Powered by Deep Web Technologies
Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: News - RSS Feeds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RSS Feeds RSS Feeds RSS, or Really Simple Syndication, is an easy way to track NREL news automatically. NREL news is available in the following RSS feeds. Research Programs Biomass Buildings Concentrating Solar Power Defense Geothermal Technologies Hydrogen and Fuel Cells Photovoltaics Vehicles and Fuels Wind News Awards and Honors Continuum Magazine Feature Stories News Releases Community Involvement Education Education Center Executive Energy Program Technology Applications Sustainable NREL Technology Deployment Technology Transfer Learn more about RSS. Printable Version NREL Newsroom Home Feature News News Releases Events Awards Research Support Facility Energy Systems Integration Facility Related Links NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC

2

RSS Feeds | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Feeds Feeds RSS Feeds The Office of Energy Efficiency and Renewable Energy (EERE) offers RSS feeds covering news and other updates from EERE and its programs. Learn about RSS. Subscribe to Corporate EERE News EERE News Releases Subscribe to receive news releases covering all topics. Subscribe to receive EERE news releases feed. Energy Efficiency and Renewable Energy Network News Subscribe to receive ENN stories covering all topics. Subscribe to receive EERE Network News feed. EERE Blog The EERE Blog includes updates on current EERE projects, interviews with energy experts, and other stories about EERE's technology offices, crosscutting initiatives, and national laboratories. Learn more. Subscribe to RSS feed. Energy Saver Blog A place for consumers to learn about and discuss ways to be energy

3

OSTIblog RSS Feed  

Office of Scientific and Technical Information (OSTI)

entries/rss Most recent posts entries/rss Most recent posts from the US Department of Energy OSTIblog at http://www.osti.gov/home/ostiblog en Enjoy the benefits of LED lighting http://www.osti.gov/home/ostiblog/enjoy-benefits-led-lighting

4

Clean Cities: Subscribe to RSS Feeds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Printable Version Share this resource Send a link to Clean Cities: Subscribe to RSS Feeds to someone by E-mail Share Clean Cities: Subscribe to RSS Feeds on Facebook Tweet about Clean Cities: Subscribe to RSS Feeds on Twitter Bookmark Clean Cities: Subscribe to RSS Feeds on Google Bookmark Clean Cities: Subscribe to RSS Feeds on Delicious Rank Clean Cities: Subscribe to RSS Feeds on Digg Find More places to share Clean Cities: Subscribe to RSS Feeds on AddThis.com... News Blog Newsletter Information for Media Subscribe to RSS Feeds The Clean Cities RSS (real simple syndication) feeds track news from the U.S. Department of Energy (DOE) and other sources, making it convenient and easy to stay up to date with the Clean Cities program and alternative transportation technologies. Learn more about RSS.

5

About RSS Feeds | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Us » News & Blog » RSS Feeds » About RSS Feeds Us » News & Blog » RSS Feeds » About RSS Feeds About RSS Feeds RSS, or Really Simple Syndication, is a format that Web site owners use to publish regularly-updated content. RSS is a great way for you to get updates from your favorite Web sites without having to go to the sites first. Many people use RSS feeds to stay informed on a variety of topics. How do I use RSS feeds? The first step is to choose an RSS reader, which collects and displays feeds in an easy-to-read format. Most Web browsers and e-mail applications have this capability built in. You can also sign up for free online readers or download and install a reader for your desktop. The reader automatically checks for new items and will display each one with a title and short description.

6

Fossil Energy RSS Feeds | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy RSS Feeds Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using software called an RSS reader, feed reader, or an aggregator, which can be web-based or desktop-based. Click on RSS button below to subscribe to Fossil Energy latest news. All Fossil Energy News Clean Coal Technology News Carbon Capture and Storage News Oil & Natural Gas News

7

About RSS Feeds | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Feeds » About RSS Feeds Feeds » About RSS Feeds About RSS Feeds RSS, or Really Simple Syndication, is a format that Web site owners use to publish regularly-updated content. RSS is a great way for you to get updates from your favorite Web sites without having to go to the sites first. Many people use RSS feeds to stay informed on a variety of topics. How do I use RSS feeds? The first step is to choose an RSS reader, which collects and displays feeds in an easy-to-read format. Most Web browsers and e-mail applications have this capability built in. You can also sign up for free online readers or download and install a reader for your desktop. The reader automatically checks for new items and will display each one with a title and short description. How can I subscribe to an RSS feed?

8

RSS Feeds | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Events » RSS Feeds Events » RSS Feeds Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home News & Events RSS Feeds Print Text Size: A A A RSS Feeds FeedbackShare Page DOE EFRC Announcements Feed DOE EFRC Announcements Feed - Official DOE news and events about the EFRCs. EFRC News Feed EFRC News Feed - External news coverage of the EFRCs EFRC Events Feed EFRC Events Feed - High profile events organized by the EFRCs RSS, which stands for Really Simple Syndication, is an easy way to keep up with your favorite news and information. An RSS feed contains headlines, summaries and links to full news stories on www.energy.gov. If you click an RSS link, you will see XML (or eXtensible M arkup Language) code in your

9

RSS Feeds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

RSS Feeds RSS Feeds Subscribe to EIA's RSS Feeds Subscribe RSS Today in Energy Short, timely articles with graphics on energy facts, issues, and trends. RSS What's New Notification of new EIA products as they are released. RSS EIA Radio Provides free short broadcast stories on EIA energy data reports and analysis to radio stations nationwide. RSS Press Releases Receive EIA press releases RSS Energy in Brief Articles that explain important energy topics in plain language. Each Brief answers a question relevant to the public and recommends resources for further reading. RSS Gasoline & Diesel Fuel Update Retail gasoline and on-highway diesel fuel prices are usually updated each Monday by 5:00 pm EST. RSS This Week in Petroleum Weekly prices and an analytical summary of the petroleum industry.

10

RSS Feeds | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RSS Feeds RSS Feeds RSS Feeds Open Funding Opportunity Announcements (FOAs) Open DOE National Laboratory Announcements Discovery & Innovation News EFRC News & Events Jobs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Print Text Size: A A A RSS Feeds FeedbackShare Page Open Funding Opportunity Announcements (FOAs) ASCR Open Funding Opportunities BES Open Funding Opportunities BER Open Funding Opportunities FES Open Funding Opportunities HEP Open Funding Opportunities NP Open Funding Opportunities Open DOE National Laboratory Announcements Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights Laboratory Science Highlights User Facility Science Highlights

11

Green Power Network - Green Power News RSS Feed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Power News RSS Feed Green Power News RSS Feed Search Search Help More Search Options Search Site Map News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports Green Power News RSS Feed RSS, or Really Simple Syndication, is an easy way for Web site owners to post green power news onto their site, using such scripting languages as JavaScript, Perl, and PHP. Newshounds can also use an RSS reader to track green power news automatically. How do I use RSS?

12

RSS and Podcast News Feeds | OSTI, US Dept of Energy, Office of Scientific  

Office of Scientific and Technical Information (OSTI)

RSS and Podcast News Feeds RSS and Podcast News Feeds Use OSTI's RSS/Podcast feeds to Get OSTI news, announcements, and product or service updates delivered directly to your desktop or MP3 player. Subscribe to OSTI RSS News and Podcast Feeds: Copy and paste the appropriate URL in your feed reader OSTI News Feed OSTI News Feed http://www.osti.gov/home/sites/www.osti.gov.home/files/imported/newsfeeds/rss-osti.xml OSTI News Feed OSTI Blog News Feed http://www.osti.gov/ostiblog/home/feed/entries/rss DOePatents News Feed DOepatents News Feeds http://www.osti.gov/includes/doepatents/patents.xml DOE R&D Accomplishments News Feed DOE R&D Accomplishments News Feeds http://www.osti.gov/accomplishments/newsfeeds/rss.xml OSTI's Podcast News Feed OSTI's Podcast News Feeds http://www.osti.govhome/sites/www.osti.gov.home/files/imported/newsfeeds/podcasts/ostipodcast.xml

13

RSS and Podcast News Feeds | OSTI, US Dept of Energy, Office...  

Office of Scientific and Technical Information (OSTI)

RSS and Podcast News Feeds Use OSTI's RSSPodcast feeds to Get OSTI news, announcements, and product or service updates delivered directly to your desktop or MP3 player. Subscribe...

14

RSS Feeds for Specific Tropical Cyclones of the North Atlantic, Caribbean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RSS Feeds for Specific Tropical Cyclones of the North Atlantic, Caribbean RSS Feeds for Specific Tropical Cyclones of the North Atlantic, Caribbean Sea, and Gulf of Mexico (English) Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data RSS Feeds for Specific Tropical Cyclones of the North Atlantic, Caribbean Sea, and Gulf of Mexico (English) Dataset Summary Description The National Weather Service (NWS) National Hurricane Center uses regularly updated RSS feeds to disseminate North Atlantic, Caribbean Sea, and Gulf of Mexcio tropical cyclone and marine forecasts. Tags {hurricanes,"tropical cyclones",warning,watch," forecast",discussion,outlooks,"",marine,temperature," Atlantic","Caribbean Sea","Gulf of Mexico. "}

15

DOE Patents Database - RSS  

Office of Scientific and Technical Information (OSTI)

DOepatents RSS DOepatents RSS Get DOepatents news, announcements, and product or service updates delivered directly to your desktop via our RSS feed. To view DOepatents feed in your RSS feed reader: Copy the RSS RSS News Feed URL/shortcut: http://www.osti.gov/includes/doepatents/patents.xml Paste the URL into your feed reader To get a feed reader: RSS feed readers can be downloaded and installed, often for free. Lists of available feed readers can be found from a number of sources, including News on Feeds, DMOZ Open Directory Project, and your favorite search engine, such as Google or Yahoo. In addition, a What Is RSS? tutorial can be found at the USA.gov site. About RSS: RSS (Really Simple Syndication or Rich Site Summary) allows users to stay up-to-date on changing content. RSS feeds often include headlines, news,

16

Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Beamlines Beamlines Print Beamlines Directory List of ALS beamlines, techniques, energy ranges, beamline scientists' contact information, and individual beamline schedules. The ALS Beamclock and links to the ALS Energy-Related Beamlines poster and beamclock are also available. Beam Status Current status of the ALS accelerator, updated every minute. Instructions on how to get beam status updates via Twitter @ALSRingStatus or text messages, and request form for beam history information. Research Techniques Research techniques and the corresponding beamlines where they are available (under construction). Schedules Weekly user schedule, current and upcoming long-term operating schedules; individual beamline long-term schedules can be found on the ALS Beamlines Directory.

17

NREL: About RSS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RSS RSS Search More Search Options Site Map Printable Version RSS, or Really Simple Syndication, is an easy way to track NREL news automatically. How do I use RSS? First, you need a "news aggregator" also known as a "news reader." This displays RSS feeds from your chosen Web sites on your computer. RSS aggregators automatically check RSS feeds that you've subscribed to for new items. Once found, they present them all together for you in an easy to use format. If the title and description of an item are of interest, you can click on the link for a related page on the site. For a list of free and commercial aggregators, do a Web search on "RSS readers and aggregators." How do I subscribe to a NREL RSS feed? Once you have an aggregator, click on the orange RSS button RSS to open up

18

Los Alamos National Laboratory RSS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RSS Feed RSS Feed Los Alamos National Laboratory RSS Really Simple Syndication feeds providing LANL workers with news directly to your desktop. Los Alamos National Laboratory RSS Subscribe to LANL's RSS (Really Simple Syndication) feeds to get news delivered directly to your desktop! In addition to the feeds listed here, look for the small red feed icons across the site, or the orange auto-discovery icon in your browser bar, to subscribe to other feeds from www.lanl.gov. To view one of the LANL feeds in your RSS Aggregator (About RSS Aggregators): 1. Copy the URL/shortcut that corresponds to the topic that interests you. 2. Paste the URL into your reader. Title Copy URLs to RSS Reader Top Stories http://www.lanl.gov/newsroom/news-stories/index.rss New Releases http://www.lanl.gov/newsroom/news-releases/index.rss

19

Beamline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about how nif works Beamline Every NIF beam starts at the master oscillator. The low-energy beam is amplified in the preamplifier module and then in the power amplifier, the main...

20

Green Power Network - RSS Feed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Power Network (GPN) provides news and information on green power Green Power Network (GPN) provides news and information on green power markets and related activities. The site provides up-to-date information on green power providers, product offerings, consumer protection issues, and policies affecting green power markets. http://apps3.eere.energy.gov/greenpower/index.shtml en-us green power green pricing green marketing REC Renewable Energy Certificates TVA Seeks 126 MW of Renewables in 2014 TVA Expands Power Purchase Programs by 7%http://apps3.eere.energy.gov/greenpower/news/news_template.shtml?id=1886 Mon, 30 Dec 2013 00:00:00 -0700 Duke Energy Carolinas Approved to Launch New Green Power Program North Carolina PUC Approves Green Source Riderhttp://apps3.eere.energy.gov/greenpower/news/news_template.shtml?id=1885

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ASRC RSS Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Once every minute between sunrise and sunset the Rotating Shadowband Spectroradiometer (RSS) measures simultaneously three irradiances: total horizontal, diffuse horizontal and direct normal in near ultraviolet, visible and near infrared range (approx. 370nm-1050nm) at 512 (RSS103) or 1024 (RSS102 and RSS105) adjacent spectral resolving elements (pixels). The resolution is pixel (wavelength) dependent and it differs from instrument to instrument. The reported irradiances are cosine response corrected. And their radiometric calibration is based on incandescent lamp calibrators that can be traced to the NIST irradiance scale. The units are W/m2/nm.

Kiedron, Peter

22

ASRC RSS Data  

SciTech Connect (OSTI)

Once every minute between sunrise and sunset the Rotating Shadowband Spectroradiometer (RSS) measures simultaneously three irradiances: total horizontal, diffuse horizontal and direct normal in near ultraviolet, visible and near infrared range (approx. 370nm-1050nm) at 512 (RSS103) or 1024 (RSS102 and RSS105) adjacent spectral resolving elements (pixels). The resolution is pixel (wavelength) dependent and it differs from instrument to instrument. The reported irradiances are cosine response corrected. And their radiometric calibration is based on incandescent lamp calibrators that can be traced to the NIST irradiance scale. The units are W/m2/nm.

Kiedron, Peter

2008-01-15T23:59:59.000Z

23

ARM - Instrument - rss  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentsrss govInstrumentsrss Documentation RSS : Handbook RSS : Instrument Mentor Monthly Summary (IMMS) reports RSS : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Rotating Shadowband Spectroradiometer (RSS) Instrument Categories Radiometric General Overview The Rotating Shadowband Spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to

24

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Beamlines Directory ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

25

BNL | ATF Beamline Descriptions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline Simulation Data and Control Panel Displays Beamline Simulation Data and Control Panel Displays Beamline 0 Beamline 1 Beamline 2 Beamline 0 is directly downstream of the linac and serves to transport the beam from the linac to any one of the three experimental beamlines. Beamline 0 is modeled using MAD. Shown below is a summary of the MAD simulation results. Beamline control system panel (PDF) Transport line control system panel (PDF) MAD input deck Raw output beamline 0 This beam line currently serves the Plasma Acceleration, Current Filamentation Instability and Compton scattering experiments. A summary of the MAD simulation results is shown below. MAD input deck | Output of optical functions | Beamline control system panel (PDF) beamline 1 output ATF beamline 2 previously served the IFEL experiment, the SASE experiment

26

uBioRSS: Tracking taxonomic literature using RSS  

Science Journals Connector (OSTI)

......NOTES DATA AND TEXT MINING This is an Open Access...syndication through standard formats such as RSS...combinations. A peer review process examines...names without human review. For example, the...literature. There are plans for future revisions...content syndication standards for identifying biological......

Patrick R. Leary; David P. Remsen; Catherine N. Norton; David J. Patterson; Indra Neil Sarkar

2007-06-01T23:59:59.000Z

27

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

28

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

29

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

30

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

31

Rotating Shadowband Spectroradiometer (RSS) Handbook  

SciTech Connect (OSTI)

The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.

Kiedron, P; Schlemmer, J; Klassen, M

2005-01-01T23:59:59.000Z

32

Beamline Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temperatures Temperatures Energy: 3.0000 GeV Current: 493.2242 mA Date: 11-Jan-2014 21:40:00 Beamline Temperatures Energy 3.0000 GeV Current 493.2 mA 11-Jan-2014 21:40:00 LN:MainTankLevel 124.4 in LN:MainTankPress 56.9 psi SPEAR-BL:B120HeFlow 15.4 l/min SPEAR-BL:B131HeFlow 22.2 l/min BL 4 BL02:LCW 0.0 ℃ BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -14.0 ℃ BL04-1:Bottom1 46.0 ℃ BL04-1:Bottom2 47.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 46.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA -167.0 ℃ BL04-1:FirstXtalB -172.0 ℃ BL04-1:Pad1 31.0 ℃ BL04-1:Pad2 31.0 ℃ BL04-1:SecondXtalA -177.0 ℃ BL04-1:SecondXtalB -175.0 ℃ BL 4-2 BL04-2:BasePlate -14.0 ℃ BL04-2:Bottom1 24.0 ℃ BL04-2:Bottom2 25.0 ℃

33

Final Beamline Design Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Beamline Design Report Final Beamline Design Report Guidelines and Review Criteria (SCD 1.20.95) 6.0 Final Beamline Design Report (FDR) Overview The Final Beamline Design Report is part of the Advanced Photon Source (APS) beamline review process and should be planned for when approximately 90% of the total beamline design has been completed. Fifteen copies of the FDR are to be submitted to the APS Users Office. Approval of the Collaborative Access Team's (CAT) designs described in the report is required prior to installation of beamline components in the APS Experiment Hall. Components that have a long lead time for design or procurement can be reviewed separately from the remainder of the beamline, but enough information must be provided so that the reviewer can understand the

34

DOE Research and Development Accomplishments RSS Archive  

Office of Scientific and Technical Information (OSTI)

Widget XML Bookmark and Share RSS Archive 2005 - 2006 2007 2008 2009 2010 2011 2012 2013 Some links on this page may take you to non-federal websites. Their...

35

Feeding  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feeding Feeding the Pipeline: The SNfactory Supernova Search Richard Scalzo NERSC User Group Meeting October 4, 2005 Outline Background ● Interest in supernova science ● Observational challenges in finding supernovae The SNfactory search pipeline ● Description of hardware ● Past searches and challenges in development ● Present and future Why supernovae are interesting Two types of SNe: "type Ia" and "core-collapse". SNe Ia ● Model: Thermonuclear explosion of degenerate star(s) (carbon-oxygen white dwarf + binary companion star) ● Characteristic Si II absorption line in spectrum ● Brightness very uniform → good distance indicators Other SNe (types Ib, Ic, II) ● Gravitational collapse of core of young, massive star ● Spectra are diverse; evidence of stellar envelope (H, He) ● Rate tracks star formation rate; may be GRB progenitors SNe

36

Hutch for CSX Beamlines  

ScienceCinema (OSTI)

NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

Ed Haas

2013-07-17T23:59:59.000Z

37

APS 7-BM Beamline: Beamline Controls and Data Handling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline Controls and Data Acquisition Beamline Controls and Data Acquisition Beamline controls operate through EPICS, with the standard MEDM graphical interface. When needed, Python is used for scripting, based on the PyEpics implementation written by CARS. The beamline workstation has access to the Enthought Python Distribution, which includes many common Python packages, such as numpy, scipy, h5py, and others. Data formats Time resolved data collected at the beamline are typically stored in a locally-defined binary data file. For distribution to users, these files are converted to HDF5, a widely used, hierarchical binary data format that can be accessed using tools in a wide variety of programming languages. Other formats can potentially be accommodated upon request; please contact beamline staff prior to your beamtime if a different format is needed.

38

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

39

BNL | ATF Beamline Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline Parameters Beamline Parameters Electron beam energy: 25 to 76 MeV Temporal structure: Macropulse length: 3 microseconds Macropulse repetition rate from under 1 PPS to 3 PPS. Micropulse repetition period 12.25 ns or 24.5 ns. Micropulse length variable from about 1 ps FWHM to 10 ps FWHM. Electron beam charge: continuously variable. Single micropulse charge from zero to a few nanoculombs. Bunch train charge up to about 10 nanoculombs. Emittance: depends on various conditions, e.g. peak current, gun field, microbunch length etc. At 1 nC we have measured the emittance at 2.6 mm mrad (rms normalized) at a bunch length of 10 ps FWHM. The local emittance (Slice Emittance) is smaller, measured 1.4 mm mrad for a slice out of the 1 nC bunch. Stability: (approx.) 1 ps in short term phase, 1% of beam diameter

40

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

42

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

43

APS Safety Guidelines for Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Guidelines for Beamlines Accident Investigations LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop Authorization Certification Form...

44

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Source...

45

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 12.2.2 Beamline 12.2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure

46

Find a Beamline | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Find a Beamline Find a Beamline The Advanced Photon Source consists of 34 sectors; each sector contains one or more beamlines. There are several resources available to help you find information about APS sectors and beamlines. Maps: Interactive Map Clicking on the link above or the picture below will take you to a page where you can see which APS beamlines are operational and relevant to your scientific interests. sectors map thumb Beamlines Map Clicking on the link above or the picture below will take you to a detailed bird's eye view of every beamline at the APS. beamline map thumb Directories: Beamlines Directory The complete listing of all APS beamlines' contacts, specifications, and status. Techniques Directory An explanation of the various research techniques in use at the APS, and a

47

Photon Sciences | NSLS-II Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSLS-II Beamlines NSLS-II Beamlines beamlines Current NSLS-II Beamline Diagram The National Synchrotron Light Source II will accommodate more than 60 beamlines using 27 straight sections for insertion-device sources and 31 bending-magnet or three-pole-wiggler sources, with additional beamlines possible through canted insertion devices and multiple branches. Six beamlines were selected in 2008 and are now funded within the NSLS-II project. These project beamlines encompass research programs in inelastic x-ray scattering, hard x-ray nanoprobe, coherent hard x-ray scattering, coherent soft x-ray scattering and polarization, submicron resolution x-ray spectroscopy, and x-ray powder diffraction. For each beamline, a beamline advisory team, or BAT, has been established to represent the broader scientific community in a specific area of

48

Beamline 29-ID  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEX Milestones(4/29/2013) IEX Milestones(4/29/2013) • Spring 2012 ✓ Completion of the IEX EM-VPU insertion device (photos) ✓ Installation of EM-VPU in the storage ring (photo1, photo2) ✓ Installation of high heat-load mirrors M0/M1 (photo) • Summer 2012 ✓ Testing of various polarization mode of EM-VPU with stored beam ✓ Installation of vacuum transport, support tables and diagnostic component; implementation of beamline controls and safety systems (cleanroom, FOE progress, FOE progress2) • Fall 2012 ✓ FDR approval (October 15) ✓ Installation of first optical enclosure components (photo) ✓ First light and testing of white/pink beam components (photo1, photo2) • Winter/Spring 2013 - White beam commissioning ✓ Alignment of mirrors with synchrotron beam ✓ Installation and alignment of support tables (photo)

49

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

50

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

51

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

52

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

53

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

54

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

55

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

56

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

57

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.0.1 Print 7.0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

58

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

59

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

60

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The BEAR Beamline at Elettra  

SciTech Connect (OSTI)

The BEAR (Bending Magnet for Emission Absorption and Reflectivity) beamline is installed at the right exit of the 8.1 bending magnet at ELETTRA. The beamline - in operation since January 2003 - delivers linear and circularly polarized radiation in the 5 - 1600 eV energy range. The experimental station is composed of a UHV chamber for reflectivity, absorption, fluorescence and angle resolved photoemission measurements and a UHV chamber for in-situ sample preparation.

Nannarone, S.; Pasquali, L.; Selvaggi, G. [UdR-INFM Modena, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Pedio, M. [TASC-INFM, MM building in Area Science Park, s.s.14 km 163.5, 34012 Basovizza, Trieste (Italy); Mahne, N. [TASC-INFM, Universita di Trieste, Trieste (Italy); Naletto, G.; Pelizzo, M.G.; Tondello, G. [LUXOR-INFM, Universita di Padova, Padua (Italy)

2004-05-12T23:59:59.000Z

62

APS Preliminary Beamline Design Report Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PRELIMINARY BEAMLINE DESIGN REPORT PRELIMINARY BEAMLINE DESIGN REPORT December 5, 1994 5.1 Preliminary Beamline Design: General Guidelines The Preliminary Design of the beamline represents an approximately 30% design level of each of the beamline components. This level of design permits the CAT to develop cost estimates for the construction of the beamline, as well as a realistic timeline for completion of the construction tasks. A committee from the APS has been charged with reviewing the Preliminary Design Reports and has established the evaluation criteria described below. The Preliminary Beamline Report is expected to expand upon the Conceptual Design Report in the following areas: Beamline Layout Component Design Work Breakdown Structure Cost and Schedule Additional Operational Requirements

63

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

64

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2

65

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

66

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

67

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

68

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating

69

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

70

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Beamline 5.0.1 Print Tuesday, 20 October 2009 08:32 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules

71

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

72

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

73

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

74

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

75

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

76

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

77

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.1 3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

78

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

79

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

80

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.3.1 2.3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

82

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

83

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5.0.2 5.0.2 Beamline 5.0.2 Print Tuesday, 20 October 2009 08:35 Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics

84

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.3.2 9.3.2 Beamline 9.3.2 Print Tuesday, 20 October 2009 09:06 Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

85

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

86

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

87

Instrumentation upgrades for the Macromolecular Crystallography beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instrumentation upgrades for the Macromolecular Crystallography beamlines Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April 2012. The varied demands from both challenging academic research projects as well as high throughput industrial applications on today's macromolecular crystallography beamlines drive developments to both endstations and beamline optics. Recent instrumentation upgrades to the macromolecular crystallography (MX) beamlines of the Swiss Light Source therefore aimed to

88

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

89

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

90

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

91

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

92

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

93

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

94

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

95

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

96

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

97

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

98

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

99

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

100

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5.4.1 5.4.1 Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

102

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.2 Print 0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

103

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

104

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

105

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

106

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

107

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

108

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

109

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

110

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

111

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

112

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

113

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

114

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 9.0.2 Beamline 9.0.2 Print Tuesday, 20 October 2009 08:59 Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm

115

Beamlines Directory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Beamlines Directory Filter by: L bracket Discipline: All Atomic Physics Chemistry Environmental Science GeoScience Life Sciences Materials Science Physics Polymer Science Technique: All Anomalous and resonant scattering (hard x-ray) Anomalous and resonant scattering (soft x-ray) Biohazards at the BSL2/3 level Coherent x-ray scattering Diffraction anomalous fine structure Diffuse x-ray scattering Energy dispersive X-ray diffraction Fiber diffraction Fluorescence spectroscopy General diffraction Grazing incidence diffraction Grazing incidence small-angle scattering High-energy x-ray diffraction High-pressure diamond anvil cell High-pressure multi-anvil press Inelastic x-ray scattering Inelastic x-ray scattering (1 eV resolution) Intensity fluctuation spectroscopy Large unit cell crystallography Laue

116

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

117

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

118

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

119

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

120

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

122

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

123

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

124

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

125

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

126

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

127

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

128

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

129

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

130

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

131

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

132

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

133

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

134

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

135

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

136

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

137

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

138

Beamline 7.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

139

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

140

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

142

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

143

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

144

Beamline 7.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

145

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

146

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

147

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.3.1 0.3.1 Beamline 10.3.1 Print Tuesday, 20 October 2009 09:14 X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format

148

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

149

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

150

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

151

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

152

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

153

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

154

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

155

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

156

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

157

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

158

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

159

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

160

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

162

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

163

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

164

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

165

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

166

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

167

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

168

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

169

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

170

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

171

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

172

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

173

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

174

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

175

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

176

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.1 Print 3.1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

177

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

178

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

179

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.3.1 Print 12.3.1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

180

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

182

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

183

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

184

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

185

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

186

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.2 Print 2.0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

187

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.2 0.2 Beamline 12.0.2 Print Tuesday, 20 October 2009 09:30 Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

188

Design of the LBNE Beamline  

E-Print Network [OSTI]

The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60 -120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is desi...

Papadimitriou, V; Hylen, J; Kobilarcik, T; Marchionni, A; Moore, C D; Schlabach, P; Tariq, S

2015-01-01T23:59:59.000Z

189

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Beamline 11.0.1 Print Tuesday, 20 October 2009 09:16 PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

190

APS Beamline 6-ID-B,C  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B,C Home B,C Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-B,C Beamline 6-ID-B,C is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. Research on this beamline centers on general x-ray scattering studies of materials. The beamline has 2 end-stations: 6-ID-B: Psi -Diffractomter & In-Field Studies 6-ID-C: UHV in-situ growth Recent Research Highlights LSMO pictures Searching for Next-Generation Electronic Materials December 14, 2009 A new class of layered oxide materials discovered thanks to research at the beamline 6-ID-B offers scientists unprecedented opportunities for creating the next generation of electronic devices. Local Contact: Phil Ryan Local Contacts: Philip Ryan (Surface Diffraction) 630.252.0252 ryan@aps.anl.gov

191

Transportation Beamline at the Advanced Photon Source | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the...

192

APS 7-BM Beamline: Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motivation Motivation The major thrust of the 7-BM beamline is the application of synchrotron radiation tools to examine complex fluid flowfields. Two major techniques are applied: radiography and x-ray fluorescence spectroscopy. While optical techniques are often ideally suited to the study of fluid flowfields, there are certain flowfields for which optical diagnostics have significant challenges. These include: Multiphase flows: Visible light interacts strongly with phase boundaries. This leads to strong refraction, scattering, and attenuation of light. These effects hinder quantitative measurements of dense multiphase flowfields. Opaque media. Flows with strong refractive effects. Luminous flames: The strong light emission from sooting flames can hinder certain optical diagnostics.

193

Diamond Beamline I16 (Materials and Magnetism)  

SciTech Connect (OSTI)

We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

194

Photon Sciences Directorate | 2010 Annual Report | FY10 Beamline Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY10 Beamline Guide FY10 Beamline Guide beamline status chart Click on the image to download a high-resolution version. Beamline Status In 2010, 49 X-Ray and 11 Vacuum Ultraviolet-Infrared operational beamlines were available for a wide range of experiments using a variety of techniques. There are two types of beamlines at NSLS: facility beamlines, of which there were 21; and participating research team (PRT) beamlines, of which there were 39. Facility beamlines are operated by Photon Sciences staff members and reserve a minimum of 50 percent of their beam time for general users. PRT beamlines are run by user groups with similar interests and reserve 25 percent of their beam time for general users, although they can grant additional time at their own discretion. The following pages provide details on NSLS operational beamlines,

195

APS Beamline 6-ID-D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees 6-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights LuFeO Unlikely route to ferroelectricity May 16, 2012 A new type of ferroelectric, LuO2Fe4, has been investigated at the APS by a research team from Julich research center. XAS & XMCD studies on beamline 4-ID-C determined the Fe magnetism and valence, while single crystal x-ray scattering measurements at 6-ID-B & 6-ID-D probed the associated structural and charge ordering.

196

APS Beamline 6-ID-D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D Home D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights A New Family of Quasicrystals A New Family of Quasicrystals June 24, 2013 Scientists from the U.S. Department of Energy's Ames Laboratory and Iowa State University have used the high energy x-rays available on beamline 6-ID-D, to confirm the structure of the only known magnetic rare earth icosahedral binary quasicrystals. Contacts: Alan Goldman & Paul Canfield - Iowa State Univ. & Ames Lab Local Contacts:

197

APS 7-BM Beamline: 7-BM Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of the 7-BM beamline Overview of the 7-BM beamline The 7-BM beamline is dedicated to time-resolved measurements of complex fluid flowfields using x-ray radiography and fluorescence spectroscopy. Funding for the final commissioning of 7-BM was provided by the DOE Office of Energy Efficiency and Renewable Energy. Commissioning was completed at the end of FY2012. The beamline is currently operated by the X-Ray Science Division of the APS. Major Areas of Research Fuel sprays from automotive fuel injectors, both diesel and gasoline. See more on the X-Ray Fuel Spray web page from Argonne's Energy Systems Division. Sprays for air-breathing propulsion. Fuel injection for rocket injectors. Gas-phase fuel injection and mixing. Beamline Performance Total flux: 4 x 1011 ph/s at 8 keV Energy range: 5.5 - 11 keV, 1.4% ΔE/E

198

Overview of the SPring-8 Diagnostics Beamlines  

SciTech Connect (OSTI)

We present an overview of the two SPring-8 diagnostics beamlines, the beamline I (dipole magnet source) and II (insertion device source). At the beamline I, synchrotron radiation (SR) in both the X-ray and the visible bands is exploited for characterizations of the electron beam. At the beamline II, by observing the spectral, spatial, and temporal characteristics of X-ray SR of the insertion device (ID), new techniques for accelerator diagnostics are investigated. Irradiation experiments with the ID to develop accelerator components such as photon absorbers, and production of intensive 10 MeV {gamma}-rays by backward Compton scattering of external far infrared (FIR) laser photons are being prepared at the beamline II.

Takano, S.; Masaki, M.; Tamura, K.; Mochihashi, A.; Nakamura, T.; Suzuki, S.; Oishi, M.; Shoji, M.; Taniuchi, Y.; Okayasu, Y.; Ohkuma, H. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198 (Japan); Okajima, S. [Center of Advanced Metrology, Chubu University, Kasugai, Aichi, 487-8501 (Japan)

2010-06-23T23:59:59.000Z

199

APS Beamline Questionnaire Form | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS Beamline Motor Drive Questionnaire Form APS Beamline Motor Drive Questionnaire Form * indicates required field Please send a separate email to Thomas Barkalow with an attached beamline drawing or sketch showing where the groups are located and the distances they are apart. First Name*: Middle Initial/Name: Last Name*: Beamline Designation*: What is the total number of driver units with makes and models?: How are driver units grouped together and each group's location within the beamline?: What number of driver units are in use simultaneously for each group?: What is the maximum amperage setting actually used for each unit?: What is the number of groups in use simultaneously and which groups are they?: Verification: We need to make sure you are a human. Please solve the challenge below, and click the I'm a Human button to get a confirmation code. To make this

200

ALS Beamline Design Requirements - Revision 1  

E-Print Network [OSTI]

Chambers for Weldments for UHV, by D. DiGennaro, LSME-500B.Safety Shutter RGA RSS UHV Residual Gas Analyzer Radiation5.7 Fabrication 5.8 Assembly of UHV Components 5.9 Venting :

Heimann, Phil

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

202

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

203

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

204

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

205

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

206

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

207

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

208

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

209

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

210

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

211

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

212

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

213

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

214

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

215

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4.0.2 Print 4.0.2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

216

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

217

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

218

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

219

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

220

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Diagnostic X-Multi-Axis Beamline  

SciTech Connect (OSTI)

Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by about 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.

Paul, A C

2000-04-05T23:59:59.000Z

222

Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Beryllium windows, 100 m and 120 m. Distance source point - mask plane 10.35 meter. DEX 02 scanner, from Jenoptik GmbH. Micromachining II (XRLM2), Port 2B, 10 mrad...

223

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

224

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

225

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

226

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

227

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

228

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

229

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

230

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

231

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

232

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

233

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

234

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

235

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

236

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

237

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

238

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

239

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

240

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

242

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

243

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

244

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

245

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

246

A Test Beamline on Diamond Light Source  

SciTech Connect (OSTI)

A Test beamline B16 has been built on the 3 GeV Diamond synchrotron radiation source. The beamline covers a wide photon energy range from 2 to 25 keV. The beamline is highly flexible and versatile in terms of the available beam size (a micron to 100 mm) and the range of energy resolution and photon flux; by virtue of its several operational modes, and the different inter-changeable instruments available in the experiments hutch. Diverse experimental configurations can be flexibly configured using a five-circle diffractometer, a versatile optics test bench, and a suite of detectors. Several experimental techniques including reflectivity, diffraction and imaging are routinely available. Details of the beamline and its measured performance are presented.

Sawhney, K. J. S.; Dolbnya, I. P.; Tiwari, M. K.; Alianelli, L.; Scott, S. M.; Preece, G. M.; Pedersen, U. K.; Walton, R. D. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire-OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

247

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

248

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

249

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

250

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

251

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

252

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

253

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

254

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

255

National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition  

SciTech Connect (OSTI)

This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

1989-01-01T23:59:59.000Z

256

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network [OSTI]

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must procedure for removal of solder wasteSolder B CLOSE OUT Secure the beamline and disable shutter/beam before for this beamline:I understand the instructions given to me on beamline operations and safety awareness. Date UAdm

Ohta, Shigemi

257

LENGTH OF BEAMLINES AND WIDTH OF THE LS-37  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LENGTH OF BEAMLINES AND WIDTH OF THE LENGTH OF BEAMLINES AND WIDTH OF THE LS-37 November 10, 1985 G. K. Shenoy G. S. Knapp EXPERIMENTAL HALL AT A 6-GeV SYNCHROTRON FACILITY The width of the experimental hall at a 6-GeV facility is closely related to the length of the beamlines. This note addresses this aspect in some de tail. In general, no two beamlines will have identical lengths or the placement of various optical elements. Hence fixing the beamline lengths prior to their assignment to specific experiments is difficult. In spite of this fact, a few general conclusions are made. 1. At least 25m of all the beamlines will be behind the shielding wall. Within this length many beamline components can be accommodated as shown in Fig. 1. 2. For most beamlines on bending magnets (BM), the first optical element will

258

Beamline Safety Design Review Steering Committee Charter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Minutes internal link Meeting Minutes internal link Reviews internal link Beamline Safety Design Review Steering Committee (BSDRSC) 1. Purpose The Beamline Safety Design Review Steering Committee (BSDRSC) oversees the review of all safety aspects related to beamline and critical component design, regardless of who generated the design, and includes facility operational issues when reviewing non-APS generated designs. 2. Membership Members appointed by the APS Division Directors will be comprised of a pre-selected standing committee with membership chosen by function. The following functions will be included: AES User Technical Interface (Committee Chair) AES Technical Operations Specialist APS Electrical / Electronics Technical Representative AES QA Engineering Specialist APS Radiation Safety Shielding Committee Chair

259

1-ID: Sector 1, Insertion Device Beamline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-ID beamline schematic 1-ID beamline schematic ID on-axis brilliance values 1-ID - Sector 1, Insertion Device Beamline Responsible Scientists Jon Almer, phone: (630) 252-1049, e-mail: almer@aps.anl.gov Sarvjit Shastri, phone: (630) 252-0129, e-mail: shastri@aps.anl.gov John Okasinski, phone: (630) 252-0162, e-mail: okasinski@aps.anl.gov Peter Kenesei, phone: (630) 252-0133, e-mail: kenesei@aps.anl.gov Scientific Programs Coupled high-energy SAXS/WAXS studies (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Single-grain studies Stress/strain/texture studies Pair-distribution function (PDF) measurements High-energy fluorescence Source Characteristics Upstream insertion device: APS Undulator A No. of Poles 72 Undulator Period 3.3 cm Device Length 2.4 m Minimum Gap 11 mm Downstream insertion device

260

The Phase I MX Beamlines at Diamond Light Source  

SciTech Connect (OSTI)

Three beamlines dedicated to macromolecular crystallography, I02, I03 and I04 at Diamond Light Source are presented. These beamlines formed the life science component of Phase 1 of Diamond Light Source. The article provides details of the design and the current status of the beamlines.

Duke, E. M. H.; Evans, G.; Flaig, R.; Hall, D. R.; Latchem, M.; McAuley, K. E.; Sandy, D. J.; Sorensen, T. L-M.; Waterman, D.; Johnson, L. N. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon. OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Facebook Connect By ICTMN Staff February 11, 2011 RSS  

E-Print Network [OSTI]

sources like a power plant here, a refinery there." The fingerprint analysis looks at mercury isotopes Indigenous Leaders Meet About Health Car WHY JOIN SUBSCRIBE Reason #2 Feeds have become the talk of town reported, to protest the p... Read More Comments (0) April 10, 2011 Mother Earth Water Walk Starts April 1

262

Beamline Phone Numbers| Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Map Interactive Map Beamlines Map Beamlines Directory Techniques Directory Sectors Directory Beamline Phone Numbers Status and Schedule Beamline Phone Numbers From on-site, dial 2, then a number listed below. From off-site, dial 630-252 and a number listed below. Sector 1 1-BM-A: 1701 1-BM-C: 5468 1-ID: 1801 Sector 2 2-BM: 1702 2-ID-B: 1628 2-ID-D: 1802 2-ID-E: 3711 Sector 3 3-ID: 1803 Sector 4 4-ID-C: 1704 4-ID-D: 1804 Sector 5 5-BM: 1705 5-ID: 1805 Sector 6 6-ID-B: 1806 6-ID-C: 1406 6-ID-D: 1606 Sector 7 7-ID-B: 1607 7-ID-C: 1707 7-ID-D: 1807 7-ID-E: 1207 Sector 8 8-ID-E: 1908 8-ID-I: 1808 Sector 9 9-BM-B: 1709 9-ID-B: 0349 9-ID-C: 1809 Column 95: 4705 Sector 10 10-BM-B: 6792 10-ID-B: 1710 Sector 11 11-BM-B: 5877 11-ID-B: 1711 11-ID-C: 1711 11-ID-D: 2162 Laser lab: 0379 Sector 12 12-BM-B: 0378 12-ID-B,C: 1712

263

On Line Beamline Commissioning Activity Approval Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Activity Approval Form Commissioning Activity Approval Form This form is to be filled by the Commissioning Activity Team Leader. No beamline commissioning activities will be allowed to run without a properly completed, approved, and posting of this commissioning approval form. You will be notified by e-mail upon approval. Sector Beamline Expected Start Date Expected Duration 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 BM ID ( Give a Unit) Activity Description( Give only a brief description) Commissioning Team Members First and Last Name Affiliation Phone Number 1. 2. 3. 4. 5. 6. Special Safety Concerns Commissioning Activity Team Leader Name E-Mail Address Submit Commissioning Activity Approval Form Clear all Fields and start All over again!!!

264

Performance measurements at the SLS SIM beamline  

SciTech Connect (OSTI)

The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45x60) {mu}m({nu}xh) and a photon flux > 10{sup 12} photon/s for all gratings. Polarization switching within a few seconds is realized with the small bandpass of the monochromator and a slight detuning of the undulator.

Flechsig, U.; Nolting, F.; Fraile Rodriguez, A.; Krempasky, J.; Quitmann, C.; Schmidt, T.; Spielmann, S.; Zimoch, D. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

265

1993 CAT workshop on beamline optical designs  

SciTech Connect (OSTI)

An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

Not Available

1993-11-01T23:59:59.000Z

266

Macromolecular crystallography beamline X25 at the NSLS  

Science Journals Connector (OSTI)

A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented.

H?roux, A.

2014-04-08T23:59:59.000Z

267

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Feed: Vehicles Blog Feed: Vehicles Blog Feed: Vehicles RSS January 16, 2014 Live Discussion on Energy 101: Fuel Cells Watch our Google+ Hangout on Energy 101: Fuel Cells to learn everything you need to know about fuel cells. January 15, 2014 Wide Bandgap Semiconductors: Essential to Our Technology Future Learn how wide bandgap semiconductor-based power electronics could impact clean energy technology and our daily lives. January 6, 2014 The Clean Energy Economy in Three Charts Over the last five years, American inventors and investors have made significant progress in developing and deploying key clean energy technologies -- supported by Energy Department policies. January 3, 2014 Our Best Energy Videos of 2013 Check out our best videos from 2013 -- from Secretary Moniz's first day on

268

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Feed: Vehicles Blog Feed: Vehicles Blog Feed: Vehicles RSS September 11, 2013 Dr. Michael Knotek, Deputy Undersecretary for Science and Energy at the Energy Department, delivers remarks at the NASCAR Green Summit in Chicago, where the DOE-NASCAR MOU was announced. | Photo courtesy of NASCAR. New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies From the electricity that powers race-day broadcasts to the fuel in the cars themselves, a new DOE-NASCAR Memorandum of Understanding pinpoints transformative energy technologies that will benefit NASCAR and its fans. September 4, 2013 Dr. Ping Liu of ARPA-E discusses the RANGE program and its innovative approach to energy storage for electric vehicles. | Photo courtesy of ARPA-E. ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries

269

Blog Feed: Vehicles | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy.gov » Blog Feed: Vehicles Energy.gov » Blog Feed: Vehicles Blog Feed: Vehicles RSS January 9, 2014 Join us on Thursday, January 16, at 2 p.m. ET for a Google+ Hangout on Energy 101: Fuel Cells. | Graphic by Sarah Gerrity, Energy Department. Live Discussion on Energy 101: Fuel Cells Join us for a Google+ Hangout on Energy 101: Fuel Cells to learn everything you need to know about fuel cells. January 6, 2014 The Clean Energy Economy in Three Charts Over the last five years, American inventors and investors have made significant progress in developing and deploying key clean energy technologies -- supported by Energy Department policies. January 3, 2014 Our Best Energy Videos of 2013 Check out our best videos from 2013 -- from Secretary Moniz's first day on the job, to the rivalry between Edison and Tesla, to a visit to a

270

The New Materials Science Beamline HARWI-II at DESY  

SciTech Connect (OSTI)

In autumn 2005, the GKSS-Research Center Geesthacht in cooperation with Deutsches Elektronen-Synchrotron DESY, Hamburg, started operation of the new synchrotron radiation beamline HARWI-II. The beamline is specialized for performing materials science experiments using hard X-rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate, the texture of cold extruded Al90-Cu10 composites, and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI-II, the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Beckmann, Felix; Dose, Thomas; Lippmann, Thomas; Lottermoser, Lars; Martins, Rene-V.; Schreyer, Andreas [GKSS-Research Center Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

271

The New Materials Science Beamline HARWI?II at DESY  

Science Journals Connector (OSTI)

In autumn 2005 the GKSS?Research Center Geesthacht in cooperation with Deutsches Elektronen?Synchrotron DESY Hamburg started operation of the new synchrotron radiation beamline HARWI?II. The beamline is specialized for performing materials science experiments using hard X?rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate the texture of cold extruded Al90?Cu10 composites and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI?II the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Felix Beckmann; Thomas Dose; Thomas Lippmann; Lars Lottermoser; Rene?V. Martins; Andreas Schreyer

2007-01-01T23:59:59.000Z

272

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20A All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network [OSTI]

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20A All users must A Review procedure and location for temporary SAA (for soldering or other wastes)SAA - Solder B CLOSE OUT to me on beamline operations and safety awareness. Date UAdmTrainer's Signature J. Jordan-Sweet C

Ohta, Shigemi

273

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20C All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network [OSTI]

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20C All users must containerDisposal - Sharps A Review procedure and location for temporary SAA (for soldering or other wastes)SAA - Solder B CLOSE OUT Secure the beamline and disable shutter/beam before you leaveDisabling Beam A Review

Ohta, Shigemi

274

NSLS II: The Future National Synchrotron Light Source | 2010 Beamline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 Beamline Development Proposals - Approved Proposals 2010 Beamline Development Proposals - Approved Proposals Proposal Results Announcement Acronym Title Spokesperson Type Information 4DE 4-Dimensional Studies in Extreme Environments Donald J. Weidner, Stony Brook University 1 Slide ABS A Highly Automated Instrument for Static X-ray Scattering Measurements of Biological Molecules in Solution Lin Yang, BNL 1 Slide AIM Advanced Infrared Microspectroscopy Lisa Miller, BNL 1 Slide AMX Flexible Access Macromolecular Crystallography at an Undulator Beamline Dieter Schneider, BNL 1 Slide | Proposal BMM Hard X-ray Absorption Spectroscopy and Diffraction - Beamline for Materials Measurements Daniel Fischer, NIST 2 Slide | Proposal CDI Coherent X-ray Diffraction Ian Robinson, University College London 1 Slide | Proposal

275

Like this post? Subscribe to our RSS feed and stay up to date. Navy Develops Battery that Runs on Mud  

E-Print Network [OSTI]

by Joshua S Hill Published on April 20th, 2010 in Energy & Fuel 1 Comment 5/4/2010 Navy Develops Battery and efficient reliable alternative battery avoiding the harmful impact that standard batteries and fuels have underwater vehicle that will settle on the seafloor and recharge its batteries using this fuel cell approach

Lovley, Derek

276

Show menu | ScienceDaily home page RSS feeds | Free newsletter MODIS satellite image of the Aegean Sea. (Credit  

E-Print Network [OSTI]

Sea. (Credit: NASA/Goddard Space Flight Center) Ads by Google Advertise on this site Ocean Instrumentation On-line organic & in-organic, water & waste-water instrumentation www.pollution

Rohling, Eelco

277

Downloads Feed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5:57:00 -0600 Wed, 08 Jan 2014 5:57:00 -0600 Wed, 08 Jan 2014 15:59:46 -0600 HIPAA Authorization for Release of Information (ANL-1008) http://www.anl.gov/downloads/hipaa-authorization-release-information-anl-1008 Request for release of health-related information to Argonne for resolution of a healthcare plan claim January 8, 2014 Downloads Feed Key Facts about Argonne National Laboratory http://www.anl.gov/downloads/key-facts-about-argonne-national-laboratory December 16, 2013 Downloads Feed FY14 Argonne Site Sustainability Plan http://www.anl.gov/downloads/fy14-argonne-site-sustainability-plan December 6, 2013 Downloads Feed Blue Cross Blue Shield of Illinois PPO Claim Form http://www.anl.gov/downloads/blue-cross-blue-shield-illinois-ppo-claim-form November 25, 2013 Downloads Feed Key Facts about the Computing, Environment

278

Status of the LBNE Neutrino Beamline  

SciTech Connect (OSTI)

The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector (60-120 GeV) hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the Monte Carlo modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be {approx}700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. We discuss here the status of the conceptual design and the associated challenges.

Papadimitriou, Vaia; /Fermilab

2011-12-01T23:59:59.000Z

279

Metrology and Tests beamline at SOLEIL Design and first results  

SciTech Connect (OSTI)

The objectives of this project is install at the 2.75 GeV SOLEIL synchrotron radiation source a calibration and metrology test facility for the R and D of optical components and detectors. We have build, on a bending magnet, two branches to cover an energy range from few eV to 28 keV and give access to white beam. This installation will first address the needs of the SOLEIL experimental groups(Optics and Detectors)and will be used by a large community. This beamline will also be valuable as a general-purpose beamline to prepare, test and set up a wide range of experiments in the field of Astrophysics, laser plasma etc...A complementary important aspect of this installation is the realization of primary standard: the metrology beamline of SOLEIL could become the national primary standard source in collaboration with the Laboratoire National d'Essais(LNE)and help in the design and characterization of several diagnostics for the Megajoule Laser in Bordeaux in collaboration with the CEA DIF. The beamline has been designed to provide great flexibility. In this paper, we describe the beamline design, the end station instrumentation and give also some preliminary results.

Idir, Mourad; Mercere, Pascal; Moreno, Thierry; Delmotte, Aurelien; Dasilva, Paulo; Modi, Mohammed H. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48 91192 GIF-sur-YVETTE CEDEX (France)

2010-06-23T23:59:59.000Z

280

Temperature and TimeResolved XRay Powder Diffraction X14A EERE sponsored PRT beamline  

E-Print Network [OSTI]

Temperature and TimeResolved XRay Powder Diffraction X14A EERE sponsored PRT beamline Objective, in ambience or with gas flow Capabilities: X14A, EERE-sponsored PRT beamline · High photon flux: typically 9x

Ohta, Shigemi

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - absorption beamline x-11 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of beamline: 9... open Checkpoints on the X9 side of beamline: 2. Bremsstrahlung shield (BS 1) in place and banded... photo 11. Mirror windows (3) covered in lead as per photo...

282

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

283

U2B Beamline | Photon Sciences | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BNL People BNL People Photon SciencesInfrared Programs PS Home Infrared Home Beamlines U2A U2B U4IR U10A U10B U12IR Publications User Info Useful Sites Beamline U2B Home Publications Equipment Schedule Beamtime Instrument Spectrometer endstation: Thermo Nicolet Magna 860 Step-Scan FTIR and Continuum IR microscope Frequency Range (cm-1): 500 - 4000 Spectral resolution (cm-1): 4.0 Spatial resolution: diffraction-limit (i.e. ~ 3 to 10 microns) Brightness (compared to a black body): 100x to 1000x Smallest practical targeting aperture size: 3 microns square Beamline angular acceptance: (milliradians): 40H x 40V (100% vertical collection down to 240 cm-1) Optical Configuration A two-mirror system (M1 and M2) collects and re-images the synchrotron infrared source at a point just outside of the storage ring's UHV. M1 is a

284

APS beamline standard components handbook, Version 1. 3  

SciTech Connect (OSTI)

This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

Hahn, U.; Shu, D.; Kuzay, T.M.

1993-02-01T23:59:59.000Z

285

A New Beamline For Time Resolved And Extreme Conditions X-Ray Absorption Spectroscopy  

SciTech Connect (OSTI)

The ESRF has recently started an ambitious project spread over 10 years aimed at an upgrade of the accelerator, beamlines and infrastructure. Through this upgrade, we are proposing a refurbishment of the scanning EXAFS beamline BM29 and of the Energy Dispersive XAS (EDXAS) beamline ID24.

Mathon, Olivier; Mairs, Trevor; Pascarelli, Sakura [ESRF, BP220, 38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

286

Beamline standard component designs for the Advanced Photon Source  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings.

Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

1994-12-01T23:59:59.000Z

287

Physics Potential of the Fermilab NuMI beamline  

E-Print Network [OSTI]

We explore the physics potential of the NuMI beamline with a detector located 10 km off-axis at a distant site (810 km). We study the sensitivity to $\\sin^2 2 \\theta_{13}$ and to the CP-violating parameter $\\sin \\delta$ as well as the determination of the neutrino mass hierarchy by exploiting the $\

Olga Mena; Stephen Parke

2005-07-25T23:59:59.000Z

288

Beamline Control and Instrumentation System using Industrial Interface Techniques  

SciTech Connect (OSTI)

How should a beamline be designed, which satisfies the needs and requirements of scientists and is easy to build and operate? Today, most control and instrumentation systems for beamlines are based on scientific requirements. Scientific details of the beamline, e.g. vacuum and beam physics details; are usually extensively described. However, control system specifications are often reduced to few requirements, e.g. which beam-related device to use. Lots of these systems work perfectly from the physicist's point of view, but are hard to bring into service and operate and difficult to extend with additional equipment. To overcome this, the engineering company ENZ has developed components using industrial standard interfaces to guarantee high flexibility for equipment extension. Using special interface boards and galvanic isolation offers increased stability of motion control axes. This saves resources during commissioning and service. A control system was developed and installed at a Soft-X-ray beamline at ASP Melbourne. It is operated under EPICs on distributed embedded IOC's based on PC-hardware. Motion and vacuum systems, measurement devices, e.g. a Low-Current Monitor (LoCuM) for beam position monitoring, and parts of the equipment protection system were developed and most of them tested in cooperation with DELTA at the Technical University of Dortmund.

Enz, F. [ENZ Engineering company for environmental electronic and automation, F.-Woehler-Str. 2, 12489 Berlin (Germany)

2010-06-23T23:59:59.000Z

289

The Project for the High Energy Materials Science Beamline at Petra III  

SciTech Connect (OSTI)

The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.

Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A. [GKSS-Research Centre Geesthacht GmbH, Max-Planck-Strasse, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

290

Instrumentation and Experimental Developments for the Beamlines at the Synchrotron SOLEIL  

SciTech Connect (OSTI)

This paper presents an overview of the instrumentation and experiments developed for the beamlines at Synchrotron SOLEIL in France. Currently fourteen beamlines are opened to users out of the twenty six scheduled. About half of the beamlines cover the soft x-rays region using spectroscopy and imagery techniques. The second half covers the hard x-rays field studying diffraction of matter. Some sample environments carried out for beamlines, for biology, chemistry and surface sciences are described. For the soft x-rays beamlines, carbon contamination of optics is a crucial issue. Different experiments are currently under study in order to reduce or even avoid this effect. Other studies relate to the improvement of metrological methods for beamline optics, to the reduction of vibrational effects for the microbeams and development of computer control for diffractometers. The various types of instruments and experiments will be presented both with an overview of the status of the beamlines in operation and under construction.

Prigent, P.; Bac, S.; Blanchandin, S.; Cauchon, G.; David, G.; Fernandez Varela, P.; Kubsky, S.; Picca, F. [Synchrotron SOLEIL, Division Experiences-L'Orme des merisiers-Saint-Aubin-BP 48-91192 GIF S/YVETTE Cedex (France)

2010-06-23T23:59:59.000Z

291

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline U3C All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network [OSTI]

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline U3C All users mustVent System A Avoid skin contact with soldering iron to prevent burns to the skinBurns B Use caution when and safety awareness. Date UAdmTrainer's Signature Bin Dong LU-BLOSA-U3C R = NSLS Content A = Applicable

Ohta, Shigemi

292

Investigation of pin-post monochromators for a wiggler beamline  

SciTech Connect (OSTI)

Three water-cooled pin-post monochromators, to be used on a wiggler beamline at the Advanced Photon Source (APS), were built with the heat exchanger engineered to provide very high heat transfer. The geometry of the heat exchanger as well as calculated data on the heat transfer will be presented. Before using the monochromators on the beamline, they were checked by x-ray diffraction topography. Reflections (333) and (220) in Bragg case were utilized. In all crystals, similar patterns of strain in the diffracting silicon layers were revealed, which can be attributed to the geometry of the heat exchangers, the bonding technology, and the thickness of the top layer. Conclusions about construction of future pin-post monochromators have been drawn.

Krasnicki, S.; Maj, J. [Argonne National Lab., IL (United States); Schildkamp, W. [Univ. of Chicago, IL (United States); Tonnessen, T. [Boeing North American, Albuquerque, NM (United States). Albuquerque Operations

1998-12-31T23:59:59.000Z

293

Performance of Saga-University Beamline with Planer Undulator  

SciTech Connect (OSTI)

A planer undulator consisted of 24 periods of an 85-mm length has been installed in a 2.7-m straight section of the SAGA-LS, in order to provide brilliant soft x-rays for advanced researches on nano-surfaces and interfaces at the Saga-university beamline BL13. The photon flux of 2x10{sup 11} photons/100 mA was obtained at 133 eV, and the available photon energy was beyond 800 eV using higher harmonics. The achieved resolving power of the varied-line-spacing (VLS) monochromator system was 8,670 at 130 eV with slits of 15 um. This agrees very well with the value of 8,790 expected from the ray-tracing calculation. The details in the performance tests will be reported, indicating the high performance of the beamline BL13 for photoelectron spectroscopy in the soft x-ray region.

Azuma, J.; Takahashi, K.; Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Ohkuma, H. [Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198 (Japan); Yamamoto, S. [High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

294

10 Questions for a Beamline Scientist: Apurva Mehta | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Questions for a Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta November 4, 2011 - 1:02pm Addthis Apurva Mehta | Image courtesy of SLAC Apurva Mehta | Image courtesy of SLAC Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "It was exhilarating when we found a novel solution and the instrument evolved." Apurva Mehta, Beamline Scientist Fifteen years ago, SLAC National Accelerator Laboratory (SLAC) scientist Apurva Mehta volunteered to help a friend build beamline parts at the Stanford Synchrotron Radiation Lightsource (SSRL). Today, he's "still mucking around with beamlines."
 
In the latest 10 Questions, Dr. Mehta shares how he landed at SLAC and his adventures in a wide range of projects, from advanced semiconductors to

295

Photon Sciences Directorate | 2010 Annual Report | Beamline & Optics R&D:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Qun Shen "Synchrotron sources have quickly become an essential tool for a wide spectrum of research. All the action takes place at beamlines, each one consisting of a suite of sophisticated scientific instruments. The robust beamlines at NSLS produce remarkable science, and we made excellent progress on developing NSLS-II beamlines and associated science programs." - Qun Shen Director, Photon Division While keeping the existing ring and beamline mechanical systems running, Photon Sciences staff completed a number of R&D projects this year that will improve the tools of researchers at NSLS and, in the near future, NSLS-II. One of the major accomplishments was the installation and commissioning of

296

Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source  

Science Journals Connector (OSTI)

Beamline 2.1, a transmission soft X-ray microscope at the Advanced Light Source of Lawrence Berkeley National Laboratory, is described.

Le Gros, M.A.

2014-10-01T23:59:59.000Z

297

E-Print Network 3.0 - als infrared beamlines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2002 Advances in Bioengineering RADIATIVE PROPERTIES OF POLAR BEAR HAIR Summary: synchroton infrared spectromicroscopy beamline was utilized to provide a continuous spectrum of...

298

The Nanofocus Endstation of the MINAXS Beamline of PETRA III  

SciTech Connect (OSTI)

The Micro- and Nanofocus X-ray Scattering Beamline (MINAXS) of the new 3rd generation source PETRA III is equipped with two endstations, out of which the farthest from the high beta undulator source is designed to provide a high flux, monochromatic X-ray beam focused to a size in the order of 100 nmx100 nm routinely used for microdiffraction experiments (nanofocus endstation). This contribution presents an overview on the current status of the nanofocus endstation and outlines the to-be-used experimental setup.

Krywka, C. A. [IEAP, Christian-Albrechts-Universitaet zu Kiel, Leibnizstrasse 19, D-24098 Kiel (Germany); Doehrmann, R.; Roth, S. V. [DESY, Notkestrasse 85, D-22063 Hamburg (Germany); Mueller, M. [GKSS Forschungszentrum Geesthacht, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

2010-06-23T23:59:59.000Z

299

The holography endstation of beamline P10 at PETRA III  

SciTech Connect (OSTI)

We present the design and instrumentation of a novel holography endstation for the P10 coherence beamline at PETRA III at DESY. The experimental imaging scheme is based on a highly coherent and divergent (cone) beam illumination, achieved by fixed curvature focusing mirrors with additional spatial and coherence filtering by x-ray waveguides. The optical elements along the beam path and the instrument under construction are described. Preliminary results obtained in a similar setting under comparable parameters are given as a benchmark, and first simulations of one of the two mirrors are presented to study the effect of imperfections on the field distribution in the focal plane.

Kalbfleisch, S.; Osterhoff, M.; Giewekemeyer, K.; Neubauer, H.; Krueger, S. P.; Hartmann, B.; Bartels, M.; Salditt, T. [Institut fuer Roentgenphysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Sprung, M.; Leupold, O. [HASYLAB at DESY, Notkestr. 85, 22607 Hamburg (Germany); Siewert, F. [Helmholtz Zentrum Berlin, BESSY-II, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

2010-06-23T23:59:59.000Z

300

Automation of the EMBL Hamburg protein crystallography beamline BW7B  

Science Journals Connector (OSTI)

The automation of the EMBL Hamburg wiggler beamline BW7B for protein crystallography is described. The beamline features an automated end-station, a robotic sample changer, semi-automated sample centering based on UV fluorescence and new control software including intuitive graphical user interfaces.

Pohl, E.

2004-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Beamline for Fast Polarization Switching at NSLS-II  

SciTech Connect (OSTI)

The first XUV beamline (200-2000 eV) at NSLS-II will have two branches, one optimized for photon hungry experiments requiring high coherent flux and one optimized for studies of polarization sensitive materials and interfaces based on fast polarization switching. We describe here the branch designed for fast polarization switching with frequencies up to 1 kHz, high photon flux, and good energy resolution. The beamline will be served by two canted undulators and is based on the focusing variable line spacing grating monochromator. The two beams will be focused at the same spot of approximately 80x10 {mu}m (hor.xver.). The expected circular polarized flux at the sample from each device up to 1.4 keV will be higher than 10{sup 12} photons/s at a resolving power better than 10{sup 4}. An additional KB focusing system will deliver the two beams to a spot in the {mu}m range.

Reininger, R.; Sanchez-Hanke, C.; Hulbert, S. L. [NSLS and NSLS-II, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2010-06-23T23:59:59.000Z

302

The Diamond Beamline I13L for Imaging and Coherence  

SciTech Connect (OSTI)

I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

Rau, C. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Feinberg School of Medicine, Northwestern University, Chicago, Illinois (United States); Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Robinson, I. K. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Laboratory for Nanomaterials, University College London, London, London (United Kingdom)

2010-06-23T23:59:59.000Z

303

NETL: Feed Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

focuses on innovative technology to allow increased use of lower cost, abundant low-rank coals in dry feeding of high-pressure gasifiers, and co-feeding of coal with...

304

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

305

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS) Proposal Team: L. Carr 1 , D. Dolan 2 , R. Hemley 3 , S. Jacobson 4 , S. Karato 5 , Z. Liu 3 , W. Panero 6 , M. Pravica 7 , and T. Zhou 8 1 Brookhaven National Laboratory, 2 Sandia National Laboratories, 3 Carnegie Institution of Washington, 4 Northwestern University, 5 Yale University, 6 Ohio State University, 7 University of Nevada, 8 New Jersey Institute of Technology TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * TECHNIQUE(S): Fourier transform infrared spectroscopy; Raman and visible spectroscopy; Diamond anvil cell techniques for static high pressure; Gas-gun launchers for dynamic compression; Cryogenic techniques combined with DACs;

306

Measuring The Source Brilliance at An Undulator Beamline  

SciTech Connect (OSTI)

Third-generation X-ray synchrotrons like the European Synchrotron Radiation Facility (ESRF) are optimized to produce intense undulator radiation. Insertion devices, such as undulators, ensure the highest possible brilliance--the key parameter for the success of e.g. coherent scattering, which is one of the main techniques employed at ESRF's TROIKA beamline. Nowadays, the constant efforts to reduce the emittance and improve the stability of the electron beam allow using small-gap insertion devices and increase the brilliance. Obviously, it is important to have an experimental technique for evaluating the performance of the undulator source. Here we present a method based on measuring the diffuse scattering from a light amorphous material by a photon counting detector. The measured spectral intensities show a very good agreement with the simulated spectra, demonstrating the high brilliance (above 10{sup 20} ph/s/0.1%bw/mrad{sup 2}/mm{sup 2}) achieved at modern facilities.

Zontone, Federico; Madsen, Anders; Konovalov, Oleg [European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

307

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

308

Commercial Feeding Stuffs  

E-Print Network [OSTI]

is to be that every purchaser may know exactly how much feeding tkuf he is buying. 2. The name of the article must be on the tag. ,This name must Be correct. The law provides that no feeding stuff may be registered nuder a false or misleading name. 3... their own feeding stuff' and do not a ate it, are not required to register feeding stuffs and pap the 1 tion tax under this law. Registmtion.-Any manufacturer or importer who desires to a feeding stuff for sale in ,Texas should apply to the Peed Co...

Carson, J.W.; Fraps, G. S. (George Stronach)

1911-01-01T23:59:59.000Z

309

Overview Gaming SciTech Fun BizWorld Downloads Mobile Minigames Search text in Everything Go!Submit News | RSS Feeds  

E-Print Network [OSTI]

Experts Share Their Top Picks. Free Report. Argentina-Uruguay Pigeons 12 top estancias, great prices is detailed in the journal Current Biology. © 2007 UPI Send this to: Research News Scientists Study History Torture Need Not Involve Physical Pain Unsaturated Seed Oil Changed To Saturated Brain's Handling

Gosselin, Frédéric

310

ANL/APS/TB-21 Radiation Shielding of Insertion Device Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Radiation Shielding of Insertion Device Beamlines Using a Mirror as the First Optical Element W. Yun, B. Lai, K. J. Randall, S. Davey, D. R. Haeffner, P. K. Job, and D. Shu February 1995 Abstract The radiation shielding for an Advanced Photon Source (APS) insertion device beamline using a mirror as the first optical component is discussed. The beamline layout for a specific Synchrotron Radiation Instrumentation Collaborative Access Team beamline (sector 2 of SRI CAT) is described, and the methodology used to determine the radiation shielding is presented. Results indicate that, by using a x-ray mirror with a critical energy of 32 keV for total reflection, an undulator beam containing nearly all x-rays in the 0 - 32 keV spectral range can be delivered

311

E-Print Network 3.0 - aps beamline front Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 11 Policy& Procedure : 3.1.37 Summary: The beamline front end provides the UHV transition from the APS storage ring through the ratchet wall... to the portions of the...

312

Time Resolved Detectors and Measurements for Accelerators and Beamlines at the Australian Synchrotron  

SciTech Connect (OSTI)

Time resolved experiments require precision timing equipment and careful configuration of the machine and the beamline. The Australian Synchrotron has a state of the art timing system that allows flexible, real-time control of the machine and beamline timing parameters to target specific electron bunches. Results from a proof-of-principle measurement with a pulsed laser and a streak camera on the optical diagnostic beamline will be presented. The timing system was also used to fast trigger the PILATUS detector on an x-ray beamline to measure the fill pattern dependent effects of the detector. PILATUS was able to coarsely measure the fill pattern in the storage ring which implies that fill pattern intensity variations need to be corrected for when using the detector in this mode.

Boland, M. J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Rassool, R. P.; Peake, D. J.; Sobott, B. A.; Lee, V.; Schubert, A. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); LeBlanc, G. S.; Kirby, N. [Australian Synchrotron, Clayton, Victoria 3168 (Australia)

2010-06-23T23:59:59.000Z

313

New Soft X-ray Beamline (BL10) at the SAGA Light Source  

SciTech Connect (OSTI)

A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

Yoshimura, D.; Setoyama, H.; Okajima, T. [Beamline group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

314

Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source  

SciTech Connect (OSTI)

This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ? 10{sup ?10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

Phase, D. M., E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Potdar, S., E-mail: mgupta@csr.res.in; Behera, L., E-mail: mgupta@csr.res.in; Sah, R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452001 (India)

2014-04-24T23:59:59.000Z

315

E-Print Network 3.0 - aps wiggler beamline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPX BEAMLINES The crab cavity scheme (sections 3.5 and 6... .1), offers a unique tunable high average flux source of 1ps x-rays. We propose to develop two ... Source:...

316

ANL/APS/TB-14 APS Beamline Design and Construction Requirements:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14 14 APS Beamline Design and Construction Requirements: A Reference Manual for Designers and Builders Version 1.0 May 1994 iii TABLE OF CONTENTS SECTION I DEFINITIONS, GUIDELINES, AND REVIEW CRITERIA ............................1 1. Introduction (July 21, 1998) ...............................................................................................1 1.1 About the Advanced Photon Source ...........................................................................1 1.2 About this Manual.......................................................................................................1 2. Beamline Definitions and Responsibilities (July 21, 1998) .................................................2 2.1 Definitions...................................................................................................................2

317

Fundamental Neutron Physics Beamline at the Spallation Neutron Source at ORNL  

E-Print Network [OSTI]

We describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. We present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

N. Fomin; G. L. Greene; R. Allen; V. Cianciolo; C. Crawford; T. Ito; P. R. Huffman; E. B. Iverson; R. Mahurin; W. M. Snow

2014-08-04T23:59:59.000Z

318

Mixed feed evaporator  

DOE Patents [OSTI]

In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

Vakil, Himanshu B. (Schenectady, NY); Kosky, Philip G. (Ballston Lake, NY)

1982-01-01T23:59:59.000Z

319

Infectious waste feed system  

DOE Patents [OSTI]

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

320

NETL: Feed Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Aerojet Rocketdyne (AR). This pump is intended to improve the feeding of dry coalpetcokebiomass into high-pressure gasifiers, thereby increasing the efficiency of the...

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Commercial Feedings Stuffs 1913: Feed Law.  

E-Print Network [OSTI]

466-414-30m TEXAS AGRICULTURAL EXPERIMENT STATION B u l l e t in Bul eti A p r i l , 1914 FEED CONTROL SERVICE Commercial Feeding Stuffs 1913 FEED LAW nAprA,,E.Hs .uLLJaJ pRTRSuWm KyTouP .uCWRhm rJgTPl 3AB KA0.0OMBBIFABHp .Alm nd...EBrHdpm MfprEBm rH1Mp AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS . 9 T y L J P n C y h J T y m President Pro Tern. rH1Mp M4dE.fxrfdMx H1nHdEOHBr prMrEAB BOARD OF DIRECTORS Hl Kl . CP9SWam Presidentm Gu...

Youngblood, B.

1914-01-01T23:59:59.000Z

322

Automatic sample Dewar for MX beam-line  

SciTech Connect (OSTI)

It is very common for crystals of large biological macromolecules to show considerable variation in quality of their diffraction. In order to increase the number of samples that are tested for diffraction quality before any full data collections at the ESRF*, an automatic sample Dewar has been implemented. Conception and performances of the Dewar are reported in this paper. The automatic sample Dewar has 240 samples capability with automatic loading/unloading ports. The storing Dewar is capable to work with robots and it can be integrated in a full automatic MX** beam-line. The samples are positioned in the front of the loading/unloading ports with and automatic rotating plate. A view port has been implemented for data matrix camera reading on each sample loaded in the Dewar. At last, the Dewar is insulated with polyurethane foam that keeps the liquid nitrogen consumption below 1.6 L/h. At last, the static insulation also makes vacuum equipment and maintenance unnecessary. This Dewar will be useful for increasing the number of samples tested in synchrotrons.

Charignon, T.; Tanchon, J.; Trollier, T.; Ravex, A. [Absolut-System, Meylan, 38240 (France); Theveneau, P. [European Synchrotron Radiation Facility, Grenoble, 38000 (France)

2014-01-29T23:59:59.000Z

323

Design of a High Flux Vacuum-Ultraviolet Beamline for Circular Dichroism Experiments  

SciTech Connect (OSTI)

A vacuum-ultraviolet bending-magnet beamline for circular dichroism (CD) experiments has been designed. To maximize the photon flux and minimize the focused beam size, a cylindrical mirror and a cylindrical grating with independent optical functions are utilized. The beamline can collect a 30 mrad horizontal by 7 mrad vertical solid angle of synchrotron radiation. By using a 600 grooves/mm grating, the calculated photon flux is greater than 1x10{sup 13} photons/sec and the focused beam size is 0.4 mmx0.65 mm for the spectral range from 130 nm to 330 nm with the energy resolving power set at 1000. The linear polarization degree is better than 75% and can be increased to 90% by reducing the vertical acceptance angle down to 2 mrad. In addition to the high flux mode described above, this beamline can also be operated in a high resolution mode. By using a 1200 grooves/mm grating, a resolving power greater than 10,000 can be achieved for the spectral range from 180 to 330 nm. This beamline can provide photon flux as high as the best synchrotron CD beamlines in the world while offers simultaneously a smaller focused beam size.

Fu, H. W.; Fung, H. S.; Chung, S. C.; Huang, L. J.; Chen, C. T. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

2010-06-23T23:59:59.000Z

324

Application of Partially coherent Wavefront Propagation Calculations for Design of Coherence-Preserving Synchrotron Radiation Beamlines  

SciTech Connect (OSTI)

Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. 'Extraction' of 'coherent portion' of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using 'Synchrotron Radiation Workshop' (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations.

O Chubar; Y Chu; K Kaznatcheev; h Yan

2011-12-31T23:59:59.000Z

325

CAT Guide and Beamline Directory. A key to APS Collaborative Access Teams  

SciTech Connect (OSTI)

The Advanced Photon Source (APS), a national user facility for synchrotrons radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotrons radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology. Researchers use the APS either as members of Collaborative Access Teams (CATS) or as Independent Investigators (IIs). CATS are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly. CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIs. This document was written to help prospective IIs determine which beamlines are suitable for their specific experiments.

NONE

1999-07-08T23:59:59.000Z

326

Commercial Feeding Stuffs  

E-Print Network [OSTI]

'7, of the Texas Experiment Station. OBJECTS OF THE LAW. 1. quani or otl tho+ IrllcL. U bu yic 2, he co centa 4. place 5 The intent of the Feeding Stuff Law is to provide means by which every purchaser of feeding stuffs may know exactly what he...371-410-30m TEXAS AGRICULTURAL EXPERIMENT STATIONS BULLETIN NO. 127 March, 1910 Commercial Feeding Stuffs J. W. CARSON and G. S. FRAPS POSTOFFICE COLLEGE STATION, BRAZOS COUNTY, TEXAS AUSTIN, TEXAS: VON BOECKMANN-JONES CO., PRINTERS. 1910...

Carson, J.W.; Fraps, G. S. (George Stronach)

1910-01-01T23:59:59.000Z

327

Photon Sciences | Beamlines | CSX: Coherent Soft X-ray Scattering and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSX: Coherent Soft X-ray Scattering and polarization CSX: Coherent Soft X-ray Scattering and polarization X-Ray 1 Poster | X-Ray 2 Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Coherent Soft X-ray Scattering and Polarization (CSX) beamline design (source and optics) has been optimized to the NSLS-II parameters to provide the highest possible flux for experiments requiring either high coherence or full control of the polarization. Beamline Description The CSX beamline will be served by two identical EPU49 sources. Both EPUs are planned to operate in a canted geometry with opposite circular polarization for fast polarization switching experiments at the full polarization control (PC) branch. The EPUs will also be able to operate "phased" as a single device for high coherent flux experiments at the

328

Development and Application of the STARS-based Beamline Control System at the Photon Factory  

SciTech Connect (OSTI)

STARS{sup [1-2]}(Simple Transmission and Retrieval System) is a message transferring software for small-scale control systems with TCP/IP sockets, originally developed at the Photon Factory (PF). Because it has a server-client architecture using TCP/IP sockets and can work on various types of operating systems, the design and application are quite flexible. We have developed a common low-level beamline control system based on the STARS technology. Many kinds of useful STARS clients (device drivers, data acquisitions, user interfaces etc.) are available now, and so far, the system has been installed at 22 PF beamlines. We will describe the development and generalize of the STARS-based beamline control system at the PF.

Kosuge, Takashi; Nigorikawa, Kazuyuki; Nagatani, Yasuko; Saito, Yuuki [Photon Factory, 1-1 Oho Tsukuba-shi Ibaraki-ken 305-0801 (Japan)

2010-06-23T23:59:59.000Z

329

Optical Design of VLS-PGM Soft X-Ray Beamline on Indus-2  

SciTech Connect (OSTI)

The optical design of a soft x-ray beamline on the bending magnet of Indus-2 synchrotron source is presented. A Varied Line Spacing Plane Grating Monochromator (VLS-PGM) was adopted with Hettrick type optics. The VLS-PGM consists of a spherical mirror and three interchangeable gratings of line densities 1200 l/mm, 400 l/mm and 150 l/mm to efficiently cover the energy region 50-1500 eV. The VLS groove parameters were obtained by minimizing defocus aberration, coma and spherical aberration. The overall performance of the beamline was estimated by detailed raytracing calculations. The beamline design, results of the raytracing calculations and the expected performances are presented.

Prasad, T. T.; Modi, M. H.; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Ultilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

330

The Design of Superconducting Wiggler Beamline BL7 at SAGA-LS  

SciTech Connect (OSTI)

A new hard X-ray beamline has been designed at Saga Light Source. The beamline, named BL7, uses a newly developed 4-Tesla superconducting wiggler as a light source in order to cover a wide energy range to 30 keV. This beamline has a simple optics: a double-crystal monochromator and a Rh-coated bent-cylindrical mirror and can supply a focused beam with a photon flux about 1x10{sup 10} photons/s and a sub-millimeter size. Several experiments will be performed in the experimental station: e.g. protein crystallography; X-ray micro computed tomography; X-ray absorption fine structure measurement.

Kawamoto, M.; Sumitani, K.; Okajima, T. [Beamline Group, Kyushu Synchrotron Light Research Center, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

331

Sheep Breeding and Feeding.  

E-Print Network [OSTI]

TEXAS AGRICULTURAL EXPERIMENI' STATION , I I * BULLETIN NO. 205 JANUARY, 191 7 - DIVISION OF ANIMAL HUSBANDRY I , Sheep Breeding and Feeding ' B. YOUNGBLOOD, DIRECTOR, COLLEGE STATION, BRAZOS COUNTY, TEXAS. [Blank Page in Original... Bulletin] TEXAS AGRICULTURAL EXPERIMENT STATION BULLETIN NO. 205 JANUARY, DIVISION OF ANIMAL HUSBANDRY Sheep Breeding and Feeding J. M. JONES, Animal Husbandman, Breeding Investigations I B. YOUNGBLOOD, DIRECTOR. COLLEGE STATION, BRAZOS COUNTY...

Jones, J. M. (John McKinley)

1917-01-01T23:59:59.000Z

332

Feds feed Families  

Broader source: Energy.gov [DOE]

Representatives of the Office of Enterprise Assessments delivered more than 1,600 pounds of non-perishable food to the Manna Food Center on September 2, 2014 as part of the 2014 Feds Feed Families campaign. Manna feeds about 3,300 needy families in Montgomery County. Manna also provides food to 48 Montgomery County soup kitchens, food pantries, group homes, and emergency shelters.

333

Analysis of the optical design of the NSLS-II Coherent Hard X-ray beamline  

SciTech Connect (OSTI)

Ultra-low emittance third-generation synchrotron radiation sources such as the NSLS-II offer excellent opportunities for the development of experimental techniques exploiting x-ray coherence. Coherent light scattered by a heterogeneous sample produces a speckle pattern characteristic for the specific arrangement of the scatterers. This may vary over time, and the resultant intensity fluctuations can be measured and analyzed to provide information about the sample dynamics. X-ray photon correlation spectroscopy (XPCS) extends the capability of dynamic light scattering to opaque and turbid samples and extends the measurements of time evolution to nanometer length scales. As a consequence XPCS became crucial in the study of dynamics in systems including, but not being limited to, colloids, polymers, complex fluids, surfaces and interfaces, phase ordering alloys, etc. In this paper we present the conceptual optical design and the theoretical performance of the Coherent Hard X-ray (CHX) beamline at NSLS-II, dedicated to XPCS and other coherent scattering techniques. For the optical design of this beamline, there is a tradeoff between the coherence needed to distinguish individual speckles and the phase acceptance (high intensity) required to measure fast dynamics with an adequate signal-to-noise level. As XPCS is a 'photon hungry' technique, the beamline optimization requires maximizing the signal-to-noise ratio of the measured intensity-intensity autocorrelation function. The degree of coherence, as measured by a two-slit (Young) experiment, is used to characterize the speckle pattern visibilities. The beamline optimization strategy consists of maximization of the on-sample intensity while keeping the degree of coherence within the 0.1-0.5 range. The resulted design deviates substantially from an ad-hoc modification of a hard x-ray beamline for XPCS measurements. The CHX beamline will permit studies of complex systems and measurements of bulk dynamics down to the microsecond time scales. In general, the 10-fold increase in brightness of the NSLS-II, compared to other sources, will allow for measurements of dynamics on time-scales that are two orders of magnitude faster than what is currently possible. We also conclude that the common approximations used in evaluating the transverse coherence length would not be sufficiently accurate for the calculation of the coherent properties of an undulator-based beamline, and a thorough beamline optimization at a low-emittance source such as the NSLS-II requires a realistic wave-front propagation analysis.

Fluerasu A.; Chubar, O.; Kaznatcheev, K.; Baltser, J.; Wiegart, Lutz; Evans-Lutterodt, K.; Carlucci-Dayton, M.; Berman, L.

2011-08-21T23:59:59.000Z

334

Data acquisition and control software for XRD beamline at Indus?2  

Science Journals Connector (OSTI)

X?ray diffraction (XRD) beamline is under commissioning on Indus?2 synchrotron radiation facility. The experimental setup of XRD beamline consists of a six?circle diffractometer and various detector systems such as scintillation detector ionization chamber and image plate. The diffractometer can be controlled via EIA232 serial interface or Ethernet. Standard data acquisition software with a graphical user interface has been developed using LabVIEW. A firm safety and error handling scheme is implemented for failsafe operation of the experimental station. This paper describes in detail the data acquisition and control software for the experimental station.

Sanjeev R. Kane; C. K. Garg; A. K. Sinha

2010-01-01T23:59:59.000Z

335

APS beamline standard components handbook, Version 1.3. Revision 1  

SciTech Connect (OSTI)

This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

Hahn, U.; Shu, D.; Kuzay, T.M.

1993-02-01T23:59:59.000Z

336

The New Structural Materials Science Beamlines BL8A and 8B at Photon Factory  

SciTech Connect (OSTI)

BL8A and 8B are new beamlines for structural materials science at Photon Factory. The primary characteristics of both beamlines are similar. The incident beam is monochromatized by the Si(111) double-flat crystal monochromator and focused at the sample position by a Rh-coated bent cylindrical quartz mirror. The Weissenberg-camera-type imaging-plate (IP) diffractometers were installed. The X-ray diffraction experiments for structural studies of strongly correlated materials, such as transition metals, molecular conductors, endohedral fullerenes, nano-materials, etc, are conducted at these stations.

Nakao, A.; Sugiyama, H.; Koyama, A.; Watanabe, K. [Insttitute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

337

Design of the First Infrared Beamline at the Siam Photon Laboratory  

SciTech Connect (OSTI)

This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

Pattanasiriwisawa, W. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, P. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand); Dumas, P. [SOLEIL Synchrotron, L'Orme des Merisiers, BP48, F-91192 Gif sur Yvette Cedex (France)

2010-06-23T23:59:59.000Z

338

The X-ray microscopy beamline UE46-PGM2 at BESSY  

SciTech Connect (OSTI)

The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

Follath, R.; Schmidt, J. S. [Helmholtz-Center Berlin, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Weigand, M. [Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Fauth, K. [University Erlangen, Experimental Physics 4, Am Hubland, 97074 Wuerzburg (Germany)

2010-06-23T23:59:59.000Z

339

Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C  

SciTech Connect (OSTI)

The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D. K.; Skinner, J. M.; Skinner, M. J.; Stoner-Ma, D.; Sweet, R. M.

2011-05-01T23:59:59.000Z

340

Correlated Single-Crystal Electronic Absorption Spectroscopy and X-ray Crystallography at NSLS Beamline X26-C  

SciTech Connect (OSTI)

The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

A Orville; R Buono; M Cowan; A Heroux; G Shea-McCarthy; D Schneider; J Skinner; M Skinner; D Stoner-Ma; R Sweet

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Feeding the Cow and Calf.  

E-Print Network [OSTI]

Pasture, 6 Pasture Requirements, 7 Feed Efficiency, 9 Supplemental Feeding, 12 Feeding During Cold Weather, 13 Feeding for Milk Production, 14 1 Feeding During Drouth, 14 APPnoxmATELy 60 percent of the cost of produc- ing a calf is in feeding... and the amount of supplemental feeding that will be necessary and predict the response of cattle over a 4 to 6 months period. This publication attempts to identify many of the points which these cattlemen consider ant1 some new points which should...

Maddox, L. A. Jr.

1965-01-01T23:59:59.000Z

342

Performance of new infrared beamline U12IR at the National Synchrotron Light Source  

E-Print Network [OSTI]

frequency limit of 2 cm 1 i.e., 60 GHz or a photon energy of 250 eV . The infrared light from infrared beamline at the NSLS and, with increasing demand for measurement time, has been followed by a series of new infrared ports presently under construction and com- missioning. This also allowed for some

Tanner, David B.

343

Hog Feeding Experiments.  

E-Print Network [OSTI]

of the kernel only. The composition of the kernel shows it to be of the protein class of feed stuffs. Though con- taining nn amount of protein above that required for a balanced fatten- ing ration, this extra amount is not wasted when consumed by animals as-in... of the kernel only. The composition of the kernel shows it to be of the protein class of feed stuffs. Though con- taining nn amount of protein above that required for a balanced fatten- ing ration, this extra amount is not wasted when consumed by animals as-in...

Burns, John C.

1910-01-01T23:59:59.000Z

344

Commercial Feedings Stuffs.  

E-Print Network [OSTI]

D other states were shipped into Texas and sold. HOW TO MEET THE REQUIREMENTS OP THE LAW. As the law has been published in previous reports, we deem it un? necessary to print it in this issue. Briefly summarized, the law requires manufacturers... and importers o f concentrated feeding stuffs, or the party or parties who cause it to be sold or offered for sale, to comply with the following require? ments : Registration: When the manufacturer or importer desires to offer concentrated feed stuffs...

Boyett, W. L.; Fraps; G. S.

1912-01-01T23:59:59.000Z

345

7-GeV advanced photon source beamline initiative: Conceptual design report  

SciTech Connect (OSTI)

The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

Not Available

1993-05-01T23:59:59.000Z

346

Widget:TwitterFeed | Open Energy Information  

Open Energy Info (EERE)

navigation, search Twitter feed javascript app. Widget:TwitterFeed Retrieved from "http:en.openei.orgwindex.php?titleWidget:TwitterFeed&oldid416817" Category: Widgets...

347

NREL: Solar Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News The following news stories highlight solar research, technologies, and resources. Subscribe to the RSS feed RSS . Learn about RSS. December 16, 2014 NREL Demonstrates 45.7%...

348

NREL: Hydrogen and Fuel Cells Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cells News The following news stories highlight hydrogen and fuel cells research, technologies, and resources. Subscribe to the RSS feed RSS . Learn about RSS....

349

National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition  

SciTech Connect (OSTI)

The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

Gmuer, N.F. [ed.

1993-04-01T23:59:59.000Z

350

Blog Feed: Vehicles  

Broader source: Energy.gov (indexed) [DOE]

feed-vehicles 1000 Independence Ave. SW Washington feed-vehicles 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Our Best Energy Videos of 2013 http://energy.gov/articles/our-best-energy-videos-2013 Our Best Energy Videos of 2013

351

Swine Feeding Experiments.  

E-Print Network [OSTI]

- ing table shows the percentage composition: Table 15. Percentage composition of feeds used. (Analyses by Dr. G. S. Fraps, Station Chemist.) Water 11.36 7.50 9.35 I.- Ash 2.25 6.32 20.92 Crude fiber 2.24 10.56 3.12 Fat 2.76 8.42 6...- ing table shows the percentage composition: Table 15. Percentage composition of feeds used. (Analyses by Dr. G. S. Fraps, Station Chemist.) Water 11.36 7.50 9.35 I.- Ash 2.25 6.32 20.92 Crude fiber 2.24 10.56 3.12 Fat 2.76 8.42 6...

Warren, G. R. (George Russell); Williams, D. W. (David Willard)

1923-01-01T23:59:59.000Z

352

Optical design and performance of the inelastic scattering beamline at the National Synchrotron Light Source  

SciTech Connect (OSTI)

Phase I of the X21 beamline at the National Synchrotron Light Source was commissioned during 1993. The research program at the X21 beamline is focused on the study of electronic excitations in condensed matter with total energy resolution of 0.1 eV to 1.0 eV. The source is a 27 pole hybrid wiggler. A water-cooled horizontal focusing Si(220) monochromator and a spherically bent Si(444) analyzer were installed and commissioned. At 8 keV the energy resolution of the monochromator is about 0.7 eV, and the energy resolution of the analyzer is about 0.1 eV. Results from several selected experiments are also discussed.

Kao, C.C.; Siddons, D.P.; Oversluizen, T.; Hastings, J.B. [Brookhaven National Lab., Upton, NY (United States); Hamalainen, K. [Helsinki Univ. (Finland). Dept. of Physics; Krisch, M. [European Synchrotron Radiation Facility, 38 - Grenoble (France)

1994-12-31T23:59:59.000Z

353

ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Diamond Monochromators for APS Undulator-A Beamlines R.C. Blasdell, L. A. Assoufid, and D. M. Mills TABLE OF CONTENTS 1. INTRODUCTION .................................................................................1 2. PHYSICAL PROPERTIES OF DIAMONDS ..................................................5 2.1 Varieties of Diamonds ....................................................................5 2.2 The Lattice Parameter .....................................................................5 2.3 Bulk Thermal and Mechanical Properties ...............................................6 2.4 Typical Surface and Lattice Plane Morphology ......................................8 2.5 The Liquid-GaIn/Diamond Interface ...................................................10 3. DIFFRACTION PROPERTIES OF DIAMOND

354

Beamline Front-End for Minipole Undulator at the Photon Factory Storage Ring  

SciTech Connect (OSTI)

The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum minipole undulators. The first to third minipole undulators SGU no. 17, SGU no. 03 and SGU no. 01 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006 and 2009, respectively. The beamline front ends for SGU0 no. 3 and SGU0 no. 1 are described in this paper.

Miyauchi, Hiroshi; Tahara, Toshihiro; Asaoka, Seiji [Photon Factory, High Energy Accelerator Research Organization, KEK Oho, Tsukuba, Ibakaki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

355

Design of the angiography beamline for the Argonne Advanced Photon Source  

Science Journals Connector (OSTI)

The angiography beamline planned for the Argonne Advanced Photon Source (APS) is a very special beamline dedicated to medical imaging. It is especially designed to enhance the art of digital subtraction angiography. It is different from the angiography beamlines presently in operation that scan the X-ray picture line by line, in that it will take both the high and low energy angiography X-ray pixtures simultaneously as full frame pictures. Pictures with 0.25 mm resolution and good signal to noise will be possible with 2 ms exposure times. This is possible because of the increase in flux that is available at the APS. The source of the 33 keV photons is a special high intensity wiggler. The photon beam is separated into two parts, spread out in the vertical direction, and monochro- matized with two convex bent crystals. These two crystals are bent in a non-uniform way that allows one to both make the photon flux uniform over the 15 cm 15 cm examining area and stabilize the shape of the surface of the diffraction crystal against distortion caused by the heat load on the crystal. Most of the energy of the photon beam is absorbed by a fast shutter placed in front of the crystals. The two images at the two different energies are recorded in two large position-sensitive detectors.

Robert K. Smither; Edwin M. Westbrook

1988-01-01T23:59:59.000Z

356

Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source  

E-Print Network [OSTI]

A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

2014-01-01T23:59:59.000Z

357

Time-Resolved Research at the Advanced Photon Source Beamline 7-ID  

SciTech Connect (OSTI)

The Sector 7 undulator beamline (7-ID) of the Advanced Photon Source (APS) is dedicated to time-resolved x-ray research and is capable of ultrafast measurements on the order of 100 ps. Beamline 7-ID has a laser laboratory featuring a Ti:Sapphire system (average power of 2.5W, pulse duration <50 fs, repetition rate 1-5 kHz) that can be synchronized to the bunch pattern of the storage ring. The laser is deliverable to x-ray enclosures, which contain diffractometers, as well as motorized optical tables for table-top experiments. Beamline 7-ID has a single APS Undulator A and uses a diamond (111) double-crystal monochromator, providing good energy resolution over a range of 6-24 keV. Available optics include Kirkpatrick-Baez (KB) mirrors to microfocus the x-ray beam. A variety of time-resolved diffraction and spectroscopy research is available at 7-ID, with experiments being done in the atomic, molecular, optical, chemistry, and solid state (bulk and surface) fields.

Dufresne, Eric M.; Adams, Bernhard; Arms, Dohn A.; Chollet, Matthieu; Landahl, Eric C.; Li, Yuelin; Walko, Donald A.; Wang, Jin

2010-08-02T23:59:59.000Z

358

Experiments in Steer Feeding.  

E-Print Network [OSTI]

-Day T r ia l (1903). Av era ge w ei gh t at beg in nin g. Feed eaten. Total gain. A ve ra ge da ily ga in pe r hea d. Fe ed cost of po un d of gai n. Lot 1..... 879 3,380 lbs. cottonseed meal.......... 13,325 lbs. cottonseed hulls. 1,295 lbs. 2.59 4.66 Lot 2 877 3,380 lbs. cottonseed meal....... 13,213 lbs. cottonseed hulls. 100 gals, molasses. 1,550 lbs. 3.1 4.52 It will be seen from this that the lot receiving molasses as an addition...

Craig, John A. (John Alexander); Marshall, F. R. (Frederick Rupert)

1904-01-01T23:59:59.000Z

359

Computer controlled feed delivery system for feed trucks  

E-Print Network [OSTI]

of truck speed and feed characteristics. Tests were performed to ascertain the validity of two design concepts. The first design concept consisted of operating the bed conveyor proportional to the ground speed of the feed truck while the cross-conveyor... and the dispersing cylinders operated at a continuous speed. The second design concept consisted of operating both the bed and cross-conveyor proportional to ground speed of the feed truck while the dispersing cylinders operated at a continuous speed. The results...

Holt, Gregory Alan

2012-06-07T23:59:59.000Z

360

Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY  

SciTech Connect (OSTI)

I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

Wagner, Ulrich H. [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Rau, Christoph [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Northwestern University, Chicago (United States)

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

In The News Feed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0:56:00 -0600 Wed, 08 Jan 2014 0:56:00 -0600 Wed, 08 Jan 2014 11:33:34 -0600 Report offers Congress alternatives to corral Asian carp and other aquatic nuisance species http://www.anl.gov/articles/report-offers-congress-alternatives-corral-asian-carp-and-other-aquatic-nuisance-species Argonne's Environmental Science Division has been working with the Chicago District of the U.S. Army Corps of Engineers on the Great Lakes and Mississippi River Interbasin Study to determine the risks that aquatic nuisance species, such as Asian carp, will move between the two basins through aquatic pathways. January 8, 2014 In The News Feed A wrong molecular turn leads down the path to type 2 diabetes http://www.anl.gov/articles/wrong-molecular-turn-leads-down-path-type-2-diabetes Computing resources at Argonne have helped researchers better grasp how

362

Multiple feed powder splitter  

DOE Patents [OSTI]

A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

363

Multiple feed powder splitter  

DOE Patents [OSTI]

A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

364

100-J level amplifier concepts for HiLASE and ELI-Beamlines  

Science Journals Connector (OSTI)

We present comparison of two alternative layouts of a 100 J cryogenically cooled Yb:YAG multi-slab laser system operating at 10 Hz for HiLASE and ELI Beamlines projects. In the first approach the 100 J slab amplifier consists of a preamplifier and power amplifier while in the second approach it uses single power amplifier with two amplifier heads. These two concepts are compared with respect to output power B-integral accumulated B-integral and peak fluence. Results are obtained by simulating beam propagation in MIR code and calculating stored energy in the amplifier by homemade ray-tracing MATLAB code for amplified spontaneous emission evaluation.

2012-01-01T23:59:59.000Z

365

SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide  

SciTech Connect (OSTI)

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

1993-12-31T23:59:59.000Z

366

The New X-Ray Lithography Beamline BL1 At DELTA  

SciTech Connect (OSTI)

Lithography using synchrotron radiation in the x-ray regime provides a powerful method to produce mechanical components of sub-millimeter size with a very good quality for microtechnological applications. In recent years the demand for x-ray lithography beamtime for industrial production of microparts increased rapidly resulting in the development of new experimental endstations at synchrotron radiation sources dedicated for the production of micromechanical devices. We present in this work the layout of the new x-ray lithography beamline BL1 at the synchrotron radiation source DELTA in Dortmund and discuss first results of exposure tests.

Lietz, D.; Paulus, M.; Sternemann, C.; Berges, U.; Hippert, B.; Tolan, M. [Fakultaet Physik / DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund (Germany)

2010-06-23T23:59:59.000Z

367

X-ray Experiments for Students at the SLS Optics Beamline  

SciTech Connect (OSTI)

We present a X-ray training course for students. The course covers fundamental properties of synchrotron radiation and basic techniques like scattering and absorption. We prepared ten experiments together with a tutorial. The whole course takes about a week. A first student group from the University of Copenhagen passed the course in June 2009. The experiments were performed at the optics beamline of the Swiss Light Source which can be part-time allocated for training purposes. Two experiments are described in more detail: scattering from a hanging drop of water turning into ice and measurement of the power of a pink synchrotron beam using a simple calorimeter.

Flechsig, U.; Jaggi, A.; Krempasky, J.; Oberta, P.; Spielmann, S.; Veen, J. F. van der [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Als-Nielsen, J. [University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen (Denmark)

2010-06-23T23:59:59.000Z

368

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect (OSTI)

The hard x-ray nanoprobe (HXN) beamline of the National Synchrotron Light Source II (NSLS-II) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic, and NSLS II operating systems have been studied using state-of-the-art simulations and an array of field data. Further, final stage vibration isolation principles have been explored.

Simos, N.; Chu, Y. S.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2011-09-09T23:59:59.000Z

369

Parallel-beam imaging at the ESRF beamline ID19: current status and plans for the future  

SciTech Connect (OSTI)

The ESRF synchrotron beamline ID19, dedicated to full-field parallel-beam imaging techniques such as phase-contrast and absorption microtomography and X-ray topography, is one of the most versatile instruments of its kind. This paper presents key characteristics of ID19 in its present form, names examples for research and development performed on the beamline, and outlines the plans for an upgrade on the beamline in coming years, to adapt to the growing needs of the user community. The technical goals envisioned include an increase in available beam size and maximum photon energy, and a substantial increase in flux density for applications using beams of small and intermediate size.

Weitkamp, T.; Tafforeau, P.; Boller, E.; Cloetens, P.; Valade, J.-P.; Bernard, P.; Baruchel, J. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); Peyrin, F. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); Creatis / INSA Lyon (France); Ludwig, W. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); INSA Lyon (France); Helfen, L. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); ISS / ANKA Light Source, Forschungszentrum Karlsruhe / KIT, Karlsruhe (Germany)

2010-06-23T23:59:59.000Z

370

X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source  

Science Journals Connector (OSTI)

Advances in synchrotron beamlines bring opportunities with accompanying challenges for the study of soft condensed (biological) matter. This article describes improvements to the BioCAT beamline that include micro-focus, scanning and cryo-cooling of soft connective tissues yielding X-ray data from whole rat-tail tendons to better than 4 ?.

Barrea, R.A.

2014-08-08T23:59:59.000Z

371

Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source  

Science Journals Connector (OSTI)

The design of an undulator beamline at the Advanced Photon Source optimized for performing coherent small-angle X-ray scattering is described. The beamline has been characterized by measuring and analysing static speckle patterns from isotropically disordered samples. The measured speckle widths and amplitudes are compared with a theory described herein and found to be in good agreement with its predictions.

Sandy, A.R.

1999-11-01T23:59:59.000Z

372

Full-Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring-8  

SciTech Connect (OSTI)

The Engineering Science Research II beamline BL14B2 at SPring-8 is a hard X-ray bending magnet beamline covering the wide energy range from 3.8 to 72 keV, and has been open to XAFS users since September 2007. The gas distribution and exhaust gas treatment systems have been installed for the in-situ XAFS measurements. Recent improvements in the speed of XAFS measurements have increased the demand for automated measurements. We have developed such a system, in which the adjustment of X-ray optics and the XAFS measurement in transmission mode can be performed automatically.

Honma, Tetsuo; Takagaki, Masashi [Japan Synchrotron Radiation Research Institute, 1-1-1, kouto, Sayo, Hyogo 679-5198 (Japan); Oji, Hiroshi; Hirayama, Sayaka; Taniguchi, Yosuke; Ofuchi, Hironori [Japan Synchrotron Radiation Research Institute, 1-1-1, kouto, Sayo, Hyogo 679-5198 (Japan); SPring-8 Service Co., Ltd., 2-23-1 Kouto, Kamigori, Hyogo 678-1205 (Japan)

2010-06-23T23:59:59.000Z

373

Full?Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring?8  

Science Journals Connector (OSTI)

The Engineering Science Research II beamline BL14B2 at SPring?8 is a hard X?ray bending magnet beamline covering the wide energy range from 3.8 to 72 keV and has been open to XAFS users since September 2007. The gas distribution and exhaust gas treatment systems have been installed for the in?situ XAFS measurements. Recent improvements in the speed of XAFS measurements have increased the demand for automated measurements. We have developed such a system in which the adjustment of X?ray optics and the XAFS measurement in transmission mode can be performed automatically.

Tetsuo Honma; Hiroshi Oji; Sayaka Hirayama; Yosuke Taniguchi; Hironori Ofuchi; Masashi Takagaki

2010-01-01T23:59:59.000Z

374

Application of Goubau Surface Wave Transmission Line for Improved Bench Testing of Diagnostic Beamline Elements  

SciTech Connect (OSTI)

In-air test fixtures for beamline elements typically utilize an X-Y positioning stage, and a wire antenna excited by an RF source. In most cases, the antenna contains a standing wave, and is useful only for coarse alignment measurements in CW mode. A surface-wave (SW) based transmission line permits RF energy to be launched on the wire, travel through the beamline component, and then be absorbed in a load. Since SW transmission lines employ travelling waves, the RF energy can be made to resemble the electron beam, limited only by ohmic losses and dispersion. Although lossy coaxial systems are also a consideration, the diameter of the coax introduces large uncertainties in centroid location. A SW wire is easily constructed out of 200 micron magnet wire, which more accurately approximates the physical profile of the electron beam. Benefits of this test fixture include accurate field mapping, absolute calibration for given beam currents, Z-axis independence, and temporal response measurements of sub-nanosecond pulse structures. Descriptions of the surface wave launching technique, transmission line, and instrumentation are presented, along with measurement data.

John Musson, Keith Cole, Sheldon Rubin

2009-05-01T23:59:59.000Z

375

Ecofys Feed | Open Energy Information  

Open Energy Info (EERE)

Ecofys Feed Ecofys Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

376

Monitoring Feed Efficiency in Dairy Herds  

E-Print Network [OSTI]

This publication explains how dairy producers can improve feeding and production efficiency by frequently monitoring ration particle size, feed inventory and milk production....

Stokes, Sandra R.

1999-04-26T23:59:59.000Z

377

Feed-in Tariff Resources  

Broader source: Energy.gov [DOE]

A feed-in tariff (FIT) is an energy-supply policy focused on supporting the development of new renewable power generation. In the United States, FIT policies provide a guarantee to eligible...

378

Rotary powder feed through apparatus  

DOE Patents [OSTI]

A device for increasing the uniformity of solids within a solids fabrication system, such as a direct light fabrication (DLF) system in which gas entrained powders are passed through the focal point of a moving high-power light which fuses the particles in the powder to a surface being built up in layers. The invention provides a feed through interface wherein gas entrained powders input from stationary input lines are coupled to a rotating head of the fabrication system. The invention eliminates the need to provide additional slack in the feed lines to accommodate head rotation, and therefore reduces feed line bending movements which induce non-uniform feeding of gas entrained powder to a rotating head.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

379

XRLM Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

steel ring Substrate: standard 4" wafer and any dimension not larger than 4.75" Photon BPM A photon BPM is installed in the front end section and provides actual information of...

380

A New Tomography Beamline at a Wiggler Port at the Center for Advanced Microstructures and Devices (CAMD) Storage Ring  

Science Journals Connector (OSTI)

A new tomography beamline has been built and commissioned at the 7 T wiggler of the CAMD storage ring. This beamline is equipped with two monochromators that can be used interchangeably for X?ray absorption spectroscopy or high resolution X?ray tomography at best 23 ?m pixel size. The high?flux double multilayer?mirror monochromator (W?B4C multilayers) can be used in the energy range from 6 to 35 keV with a resolution (?E/E ) between 0.010.03. The second is a channel?cut Si(311)?crystal monochromator with a range of 15 to 36 keV and resolution of ca. 10?4 this is not yet tested. Tomography has the potential for high?throughput materials analysis; however there are some significant obstacles to be overcome in the areas of data acquisition reconstruction visualization and analysis. Data acquisition is facilitated by the multilayer monochromator as this provides high photon flux thus reducing measurement time. At the beamline Matlab routines provide simple x y z fly?throughs of the sample. Off?beamline processing with Amira can yield more sophisticated inspection of the sample. Standard data acquisition based on fixed angle increments is not optimal however new patterns based on Greek golden ratio angle increments offer faster convergence to a high signal?to?noise?ratio image. The image reconstruction has traditionally been done by back?projection reconstruction. In this presentation we will show first results from samples studied at the new beamline.

Kyungmin Ham; Heath A. Barnett; Leslie G. Butler; Clinton S. Willson; Kevin J. Morris; Roland C. Tittsworth; John D. Scott

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Digestibility and Production Coefficients of Hog Feeds.  

E-Print Network [OSTI]

LIDEARY, A t% !*I COLLEGE, CA%!PUS. TEXAS AGRICULTURAL EXPERIMENT STATiON A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS 7 BULLETIN NO. 454 SEPTEMBER, 1932 Digestibility and Production Coefficients of Hog Feeds AGRICULTURAI... .................................................................. 16 Compositjon and feeding values of pig feeds 17 Standards for pig feeding ----__.-_._----------- 1 22 Summary ----__..-----_--_-.---.--------------------- 23 Ref erenczs --------------.---------- 24 BULLETIN NO. 454 SEPTEMBER, 1932...

Fraps, G. S. (George Stronach)

1932-01-01T23:59:59.000Z

382

ANL/APS/TB-5 Functional Description of APS Beamline Front Ends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functional Description of APS Beamline Front Ends by Tuncer Kuzay February 1993 Advanced Photon Source & Argonne National Laboratory, Argonne, Illinois 60439 o operated by The University of Chicago for the United States Department of Energy under Contract W-31-1 09-Eng-38 Argonne National Laboratory, with facilties in the states of Ilinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Deparment of Energy. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any waranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

383

HARWI-II, The New High-Energy Beamline for Materials Science at HASYLAB/DESY  

SciTech Connect (OSTI)

The GKSS Forschungszentrum Geesthacht, Germany, will setup a new high-energy beamline specialized for texture, strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen-Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI-II. The high pressure cell will be run by the GFZ Potsdam, Germany, the high-energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm x 0.5 mm) and a large monochromatic X-ray beam (50 mm x 10 mm) with an energy range of 20 to 250 keV.

Beckmann, Felix; Lippmann, Thomas; Metge, Joachim; Dose, Thomas; Donath, Tilman; Schreyer, Andreas [GKSS Forschungszentrum, Max-Planck-Strasse, 21502 Geesthacht (Germany); Tischer, Markus [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Liss, Klaus Dieter [Technische Universitaet, Hamburg-Harburg, 21071 Hamburg (Germany)

2004-05-12T23:59:59.000Z

384

Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation  

SciTech Connect (OSTI)

We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

Panaccione, G.; Vobornik, I.; Fujii, J.; Krizmancic, D.; Annese, E.; Giovanelli, L.; Maccherozzi, F.; Salvador, F.; De Luisa, A.; Benedetti, D.; Gruden, A.; Bertoch, P.; Rossi, G. [TASC Laboratory, INFM-CNR, S.S. 14-Km 163.5 in AREA Science Park, I-34012 Basovizza (Trieste) (Italy); Polack, F. [Synchrotron SOLEIL, B.P. 48, 91192 Gif-sur-Yvette (France); Cocco, D.; Sostero, G.; Diviacco, B. [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34012 Trieste (Italy); Hochstrasser, M.; Maier, U.; Pescia, D. [Laboratorium fuer Festkoerperphysik, ETH Hoenggerberg, CH-8093 Zuerich (Switzerland); and others

2009-04-15T23:59:59.000Z

385

Characterizations and Applications of the Insertion Device of the SPring-8 Diagnostics Beamline II  

SciTech Connect (OSTI)

An insertion device (ID05) of the SPring-8 diagnostics beamline II (BL05SS) was characterized from the aspects of both the magnetic field performance and the spectral performance as a high K wiggler, which was confirmed to have the field performance with the rms phase error less than 2 degree. Meanwhile, the spectral performance of ID05 as an undulator with small K was also investigated by the energy spectrum measurements. The rms phase error less than 2degree leads us to apply the wiggler radiation on the higher harmonics to the beam diagnostics. We successfully demonstrated an application to the energy-spread diagnostics of electron beam using the 19th harmonics.

Masaki, Mitsuhiro; Takano, Shiro; Tamura, Kazuhiro; Mochihashi, Akira; Oishi, Masaya; Shoji, Masazumi; Fujita, Takahiro; Takashima, Takeo; Ohkuma, Haruo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo (Japan); Yamamoto, Shigeru [High Energy Accelerator Research Organization (KEK)/Institute of Materials Structure Science, 1-1 Oho, Tsukuba, Ibaraki (Japan)

2010-06-23T23:59:59.000Z

386

HARWI?II, The New High?Energy Beamline for Materials Science at HASYLAB/DESY  

Science Journals Connector (OSTI)

The GKSS Forschungszentrum Geesthacht Germany will setup a new high?energy beamline specialized for texture strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen?Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI?II. The high pressure cell will be run by the GFZ Potsdam Germany the high?energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm 0.5 mm) and a large monochromatic X?ray beam (50 mm 10 mm) with an energy range of 20 to 250 keV.

Felix Beckmann; Thomas Lippmann; Joachim Metge; Thomas Dose; Tilman Donath; Markus Tischer; Klaus Dieter Liss

2004-01-01T23:59:59.000Z

387

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect (OSTI)

The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibration isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.

Simos, N.; Chu, Y. N.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

2010-08-30T23:59:59.000Z

388

Annular Vortex Generation for Inertial Fusion Energy Beam-Line Protection  

SciTech Connect (OSTI)

The use of swirling annular vortex flow inside beam entrance tubes can protect beam-line structural materials in chambers for heavy-ion inertial fusion energy (IFE) applications. An annular wall jet, or vortex tube, is generated by injecting liquid tangent to the inner surface of a tube wall with both axially and azimuthally directed velocity components. A layer of liquid then lines the beam tube wall, which may improve the effectiveness of neutron shielding, and condenses and removes vaporized coolant that may enter the beam tubes. Vortex tubes have been constructed and tested with a thickness of three-tenths the pipe radius. Analysis of the flow is given, along with experimental examples of vortex tube fluid mechanics and an estimate of the layer thickness, based on simple mass conservation considerations.

Pemberton, Steven J.; Abbott, Ryan P.; Peterson, Per F. [University of California (United States)

2003-05-15T23:59:59.000Z

389

X-ray multilayer characterization using reflectivity beamline at Indus-1  

SciTech Connect (OSTI)

Poor knowledge of optical constants of various materials in the soft x-ray region requires to test the soft x-ray optical devices at actual wavelengths. For such purposes a soft x-ray/vacuum ultraviolet reflectivity beamline has been setup on Indus-1 synchrotron.X-ray multilayer structures are also being developed at RRCAT. Silicon based different multilayer optics fabricated in house for 100-200A ring wavelength region show a very high reflectivity performance. A new multilayer combination comprised of NbC/Si is proposed for achieving good thermal stability high reflectivity in the Si L-edge region. A high reflectivity of 63% in near normal incidence region is obtained with a sputter deposited Mo/Si combination. Results prospects of growing NbC/Si multilayer are presented.

Modi, Mohammed H.; Prasad, T. T.; Nayak, M.; Pothana, N.; Jaiswal, A.; Rai, S. K.; Lodha, G. S. [X-ray Optics Section Raja Ramanna Centre for Advanced Technology (RRCAT) Indore 452013 (India)

2010-06-23T23:59:59.000Z

390

The Current Performance of the Wide Range (90-2500 eV) Soft X-ray Beamline at the Australian Synchrotron  

SciTech Connect (OSTI)

The Soft X-ray beamline at the Australian synchrotron has been constructed around a collimated light Plane Grating Monochromator taking light from an Elliptically Polarized Undulator (EPU). The beamline covers a wide photon energy range between 90 to 2500 eV, using two gratings of 250 l/mm and 1200 l/mm. At present the output from the monochromator is directed into one branchline with a dedicated UHV endstation. The measured performance of the beamline in flux and resolution is shown to be very close to that of theoretical calculations.

Cowie, B. C. C.; Tadich, A.; Thomsen, L. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria (Australia)

2010-06-23T23:59:59.000Z

391

Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator  

SciTech Connect (OSTI)

The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

392

Innovations in the design of mechanical components for a beamline -- The SRl`95 Workshop 2 summary  

SciTech Connect (OSTI)

The Synchrotron Radiation Instrumentation 1995 Conference (SRI`95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI`95 Workshop 2 was ``Innovations in the Design of Mechanical Components of a Beamline``. The workshop was attended well with over 140 registrants. The following topics were discussed. Industry`s perspective on the status and future was provided by Huber Diffrationtechnik, Oxford Instruments, and Kohzu Seiko Ltd. on goniometers/diffractometers, advanced manufacturing technique of high heat load components, such as the APS photon shutter, and the specialties of monochromators provided to the third-generation synchrotrons, respectively. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation (``BM contamination``) and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop. 5 refs., 5 figs.

Kuzay, T.M. [Argonne National Lab., IL (United States); Warwick, T. [Lawrence Berkeley Lab., CA (United States)

1995-12-31T23:59:59.000Z

393

Commercial Feeding Stuffs, 1916-17: Texas feed law.  

E-Print Network [OSTI]

Control Service by i (I) Requiring that no feeding stuff shall be sold under a name that ,, ; in the least misleading. This means that no person or corporation hall sell a mixtzire for a pre prodact. For instance, it is a violation f the law to sell a.... Weights.--The law fixcs the standard weights for feeding stuffs as f olloms : Mill products have the following standard weights, viz : Flour, one hundred and ninety-six (196) ponnds per barrel or forty-eight (48) pounds per sack. Corn meal, bolted...

Youngblood, B. (Bonney)

1917-01-01T23:59:59.000Z

394

Commercial Feeding Stuffs, 1914-15: Texas Feed Law.  

E-Print Network [OSTI]

in the State of Texas. This end is attained by the Feed Control Service by (I) Requiring that no feeding stuff shall be wlcl under a name that k in the least misleading. This means that no person or corporation shall sell a rrlixture for a pure product... of loose cake, it will be the duty of Cotton Oil Co. or Jones & Co. to transmit to Roberts hi- Son tags sufficient to cover the shipment. In the event that Roberts & Son fail to receive these tags sin~ultaneously with the shipment it mill be their duty...

Youngblood, B. (Bonney)

1915-01-01T23:59:59.000Z

395

Texas Feeding Stuffs: Their Composition and Utilization.  

E-Print Network [OSTI]

..... . . . ... . ................ . . . .. . ... . Term expires 1917 J . ALLEN KYLE, Houston .. ... . . ..... . . . . . . . .. . . T erm expires 1915 \\VALTON P ETEET, \\Vaco ......... .. . . . ....... . .. .. . ... Term expires 1915 GOVERNING BOARD, STATE SUBSTATION P. L. DowNs, Pres ident, Temple.... WOLTERS, Feed Inspector S. D. PEARCE, Feed Inspector J. M. ScHAEDEL, Feed Inspector JAMES SuLLIVAN, Feed Inspector \\V. M. ?wicKES, Feed Inspector SUBSTATION NO. 1: Beeville, Bee County E. ?E. BINFORD, B. S., Superintendent SUBSTATION NO.2: Troup...

Fraps, G. S.

1914-01-01T23:59:59.000Z

397

About PR Newswire Contact PR Newswire PR Newswire's Terms of Use Apply Careers Privacy Site Map RSS Feeds Copyright 1996-2010 PR Newswire Association LLC. All Rights Reserved.  

E-Print Network [OSTI]

company. Search Advanced Search Products & Services News Releases Send a release Member sign in Become 28 /PRNewswire-Asia/ -- Green building materials company Vecor Group has been selected as a finalist for the Credit Suisse Technopreneur Award, handed to the company that best applies a technology with the greatest

398

ENDA Feed | Open Energy Information  

Open Energy Info (EERE)

ENDA Feed ENDA Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

399

Shortwave, Clear-sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shortwave, Clear-Sky Diffuse Irradiance in the Shortwave, Clear-Sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001 J. J. Michalsky, P. W. Kiedron, Q.-L. Min, and L. C. Harrison Atmospheric Sciences Research Center State University of New York Albany, New York J. J. Michalsky Surface Radiation Research Branch Air Resources Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado Abstract A rotating shadowband spectroradiometer (RSS) operating in the spectral range between 350 to 1050 nm obtained measurements of direct and diffuse components of spectral irradiance during the first diffuse irradiance IOP in the autumn of 2001. Independent measurements of the primary inputs to spectral

400

Commercial Feeding Stuffs, 1915-16: Texas Feed Law.  

E-Print Network [OSTI]

.................................................................................................. Term expires '1917 J F KUBENA kavettevllle .............................................................................................. Temexpies~1921 w. A. MILLE~, J;., Amarillo...) Xecl~iiring that no feeding stuff shall be sold under a name that is in the least misleading. This means that no person or corporation shall sell a mirtzlre for a pare product. For instance, it is a violation of the law to sell a mixture...

Youngblood, B. (Bonney)

1916-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Food and Feed Safety and Quality "Food&Feed"  

E-Print Network [OSTI]

on human health · Feed preservation and impact on the hygienic quality, both microbial and chemical of chemicals, especially endocrine disruptors · Veterinary drugs in food producing animals, residues in foodD work, by offering · a scientific platform ­ training in scientific presentations and discussions

402

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

403

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

404

An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot  

Science Journals Connector (OSTI)

A system, implemented at SSRL, for automatically mounting and dismounting pre-frozen crystals at a synchrotron beamline is described. The system is based on a small industrial robot and compact cylindrical sample cassettes.

Cohen, A.E.

2002-11-13T23:59:59.000Z

405

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially-manufactured superconducting magnets and limited to 17 T. A  

E-Print Network [OSTI]

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially, this was the first designed specifically for neutron scattering and the first to include resistive suitable for neutron scattering, diffraction and spectroscopy experiments with the neutron beam passing

Weston, Ken

406

The BioCAT undulator beamline 18ID: A facility for biological non-crystalline diffraction and x-ray absorption spectroscopy at the APS  

SciTech Connect (OSTI)

The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

Fischetti, R.; Stepanov, S.; Rosenbaum, G.; Barrea, R.; Black, E.; Gore, D.; Heurich, R.; Kondrashkina, E.; Kropf, A.J.; Wang, S.; Zhang, K.; Irving, T.C.; Bunker, G.B. (IIT); (Georgia)

2008-07-02T23:59:59.000Z

407

The UHV Experimental Chamber For Optical Measurements (Reflectivity and Absorption) and Angle Resolved Photoemission of the BEAR Beamline at ELETTRA  

SciTech Connect (OSTI)

The experimental station of the BEAR (Bending magnet for Emission, Absorption and Reflectivity) beamline at ELETTRA (Trieste, Italy) is an UHV chamber conceived to fully exploit the spectroscopic possibilities offered by the light spot produced by the beamline. Spectroscopies include reflectivity ({theta}-2{theta} and diffuse), optical absorption, fluorescence and angle resolved photoemission. The chamber can be rotated around the beam axis to select the s (TE) or p (TM) incidence conditions and/or the position of the ellipse of polarization with respect to the sample. Photon detectors (e.g. photodiodes) and electron detector (hemispherical analyzer - 1 deg. angular resolution, 20 meV energy resolution) cover about completely the full 2{pi} solid angle above the sample surface in any light incidence condition.

Pasquali, L.; Nannarone, S. [UdR-INFM Modena, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); De Luisa, A. [TASC-INFM, MM building in Area Science Park, s.s.14 km 163.5, 34012 Basovizza, Trieste (Italy)

2004-05-12T23:59:59.000Z

408

Redesign and Reconstruction of the Equipment Protection Systems for the Upgrading Front Ends and Beamlines at BSRF  

SciTech Connect (OSTI)

The BEPC(Beijing Electron-Positron Collider) is upgraded to be BEPCII, a two-ring Electron-Positron collider. Due to the construction of the BEPCII and upgrade of the existing front ends and beamlines, all the existing EPSs(Equipment Protection Systems) have to be redesigned and reconstructed at BSRF. All the redesigned EPSs for the upgrading front ends and beamlines are a PLC- and SCADA-based equipment protection and control and monitoring system. The EPSs are used to protect BEPCII two storage rings vacuum against vacuum failures in a beamline, as well as to protect the front-end and beamline components from being damaged by synchrotron radiation. For the high-power wiggler beam lines, a fast movable mask is used to protect the blade of a fast-closing valve from damage when the fast-closing valve is triggered to close, which does not need to dump the electron beam running in BEPCII outer ring. In addition, all redesigned PLC- based EPSs are used to communicate with the same centralized monitoring computer to monitor a variety of parameters from all PLC- based EPS systems. The monitoring computer runs the SCADA (Supervisory Control And Data Acquisition) software with its own web server. Graphical HMI interfaces are used to display a few overall views of all front-end equipment operation status and the further detailed information for each EPS in a different pop-up window. On the web services, the SCADA-based centralized monitoring system provides a web browse function, etc. The design of the reconstructed systems is described in this paper.

Xiong Shenshou; Tan Yinglei; Wu Xuehui [Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, P. O. Box 918, Branch 2-7, Beijing 100049 (China)

2007-01-19T23:59:59.000Z

409

Long-Working-Distance Kirkpatrick-Baez Mirrors for Hard X-ray Beamlines at SPring-8  

SciTech Connect (OSTI)

We designed and installed two types of long-working-distance Kirkpatrick-Baez (KB) mirrors and mirror manipulators, which were customized into each experiment for hard x-ray undulator beamlines at SPring-8. For the BL32XU RIKEN Targeted Proteins beamline, 400-mm-long KB focusing mirrors for a beam size of 1 {mu}m with a 730-mm-long working distance were designed for carrying out the structural analysis of protein microcrystals. We realized a focusing beam size of 0.9x0.9 {mu}m{sup 2}(FWHM) and a focusing intensity of 6x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV. For the BL19LXU RIKEN SR Physics beamline, we developed KB mirrors for 100-nm focusing with a 100-mm-working distance for the purpose of nano-focus x-ray diffraction. A focusing beam size of 100x100 nm{sup 2}(FWHM) and a high focusing intensity of 3.7x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV were realized.

Yumoto, H.; Koyama, T. [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hirata, K.; Kawano, Y.; Ueno, G.; Nisawa, A.; Hikima, T.; Takeshita, S.; Ito, K.; Tanaka, Y.; Arima, T.; Yamamoto, M. [RIKEN/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Ohsumi, H.; Ohashi, H.; Goto, S. [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2011-09-09T23:59:59.000Z

410

ARM - Field Campaign - ASRC RSS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were cosine response corrected, and their radiometric calibration were based on incandescent lamp calibrators that are traceable to the NIST irradiance scale. Campaign Data...

411

Novel feeds for organic dairy chains  

Science Journals Connector (OSTI)

The objective of the current work was to assess various novel and underutilized feeds and thus increase the awareness of various novel feeding solutions to support organic and low-input dairy production. A set...

Marketta Rinne; Catalin Dragomir; Kaisa Kuoppala; Jo Smith

2014-12-01T23:59:59.000Z

412

Feeding Waste Milk to Dairy Calves  

E-Print Network [OSTI]

This publication lists precautions producers should take when feeding waste milk to dairy calves and offers usage guidelines....

Stokes, Sandra R.; Looper, Mike; Waldner, Dan; Jordan, Ellen R.

2002-02-14T23:59:59.000Z

413

Laser Cladding with Multi Elemental Powder Feed  

Science Journals Connector (OSTI)

An investigation is reported on surface cladding with a laser using a mixed powder feed. Success has...

T. Takeda; W. M. Steen; D. R. F. West

1986-01-01T23:59:59.000Z

414

FINALCONSULTANTREPORT CALIFORNIA FEED-IN TARIFF DESIGN  

E-Print Network [OSTI]

FINALCONSULTANTREPORT CALIFORNIA FEED-IN TARIFF DESIGN AND POLICY OPTIONS Prepared For CALIFORNIA FEED-IN TARIFF DESIGN AND POLICY OPTIONS The following correction has been made to the Consultant Report, California Feed-in Tariff Design and Policy Options, that was originally posted on the Energy

415

Integration of an Atomic Force Microscope in a Beamline Sample Environment  

SciTech Connect (OSTI)

We developed and optimised an optics-free Atomic Force Microscope (AFM) that can be directly installed on most of the synchrotron radiation end-stations. The combination of Scanning Probe Microscopies with X-ray microbeams adds new possibilities to the variety of synchrotron radiation techniques. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharpness of the tip that gives the opportunity to measure the photons flux impinging on it giving beam position monitor features, or allows to locally measure the absorption coefficient or the shape of the diffraction pattern. As an example of the possibilities opened by the instrument we will show diffraction measurements performed on a Ge/Si island while being indented with the AFM tip providing local measure of the Young coefficient. Three ESRF beamlines are going to be equipped with this new instrument.

Rodrigues, M. S.; Hrouzek, M.; Dhez, O.; Comin, F. [ESRF, 6 rue Horowitz 38042 Grenoble Cedex (France); Chevrier, J. [Institut Neel-CNRS and Universite Joseph Fourier, 38042 Grenoble (France)

2010-06-23T23:59:59.000Z

416

Fluidized bed boiler feed system  

DOE Patents [OSTI]

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

417

Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline  

Science Journals Connector (OSTI)

A prototype was developed to perform online purification and automatic loading of protein solutions at a small-angle X-ray scattering beamline.

David, G.

2009-09-08T23:59:59.000Z

418

SI Operational Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RMD Beamline Validation Schedule SIG ICMS ECR Procedure CCWP Procedure RSS Policy Spares OPS Scheduling Page Document Numbering System Drawing Number Key ECR Tracking System...

419

Commercial Feeding Stuffs, September 1, 1921, to August 31, 1922.  

E-Print Network [OSTI]

Introduction; Summary of the Texas Feed Law; How to Comply with the Texas Feed Law; Standards and Definitions Adopted; Rulings Under the Law; Tentative Guarantees for Feed; Average Composition of Feeding Stuffs on Basis of Inspection; Shipments...

Youngblood, B. (Bonney)

1922-01-01T23:59:59.000Z

420

Feeding Steers -- Feed Value of Cotton Seed and its Products.  

E-Print Network [OSTI]

. Brown of SanlAntonio, Texas, visited the Station in July, 1898, and the following plan (of experiment was agreed upon and carried out during the next fall and winter season: PLAN OF THE EXPERIMENT. PART I. 'The first part of the experiment... corn and oats were fed contin- uously there were fourteen steers to the pen, while in the first bwo peas, only seven steers were used. Topping Out t7~e Hulls nnd 3feal.-After feeding Pen A on hulls and meal for 100 days, corn chops was added...

Connell, J. H.; Kyle, H. C.

1899-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Phenotypic Characterization of Feed Efficiency and Feeding Behavior Traits in Performance Tested Bulls Fed a Corn Silage-Based Diet  

E-Print Network [OSTI]

Objectives of this study were to characterize feed efficiency traits and examine phenotypic relationships with feeding behavior traits in bulls. Performance, feed intake and feeding behavior traits were measured in bulls (n = 5,165) representing 2...

Moreno Rajo, Jose Gilberto

2013-01-14T23:59:59.000Z

422

Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II  

SciTech Connect (OSTI)

The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

2011-08-21T23:59:59.000Z

423

Grad student is officially a GEMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NIU physicist Susan Mini lands NSF grant for APS beamline upgrades NIU physicist Susan Mini lands NSF grant for APS beamline upgrades Argonne's Campuzano Honored by Hispanic Engineering Bugs in the News An R&D-100 Award for a New Mammography System Putnam recognized for outstanding service APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Grad student is officially a GEMS OCTOBER 18, 2007 Bookmark and Share Tao Sun (Northwestern University) in the X-ray Operations and Research beamline 8-ID-E enclosure Tao Sun, a third-year graduate student from Professor Dravid Vinayak's group at Northwestern University who is currently doing his thesis research at the Advanced Photon Source at the U.S. Department of Energy's Argonne National Laboratory, has been awarded one of three Graduate Excellence in

424

Feed-in Tariff | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Feed-in Tariff Feed-in Tariff Feed-in Tariff < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Hawaii Program Type Performance-Based Incentive Rebate Amount Rates for Tier 1 and Tier 2 vary by system size and technology Rates for Tier 3 vary by technology Provider Hawaii Public Utilities Commission In September 2009, the Hawaii Public Utilities Commission (PUC) issued a decision that established a feed-in tariff in Hawaii. The feed-in tariff is offered by the three investor-owned utilities: HECO, MECO and HELCO. The rates for the feed-in tariff, schedule, and standard interconnection agreements were approved on October 13, 2010. This program will be reviewed by the PUC two years after the start of the program and every three years

425

Burco Farm and Feed | Open Energy Information  

Open Energy Info (EERE)

Burco Farm and Feed Burco Farm and Feed Jump to: navigation, search Name Burco Farm and Feed Facility Burco Farm and Feed Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Burco Farm and Feed Energy Purchaser Burco Farm and Feed Location Independence IA Coordinates 42.5638438°, -91.88753486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5638438,"lon":-91.88753486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Nutrition and Feeding of Show Poultry  

E-Print Network [OSTI]

There are four important prin- ciples in developing an appropri- ate nutrition program for show broilers and turkeys. Principle 1: To grow, birds must eat and drink. I nadequate feed stunts develop- ment and prevents birds from growing... to their potential. Since birds grow quickly, if their feed consumption decreases even a few hours, their ultimate body size can be signif_i- cantly diminished. Several factors can cause birds to eat less than they should. These factors are: feed availability, water...

Cartwright, A. Lee

2003-11-03T23:59:59.000Z

427

Feeding Experiments with Steers and Hogs.  

E-Print Network [OSTI]

TEXAS AGRICULTURAL EXPERIMENT STATIONS FORT WORTH FEEDING STATION I BULLETIN NO. 135 November, 1910 Feeding Experiments With Steers and Hogs J. T. CRUSE Superintendent of Fort Worth Station POSTC'FFICE College Station, Rrazos County, Texas...~NF.~. ................................... .College Station Sri'dTTOX OFFICERS. R. H. HARI~INCTON. .................................... .Director J. FIT. CARSON. .......... .Assistant Director and Sta.te Feed Inspector 31. FRANCIS ........................................ Veterinarian G, S. FR-4...

Cruse, J.T.

1910-01-01T23:59:59.000Z

428

Feeding Fermented Cottonseed Meal to Hogs.  

E-Print Network [OSTI]

the subject. The effect of feeding cottonseed meal to swine as studied in earlier experiments was practically the same at each of the stations mentioned below : KANSAS.-In January, 1895, four hogs, averaging in weight 30 pounds, were started on a ration... of feeders who have used cottonseed meal for hogs indicate that a light feed of cottonszed meal may be continued in- definitely and that the consumption of green feed lessens the danger of death from feeding cottonseed meal. 3. In this trial the hogs were...

Marshall, F. R. (Frederick Rupert)

1905-01-01T23:59:59.000Z

429

Feeding Corn Milling Byproducts to Feedlot Cattle  

Science Journals Connector (OSTI)

Corn milling byproducts are expected to increase dramatically in supply as the ethanol industry expands. Distillers grains, corn gluten feed, or a combination of both byproducts offer many feeding options when included in feedlot rations. These byproduct feeds may effectively improve cattle performance and operation profitability. When these byproducts are fed in feedlot diets, adjustments to grain processing method and roughage level may improve cattle performance. Innovative storage methods for wet byproducts and the use of dried byproducts offer small operations flexibility when using byproducts. As new byproducts are developed by ethanol plants, they should be evaluated with performance data to determine their product-specific feeding values.

Terry J. Klopfenstein; Galen E. Erickson; Virgil R. Bremer

2007-01-01T23:59:59.000Z

430

The relationship between residual feed intake and feeding behavior in growing heifers  

E-Print Network [OSTI]

The objective of this study was to determine if feeding behavior traits are correlated with performance and feed efficiency traits in growing heifers. Individual dry matter intake (DMI) was measured in Brangus heifers (n = 115) fed a roughage...

Bingham, Glenda Marie

2009-05-15T23:59:59.000Z

431

Set-up of an XAFS beamline for measurements between 2.4-8 keV at DORIS III  

SciTech Connect (OSTI)

In this paper results from the commissioning phase and from first user experiments of a new EXAFS beamline at the DORIS III storage ring are presented. The bending magnet EXAFS beamline A1 underwent a complete rebuild and now covers the energy range 2.4-8 keV. A Ni-coated toroidal mirror, placed in a 2:1 focusing position and a plane mirror with one Ni coated stripe and one uncoated (SiO{sub 2}) stripe are used for effective higher harmonics suppression and focusing. The UHV-compatible fixed-exit Double Crystal Monochromator (DCM) is equipped with two Si(111) crystal pairs. The second crystal of one of the two crystal pairs is tilted by 90 deg. around the surface normal to shift the position of glitches. It allows Bragg angles between 5 deg. and 55.5 deg. and continuous scans in quick-EXAFS mode. Test measurements during the commissioning phase proved the excellent performance of the monochromator and a high quality of the XAFS spectra over the entire working range.

Welter, Edmund [Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association, Notkestrasse 85, D-22607 Hamburg (Germany)

2010-06-23T23:59:59.000Z

432

Experimental results with cryogenically cooled, thin, silicon crystal x-ray monochromators on high-heat-flux beamlines  

SciTech Connect (OSTI)

A novel, silicon crystal monochromator has been designed and tested for use on undulator and focused wiggler beamlines at third-generation synchrotron sources. The crystal utilizes a thin, partially transmitting diffracting element fabricated within a liquid-nitrogen cooled, monolithic block of silicon. This report summarizes the results from performance tests conducted at the European Synchrotron Radiation Facility (ESRF) using a focused wiggler beam and at the Advanced Photon Source (APS) on an undulator beamline. These experiments indicate that a cryogenic crystal can handle the very high power and power density x-ray beams of modem synchrotrons with sub-arcsec thermal broadening of the rocking curve. The peak power density absorbed on the surface of the crystal at the ESRF exceeded go W/mm{sup 2} with an absorbed power of 166 W, this takes into account the spreading of the beam due to the Bragg angle of 11.4{degrees}. At the APS, the peak heat flux incident on the crystal was 1.5 W/mA/mm{sup 2} with a power of 6.1 W/mA for a 2.0 H x 2.5 V mm{sup 2} beam at an undulator gap of 11.1 mm and stored current up to 96 mA.

Rogers, C.S.; Mills, D.M.; Lee, W.K.; Fernandez, P.B.; Graber, T.

1996-08-01T23:59:59.000Z

433

Suction feeding in orchid bees (Apidae: Euglossini)  

Science Journals Connector (OSTI)

...Published online 10.12.03 Energy flux during nectar feeding...such as orchid bees is that energy content rises linearly with...Consequently, the rate of energy intake during feeding will...areas ranging from Mexico to Argentina. Male bees from 30 species...

2004-01-01T23:59:59.000Z

434

Proceedings of the 2nd Nordic Feed  

E-Print Network [OSTI]

Proceedings of the 2nd Nordic Feed Science Conference, Uppsala, Sweden Institutionen för husdjurens Department of Animal Nutrition and Management ISSN 0347-9838 ISRN SLU-HUV-R-277-SE #12;#12;Proceedings of the 2nd Nordic Feed Science Conference 15th ­ 16th June 2011 Uppsala Sweden Institutionen för husdjurens

435

Proceedings of the 4th Nordic Feed  

E-Print Network [OSTI]

Proceedings of the 4th Nordic Feed Science Conference, Uppsala, Sweden Institutionen för husdjurens of Animal Nutrition and Management ISSN 0347-9838 ISRN SLU-HUV-R-287-SE #12;#12;Proceedings of the 4th Nordic Feed Science Conference Uppsala, Sweden 12-13 of June 2013 Institutionen för husdjurens Rapport

436

Proceedings of the 1st Nordic Feed  

E-Print Network [OSTI]

Proceedings of the 1st Nordic Feed Science Conference, Uppsala, Sweden Institutionen för husdjurens Department of Animal Nutrition and Management ISSN 0347-9838 ISRN SLU-HUV-R-274-SE #12;#12;Proceedings of the 1st Nordic Feed Science Conference 22 ­ 23 of June 2010 Uppsala Sweden Institutionen för husdjurens

437

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

438

Waste feed delivery planning at Hanford  

SciTech Connect (OSTI)

The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades.

Certa, Paul J.; West, Elizha B.; Rodriguez, Juissepp S.; Hohl, Ted M.; Larsen, Douglas C.; Ritari, Jaakob S.; Kelly, James W.

2013-01-10T23:59:59.000Z

439

Waste Feed Delivery Planning at Hanford - 13232  

SciTech Connect (OSTI)

The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades. (authors)

Certa, Paul J.; Hohl, Ted M.; Kelly, James W.; Larsen, Douglas C.; West, Elizha B.; Ritari, Jaakob S.; Rodriguez, Juissepp S. [Washington River Protection Solutions, LLC, P.O. 850, Richland, WA 99352 (United States)] [Washington River Protection Solutions, LLC, P.O. 850, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

440

Energy-Production Coefficients of American Feeding Stuffs for Ruminants.  

E-Print Network [OSTI]

I TEXAS AGRICULTURAL EXPERIMENT STATION I AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, President BULLETIN NO. 329 MARCH, 1925 DIVISION OF CHEMISTRY ENERGY-PRODUCTION COEFFICIENTS OF AMERICAN FEEDING STUFFS B. YOUNGBLOOD... of feed- ing tests. This Bulletin should be useful for the purpose of calculating the feeding values of American feeding stuffs when the chemical composi- tion is known. It can also serve as a basis for further work on the feed- ing values of feeding...

Fraps, G. S. (George Stronach)

1925-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Feed Intake and Feeding Behavior Associations with Performance and Feed Efficiency of Feedlot Cattle Fed a Corn-based Diet  

E-Print Network [OSTI]

The objective of the first study was to determine which combination of bimodal (2-population) distribution models best fit non-feeding interval data to distinguish intervals within (1st population) and between (2nd population) meals in beef cattle...

Bailey, Jayton

2012-02-14T23:59:59.000Z

442

Joint Implementation Network Feed | Open Energy Information  

Open Energy Info (EERE)

Network Feed Network Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

443

Climate Technology Initiative Feed | Open Energy Information  

Open Energy Info (EERE)

Initiative Feed Initiative Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

444

Netherlands Development Organisation Feed | Open Energy Information  

Open Energy Info (EERE)

Organisation Feed Organisation Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

445

Digestion Experiments With Texas Feeding Stuffs.  

E-Print Network [OSTI]

477-514-15m TEXAS AGRICULTURAL EXPERIMENT STATION BULLETIN NO. 166. MAK, 1914 DIVISION OF CHEMISTRY Digestion Experiments With Texas Feeding Stuffs Digeisston oExxprp gmWmhETa FdWSEu oEfTm1a ep2Wu VON BOECKMANN-JONES CO., PRINTERS, AUSTIN... EXPERIMENTS WITH TEXAS FEEDING STUFFS B Y Gr. S. PRAPS., P H . D., Chemist. This bulletin contains the results of digestion tests with the ordi? nary fodder groups of certain feeding stuffs. Other results have been published in Bulletin 149...

Fraps, G. S.

1914-01-01T23:59:59.000Z

446

Vitamin A Content of Foods and Feeds.  

E-Print Network [OSTI]

LIBRARY, A & 341 CUL ,A%lBU TEXAS AGRICULTURAL EXPERI~~N I *SI A I I A. R. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 477 JULY, 1933 DIVISION OF CHEMISTRY Vitamin A Content of Foods and Feeds AGRICULTURAL... required by animals and man 28 Vitamin A in some feeds for animals 29 Summary 30 References .......................... --- 31 BULLETIN NO. 477 July, 1933 VITAMIN A CONTENT OF FOODS AND FEEDS By G. S. FRAPS AND RAY TREICHLER The importance of small...

Treichler, Ray; Fraps, G. S. (George Stronach)

1933-01-01T23:59:59.000Z

447

Production of enzymes for application on animal feeds.  

E-Print Network [OSTI]

??Ruminants diets in most developing countries are based on fibrous feeds, mainly mature pastures and crop residues. These feeds are unbalanced and particularly deficient in (more)

Godana, Busiswa

2007-01-01T23:59:59.000Z

448

ANL/APS/TB-44, Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS/TB-44 Rev. 4 APS/TB-44 Rev. 4 Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source Revision 4 Advanced Photon Source About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

449

ANL/APS/TB-54, Dose Calculations using MARS for Bremsstrahlung Beam Stops and Collimators in APS Beamline Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOSE CALCULATIONS USING MARS FOR BREMSSTRAHLUNG BEAM STOPS AND COLLIMATORS IN APS BEAMLINE STATIONS Jeffrey C. Dooling Accelerator Systems Division Advanced Photon Source August 2010 This work is sponsored by the US Department of Energy Office of Science The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display

450

Higher Order Suppressor (HOS) for the PolLux Microspectroscope Beamline at the Swiss Light Source SLS  

SciTech Connect (OSTI)

The mechanical design and performance of a device to suppress higher orders of a spherical grating monochromator at a constant deviation angle is described. The higher order suppressor (HOS) is used for a scanning transmission x-ray microspectroscope beamline (PolLux) at a bending magnet of the Swiss Light Source (SLS). The instruments allow microspectroscopy in polymer science, of biological samples in the water window as well as the study of magnetic materials with circular or linear polarized light in a photon energy range of 200 eV to 1400 eV. The HOS uses three mirrors acting as a low pass filter for soft x-rays to improve the absorption spectroscopy of carbon, oxygen and nitrogen 1s core levels. The successful installation and operation of the HOS located after the monochromator is reported. First results obtained using samples from materials research and environmental sciences exemplify the improved spectroscopy capabilities of the instrument.

Frommherz, U.; Stefani, R.; Ellenberger, U. [Paul Scherrer Institut, Division of Mechanical Engineering Sciences, 5232 Villigen PSI (Switzerland); Raabe, J.; Watts, B. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

451

Mycotoxins in Feed and Food Crops.  

E-Print Network [OSTI]

" , , ,., ":i: : ?. MYCOTOXINS IN FEED fu~D FOOD CROPS Prepared by James M. Armstrong, Extension Project Leader in Veterinary Medicine and Veterinarian (Livestock Health) John E. Bremer, Extension Agronomist Dennis B. Herd, Extension Beef Cattle...

Armstrong, James M.; Herb, Dennis B.; Bremer, John E.; Horne, C. Wendell; Thomas, William B.; Thornberry, Fred D.; Tripp, Leland D.; White, Thomas H.; Withers, Richard E.

1981-01-01T23:59:59.000Z

452

Hydrogen Generation through Static Feed Water Electrolysis  

Science Journals Connector (OSTI)

Life Systems Static Feed Water Electrolysis System (SFWES) concept, developed under NASA...2...) production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials compat...

F. C. Jensen; F. H. Schubert

1975-01-01T23:59:59.000Z

453

Commercial Feeding Stuffs in 1907-08.  

E-Print Network [OSTI]

-JONES CO., PRINTERS 1908. TEXAS AGRICULTURAI, EXPERIMENT STATIONS. -- OFFICERS. GOVERNING. BOARD. (Board of Directors A. and 11. College.) ................................. I<. K. LEGETT, President. Abilene. ........................... T. D.... This gives the quantity of feeding stuff in the package, exclusive of the weight of sack, or other container. The object of this provision is to insure that every purchaser may know exactly how much feeding stuff he is buying. 2. The name of the article...

Carson, J.W.; Fraps, G. S. (George Stronach)

1908-01-01T23:59:59.000Z

454

Factors and Feeds for Supplementing Beef Cows  

E-Print Network [OSTI]

decreases, and so does diet quality. Then, supple- mentation may become necessary even if animal numbers are reduced. Factors and Feeds for Supplementing Beef Cows Stephen P. Hammack and Ronald J. Gill* *Extension Beef Cattle Specialist and Extension Live... decreases, and so does diet quality. Then, supple- mentation may become necessary even if animal numbers are reduced. Factors and Feeds for Supplementing Beef Cows Stephen P. Hammack and Ronald J. Gill* *Extension Beef Cattle Specialist and Extension Live...

Hammack, Stephen P.; Gill, Ronald J.

2000-05-03T23:59:59.000Z

455

A neural network approach to the selection of feed mix in the feed industry  

Science Journals Connector (OSTI)

Due to frequent changes of feed mix, the anticipation of pellet quality becomes a cumbersome task for a mill. This paper suggests that the artificial neural network can be used to predict the production rate and percentage of dust for a particular mill. ... Keywords: Artificial neural network, Feed cost, Least cost formulation, Pelleting cost, Pelleting rate

Supachai Pathumnakul; Kullapapruk Piewthongngam; Arthit Apichottanakul

2009-08-01T23:59:59.000Z

456

THERMAL ANALYSIS OF WASTE GLASS MELTER FEEDS  

SciTech Connect (OSTI)

Melter feeds for high-level nuclear waste (HLW) typically contain a large number of constituents that evolve gas on heating, Multiple gas-evolving reactions are both successive and simultaneous, and include the release of chemically bonded water, reactions of nitrates with organics, and reactions of molten salts with solid silica. Consequently, when a sample of a HLW feed is subjected to thermogravimetric analysis (TGA), the rate of change of the sample mass reveals multiple overlapping peaks. In this study, a melter feed, formulated for a simulated high-alumina HLW to be vitrified in the Waste Treatment and Immobilization Plant, currently under construction at the Hanford Site in Washington State, USA, was subjected to TGA. In addition, a modified melter feed was prepared as an all-nitrate version of the baseline feed to test the effect of sucrose addition on the gas-evolving reactions. Activation energies for major reactions were determined using the Kissinger method. The ultimate aim of TGA studies is to obtain a kinetic model of the gas-evolving reactions for use in mathematical modeling of the cold cap as an element of the overall model of the waste-glass melter. In this study, we focused on computing the kinetic parameters of individual reactions without identifying their actual chemistry, The rough provisional model presented is based on the first-order kinetics.

KRUGER AA; HRMA PR; POKORNY R; PIERCE DA

2011-10-21T23:59:59.000Z

457

Tank 26 Evaporator Feed Pump Transfer Analysis  

SciTech Connect (OSTI)

The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

Tamburello, David; Dimenna, Richard; Lee, Si

2009-02-11T23:59:59.000Z

458

Commercial Feeding Stuffs, September 1, 1938, to August 31, 1939.  

E-Print Network [OSTI]

and does not include whole grains. Chemical standards for various by-product feeds and special- purpose mixed feeds are shown, and definitions of and standards for commercial unmixed feeds are given, together with additional information... ......................................... Table of inspection results 60 Table of mineral feed analyses ..................................... 201 BULLETIN NO. 578 SEPTEMBER 1939 CBl!!IMERCIAE FEEDING STUFFS, SEPTEMBER 1, 1938, TO AUGUST 31, 1939:': F. D. Fuller, Chief, and James Sullivan...

Fuller, F. D. (Frederick Driggs); Sullivan, James

1939-01-01T23:59:59.000Z

459

Scientific Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science & Education: Science & Education: Science Highlights Conferences Seminars & Meetings Publications Annual Reports APS Upgrade Courses and Schools Graduate Programs Scientific Software Subscribe to APS Recent Publications rss feed Scientific Software Scientists and researchers at the APS develop custom scientific software to help with acquisition and analysis of beamline data. Several packages are available for a variety of platforms and uses. General Diffraction Powder Diffraction Crystallography Synchrotron Radiation / Optical Elements Time-Resolved EXAFS Visualization / Data Processing Detector Controls General Diffraction fprime FPRIME/Absorb This provides utilities for computing approximate x-ray scattering cross sections (f, f' and f") for individual elements using the Cromer & Liberman

460

Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines  

SciTech Connect (OSTI)

We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

Yoon, P.S.; Siddons, D. P.

2009-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

International Energy Agency Feed | Open Energy Information  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

462

Feed Resource Recovery | Open Energy Information  

Open Energy Info (EERE)

Feed Resource Recovery Feed Resource Recovery Jump to: navigation, search Name Feed Resource Recovery Place Wellesley, Massachusetts Product Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates 42.29776°, -71.289744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.29776,"lon":-71.289744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

ClimateWorks Feed | Open Energy Information  

Open Energy Info (EERE)

ClimateWorks Feed ClimateWorks Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

464

Feed-In Tariff | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Feed-In Tariff Feed-In Tariff < Back Eligibility Agricultural Commercial Industrial Local Government Residential State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info Start Date 2/14/2008 State California Program Type Performance-Based Incentive Rebate Amount Tariff is based on the "Renewable Market Adjusting Tariff" Provider California Public Utilities Commission '''''Note: The California general feed-in tariff was amended by [http://leginfo.ca.gov/pub/09-10/bill/sen/sb_0001-0050/sb_32_bill_2009091... SB 32] of 2009 and [http://www.leginfo.ca.gov/pub/11-12/bill/sen/sb_0001-0050/sbx1_2_bill_20... SBX1-2] of 2011. The California Public Utilities Commission (CPUC)

465

World Watch Institute Feed | Open Energy Information  

Open Energy Info (EERE)

World Watch Institute Feed World Watch Institute Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

466

United Nations Foundation Feed | Open Energy Information  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

467

World Resources Institute Feed | Open Energy Information  

Open Energy Info (EERE)

World Resources Institute Feed World Resources Institute Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

468

A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids  

SciTech Connect (OSTI)

High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

Mauro, N.A.; Kelton, K.F. (WU)

2011-10-27T23:59:59.000Z

469

High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline  

SciTech Connect (OSTI)

Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

Llorens, Isabelle [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); Synchrotron SOLEIL - MARS beamline, L'Orme des Merisiers, F-91192 Gif sur Yvette (France); Lahera, Eric; Delnet, William; Proux, Olivier [Observatoire des Sciences de l'Univers de Grenoble, UMS 832 CNRS Universite Joseph Fourier, F-38041 Grenoble cedex 9 (France); BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Braillard, Aurelien; Hazemann, Jean-Louis; Prat, Alain; Testemale, Denis [BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay [Institut de Mineralogie et de Physique des Milieux Condenses, UMR 7590, 4 place Jussieu, F-75005 Paris (France); Bardou, Nathalie [Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, Route de Nozay, F-91460 Marcoussis (France); Ulrich, Olivier [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); BM32/IF beamline, ESRF, F-38043 Grenoble cedex 9 (France); Arnaud, Stephan; Berar, Jean-Francois; Boudet, Nathalie; Caillot, Bernard [Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); BM02/D2AM beamline, ESRF, F-38043 Grenoble cedex 9 (France); Chaurand, Perrine; Rose, Jerome [Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement, UMR 7730, F-13545 Aix en Provence (France); and others

2012-06-15T23:59:59.000Z

470

Compressor bleed cooling fluid feed system  

DOE Patents [OSTI]

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

471

A view of feed mill improvement  

E-Print Network [OSTI]

Ibr wetghktg all other feed ngtediems and any cattle that woukl arrive at the yartL My primary job whge working in the office involved using a coinputer. I was in charge of adding up the total pounds of feed that were fed to the pens of cattle each... of recording each day's activities in book form. Walter Lasley and Sons, Inc. utilize the computer to perform all the necessary accounting functions, but each day the inventories were also maintained in ledger form. One final responsibility I had...

Nobra, Jay Edward

1996-01-01T23:59:59.000Z

472

AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory  

SciTech Connect (OSTI)

Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi [Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tukuba, Ibaraki, 300-8585 (Japan)

2010-06-23T23:59:59.000Z

473

Waste-gas C02 feeds algae  

Science Journals Connector (OSTI)

Waste-gas C02 feeds algae ... The new scheme calls for algae found growing on highly alkaline shallow ponds in Central Africa to metabolize carbon dioxide in waste gases to produce highprotein food. ... IFF has been studying the blue-green algae since the beginning of 1963. ...

1966-07-18T23:59:59.000Z

474

TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS  

SciTech Connect (OSTI)

The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

Tamburello, D; Richard Dimenna, R; Si Lee, S

2009-01-27T23:59:59.000Z

475

Proceedings of the 5th Nordic Feed  

E-Print Network [OSTI]

Proceedings of the 5th Nordic Feed Science Conference, Uppsala, Sweden Institutionen för husdjurens conference posters can be downloaded at: http://app.scanlife.com/appdownload/dl Proceedings from the Nordic of Animal Nutrition and Management ISSN 0347-9838 ISRN SLU-HUV-R-290-SE #12;#12;Proceedings of the 5th

476

Characterization of Feeding Behavior Traits and Associations with Performance and Feed Efficiency in Finishing Beef Cattle  

E-Print Network [OSTI]

The first objective of this study was to validate the feeding behavior measurements from a radio frequency electronic system (GrowSafe (TM) System Ltd., Airdrie, AB, Canada) and examine the software sensitivity to different parameter settings (MPS...

Mendes, Egleu Diomedes Marinho

2011-10-21T23:59:59.000Z

477

Feed-Pump Hydraulic Performance and Design Improvement, Phase I:  

Office of Scientific and Technical Information (OSTI)

Feed-Pump Hydraulic Performance Feed-Pump Hydraulic Performance and Design Improvement, Phase I: J2esearch Program Design Volume 2 EPRI EPRI CS-2323 Volume 2 Project 1884-6 Final Report March 1982 Keywords: Feed Pumps Feed Pump Reliability Feed Pump Hydraulics Feed Pump Design Feed Pump Research Feed Pump Specifications Prepared by Borg-Warner Corporation (Byron Jackson Pump Division and Borg-Warner Research Center) Carson, California and Massa^ f Technology Cambri__ . s ,-T. a a *a_^"nt.- ji^, w « ' jm.m ^j.^M\MMMim^mjii'mmmjmiiiimm\i- " I E CT R I C P 0 W E R R E S E A R C H I N ST ITO T E DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees,

478

Managing Milk Composition: Feed Additives and Production Enhancers  

E-Print Network [OSTI]

Feed additives play an essential role in enhancing production and yield of milk and milk components. Producers should, however, evaluate the cost-to-benefit ratio of each feed additive in their management systems. This publication explains how...

Stokes, Sandra R.; Jordan, Ellen R.; Looper, Mike; Waldner, Dan

2000-12-14T23:59:59.000Z

479

FEEDING POULTRY WASTES TO CATTLE PREPARED BY: JOSEPH P. FONTENOT  

E-Print Network [OSTI]

Stacking 9 Composting 10 Quality of Animal Products Safety of Feeding Animal Wastes Toxicity Pathogenic conventional diets. Processing of animal wastes to be used as animal feed is necessary for destruction

480

Commercial Feeding Stuffs, September 1, 1940 to August 31, 1941.  

E-Print Network [OSTI]

COMMERCIAL FEEDING STUFFS From September 1, 1940 to August 31, 1941 F. D. FULLER AND JAMES SULLIVAN Division of Feed ,Control Service [Blank Page in Original Bulletin] This bulletin is the thirty-sistli annual report on the inspection... in the State during the fiscal year cov- &red by this report. This amount represents only the tonnage of feeding stuffs regulated by tlie Tesrts Peed Law and does not include whole grains. Chemical standards for various by-product feeds and special...

Sullivan, James; Fuller, F. D. (Frederick Driggs)

1941-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "feeds rss beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

New Physics in Iridium Compounds | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Self-Improvement of Lithium-Ion Batteries The Self-Improvement of Lithium-Ion Batteries Architecture and Viral Disease RNA Folding: A Little Cooperation Goes a Long Way A New Phase in Cellular Communication Engineering Thin-Film Oxide Interfaces Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Physics in Iridium Compounds DECEMBER 10, 2012 Bookmark and Share An unprecedented "magnon gap" of Sr3Ir2O7 was revealed using resonant inelastic x-ray scattering beamline at the XSD 9-ID beamline at the APS. This implies that dipolar interactions, analogous to classical bar magnets, are extremely strong in a composite spin-orbit coupled state and that these interactions control the behavior of magnetic moments at the quantum level.

482

Brookhaven Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Brookhaven Site Office CX Determinations Brookhaven Site Office CX Determinations Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion (CX) Determinations Brookhaven Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page Categorical Exclusion Determination Documents (CX Determinations): * Determination Date Name of Action: Description Categorical Exclusion Number External link 04/29/2013 This generic CX covers removal and transfer of beamlines from Brookhaven National Laboratory to other federal agencies or scientific laboratories. This activity will involve disassembly of beamlines and transport via tractor trailers over public roads. .pdf file (14KB) B1.30

483

A Key Step in Repairing DNA Double-Strand Breaks | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-ray Rainbow X-ray Rainbow An Insulating Breakthrough Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A Key Step in Repairing DNA Double-Strand Breaks JANUARY 10, 2007 Bookmark and Share The atomic structure of the protein 53BP1 identified by Mayo researchers. (Courtesy: Mayo Clinic) A team of Mayo Clinic researchers has uncovered a key step in the molecular pathway of repairing DNA double-strand breaks. The studies were carried out using the 19-ID beamline (SBC-CAT) at the Advanced Photon Source (APS, Argonne) and the X12-C beamline at the National Synchrotron Light Source (NSLS, Brookhaven National Laboratory). Both the APS and the NSLS are funded by the U.S. Department of Energy's Office of Basic Energy

484

Art Scene Investigation: Picasso goes Nanotech  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linda Young of APS Elected Vice Chair of DAMOP Linda Young of APS Elected Vice Chair of DAMOP Moffat of BioCARS and U. of C. Receives 2011 ACA Patterson Award Argonne's Fenter Wins Warren Award for X-ray Diffraction Studies Lahsen Assoufid Elected a Fellow of SPIE 2011 Arthur H. Compton Award Announced by APSUO APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Art Scene Investigation: Picasso goes Nanotech AUGUST 8, 2011 Bookmark and Share Beamline scientist Volker Rose (Argonne National Laboratory) inside the control room [of the nanoprobe x-ray beamline at the APS]. At right, tools of the trade, and our Picasso sample (try to spot the almost invisible white paint chip hanging in the circular hole!) From the Art Institute of Chicago ARTicle blog entry by Francesca Casadio,

485

Social Media | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of this year's SunShot Summit during the May 7 SolarChat Register today RSS feed icon. For the latest news, subscribe to our RSS feeds. Facebook icon. Like us on Facebook....

486

Original article The effect of feed enzymes on nutrient  

E-Print Network [OSTI]

Original article The effect of feed enzymes on nutrient and energy retention in young racing. No difference in body weight was observed between groups. Despite feed restriction, intake was higher for enzyme-sup- plemented diet. When related to feed intake, excreta were lower by 11% for enzyme-supplemented diet. Enzyme

Paris-Sud XI, Université de

487

Livestock Drought Feeding Glenn Nader, UCCE Farm Advisor  

E-Print Network [OSTI]

Livestock Drought Feeding Strategies Glenn Nader, UCCE Farm Advisor Yuba/Sutter/Butte Counties #12 for Energy and Protein #12;Canola meal #12;Canola Meal vs Other Common Byproduct Feeds (% of DM) Feed TDN CP.65/ton. #12;Impacts on Estimated Metabolizable Energy #12;#12;#12;Beef Cattle Eating Ensiled Rice Straw

Tate, Kenneth

488

Original article Effects of polyethylene glycol in concentrate or feed  

E-Print Network [OSTI]

Original article Effects of polyethylene glycol in concentrate or feed blocks on carcass -- The influence of concentrate or feed blocks with or without Polyethylene glycol (PEG, molecular weight 4000. / tannins / concentrate / feed blocks / polyethylene glycol / carcass quality / offal weight Résumé

Boyer, Edmond

489

Original article Honey production in Venezuela: effects of feeding  

E-Print Network [OSTI]

Original article Honey production in Venezuela: effects of feeding sugar syrup on colony weight to the nectar flow was studied through a complete honey production sea- son in Venezuela. A significant honeybee / European honeybee / feeding / honey production / Venezuela INTRODUCTION Feeding honey bee

Paris-Sud XI, Université de

490

Bloggers as Experts Feed Distillation using Expert Retrieval Models  

E-Print Network [OSTI]

Bloggers as Experts Feed Distillation using Expert Retrieval Models Krisztian Balog kbalog Kruislaan 403, 1098 SJ Amsterdam ABSTRACT We address the task of (blog) feed distillation: to find blogs- ness as feed distillation strategies. The two models capture the idea that a human will often search

de Rijke, Maarten

491

Evaluation of Locally Available Feed Resources for Striped Catfish  

E-Print Network [OSTI]

(Pangasianodon hypopthalmus) Abstract This thesis investigated and compared inputs and outputs, economic factors and energy was highest in soybean meal, groundnut cake, broken rice, shrimp head meal, golden apple snail with indoor. Feed conversion rate and feed utilisation were also 0.20.7 units (kg feed DM/kg weight gain

492

Metabolizable Energy of Some Chicken Feeds.  

E-Print Network [OSTI]

be utilized by the animals. No allowances are made e work of digestion and other losses involved in the utilization of gested nutrients. Comparison of the heats of combustion found by ;is with the heats of combustion calculated by the usual methods, d... that its heat of combustion is 3.7 Calories per gram instead of the 4.2 Calories per gram used for nitrogen-free extract in ordinary feeds. CONTENTS Page Introduction .................................................... Method of procedure...

Fudge, J. F. (Joseph Franklin); Carlyle, E. C. (Elmer Cardinal); Fraps, G. S. (George Stronach)