air FlowINTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems

  18. Enhanced Geothermal Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

  19. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  20. Renewable Energy Systems Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Renewable energy systems which serve a residential, commercial or industrial building or irrigation system are exempt from property taxes. Qualified equipment includes solar, wind, geothermal,...

  1. Central Energy Systems - Applications to Economic Development

    E-Print Network [OSTI]

    Myers, M. S.; Diserens, S. E.

    1985-01-01T23:59:59.000Z

    the conceptual stage of design. The second program, Central Energy Systems Analysis Program (CESAP) analyzes energy efficiency for a group of buildings and determines if a new district heating and cooling (DHC) system would be a cost effective application...

  2. RENEWABLES RESEARCH Boiler Burner Energy System Technology

    E-Print Network [OSTI]

    RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

  3. Scanning the Technology Energy Infrastructure Defense Systems

    E-Print Network [OSTI]

    Amin, S. Massoud

    systems and to develop de- fense plans to protect the network against extreme contingencies causedScanning the Technology Energy Infrastructure Defense Systems MASSOUD AMIN, SENIOR MEMBER, IEEE Energy infrastructure faced with deregulation and coupled with interdependencies with other critical

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  6. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  7. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  8. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  9. Energy Conservation in the Bell System

    E-Print Network [OSTI]

    Del Grande, M. R.

    1979-01-01T23:59:59.000Z

    In December 1973, the Bell System launched a comprehensive energy conservation program which includes immediate, intermediate, and long range steps. A computerized data base system was developed to permit monthly input of energy consumption, costs...

  10. Industrial Conservation Technology Energy Savings Monitoring System

    E-Print Network [OSTI]

    Crowell, J. J.; Phipps, H. R., Jr.

    1980-01-01T23:59:59.000Z

    A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

  11. Currituck County- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In January 2008, Currituck County adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to...

  12. Mirasol Solar Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: EnergyMinnErgy LLCMinwind EnergyMiramar,Mirasol

  13. SolidEnergy Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process, termed "CANDO", for the removal and recovery of energy from waste...

  14. Mesdi Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells In This SectionMesdi Systems

  15. Mesdi Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallenge MelroseMentorMercuryMesdi Systems

  16. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01T23:59:59.000Z

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  17. NREL: Systems Engineering - 2010 Wind Energy Systems Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Wind Energy Systems Engineering Workshop The 1st NREL Wind Energy Systems Engineering Workshop took place on December 14, 2010, at the National Wind Technology Center (NWTC). The...

  18. Energy Intensity of Agriculture and Food Systems

    E-Print Network [OSTI]

    Wang, Changlu

    dependencies in the light of energy price volatility and concerns as to long-term fossil energy availabilities ENERGY USE. . . . . . . . . . 232 6. FOOD WASTE AND ENERGY USE. . . . . . . . . . . . . Energy Intensity of Agriculture and Food Systems Nathan Pelletier,1 Eric Audsley,2 Sonja Brodt,3

  19. Renewable Energy Systems | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051SoilWind Energy Wind EnergyRenewable

  20. SolidEnergy Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The...

  1. Meridian Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonaldInformationEnergyInformation|Meridian

  2. Atlantis Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior, Ontario: EnergyAskja

  3. Energy Delivery Systems Cybersecurity | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit| Department ofNon-RoadDepartment of Energy Energy Corps

  4. Innovative Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels Jump to: navigation,

  5. Integrated Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels

  6. Improving Energy Efficiency for Energy Harvesting Embedded Systems*

    E-Print Network [OSTI]

    Qiu, Qinru

    of solar energy. The main control knobs in these problems are the voltage of charge transfer interconnect of charge migration problem [6] is to transfer energy internally from one EES bank to another, whileImproving Energy Efficiency for Energy Harvesting Embedded Systems* Yang Ge, Yukan Zhang and Qinru

  7. Ris Energy Report 7 Future low carbon energy systems

    E-Print Network [OSTI]

    Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

  8. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01T23:59:59.000Z

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  9. Renewable energy delivery systems and methods

    DOE Patents [OSTI]

    Walker, Howard Andrew

    2013-12-10T23:59:59.000Z

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  10. System Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    System Design System Design This template is used to define the system design System Design More Documents & Publications Transition Plan Training Plan Feasibility Study Report...

  11. Optimal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarter JumpOppenheim, New York:OptimOptimal

  12. Lloyd Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona: Energy59334°, -74.3148712°County is

  13. Bio Energy Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,BiodieselRapidsInformationRenov

  14. Megawatt Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is aElectricMeeme,Meetsolar JumpMegawatt Energy

  15. Perpetual Energy Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources Jump to:PeriSolar JumpGuide Jump to:Perpetual

  16. Clean Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean AirGroupRancho Cordova,

  17. ASHRAE Transactions 103(1) (1997). Solar Heat Gain Coefficient of Complex Fenestrations

    E-Print Network [OSTI]

    Technologies Program Energy and Environment Division Ernest Orlando Lawrence Berkeley National Laboratory Division Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94792 ABSTRACT Measured account of * Present address: Energy Analysis Program, Ernest Orlando Lawrence Berkeley National

  18. Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities

    E-Print Network [OSTI]

    Petter Jelle, Bjorn

    2013-01-01T23:59:59.000Z

    Lampert, Chromogenic smart materials, Materials Today, 7,Smart switchable glazing for solar energy and daylight control, Solar Energy Materials &Smart window; Electrochromic window; Solar cell glazing; Aerogel; Low-emissivity coating; Low-e; Window frame; Phase change material;

  19. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  20. Engineered Geothermal Systems Energy Return On Energy Investment

    SciTech Connect (OSTI)

    Mansure, A J

    2012-12-10T23:59:59.000Z

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use ??efficiency? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

  1. Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities

    E-Print Network [OSTI]

    Petter Jelle, Bjorn

    2013-01-01T23:59:59.000Z

    decreasing the overall solar energy regulation for absorbingenergy regulation and to be able to shut off as much solar

  2. Energy Systems Integration: A Convergence of Ideas

    SciTech Connect (OSTI)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O'Malley, M.; Zimmerle, D.

    2012-07-01T23:59:59.000Z

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  3. Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

  4. Mechanical Engineering Industrial Energy Systems Laboratory

    E-Print Network [OSTI]

    Candea, George

    of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR of the district energy systems is performed and modifications are proposed in a district heating network. Based thermodynamic cycle, ETES suffers from the irreversibilities and excess thermal energy is required to dispose

  5. Energy Conservation Aspect of Energy Systems Technology Education Program

    E-Print Network [OSTI]

    McBride, R. B.

    1982-01-01T23:59:59.000Z

    The primary purpose of this paper is to present a brief explanation of the Energy Systems Technology Education Program (ESTEP). This program is a system of continuing education that has been devised for the technical and supervisory personnel...

  6. Kinetic Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood, Michigan:Killingworth, Connecticut:105.Kinetic

  7. Home Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel JumpHoard, Wisconsin:Holiday59.Holyoke, MA)

  8. ReEnergie Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus PowerLouisiana: Energy Resources JumpRazform

  9. Depasol Eco Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunwaysDatang Chifeng SaihanbaDepasol Eco Energy

  10. Unitil Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)Agriculture Name:

  11. Hydrovolt Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe Second Workshop onDeposited Rock Jump

  12. ITN Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation, search Name:ISU

  13. ITN Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation, search Name:ISUITN

  14. Energy Efficient Nanoelectronic System Design

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    ://www.newairplane.com One 787 Battery: 12 Cells / 32 V DC 05/21/2013 6 #12;Why Energy Efficient Design ? Environmental energy-efficient designs. How to perform high-yield, energy efficient designs. How to perform effortless, high-yield, energy efficient designs. Gate Gate Gate Source D rain Graphene Layer 05/21/2013 14

  15. PV Integration by Building Energy Management System

    E-Print Network [OSTI]

    Boyer, Edmond

    . However, to validate global control algorithms, a simulator capable of interoperating with energy[kWh]. Econs (k) Total energy consumed by the load [kWh]. E (i, k) Energy consumed by the service i duringPV Integration by Building Energy Management System Rim.Missaoui¹, Ghaith.Warkozek¹, Seddik. Bacha

  16. Demonstration with Energy and Daylighting Assessment of Sunlight Responsive Thermochromic (SRT) Window Systems

    SciTech Connect (OSTI)

    Broekhuis, Michael; Liposcak, Curtis; Witte, Michael; Henninger, Robert; Zhou, Xiaohui; Petzen, George; Buchanan, Michael; Kumar, Sneh

    2012-03-31T23:59:59.000Z

    Pleotint, LLC was able to successfully extrude thermochromic interlayer for use in the fenestration industry. Pleotint has developed a thermochromic sytem that requires two thermochromic colors to make a neutral color when in the tinted state. These two colors were assembled into a single interlayer called a tri-layer prelam by Crown Operations for use in the glass lamination industry. Various locations, orientations, and constructions of thermochromic windows were studied with funds from this contract. Locations included Australia, California, Costa Rica, Indiana, Iowa, Mexico. Installed orientations included vertical and skylight glazing applications. Various constructions included monolithic, double pane, triple pane constructions. A daylighting study was conducted at LinEl Signature. LinEl Signature has a conference room with a sylight roof system that has a west orientation. The existing LinEl Signature conference room had constant tint 40% VLT transparent skylights. Irradiance meters were installed on the interior and exterior sides of a constant tint skylight. After a month and a half of data collection, the irradiance meters were removed and the constant tint skylights were replaced with Pleotint thermochromic skylight windows. The irradiance meters were reinstalled in the same locations and irradiance data was collected. Both data sets were compared. The data showed that there was a linear relationship with exterior and interior irradiance for the existing constant tint skylights. The thermochromic skylights have a non-linear relationship. The thermochromic skylights were able to limit the amount of irradiance that passed through the thermochromic skylight. A second study of the LinEl Signature conference was performed using EnergyPlus to calculate the amount of Illuminance that passed through constant tint skylights as compared to thermochromic skylights. The constant tint skylights transmitted Illuminance is 2.8 times higher than the thermochromic skylights during the months of May, June, July, August and 1.9 times higher than the thermochromic skylight during the months of March, April, September, October. Calculated illuminance levels were much more consistent as compared to the existing constant tint skylights installed at LinEl Signature. This allows for a more comfortable interior space in regard to glare discomfort and interior lighting control. Lawrence Berkeley National Laboratory was contracted to characterize the performance of the thermochromic interlayer and thermochromic window systems. Thermochromic interlayer was characterized with spectrometer equipment. The thermochromic window systems were characterized using LBNLs Advanced Window Test Facility. A copy of the report can be found in the Appendix. Iowa State University was contracted to compare thermochromic window technology to constant tint technology. Iowa State University conducted the testing at the Energy Resource Station (ERS). The ERS has the ability to simultaneously test side-by-side competing building technologies. The building is equipped with two identical air handling units, each with its own dedicated and identical chiller. One air handling unit supplies the four test rooms designated as the A rooms and the other unit serves the four test rooms designated as the B rooms. There is one A test room and one B test rooms arranged as pairs in a side-by-side design with each pair having a different exposure. There is a pair of test rooms that face the south, an east and west facing pair. Each of the test rooms is a mirror image of its match with identical construction. The rooms are unoccupied; however, the capability to impose false loads on the rooms exists. The false loads and room lighting can be scheduled to simulate various usage patterns. A copy of the report can be found in the Appendix. GARD Analytics was contracted to compare EnergyPlus building simulations to the data recorded at the Iowa ERS. The goal of this research was to validate the building simulation software developed by the US Department of Energy. EnergyPlus is

  17. The Next Generation Energy Management System Design

    E-Print Network [OSTI]

    Paul Myrda, EPRI Naim Logic SRP George Stefopoulos, NYPA Michael Swider, New York ISO. i #12;iiThe Next Generation Energy Management System Design Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Next Generation

  18. Renewable Energy Powered Water Treatment Systems

    E-Print Network [OSTI]

    Richards, Bryce S.; Schfer, Andrea

    2009-01-01T23:59:59.000Z

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  19. The HTGR Closed - Loop Energy System

    E-Print Network [OSTI]

    Leeth, G. G.

    1981-01-01T23:59:59.000Z

    pipe (TCP), combined with the HTGR to serve dispersed industrial heat and electrical loads. Heat in various forms can be supplied at temperatures up to about 1700 F. The system substitutes nuclear energy for fluid fuels, conserves energy compared...

  20. Special Assessment for Solar Energy Systems

    Broader source: Energy.gov [DOE]

    Illinois offers a special assessment of solar energy systems for property-tax purposes. For property owners who register with a chief county assessment officer, solar energy equipment is valued at...

  1. Energy Conservation for Boiler Water Systems

    E-Print Network [OSTI]

    Beardsley, M. L.

    1981-01-01T23:59:59.000Z

    . This paper reviews methods to conserve energy in industrial boiler water systems. Both mechanical and chemical approaches for energy conservation are discussed. The important aspects of efficient combustion are covered as well as other mechanical factors...

  2. Residential Alternative Energy System Tax Credit

    Broader source: Energy.gov [DOE]

    Residential taxpayers who install an energy system using a recognized non-fossil form of energy on their home after December 31, 2001 are eligible for a tax credit equal to the amount of the cost...

  3. Nextronex Energy Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to:Newmarket,3034505°NextGen Fuel Inc

  4. Energy Delivery Systems Cybersecurity | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMAB MeetingInformationConservation

  5. Virent Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona,HamptonVinland, Wisconsin: EnergySidingViolaVirent

  6. Arnold Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop Corp Place:ArmaecArmy Permit Application

  7. Redhawk Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatolia Jump to: navigation,Gum Pvt LtdForum

  8. Unitil Energy Systems (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: Energy ResourcesUnitedFitchburg

  9. Energy Systems Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebTheseofDepartmentDepartment

  10. Sequentric Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:OpenOpenInformationSequentric Energy

  11. Martifer Energy Systems SA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver93. ItKansas.Marshfield, Vermont:

  12. Apollo Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to: navigation,Apollo

  13. Unitil Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)Agriculture Name: UnitedSurvey,Unitil

  14. Proton Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTemp JumpProterra Jump to:ProtoFlex

  15. Star Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.Stanly County, North Carolina:Star Energy

  16. System Energy Resources, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation,Open EnergyFacility | OpenEVEnergy Resources,

  17. SolidEnergy Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | DepartmentSolar and windAbout Us

  18. Project Sponsors: Department of Energy Clean Energy Systems

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Project Sponsors: Department of Energy Clean Energy Systems An Original Equipment Manufacturer (confidential) ADVANCED POWER & ENERGY PROGRAM www.apep.uci.edu RESULTS CO2 capture approaching 100 and in the gasifier in the case of a fuel such as coal). O2 purity typically greater than 95% is required to meet

  19. RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    applied to the case of hydroelectric facilities with large3. For comparison, the hydroelectric system in California asas droughts which reduce hydroelectric energy availability,

  20. Lincoln Electric System (Residential)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

  1. NREL: Energy Systems Integration Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration News to learn what's happening in ESI at NREL and beyond. Photo of solar panels with the words 'Redefining What's Possible for Renewable Energy: Grid...

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    - Bulk Gallium Nitride Substrates - Karen Waldrip, SNL.pdf More Documents & Publications Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems...

  3. Carteret County- Wind Energy System Ordinance

    Broader source: Energy.gov [DOE]

    Carteret County passed an ordinance to specify the permitting process and establish siting requirements for wind energy systems. There are different rules and a different permitting process...

  4. Regional Systems Development for Geothermal Energy Resources...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii)....

  5. State Energy Data System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringview IISt.StarlightSystem Jump to:

  6. Fan Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of Energy OnDramatic energy and cost savings

  7. Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities

    E-Print Network [OSTI]

    Petter Jelle, Bjorn

    2013-01-01T23:59:59.000Z

    C.M. Lampert, Smart switchable glazing for solar energy andglazing; Vacuum glazing; Smart window; Electrochromic0.61 W/(m 2 K). Vacuum glazing, smart windows, solar cell

  8. Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates

    E-Print Network [OSTI]

    Mukhopadhyay, Jaya

    2006-10-30T23:59:59.000Z

    glazing technologies were developed, tested and subsequently adopted by the building industry. The underlying goal that has been carried through to present day research has been to develop the potential of windows as net energy suppliers (Arasteh 1994...

  9. Energy Systems Acquisitions Advisory Board Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-10-28T23:59:59.000Z

    The Notice streamlines the Energy Systems Acquisition Advisory Board (ESAAB) process to ensure informed, objective, and documented Strategic and Major System Critical Decision, Baseline Change Proposal, and site selection final decisions. Does not cancel other directives.

  10. Camden County- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In September 2007, Camden County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may...

  11. Watauga County- Wind Energy System Ordinance

    Broader source: Energy.gov [DOE]

    In 2006, Watauga County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be...

  12. Property Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    In Iowa, the market value added to a property by a solar or wind energy system is exempt from the state's property tax for five full assessment years. Residential geothermal systems are exempt for...

  13. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Janice Thomas; Frank Ervin

    2012-02-28T23:59:59.000Z

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

  14. Mesdi Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to initially focus on the lithium-ion battery industry, specifically the large-format batteries used in electric vehicles and grid energy storage. The manufacturers will see...

  15. Mesdi Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process, termed "CANDO", for the removal and recovery of energy from waste...

  16. Energy Signal Tool for Decision Support in Building Energy Systems

    SciTech Connect (OSTI)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01T23:59:59.000Z

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  17. Energy Systems Engineering 1 Clean Coal Technologies

    E-Print Network [OSTI]

    Banerjee, Rangan

    Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

  18. Energy Systems Integration Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Integration Laboratory at the Energy Systems Integration Facility. The Energy Systems Integration Laboratory at NREL's Energy Systems Integration Facility (ESIF) provides a flexible, renewable-ready platform for research, development, and testing of state-of-the-art hydrogen-based and other energy storage systems. The main focus of the laboratory is assessment of the technical readiness, performance characterization, and research to help industry move these systems towards optimal renewable-based production and efficient utilization of hydrogen. Research conducted in the Energy Systems Integration Laboratory will advance engineering knowledge and market deployment of hydrogen technologies to support a growing need for versatile distributed electricity generation, applications in microgrids, energy storage for renewables integration, and home and station-based hydrogen vehicle fueling. Research activities are targeted to improve the technical readiness of the following: (1) Low and high temperature electrolyzers, reformers and fuel cells; (2) Mechanical and electrochemical compression systems; (3) Hydrogen storage; (4) Hydrogen vehicle refueling; and (5) Internal combustion or turbine technology for electricity production. Examples of experiments include: (1) Close- and direct-coupling of renewable energy sources (PV and wind) to electrolyzers; (2) Performance and efficiency validation of electrolyzers, fuel cells, and compressors; (3) Reliability and durability tracking and prediction; (4) Equipment modeling and validation testing; (5) Internal combustion or turbine technology for electricity production; and (6) Safety and code compliance.

  19. Wind energy systems information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01T23:59:59.000Z

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  20. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect (OSTI)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01T23:59:59.000Z

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  1. PV System Energy Evaluation Method (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-01-01T23:59:59.000Z

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  2. Energy Department Announces National Geothermal Data System to...

    Office of Environmental Management (EM)

    Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development Energy Department Announces National Geothermal Data System to Accelerate...

  3. Bryan, Hannegan, Energy Systems Integration

    Broader source: Energy.gov (indexed) [DOE]

    cross m ul*ple p athways a nd s cales New A pproach E nergy Systems Integra.on 5 * Sensors and controls * Design and integration * Modeling and simulation * System...

  4. Systems Biology | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of interdisciplinary scientists. Additional systems biology resources Research Highlights Media Mentions Publications Newsletters Biosciences Division Recent news releases 11...

  5. Pump Systems Optimization: Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963 Vol. 79,Department of Energy 2-pagePump

  6. Wind energy systems: program summary

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  7. Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project

    Broader source: Energy.gov [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

  8. NREL: Energy Systems Integration - Energy Systems Integration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff

  9. Adaptive, full-spectrum solar energy system

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05T23:59:59.000Z

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  10. CALIFORNIA ENERGY Small HVAC System Design Guide

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Small HVAC System Design Guide DESIGNGUIDELINES October 2003 500;#12;Small HVAC System Design Guide Acknowledgements i Acknowledgements The products and outcomes presented; Darren Goody, PECI, Design Guide review. #12;Small HVAC System Design Guide Preface ii Preface The Small

  11. INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

    E-Print Network [OSTI]

    is to improve the operation and sizing, the electrical and economic output of photovoltaic power systems#12;INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME TASK 2 ­ Performance, Reliability and Analysis of Photovoltaic Systems THE AVAILABILITY OF IRRADIATION DATA Report IEA-PVPS T2

  12. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  13. Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems

    SciTech Connect (OSTI)

    Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

    1980-04-01T23:59:59.000Z

    The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

  14. Energy Balance Bowen Ratio System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage ofDefects on .HeatAdvancedEnergyAudits0

  15. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials ScienceEnergy

  16. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials ScienceEnergyEvents Learn

  17. NREL: Energy Systems Integration - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials ScienceEnergyEvents

  18. NREL: Energy Systems Integration - Google

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials ScienceEnergyEventsGoogle

  19. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2011-02-14T23:59:59.000Z

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  20. NREL: Energy Systems Integration Facility - About the Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaffIntegration

  1. NREL: Energy Systems Integration - Energy Systems Integration News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials Science

  2. NREL: Energy Systems Integration Facility - October 2011 Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo of two men

  3. System with partial energy loss

    E-Print Network [OSTI]

    Heinemann, Detlev

    on solar irradiance information from satellite data A. Drews*, E. Lorenz, J. Betcke, D. Heinemann, A.C. de to calculate reference values of the expected energy yield. Solar radiation derived from data of the METEOSAT. The quality of the PV simulation output depends highly on the accuracy of the irradiance data. Under clear sky

  4. Renewable Energy Positioning System: Energy Positioning: Control and Economics

    SciTech Connect (OSTI)

    None

    2012-03-01T23:59:59.000Z

    GENI Project: The University of Washington and the University of Michigan are developing an integrated system to match well-positioned energy storage facilities with precise control technologies so the electric grid can more easily include energy from renewable power sources like wind and solar. Because renewable energy sources provide intermittent power, it is difficult for the grid to efficiently allocate those resources without developing solutions to store their energy for later use. The two universities are working with utilities, regulators, and the private sector to position renewable energy storage facilities in locations that optimize their ability to provide and transmit electricity where and when it is needed most. Expanding the network of transmission lines is prohibitively expensive, so combining well-placed storage facilities with robust control systems to efficiently route their power will save consumers money and enable the widespread use of safe, renewable sources of power.

  5. Army Energy and Water Reporting System Assessment

    SciTech Connect (OSTI)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01T23:59:59.000Z

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

  6. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    As we developlow?energybuildings,theneedformodelsBuilding Energy Information and Control Systems for Low-Building Energy Information and Control Systems for Low

  7. Renewable Energy Laboratory for Lighting Systems

    E-Print Network [OSTI]

    Dumitru Cristian; Gligor Adrian

    2010-02-23T23:59:59.000Z

    Nowadays, the electric lighting is an important part of our lives and also represents a significant part of the electric power consumption. Alternative solutions such as renewable energy applied in this domain are thus welcomed. This paper presents a workstation conceived for the study of photovoltaic solar energy for lighting systems by students of power engineering and civil engineering faculty. The proposed system is realized to study the generated photovoltaic solar energy parameters for lighting systems. For an easier way to study the most relevant parameters virtual instrumentation is implemented. National Instruments LabWindows CVI environment is used as a platform for virtual instrumentation. For future developments remote communication feature intends to be added on which currently remote monitoring of solar photovoltaic energy and electric energy parameters are monitored.

  8. Renewable Energy Laboratory for Lighting Systems

    E-Print Network [OSTI]

    Cristian, Dumitru

    2010-01-01T23:59:59.000Z

    Nowadays, the electric lighting is an important part of our lives and also represents a significant part of the electric power consumption. Alternative solutions such as renewable energy applied in this domain are thus welcomed. This paper presents a workstation conceived for the study of photovoltaic solar energy for lighting systems by students of power engineering and civil engineering faculty. The proposed system is realized to study the generated photovoltaic solar energy parameters for lighting systems. For an easier way to study the most relevant parameters virtual instrumentation is implemented. National Instruments LabWindows CVI environment is used as a platform for virtual instrumentation. For future developments remote communication feature intends to be added on which currently remote monitoring of solar photovoltaic energy and electric energy parameters are monitored.

  9. Information Systems | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors HistoryHybrid

  10. Microhydropower Systems | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitorsfor ShadeProject ManhattanMentor

  11. Metering Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles PageDeposition

  12. Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupply

  13. Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupplyAbout the Geothermal

  14. Pump Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches the FirstPublic CommentEnergyTechnical

  15. Breeze System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTIAdvancedOffshore Jump

  16. Neptune Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMSNemaha-Marshall E C

  17. Hydrothermal System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe Second Workshop on HydrologicStates

  18. Hydrothermal System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe Second Workshop on HydrologicStates

  19. Rangan Banerjee Energy Systems Engineering

    E-Print Network [OSTI]

    Banerjee, Rangan

    America Latin America OECD Europe Non- OECD Europe Former Soviet Union Middle East Africa China Asia © ) % © ¨ ) %$4 © # #12; ¡¢ £ ¤ ¡¥ ¦ ¡ § ¨ © ¡ ¨ ¥ ¨ Large Hydro 2% Renew ables 2% Trad Biomass 9% Coal;Characteristics of Renewables Large, Inexhaustible source -Solar energy intercepted by earth 1.8*1011 MW Clean

  20. Solar Energy Systems Tax Credit (Corporate) (Iowa)

    Broader source: Energy.gov [DOE]

    Iowa offers a 15% corporate tax credit for solar energy systems. The credit is based on the federal tax credits for solar; a taxpayer may claim 50% of the value of the [http://dsireusa.org...

  1. Energy Conservation in Process Chilled Water Systems

    E-Print Network [OSTI]

    Ambs, L. L.; DiBella, R. A.

    The energy consumption of the chiller and cooling tower in a process cooling application was analyzed using the TRNSYS computer code. The basic system included a constant speed centrifugal chiller and an induced-draft, counterflow cooling tower...

  2. Energy Storage Systems 2005 Peer Review

    Broader source: Energy.gov [DOE]

    The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

  3. Introducing Energy Management Systems into Smaller Facilities

    E-Print Network [OSTI]

    Lawrence, J. A.

    1983-01-01T23:59:59.000Z

    Many small and medium sized commercial buildings are energy hogs. Typically they were designed and built to meet low first cost criteria. Control system capability is usually minimal, insulation is thin, glass areas are large, and HVAC equipment...

  4. Scalable Stochastic Optimization of Complex Energy Systems

    E-Print Network [OSTI]

    2011-04-18T23:59:59.000Z

    Illinois power grid and real-time energy market. Strong scal- ing efficiency of 96% is obtained on 32 racks (131,072 cores) of the Intrepid Blue Gene/P system at...

  5. ExxonMobil Global Energy Management System

    E-Print Network [OSTI]

    Roberto, F.

    of our refineries and chemical plants. The system builds on international best practices and benchmarking to identify energy efficiencies. Launched in 2000, it utilizes a common methodology to identify performance gaps, implement closure plans, sustain...

  6. Pitt County- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting...

  7. Property Tax Exclusion for Solar Energy Systems

    Broader source: Energy.gov [DOE]

    '''''Note: The California State Board of Equalization (BOE) approved new [http://www.boe.ca.gov/proptaxes/pdf/lta12053.pdf guidelines] for the Active Solar Energy Systems New Construction Exclusion...

  8. Energy efficient operating systems and software

    E-Print Network [OSTI]

    Sinha, Amit, 1976-

    2001-01-01T23:59:59.000Z

    Energy efficient system design is becoming increasingly important with the proliferation of portable, battery-operated appliances such as laptops, Personal Digital Assistants (PDAs) and cellular phones. Numerous dedicated ...

  9. Solar Energy Systems Tax Credit (Personal) (Iowa)

    Broader source: Energy.gov [DOE]

    Iowa offers a 15% individual tax credit for solar energy systems. The credit is based on the federal tax credits for solar; individuals can claim 50% of the [http://dsireusa.org/incentives...

  10. Photonic Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) |FacilityPhoenixPhoton Energy Systems

  11. Power Contro Energy Management and Market Systems

    SciTech Connect (OSTI)

    Tom Addison; Andrew Stanbury

    2005-12-15T23:59:59.000Z

    More efficient use of the nation's electrical energy infrastructure will result in minimizing the cost of energy to the end user. Using real time electrical market information coupled with defined rules, market opportunities can be identified that provide economic benefit for both users and marketers of electricity. This report describes the design of one such system and the features a fully functional system would provide. This report documents several investigated methods of controlling load diversity or shifting.

  12. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  13. Energy Engineering & Systems Analysis Success Stories

    E-Print Network [OSTI]

    Kemner, Ken

    Energy Engineering & Systems Analysis Success Stories For further information, contact: Seth Snyder greenhouse gas emissions, and lower energy costs," said biochemical engineer Seth Snyder. Resin Wafer for Excellence in Technology Transfer for this separations technology. A team led by Argonne biochemical engineer

  14. The National Energy Modeling System: An overview

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

  15. NREL: Systems Engineering - 2013 Wind Energy Systems Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Wind Energy Systems Engineering Workshop Photo of a seated audience with a presenter at a podium and a projection screen in the background. Paul Veers addresses the workshop...

  16. Verno Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen EnergyVelankani GroupLoading map...Vermontville,Verno

  17. Arisdyne Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,Koblitz Jump to:ArgonautMaine:Optical

  18. KUKA Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd Jump to: navigation,andEnergija JumpK

  19. REpower Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatolia Jump to: navigation, search Name:REpower

  20. NRG Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy, California:NewNREL/Ventyx Utility

  1. Paradyme Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise, Nevada: Energy Resources Jump

  2. Megtec Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is aElectricMeeme,Meetsolar JumpMegawatt

  3. Energy Systems Integration Facility Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up

  4. Redwood Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs HomeEnergy LLC Jump

  5. State Energy Data System Price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10: "TheElectricitySection 1.

  6. Energy Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is Partnershipsn e rArgonne research

  7. NREL: Energy Systems Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials Science LearnSecond

  8. NREL: Energy Systems Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterialsLessons Learned from

  9. NREL: Energy Systems Integration - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterialsLessons Learned

  10. NREL: Energy Systems Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterialsLessons LearnedPublications

  11. NREL: Energy Systems Integration - Raytheon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterialsLessons

  12. NREL: Energy Systems Integration - Solectria

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo of two men in a laboratory

  13. NREL: Energy Systems Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo of two men in a

  14. NREL: Energy Systems Integration - Wyle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo of two men in aWorkingWyle

  15. Systems Biology | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainabilitySynthetic fuel concepthasRadiation

  16. Analytical energy spectrum for hybrid mechanical systems

    E-Print Network [OSTI]

    Honghua Zhong; Qiongtao Xie; Xiwen Guan; Murray T. Batchelor; Kelin Gao; Chaohong Lee

    2013-11-07T23:59:59.000Z

    We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum are obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level-crossings, which correspond to two-fold energy degeneracy.

  17. Energy, Environmental, and Economic Systems Analysis

    E-Print Network [OSTI]

    and deregulated, shifting control from a single decision maker (i.e., a single, government-owned electric utility determining electricity consumption (customer agents), unit commitment (generation companies), bilateralEnergy, Environmental, and Economic Systems Analysis Electricity Market Complex Adaptive System

  18. Energy Engineering & Systems Analysis Success Stories

    E-Print Network [OSTI]

    Kemner, Ken

    Energy Engineering & Systems Analysis Success Stories For further information, contact: Dileep Singh, dsingh@anl.gov NOx/O2 Sensors for High Temperature Applications In vehicle engines, monitoring with an internal reference gas system. The Solution Using a unique deformation bonding method that joins

  19. Energy Engineering & Systems Analysis Success Stories

    E-Print Network [OSTI]

    Kemner, Ken

    Energy Engineering & Systems Analysis Success Stories Helping Make the U.S. Power Grid Smarter-way communication technologies into the power grid, the nation will have a more robust and efficient system to the limit, requiring upgrades. The Solution A multidisciplinary mix of scientists and engineers from Argonne

  20. Energy Conservation in the Bell System

    E-Print Network [OSTI]

    Draper, W. C.

    1983-01-01T23:59:59.000Z

    --'-_L--'-_'--L-_'--L----JI--L----' 1972 '73 '74 '75 '76 '77 '78 '79 '50 '81 1982 1972 '73 '74 '75 '76 '77 '78 '79 '50 '81 1982 Energy Per Telephone Long Unes Energy Per Circuit 5.------------------, 5.-------------------, Ol-:>"r"'--------------f 01---.---------------1 ?5 ?10 ?5... tomer lines, 38 percent; calls, 55 percent; number of motor vehicles, 19 percent; and floor space, 31 percent. ENERGY MANAGEMENT Even before the 1973 oi 1 embargo rai sed the United States I "energy consciousness," the Bell System. had been saving...

  1. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect (OSTI)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01T23:59:59.000Z

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  2. Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville,Massachusetts:Drax SiemensSystems Jump to:

  3. Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to: navigation, search

  4. Altergy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom, California Zip: 95630 Product:

  5. Improving Energy Efficiency of Compressed Air System Based on System Audit

    E-Print Network [OSTI]

    Shanghai, Hongbo Qin; McKane, Aimee

    2008-01-01T23:59:59.000Z

    50 compressed air system energy audits completed by Shanghai50 compressed air system energy audits completed by Shanghaiof compressed air energy audits conducted by the Shanghai

  6. Energy localization in two chaotically coupled systems

    E-Print Network [OSTI]

    Johan Gronqvist; Thomas Guhr

    2005-06-08T23:59:59.000Z

    We set up and analyze a random matrix model to study energy localization and its time behavior in two chaotically coupled systems. This investigation is prompted by a recent experimental and theoretical study of Weaver and Lobkis on coupled elastomechanical systems. Our random matrix model properly describes the main features of the findings by Weaver and Lobkis. Due to its general character, our model is also applicable to similar systems in other areas of physics -- for example, to chaotically coupled quantum dots.

  7. Energy Efficiency of Distributed Environmental Control Systems

    SciTech Connect (OSTI)

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23T23:59:59.000Z

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional one-size-fits-all (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected have-it-your-way (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupants thermal dissatisfaction below a given threshold. The DECS energy usage was calculated using the simplified thermal model. OSFA control; providing a uniform temperature to the entire building, and occupant-selected HIYW control with a thermostat at each workstation were implemented for 3 cities representing 3 different climatic regions and control scenarios. It is shown that optimization allows DECS to deliver a higher level of individual and population thermal comfort while achieving annual energy savings between 14 and 26% compared to OSFA. The optimization model also allowed us to study the influence of the partitions thermal resistance and the variability of internal loads at each office. These influences didnt make significant changes in the optimized energy consumption relative to OSFA. The results show that it is possible to provide thermal comfort for each occupant while saving energy compared to OSFA Furthermore, to simplify the implementation of this approach, a fuzzy logic system has been developed to generalize the overall optimization strategy. Its performance was almost as good as the gradient system. The fuzzy system provided thermal comfort to each occupant and saved energy compared to OSFA. The energy savings of the fuzzy system were not as high as for the gradient-optimized system, but the fuzzy system avoided complete connectivity, and the optimization did not have to be repeated for each population. 3. We employed a detailed CFD model of adjacent occupied cubicles to extend the thermal-circuit model in three significant ways: (a) relax the office wall requirement by allowing energy to flow between zones via advection as well as conduction, (b) improve the comfort model to account both for radiation as well as convection heat transfer, and (c) support ventilation systems in which the temperature is stratified, such as in underfloor air distribution systems. Initially, three-dimensional CFD simulations of several cubicle configurations, with an adjoining corridor, were performed both to understand the advection between cubicles and the

  8. Permanent magnet thermal energy system

    SciTech Connect (OSTI)

    Gerard, F.

    1985-04-16T23:59:59.000Z

    An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

  9. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect (OSTI)

    Mohammed, Abdul Qayyum [University of Dayton, Ohio] [University of Dayton, Ohio; Wenning, Thomas J [ORNL] [ORNL; Sever, Franc [University of Dayton, Ohio] [University of Dayton, Ohio; Kissock, Professor Kelly [University of Dayton, Ohio] [University of Dayton, Ohio

    2013-01-01T23:59:59.000Z

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  10. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

  11. Thermochemical energy storage systems: modelling, analysis and design.

    E-Print Network [OSTI]

    Haji Abedin, Ali

    2010-01-01T23:59:59.000Z

    ??Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. (more)

  12. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Broader source: Energy.gov (indexed) [DOE]

    Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

  13. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory...

  14. Fenestration Software Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry Comments May 4-9, 2007.Fedwire

  15. Integrated Energy Systems (IES) for Buildings: A Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally...

  16. Vehicle Technologies Office: Materials for Energy Recovery Systems...

    Energy Savers [EERE]

    Energy Recovery Systems and Controlling Exhaust Gases Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases The typical internal...

  17. A Buildings Module for the Stochastic Energy Deployment System

    E-Print Network [OSTI]

    Marnay, Chris

    2008-01-01T23:59:59.000Z

    Stochastic Energy Deployment System Chris Marnay a , Michael Stadler a, b , SamStochastic Energy Deployment System 1 Chris Marnay a) , Michael Stadler a),b) , Sam

  18. Energy Savings Through Improved Mechanical Systems and Building...

    Office of Environmental Management (EM)

    Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

  19. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 4 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

  20. Panel 2, Modeling the Financial and System Benefits of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy...

  1. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 8 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

  2. New Water Booster Pump System Reduces Energy Consumption by 80...

    Broader source: Energy.gov (indexed) [DOE]

    Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

  3. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

  4. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  5. A Framework for the Optimization of Integrated Energy Systems...

    Open Energy Info (EERE)

    Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15...

  6. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a...

  7. Energy Management Systems Package for Small Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Systems Package for Small Commercial Buildings Energy Management Systems Package for Small Commercial Buildings Commercial Buildings Integration Project for the...

  8. Advanced Systems of Efficient Use of Electrical Energy SURE ...

    Open Energy Info (EERE)

    Advanced Systems of Efficient Use of Electrical Energy SURE (Smart Grid Project) Jump to: navigation, search Project Name Advanced Systems of Efficient Use of Electrical Energy...

  9. World Energy Projection System model documentation

    SciTech Connect (OSTI)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01T23:59:59.000Z

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  10. NREL: Innovation Impact - Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy Systems Integration Menu

  11. Naps Systems Oy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof EnergyNapa County, California:NapierNaps Systems

  12. Environmental Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information EnergySolar Systems Jump to: navigation,

  13. Innovative Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels Jump to:Power Systems Jump

  14. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  15. Superhard Coating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4Superhard Coating Systems Superhard Coating Systems

  16. A Review of Energy Storage Technologies for Marine Current Energy Systems A Review of Energy Storage Technologies for Marine Current Energy Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Review of Energy Storage Technologies for Marine Current Energy Systems 1 A Review of Energy Storage Technologies for Marine Current Energy Systems Z. Zhoua,b,c , M.E.H. Benbouzida,* , J of fossil resources and the issue of environment lead to a global need for producing more clean energy from

  17. Building Energy Information Systems: User Case Studies

    SciTech Connect (OSTI)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22T23:59:59.000Z

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  18. Geothermal energy control system and method

    DOE Patents [OSTI]

    Matthews, Hugh B. (Acton, MA)

    1976-01-01T23:59:59.000Z

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  19. Scalable and Energy Efficient Computer Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof EnergySawteeth

  20. Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

    2011-12-01T23:59:59.000Z

    The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

  1. Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

  2. STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

  3. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

  4. Energy Engineering & Systems Analysis Success Stories

    E-Print Network [OSTI]

    Kemner, Ken

    of increasing heat fluxes and power loads in applications as diverse as medical equipment, power electronics, improve energy efficiency and lengthen device lifetime. To satisfy these increasing thermal management for engine or power electronics thermal management. However, these systems contribute to the size and weight

  5. Energy Efficiency in Compressed Air Systems

    E-Print Network [OSTI]

    Hingorani, A.; Pavlov, A.

    2010-01-01T23:59:59.000Z

    Energy use in compressed air systems accounts for typically 10% of the total industrial electricity consumption. It also accounts for close to 99% of the CO2 footprint of an air compressor and approximately 80% of the life cycle costs of a...

  6. California Energy Commission Systems Assessment & Facilities Division

    E-Print Network [OSTI]

    ANTARCTICA GREENLAND CENTRAL AMERICA MIDDLE EAST Southern Ocean California Energy Commission SystemsNorth Atlantic Ocean South Atlantic Ocean North Pacific Ocean South Pacific Ocean Arctic Ocean North Pacific Ocean Indian Ocean NORTH AMERICA SOUTH AMERICA AFRICA EUROPE ASIA AUSTRAILA RUSSIA

  7. Biomass energy systems information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  8. Energy Mobility Network : system design, interfaces, and future interactions

    E-Print Network [OSTI]

    Cheung, Natalie Wen Yua

    2011-01-01T23:59:59.000Z

    The Energy Mobility Network is a mobile, networked energy production, consumption and sharing system that is designed to motivate users to be more aware of their energy consumption. In particular, the system provides a ...

  9. Contract Management Using Industrial Energy Management & Reporting Systems

    E-Print Network [OSTI]

    Robinson, J. E.

    2011-01-01T23:59:59.000Z

    Energy Management and Reporting Systems (EMRS) are rule-based control systems with a record of reducing energy usage and CO2e emissions while optimizing electrical generation in a real time environment. The rule set successfully optimizes energy...

  10. Multiport Converter Topologies for Distributed Energy System Applications

    E-Print Network [OSTI]

    Hawke, Joshua

    2014-07-28T23:59:59.000Z

    Distributed Energy Resource Systems DF Different Frequency EDLC Electronic Doubly Layer Capacitor EMI Electromagnetic Interference ESD Energy Storage Device FC Fuel Cell H Henry HES Hybrid Energy Storage System HF High Frequency HFI High Frequency...

  11. Understanding energy technology developments from an innovation system perspective

    E-Print Network [OSTI]

    Understanding energy technology developments from an innovation system perspective Mads Borup1. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark for discussing the framework conditions for transition to sustainable energy technologies and strengths

  12. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01T23:59:59.000Z

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  13. Energy transmutation in nonequilibrium quantum systems

    E-Print Network [OSTI]

    Mihail Mintchev; Luca Santoni; Paul Sorba

    2014-12-19T23:59:59.000Z

    We investigate the particle and heat transport in quantum junctions with the geometry of star graphs. The system is in a nonequilibrium steady state, characterized by the different temperatures and chemical potentials of the heat reservoirs connected to the edges of the graph. We explore the Landauer-Buettiker state and its orbit under parity and time reversal transformations. Both particle number and total energy are conserved in these states. However the heat and chemical potential energy are in general not separately conserved, which gives origin to a basic process of energy transmutation among them. We study both directions of this process in detail, introducing appropriate efficiency coefficients. For scale invariant interactions in the junction our results are exact and explicit. They cover the whole parameter space and take into account all nonlinear effects. The energy transmutation depends on the particle statistics.

  14. The structure of energy management systems

    SciTech Connect (OSTI)

    Miller, D.E.

    1983-06-01T23:59:59.000Z

    Energy management systems (EMS) which serve a variety of building functions are a complex combination of hardware and software. The design of the system is a trade-off between different characteristics including functions performed, number of connected points, cost, compatibility with other systems, reliability and flexibility. The functions performed by the EMS vary significantly with respect to complexity, interaction and rate of response required. The majority of functions interact either directly or indirectly with each other. The data required to support EMS functions can be classed as status, control, qualifying and informational. The amount of data required is extensive and must be brought together in many combinations to achieve the desired performance. The transfer of data is carried out by a communication system which connects the components of the EMS. The communication requirements, in addition to functional performance, are influenced by the application flexibility desired and the level of distribution of the system. Three general distribution levels are centralized, status and control decentralized, and functionally decentralized. The ability of the EMS of one manufacturer to interact effectively with EMS components or complete systems of other manufacturers is limited by the respective selections for data structures, communication methods and level of distribution. In general, the unique selection of characteristics chosen by each manufacturer precludes the integration of energy management system components of different manufacturers unless details of implementation are known.

  15. Software aspects of energy management systems

    SciTech Connect (OSTI)

    Stinaff, R.D.

    1983-06-01T23:59:59.000Z

    This paper is intended to serve the need for an understanding of the role which software plays in energy management systems (EMS), and of the considerations involved in designing, implementing and maintaining such systems. The paper begins with a brief elementary examination of what software is and the types of basic functions it typically performs in EMS applications. Various aspects of EMS software are then explained and discussed, including software architecture, programming language, operating system, data base management, man-machine interface, application software, and communications. In addition to providing a tutorial on the composition and content of EMS software, the paper addresses several related questions, such as the reasons for choosing one programming language over another, the effect of system size on software factors, the extent to which off-the-shelf software components can and should be incorporated in EMS, and the relationship of software to the overall user interface with the systems.

  16. Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system

    E-Print Network [OSTI]

    fuel (REtrol, Chapter 4) or heat, whether from direct electric heating, or heat pumps. Other uses the interaction between wind turbines, other energy sources and consumers in the electricity system. Biomass is combusted for heat and power (24%), A key theme of this chapter is that the energy systems should be (and

  17. Proper Design Saves Energy for Molecular Sieve Dehydration Systems

    E-Print Network [OSTI]

    Barrow, J. A.; Veldman, R.

    1984-01-01T23:59:59.000Z

    The molecular sieve system is a significant energy user in the cryogenic gas plant. Designing and operating the system properly can save thousands of dollars in fuel each year. A poorly designed energy saving system can result in poor plant...

  18. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

    2013-01-01T23:59:59.000Z

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  19. Nighthawk Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) JumpOpen EnergyNiederwald, Texas:Nighthawk Systems

  20. Coda Battery Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934°Coda Battery Systems Jump to: navigation,

  1. Systems Engineering Methodology (SEM) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspectEngines |Impacts| DepartmentSystems

  2. Mercury Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMelletteEnclosed andEnergySolar Systems

  3. Energy Systems Organization Charts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-upEnergy Systems Organization

  4. Environmental Management Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJustice Environmental Justice Selected documentsandServices

  5. Environmental Management Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJustice Environmental Justice Selected

  6. NREL: Sustainable NREL - Energy Systems Integration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resourceEnergy Systems Integration Facility

  7. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

  8. Systems and methods for controlling energy use in a building management system using energy budgets

    DOE Patents [OSTI]

    Wenzel, Michael J; Drees, Kirk H

    2014-09-23T23:59:59.000Z

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  9. Secure Control Systems for the Energy Sector

    SciTech Connect (OSTI)

    Smith, Rhett; Campbell, Jack; Hadley, Mark

    2012-03-31T23:59:59.000Z

    Schweitzer Engineering Laboratories (SEL) will conduct the Hallmark Project to address the need to reduce the risk of energy disruptions because of cyber incidents on control systems. The goals is to develop solutions that can be both applied to existing control systems and designed into new control systems to add the security measures needed to mitigate energy network vulnerabilities. The scope of the Hallmark Project contains four primary elements: 1. Technology transfer of the Secure Supervisory Control and Data Acquisition (SCADA) Communications Protocol (SSCP) from Pacific Northwest National Laboratories (PNNL) to Schweitzer Engineering Laboratories (SEL). The project shall use this technology to develop a Federal Information Processing Standard (FIPS) 140-2 compliant original equipment manufacturer (OEM) module to be called a Cryptographic Daughter Card (CDC) with the ability to directly connect to any PC enabling that computer to securely communicate across serial to field devices. Validate the OEM capabilities with another vendor. 2. Development of a Link Authenticator Module (LAM) using the FIPS 140-2 validated Secure SCADA Communications Protocol (SSCP) CDC module with a central management software kit. 3. Validation of the CDC and Link Authenticator modules via laboratory and field tests. 4. Creation of documents that record the impact of the Link Authenticator to the operators of control systems and on the control system itself. The information in the documents can assist others with technology deployment and maintenance.

  10. American Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy SystemsAmerican Energy Systems Inc Place:Fork,

  11. Training: Pumping Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun andDepartment ofFan SystemsPumping Systems

  12. Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting

    E-Print Network [OSTI]

    Qiu, Qinru

    Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting}@binghamton.edu Abstract In this paper, an energy aware dynamic voltage and frequency selection (EA-DVFS) algorithm energy and the harvested energy in a future duration. Specifically, if the system has sufficient energy

  13. Compact chemical energy system for seismic applications

    DOE Patents [OSTI]

    Engelke, Raymond P. (Los Alamos, NM); Hedges, Robert O. (Los Alamos, NM); Kammerman, Alan B. (Los Alamos, NM); Albright, James N. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  14. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31T23:59:59.000Z

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  15. www.extension.ucdavis.edu/engineering Energy systems

    E-Print Network [OSTI]

    Thomases, Becca

    and geothermal energy systems. Small Wind Energy Systems: Overview .8 CEU. Receive the hands-on training you need of geothermal energy systems with this user-friendly overview. Learn from experts from all parts of the geothermal energy community as they discuss what geotherm

  16. STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-14A NA7.5.13 Distributed Energy Storage DX AC DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  17. Why Energy Audits Aren't Enough: An Energy Management System is Required

    E-Print Network [OSTI]

    Haft, A. J.

    1980-01-01T23:59:59.000Z

    An evaluation of the energy systems in a plant can be accomplished by different techniques which require different levels of effort. Three alternatives are described: Rational Analysis, Energy Audits and Energy Management by Utility Systems Metering...

  18. Guidelines in Wave Energy Conversion System Design

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01T23:59:59.000Z

    absorber systems are used in arrays, where multiple devices are attached in series or parallel to capture more energy. Point absorbers can be used offshore in various depths of water. Submerged Pressure Differentials SPDs are completely submerged... that they can capture the most effective bending motion. Most attenuators are used near shore, but there are some designs that could be used further offshore. Attenuators need to be positioned parallel with the wave direction of travel in order to capture...

  19. Ventilation Systems for Cooling | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravelVentilation Systems for Cooling

  20. Lincoln Electric System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109. It is classifiedSystem (Redirected

  1. Enhanced Geothermal Systems | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.DoubleInitiativesEnforcementSystems Enhanced

  2. NREL: Energy Systems Integration Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisition System

  3. IGUS Innovative Technische Systeme | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS Innovative Technische Systeme

  4. PIA - Fossil Energy Web System (FEWEB) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5,PETPIV SystemTravel

  5. ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    SciTech Connect (OSTI)

    Byard D. Wood

    2004-04-01T23:59:59.000Z

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

  6. Integrated Planning for Water and Energy Systems

    E-Print Network [OSTI]

    Keller, Arturo A.

    Policy 2. Energy Intensity of Water 3. Water Intensity of Energy 1. Integrated Energy and Water Policy 2. Energy Intensity of Water 3. Water Intensity of Energy #12;Total Water Withdrawals, 2000Total Water at Edmonston #12;Energy Intensity of WaterEnergy Intensity of Water Energy intensity, or embedded energy

  7. A fundamental study on hybrid geothermal energy systems.

    E-Print Network [OSTI]

    Zhou, Cheng

    2014-01-01T23:59:59.000Z

    ??Research Doctorate - Doctor of Philosophy (PhD) This thesis focuses on a fundamental study of hybrid geothermal energy systems, in which geothermal energy is hybridised (more)

  8. annual cycle energy system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy consumption and component stresses and instabilities. 1. FOREWORDS The micro-gas turbine based energy conversion systems represent one of the most recently developed...

  9. Energy Department Expands Gas Gouging Reporting System to Include...

    Office of Environmental Management (EM)

    Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone...

  10. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  11. Save Energy Now in Your Process Heating Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

  12. Generation IV Advanced Nuclear Energy Systems By Jacques Bouchard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation IV Advanced Nuclear Energy Systems By Jacques Bouchard, French Commissariat a l'Energie Atomique, France and Ralph Bennett, Idaho National Laboratory. Generation IV...

  13. Seamless Energy Management Systems Part II: Development of Prototype

    E-Print Network [OSTI]

    Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Project System #12;#12;Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Center (PSERC) research project entitled "Seamless Energy Management Systems" (S-53G for 2013

  14. Transmission Completion Time Minimization in an Energy Harvesting System

    E-Print Network [OSTI]

    Ulukus, Sennur

    Transmission Completion Time Minimization in an Energy Harvesting System Jing Yang Sennur Ulukus-user energy harvesting wireless communication system. In this system, both the data packets and the harvested time is minimized. Under a deterministic system setting, we assume that the energy harvesting times

  15. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    SciTech Connect (OSTI)

    Felker, F.; Dykes, K.

    2015-01-01T23:59:59.000Z

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  16. Investigation of energy storage options for sustainable energy systems.

    E-Print Network [OSTI]

    Hosseini, Mehdi

    2013-01-01T23:59:59.000Z

    ??Determination of the possible energy storage options for a specific source of energy requires a thorough analysis from the points of energy, exergy, and exergoeconomics. (more)

  17. From free energy measurements to free energy inference in small systems Felix Ritort

    E-Print Network [OSTI]

    Potsdam, Universität

    From free energy measurements to free energy inference in small systems the knowledge of the free energy of nucleic acid and protein structures the free energy of pure equilibrium states, FTs have been extended

  18. Performance comparison of U.K. low-energy cooling systems by energy simulation

    E-Print Network [OSTI]

    Olsen, Erik L. (Erik Lee), 1979-

    2002-01-01T23:59:59.000Z

    Building energy simulation is an important tool for evaluating the energy consumption of a building and can provide guidance in the design of a building and its mechanical systems. EnergyPlus is a new energy simulation ...

  19. Solar Energy Systems - Research - Systems Analysis - Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat

  20. Energy redistribution in hierarchical systems of oscillators

    E-Print Network [OSTI]

    V. A. Danylenko; S. V. Mykulyak; S. I. Skurativskyi

    2015-03-19T23:59:59.000Z

    The article deals with the mathematical model for media with hierarchical structure. Using the hamiltonian formalism, the dynamical system describing the state of hierarchically connected structural elements was derived. According to the analysis of the Poincar\\'e sections, we found the localized quasi-periodic and chaotic trajectories in the three-level hierarchical model. Moreover, studies of correlation functions shown that the power spectrum for three-level model possesses local maxima characterizing temporal scales with strong correlation. Using the Fourier analysis of the solution's components, we have studied the distribution of energy injected in the system over hierarchical levels. Dynamical phenomena in the multi-level system were studied as well.

  1. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2013-07-31T23:59:59.000Z

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called agents from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

  2. Lower-Energy Energy Storage System (LEESS) Component Evaluation

    SciTech Connect (OSTI)

    Gonder, J.; Cosgrove, J.; Shi, Y.; Saxon, A.; Pesaran, A.

    2014-10-01T23:59:59.000Z

    Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to traditional battery storage systems. If such lower-energy ESS (LEESS) devices can also be shown to maintain high HEV fuel savings, future HEVs designed with these devices could have an increased value proposition relative to conventional vehicles. NREL's vehicle test platform is helping validate the in-vehicle performance capability of alternative LEESS devices and identify unforeseen issues. NREL created the Ford Fusion Hybrid test platform for in-vehicle evaluation of such alternative LEESS devices, bench testing of the initial LIC pack, integration and testing of the LIC pack in the test vehicle, and bench testing and installation of an EDLC module pack. EDLC pack testing will continue in FY15. The in-vehicle LIC testing results suggest technical viability of LEESS devices to support HEV operation. Several LIC configurations tested demonstrated equivalent fuel economy and acceleration performance as the production nickel-metal-hydride ESS configuration across all tests conducted. The lowest energy LIC scenario demonstrated equivalent performance over several tests, although slightly higher fuel consumption on the US06 cycle and slightly slower acceleration performance. More extensive vehicle-level calibration may be able to reduce or eliminate these performance differences. The overall results indicate that as long as critical attributes such as engine start under worst case conditions can be retained, considerable ESS downsizing may minimally impact HEV fuel savings.

  3. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  4. State Energy Price System: 1982 update

    SciTech Connect (OSTI)

    Imhoff, K.L.; Fang, J.M.

    1984-10-01T23:59:59.000Z

    The State Energy Price System (STEPS) contains estimates of energy prices for ten major fuels (electricity, natural gas, metallurgical coal, steam coal, distillate, motor gasoline, diesel, kerosene/jet fuel, residual fuel, and liquefied petroleum gas), by major end-use sectors (residential, commercial, industrial, transportation, and electric utility), and by state through 1982. Both physical unit prices and prices per million Btu are included in STEPS. Major changes in STEPS data base for 1981 and 1982 are described. The most significant changes in procedures for the updates occur in the residential sector distillate series and the residential sector kerosene series. All physical unit and Btu prices are shown with three significant digits instead of with four significant digits as shown in the original documentation. Details of these and other changes are contained in this report, along with the updated data files. 31 references, 65 tables.

  5. Characterizing System Level Energy Consumption in Mobile Computing Platforms

    E-Print Network [OSTI]

    Obraczka, Katia

    1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract--- This paper approaches energy consumption charac terization in mobile computing platforms by assessing energy con sumption of ''basic'' application

  6. Development of Reversible Fuel Cell Systems at Proton Energy

    Broader source: Energy.gov (indexed) [DOE]

    H 2 N i C d P b a c i d Energy Storage System Source: Mitlitsky, et al, "Regenerative Fuel Cells", Energy and Fuels, 1998. Packaged specific energy of up to 1,000 Whrkg...

  7. Zero Energy Bound States in Three--Particle Systems

    E-Print Network [OSTI]

    Dmitry K. Gridnev

    2009-12-02T23:59:59.000Z

    Under certain restrictions on pair--potentials it is proved that the eigenvalues in the three--particle system are absorbed at zero energy threshold if there is no negative energy bound states and zero energy resonances in particle pairs.

  8. The assessment of battery-ultracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    He, Yiou

    2014-01-01T23:59:59.000Z

    Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

  9. Ground heat exchanger design for direct geothermal energy systems .

    E-Print Network [OSTI]

    COLLS, STUART

    2013-01-01T23:59:59.000Z

    ??Direct geothermal energy systems use the ground to heat and cool buildings. Ground-source heat pump (GSHP) systems are the most widespread form of direct geothermal (more)

  10. Distributed/Stationary Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

  11. NREL's System Advisor Model Simplifies Complex Energy Analysis...

    Office of Scientific and Technical Information (OSTI)

    NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet) Re-direct Destination: NREL has developed a tool -- the System Advisor Model (SAM) -- that can help...

  12. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    System Alternatives and their General Environmental Impacts (MESSAGE) (Redirected from Model for Energy Supply System Alternatives and their General Environmental Impacts) Jump to:...

  13. Secretary Moniz Speaks on New Energy Systems Integration Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Integration Facility (ESIF) at NREL Secretary Moniz Speaks on New Energy Systems Integration Facility (ESIF) at NREL Addthis Speakers Secretary Ernest Moniz Duration 20:09...

  14. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  15. Energy Storage Monitoring System and In-Situ Impedance Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring System and In-Situ Impedance Measurement Modeling Energy Storage Monitoring System and In-Situ Impedance Measurement Modeling 2012 DOE Hydrogen and Fuel Cells Program...

  16. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research...

  17. 2014 Smart Grid System Report (August 2014) | Department of Energy

    Energy Savers [EERE]

    14 Smart Grid System Report (August 2014) 2014 Smart Grid System Report (August 2014) The Department of Energy has developed this biennial report to Congress in compliance with...

  18. Energy Management and Information Systems Study - 2014 BTO Peer...

    Energy Savers [EERE]

    Management and Information Systems Study - 2014 BTO Peer Review Energy Management and Information Systems Study - 2014 BTO Peer Review Presenter: Jessica Granderson, Lawrence...

  19. A Supply-Demand Model Based Scalable Energy Management System for Improved Energy

    E-Print Network [OSTI]

    Bhunia, Swarup

    the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization

  20. Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy

    E-Print Network [OSTI]

    Pedram, Massoud

    Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric bills system consists of different types of electrical energy storage (EES) elements, utilizing the benefits

  1. Local Option- Property Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Rhode Island allows cities and towns to exempt, by ordinance, renewable energy systems from property taxation. The term "renewable energy system" is not defined in the applicable statute (R.I. Gen....

  2. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARPA-E Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer...

  3. Energy information systems (EIS): Technology costs, benefit, and best

    E-Print Network [OSTI]

    LBNL-6476E 1 Energy information systems (EIS): Technology costs, benefit, and best practice uses, Lin, G, Piette, MA. Energy information systems (EIS): Technology costs, benefits, and best practice

  4. Preliminary Notice of Violation, Lockheed Martin Energy Systems...

    Office of Environmental Management (EM)

    Preliminary Notice of Violation, Lockheed Martin Energy Systems - EA-2000-11 Preliminary Notice of Violation, Lockheed Martin Energy Systems - EA-2000-11 August 24, 2000 Issued to...

  5. Energy storage systems program report for FY1996

    SciTech Connect (OSTI)

    Butler, P.C.

    1997-05-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  6. A Comparison of Methods for Sizing Energy Storage Devices in Renewable Energy Systems Thomas Bailey

    E-Print Network [OSTI]

    Victoria, University of

    A Comparison of Methods for Sizing Energy Storage Devices in Renewable Energy Systems by Thomas of Methods for Sizing Energy Storage Devices in Renewable Energy Systems by Thomas Bailey B.Eng, University, storage technologies are proposed as a means to increase the penetration of renewable energy, to minimize

  7. Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

  8. Sustainable Acquisition Coding System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents &...

  9. Heat Pump Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHCHearings HearingsPump Systems

  10. Ventilation System Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles - ORNLVentilation System

  11. VRB Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrantEnergyVRB Power Systems

  12. PIA - DOE PIV System | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5,PETPIV System PIA - DOE PIV

  13. PIA - FBI Billing System | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5,PETPIV System PIAof|

  14. Systems Engineering and Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystems Biology SHARESystems Engineering

  15. Sandia National Laboratories: Nuclear Energy Systems Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteTheSystems Laboratory

  16. Traction Drive Systems Breakout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and ItsXVIIofPotentialSystems;Tracking

  17. Training: Fan Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun andDepartment ofFan Systems Training: Fan

  18. Training: Motor Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun andDepartment ofFan Systems Training:Motor

  19. Training: Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun andDepartment ofFan Systems

  20. NREL: Energy Analysis - Technology Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnology Systems

  1. Fastcap Systems Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°, -83.3763218°Farnham,Fastcap Systems

  2. MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES

    E-Print Network [OSTI]

    for Building Thermal Envelope Systems and Materials Prepared for the U.S. Departmet of Energy Conservation

  3. Cybersecurity for Energy Delivery Systems 2010 Peer Review Presentatio...

    Broader source: Energy.gov (indexed) [DOE]

    Software Engineering Institute Cybersecurity for Energy Delivery Systems 2010 Peer Review Presentations - Software Engineering Institute National lab researchers, industry...

  4. Energy Returned On Investment of Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Determine the Energy Returned on Investment (EROI) for electric power production of Engineered Geothermal Systems (EGS).

  5. Accurate Energy Attribution and Accounting for Multi-core Systems

    E-Print Network [OSTI]

    Ryffel, Sebi; Stathopoulos, Thanos; McIntire, Dustin; Kaiser, William; Thiele, Lothar

    2009-01-01T23:59:59.000Z

    us- age information. Our system utilizes runtime direct en- ergy measurements that provide accurate per-component energy usage

  6. Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

  7. Cybersecurity for Energy Delivery Systems 2010 Peer Review Presentatio...

    Broader source: Energy.gov (indexed) [DOE]

    Secure Communications Cybersecurity for Energy Delivery Systems 2010 Peer Review Presentations - Secure Communications National lab researchers, industry partners, and academia...

  8. Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

    Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD1 , Ren to BEH). Keywords: Energy consumption reduction, Genetic algorithms, hybrid heuristics, memory allocation energy consumption of embedded systems is of great importance. To do so, numerous options to save energy

  9. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Engineering) W. VA #12;Energy Transitions: A Systems Approach August 2011 version Page 2 Energy Transitions sources globally, some very strong short-term drivers of energy transitions reflect rising concerns over

  10. Energy systems impacts desalination in Jordan Poul Alberg stergaard*

    E-Print Network [OSTI]

    Kolaei, Alireza Rezania

    sources. Work has been done on the potential of geothermal energy in Jordan [3], solar energy [4-6], wind efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies affects the energy systems as other large scale electricity demands. In order to reduce the climate change

  11. The Economic Case for Bulk Energy Storage in Transmission Systems

    E-Print Network [OSTI]

    The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

  12. Modeling Energy Conservation in a Completely Integrable Boussinesq system

    E-Print Network [OSTI]

    Kalisch, Henrik

    Modeling Energy Conservation in a Completely Integrable Boussinesq system Alfatih Ali and Henrik Abstract This work presents a derivation of the energy density and energy flux of surface waves modeled recently proposed in [2]. In the present note, it is shown that the total energy of the wave system

  13. Information-Theoretic Analysis of an Energy Harvesting Communication System

    E-Print Network [OSTI]

    Ulukus, Sennur

    Information-Theoretic Analysis of an Energy Harvesting Communication System Omur Ozel Sennur Ulukus@umd.edu ulukus@umd.edu Abstract--In energy harvesting communication systems, an exogenous recharge process supplies energy for the data trans- mission and arriving energy can be buffered in a battery before

  14. Energy performance of underfloor air distribution systems

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Linden, Paul; Buhl, Fred

    2007-01-01T23:59:59.000Z

    UnderfloorAirDistribution(UFAD)DesignGuide. Atlanta:distribution,UFAD,EnergyPlus,EnergyPlus/UFAD,energy modeling,designdesigncalculationsmustaccountforthedistributionof

  15. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  16. Identifying Energy Systems that Maximize Cogeneration Savings

    E-Print Network [OSTI]

    Ahner, D. J.

    the method of Lagrange mult1pl1ers: 120 ESL-IE-88-09-24 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 aV/akW, + ~at1/akW1 ~ 0 (4) aO p/HR p1 a01 /HR c1 (11 ) aV/ aO p 1 + ~1 at2/aOp1 o (5...Igure 5 Indicates t e incremental cogeneratIon power cost trends for dependent cogeneratIon systems. for these systems the maxlmum benef1ts are achleved at condlt1on (11). The process heat to power ratio 1s constant, and thus, sIte cogenerat1on...

  17. An energy recovery filter for HVDC systems

    SciTech Connect (OSTI)

    Jiang, X.; Gole, A.M. (Univ. of Manitoba, Winnipeg (Canada). Dept. of Electrical and Computer Engineering)

    1994-01-01T23:59:59.000Z

    The paper investigates the use of a novel filter arrangement for eliminating harmonic instability. The CIGRE benchmark model is selected as the base system. Presented in the paper is an example of harmonic instability which is first eliminated using a conventional low Q filter. Subsequently an energy recovery filter (ER-filter) replaces the conventional low Q filter. It is shown that the ER-filter provides similar performance with a fraction of the power loss when compared with a low Q filter. The dynamic performance of the ER-filter is also demonstrated via the simulations of system start-up and faults. The tool used for this investigation is an electromagnetic transient simulation program.

  18. Fusion-fission energy systems evaluation

    SciTech Connect (OSTI)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01T23:59:59.000Z

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  19. Improving Energy Efficiency of Compressed Air System Based on System Audit

    E-Print Network [OSTI]

    Shanghai, Hongbo Qin; McKane, Aimee

    2008-01-01T23:59:59.000Z

    plan, formulate energy efficiency goals and adopt energyGO-102004-1926 [3] Energy Efficiency and Market Potential ofImproving Energy Efficiency of Compressed Air System Based

  20. IBM Systems Director Active Energy Manager Installation and User's Guide

    E-Print Network [OSTI]

    IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;#12;IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;ii IBM Systems Director Active Energy Manager: Installation and User's Guide #12;About this book This book provides

  1. . ^ ^ L c O / ^ -Rise-R-497 Energy Systems Group

    E-Print Network [OSTI]

    2 otSMooiaji é. ^ ^ L c O / ^ - Rise-R-497 t x Energy Systems Group Annual Progress Report 1 Januar Roskilde, Denmark March 1984 r #12;RIS?-R-497 ENERGY SYSTEMS GROUP Annual Progress Report 1 January - 31 of the Energy Systems Group at Risø National Laboratory during 1983. Th«r activities may be roughly classified

  2. Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems

    E-Print Network [OSTI]

    Shenoy, Prashant

    Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

  3. Energy Efficient Prefetching with Buffer Disks for Cluster File Systems

    E-Print Network [OSTI]

    Qin, Xiao

    Energy Efficient Prefetching with Buffer Disks for Cluster File Systems Adam Manzanares, Xiaojun the energy- efficiency of large scale parallel storage systems. To address these issues we introduce EEVFS (Energy Efficient Virtual File System), which is able to manage data placement and disk states to help

  4. Energy Payback for Energy Systems Ensembles During Growth

    E-Print Network [OSTI]

    Gutowski, Timothy G.

    During periods of growth, the energy payback performance of new energy generating technologies deviates substantially from the usual static measures of energy return on investment (EROI), and time to breakeven (tB) for ...

  5. Hydrogen energy systems studies. Final technical report

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13T23:59:59.000Z

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  6. The Dark Energy Survey Data Management System

    E-Print Network [OSTI]

    Joseph J. Mohr; Wayne Barkhouse; Cristina Beldica; Emmanuel Bertin; Y. Dora Cai; Luiz da Costa; J. Anthony Darnell; Gregory E. Daues; Michael Jarvis; Michelle Gower; Huan Lin; leandro Martelli; Eric Neilsen; Chow-Choong Ngeow; Ricardo Ogando; Alex Parga; Erin Sheldon; Douglas Tucker; Nikolay Kuropatkin; Chris Stoughton

    2008-07-16T23:59:59.000Z

    The Dark Energy Survey collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at NCSA and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used Teragrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  7. The Dark Energy Survey Data Management System

    SciTech Connect (OSTI)

    Mohr, Joseph J.; /Illinois U., Urbana, Astron. Dept. /Illinois U., Urbana; Barkhouse, Wayne; /North Dakota U.; Beldica, Cristina; /Illinois U., Urbana; Bertin, Emmanuel; /Paris, Inst. Astrophys.; Dora Cai, Y.; /NCSA, Urbana; Nicolaci da Costa, Luiz A.; /Rio de Janeiro Observ.; Darnell, J.Anthony; /Illinois U., Urbana, Astron. Dept.; Daues, Gregory E.; /NCSA, Urbana; Jarvis, Michael; /Pennsylvania U.; Gower, Michelle; /NCSA, Urbana; Lin, Huan; /Fermilab /Rio de Janeiro Observ.

    2008-07-01T23:59:59.000Z

    The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  8. Grid tied PV system energy smoothing.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-06-01T23:59:59.000Z

    Grid-tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (Advanced Valve Regulated Lead-Acid) proved to cycle well at a partial state of charge over the time interval tested.

  9. Enthalpy restoration in geothermal energy processing system

    DOE Patents [OSTI]

    Matthews, Hugh B. (Boylston, MA)

    1983-01-01T23:59:59.000Z

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  10. Open Energy Information Systems (OpenEIS) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3.4 quads total energy use. LBNL estimates that, based on Commercial Buildings Energy Consumption Survey (CBECS) data, and assuming 15% average savings, adoption of analytics...

  11. Home energy ratings systems: Actual usage may vary

    SciTech Connect (OSTI)

    Stein, J.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-09-01T23:59:59.000Z

    Home energy ratings (HERS) attempt to predict typical energy costs for a given residence and estimate the savings potentials of various energy retrofits. This article discusses where the ratings could be improved to more accurately predict the actual energy consumption. Topics covered include the following: is HERS on target (scores, energy predictions, recommended energy improvements); why HERS aren`t perfect; improvements in HERS; the possibility that home energy ratings systems will become market driven. 1 fig., 2 tabs.

  12. Energy Efficient Pump Control for an Offshore Oil Processing System

    E-Print Network [OSTI]

    Yang, Zhenyu

    Energy Efficient Pump Control for an Offshore Oil Processing System Zhenyu Yang Kian Soleiman Bo, Denmark. Abstract: The energy efficient control of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump system which consists of three identical centrifugal pumps

  13. Toward Standards for Dynamics in Electric Energy Systems

    E-Print Network [OSTI]

    Toward Standards for Dynamics in Electric Energy Systems Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12 Engineering Research Center The Power Systems Engineering Research Center (PSERC) is a multi-university Center

  14. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2008-09-02T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  15. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2006-03-07T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  16. "System and Power Market Consequences of Implementing Hydrogen as Energy Carrier in the Nordic Energy System"

    E-Print Network [OSTI]

    debated and research in many areas related to hydrogen production and storage, fuel cells for vehicles1 "System and Power Market Consequences of Implementing Hydrogen as Energy Carrier in the Nordic National Laboratory, Frederiksborgvej 399, P.O. 49, 4000 Roskilde, Denmark Abstract By including hydrogen

  17. Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources

    E-Print Network [OSTI]

    Xu, Yixing 1985-

    2012-10-26T23:59:59.000Z

    strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage...

  18. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  19. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect (OSTI)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  20. Energy Storage Systems Program Report for FY99

    SciTech Connect (OSTI)

    BOYES,JOHN D.

    2000-06-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  1. Energy Storage Systems Program Report for FY98

    SciTech Connect (OSTI)

    Butler, P.C.

    1999-04-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  2. Optimal design and operation of energy polygeneration systems

    E-Print Network [OSTI]

    Chen, Yang, Ph. D. Massachusetts Institute of Technology. Department of Chemical Engineering

    2013-01-01T23:59:59.000Z

    Polygeneration is a concept where multiple energy products are generated in a single plant by tightly integrating multiple processes into one system. Compared to conventional single-product systems, polygeneration systems ...

  3. The Energy Transformation Limit Theorem for Gas Flow Systems

    E-Print Network [OSTI]

    Volov, V T

    2011-01-01T23:59:59.000Z

    The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

  4. Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna

    E-Print Network [OSTI]

    All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

  5. Smart Residential Energy Systems How Pervasive Com-puting can be used to conserve energy

    E-Print Network [OSTI]

    In order to be effective, residential energy feedback and control systems have to feature a low usageSmart Residential Energy Systems ­ How Pervasive Com- puting can be used to conserve energy Markus accounts for about 40% of total energy consumption [1]. The residential sector alone has seen a rise

  6. Energy and Uncertainty: Models and Algorithms for Complex Energy Systems Warren B. Powell

    E-Print Network [OSTI]

    Powell, Warren B.

    , using a simple energy storage problem as a case application. Using this setting, we describe a common umbrella. The challenge of creating an efficient, sustainable energy system requires solvingEnergy and Uncertainty: Models and Algorithms for Complex Energy Systems Warren B. Powell

  7. Innovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and institutional settings. Recycling Waste Heat--a Key to Improving the Efficiency of Energy Supply In an eraInnovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII August 29-September 3, 2004 Denver, Colorado #12;Innovative On-site Integrated Energy System Tested Jeanette B. Berry

  8. Potential Energy Total electric potential energy, U, of a system of

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

  9. Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

  10. Implementation of home energy rating systems

    SciTech Connect (OSTI)

    Vine, E.; Barnes, B.K.; Ritschard, R.

    1987-02-01T23:59:59.000Z

    This paper presents the findings of a national survey of home energy rating and labelling programs (HERS). We discuss the nature of different implementation problems and the kinds of strategies that have been used to deal with them to ensure the effective penetration of HERS to all HERS-users. Of further special interest to us has been the nature of different delivery systems. We examined 34 HERS, located in 28 states: 13 of these were located in the southeast, 8 in the midwest, 5 in the northeast, 4 in the Pacific/mountain region, and 3 in the southwest. Although our survey does not represent a scientific sampling of HERS, we believe that the final distribution accurately reflects the distribution of HERS through the country and the full range of likely implementation and delivery programs.

  11. Low energy synthesis gas systems - New technology

    SciTech Connect (OSTI)

    Julemont, V.; Ribesse, J.

    1988-01-01T23:59:59.000Z

    Natural gas steam reforming today covers more than 70% of synthesis gas production. The gas specific consumption has been largely improved during the last thirty years. It has now reached 32 GJ/metric ton of NH/sub 3/ on HHV, from 45 in the sixties. Ammonia is still the major user of synthesis gas. The successive improvements are: thermal energy recovery from the combustion gases at the outlet of the tubular reformer, where only 40% of the energy input is absorbed by the endothermal reaction; better quality of the reforming and conversion catalysts; better CO/sub 2/ removal processes; improved catalyst for ammonia and methanol synthesis and recovery of the H/sub 2/ from the purge gas. One of these processes has been successfully experimented. It involves the suppression of the tubular steam reforming, replaced by a simpler autothermal catalytic reactor and the new REGATE reheater of reactant gases to 1500/sup 0/C under pressure (air + steam for NH/sub 3/, recycled gas + steam for H/sub 2/ and CH/sub 3/OH). No oxygen is needed. The system is simpler, more efficient (27,0 GJ/metric ton of NH/sub 3/ HHV) and safer.

  12. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  13. Energy performance of underfloor air distribution systems

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Linden, Paul; Buhl, Fred

    2007-01-01T23:59:59.000Z

    HVAC energy for large office building new construction for givenUFAD marketHVACenergy for large office building newconstruction for given UFADmarketHVAC energy for large office building new construction for given UFAD market

  14. Integrating Process Unit Energy Metrics into Plant Energy Management Systems

    E-Print Network [OSTI]

    Davis, J. L.; Knight, N.

    2005-01-01T23:59:59.000Z

    As energy costs continue to rise across the process industry, many plants have responded by developing improved energy monitoring and reporting programs. At the center of such programs are typically spreadsheet or database applications that pull...

  15. Performance of Deep Geothermal Energy Systems .

    E-Print Network [OSTI]

    Manikonda, Nikhil

    2012-01-01T23:59:59.000Z

    ??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation (more)

  16. Integratedenergy storage system for optimal energy production.

    E-Print Network [OSTI]

    Stevens, Kristoffer

    2013-01-01T23:59:59.000Z

    ?? This project served to analyze the effects that energy storage can have on energy production. The study was aimed at Johannes CHP bio fuel. (more)

  17. Energy Storage Systems 2007 Peer Review - International Energy...

    Broader source: Energy.gov (indexed) [DOE]

    international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications...

  18. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect (OSTI)

    Engel, R. A.' Zoellick, J J.

    2007-07-31T23:59:59.000Z

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribes own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energys Tribal Program under First Steps grant award #DE-FG36-05GO15166. The programs centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  19. Communication Systems for Grid Integration of Renewable Energy Resources

    E-Print Network [OSTI]

    Yu, F Richard; Xiao, Weidong; Choudhury, Paul

    2011-01-01T23:59:59.000Z

    There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

  20. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    SciTech Connect (OSTI)

    Early, T.O.

    1994-05-01T23:59:59.000Z

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.