Sample records for fee costs gas

  1. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract Number: Maximum Fee Cost Plus Award Fee 1,640,839,964 Fee Information Minimum Fee 0 EM Contractor Fee Site:...

  2. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    FY2011 FY2012 Fee Information Minimum Fee Maximum Fee September 2014 Contract Number: Cost Plus Incentive Fee Contractor: 3,260,603,765 Contract Period: EM Contractor Fee Site:...

  3. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Office - Oak Ridge, TN Contract Name: Transuranic Waste Processing Contract Sep-14 2,433,940 Cost Plus Award Fee 150,664,017 Fee Information Minimum Fee 2,039,246 Maximum Fee...

  4. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Number: Contract Type: Contract Period: 0 Minimum Fee Maximum Fee Washington River Protection Solutions LLC DE-AC27-08RV14800 Cost Plus Award Fee 5,553,789,617 Fee Information...

  5. Total Estimated Contract Cost:) Performance Period Total Fee...

    Office of Environmental Management (EM)

    Washington Closure LLC DE-AC06-05RL14655 Contractor: Contract Number: Contract Type: Cost Plus Incentive Fee 2,366,753,325 Fee Information 0 Maximum Fee 319,511,699...

  6. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    0 Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee Maximum Fee* 595,123,540 Fee Available 102,622,325 10,714,819,974...

  7. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Wastren-EnergX Mission Support LLC Contract Number: DE-CI0000004 Contract Type: Cost Plus Award Fee 128,879,762 Contract Period: December 2009 - July 2015 Fee Information...

  8. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    - September 2015 September 2014 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 444,161,295 Contract Period:...

  9. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Cumulative Fee Paid 22,200,285 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee 989,000,000 Contract Period: Contract Type: January 2010 - December...

  10. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee Fee Available 4,324,912 408,822,369 Contract Period: December 2010 -...

  11. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Fee Paid 127,390,991 Contract Number: Fee Available Contract Period: Contract Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM...

  12. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Services & Testing Contract September 2014 Contractor: Contract Number: Contract Type: Advanced Technologies & Labs International Inc. DE-AC27-10RV15051 Cost Plus Award Fee...

  13. Cost-share Fee Waiver request form Request for a cost share for a GSSP fee waiver on the following project. Documentation from granting

    E-Print Network [OSTI]

    Taylor, Jerry

    Cost-share Fee Waiver request form Request for a cost share for a GSSP fee waiver on the following project. Documentation from granting agency with information regarding tuition as unallowable must____________________________________________________________ Project Name __________________________________________________________________ Funding Agency

  14. Fees

    Broader source: Energy.gov [DOE]

    The DOE Loan Program is required to collect several fees from loan program Applicants. Please find an outline of these fees below. In addition, DOE is supported by outside consultants and legal...

  15. Cost of Gas Adjustment for Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

  16. Student services fee The student services fee is distributed

    E-Print Network [OSTI]

    Amin, S. Massoud

    Student services fee The student services fee is distributed among various student programs that are listed online, along with their amounts, at onestop.umn.edu/finances/costs_and_ tuition/tuition_and_fees/student_ser- vice_fees.html). If you are enrolled for 6 or more credits, you must pay a student services fee of $368

  17. Student services fee The student services fee is distributed

    E-Print Network [OSTI]

    Amin, S. Massoud

    Student services fee The student services fee is distributed among various student programs that are listed online, along with their amounts, at onestop.umn.edu/finances/costs_and_ tuition/tuition_and_fees/student_ser- vice_fees.html). If you are enrolled for 6 or more credits, you must pay a student services fee of $414

  18. Unaccounted-for gas cost allocation

    SciTech Connect (OSTI)

    Ozenne, D.G. (Univ. of California, Los Angeles, CA (United States))

    1994-02-15T23:59:59.000Z

    As competitive pressures grow, gas utility managers have stepped up their search for ways to ensure that rates remain competitive. This challenge is particularly acute in the large commercial and industrial market segments, which are most typically [open quotes]at risk.[close quotes] A variety of cost-allocation studies have been undertaken to determine more accurately what costs are associated with serving market segments, and which costs should be recovered from each. Because there are clear winners and losers in this process (at least, it is clear who wins and loses in the short term), these reallocations have been hotly debated and fiercely litigated. Any proposed change in allocation must be supported by either compelling logic or empirical evidence. This article suggests a method of reallocating the costs associated with unaccounted-for (UAF) gas volumes, based on results from two studies of the elements contributing to UAF gas.

  19. The US Department of Energy`s prime contractor fees on subcontractor costs

    SciTech Connect (OSTI)

    NONE

    1998-09-11T23:59:59.000Z

    In Fiscal Year 1996, the Department`s prime contractors awarded $5.3 billion in subcontracts. The purpose of this audit was to determine if the Department adjusted the fee bases of prime contractors to reflect the actual effort necessary to manage the technical and administrative activities of their subcontractors.

  20. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

  1. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  2. Cost Curves for Gas Supply Security: The Case of Bulgaria

    E-Print Network [OSTI]

    Silve, Florent; NoŽl, Pierre

    . Interconnections: 8.64 7.92 14 - 5 Figure 2. Structure of gas consumption by sector, Bulgaria (2007) Figure 3. Structure of heat generation by fuel type, Bulgaria (2007) Figure 4. Electricity generation mix, Bulgaria (2007) Chemical industry 31... to put the vertical dotted line). The government may want to insure the gas consumption of some specific categories of customers, the interruption of which Cost per unit of peak gas consumption insured (mÄ/mcm/day) Cumulative level of peak gas...

  3. Tight gas sands study breaks down drilling and completion costs

    SciTech Connect (OSTI)

    Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

    1994-06-06T23:59:59.000Z

    Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

  4. Financing of Substitute Natural Gas Costs (Indiana)

    Broader source: Energy.gov [DOE]

    This statute encourages the development of local coal gasification facilities to produce substitute natural gas, calls on state energy utilities to enter into long-term contracts for the purchase...

  5. Requirements for Using and Administering Cost-plus-award-fee Contracts:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReportNuclearGas Export Scenarios |Requirements for

  6. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Estimates for Natural GasNatural Gas--Fired Power PlantsFired Power Plants · 2007: Rubin, et al., Energy utilities again looking to natural gas combined cycle (NGCC) plants for new or replacement capacity

  7. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

  8. Cost analysis of NOx control alternatives for stationary gas turbines

    SciTech Connect (OSTI)

    Bill Major

    1999-11-05T23:59:59.000Z

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

  9. An activity-based-parametric hybrid cost model to estimate the unit cost of a novel gas turbine component

    E-Print Network [OSTI]

    Sóbester, András

    An activity-based-parametric hybrid cost model to estimate the unit cost of a novel gas turbine in gas turbine compressors. However, the model disc (blisk) designs which are used by the aerospace industry in gas turbine compressors. The tool

  10. Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies

    Broader source: Energy.gov [DOE]

    To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy.

  11. A Low-Cost Natural Gas/Freshwater Aerial Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin; Richard Cathcart

    2007-01-05T23:59:59.000Z

    Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

  12. Boise State University 2013-2014 Graduate Catalog 45 Tuition and Fees

    E-Print Network [OSTI]

    Barrash, Warren

    questions about Idaho residency requirements. Deadlines for Paying Tuition, Fees, and Other Charges YouBoise State University 2013-2014 Graduate Catalog 45 Tuition and Fees In general, the costs of attending Boise State University arise from tuition, institutional fees, and special fees (such as fees

  13. Student Health Service Fee Student Center Fee

    E-Print Network [OSTI]

    Firestone, Jeremy

    Student Health Service Fee Student Center Fee Graduate Recreation Fee Registration Fee International Student Service Fee Level Masters Doctorial Graduate Fall 2014/Spring 2015 (Amounts reflect the amount charged per semester) GR Full-Time (Registered 9 Credits/Semester or Contracted Student) GR Part

  14. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form 2003Costs of

  15. Costs of Crude Oil and Natural Gas Wells Drilled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts of Crude Oil and Natural Gas

  16. Options and costs for offsite disposal of oil and gas exploration and production wastes.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.; Environmental Science Division

    2007-01-01T23:59:59.000Z

    In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that accept and manage E&P wastes for a fee. Their services include waste management and disposal, transportation, cleaning of vehicles and tanks, disposal of wash water, and, in some cases, laboratory analysis. Commercial disposal facilities offer a suite of waste management methods and technologies.

  17. West Virginia University 1 Tuition, Fees, and Residency

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Financial Aid Office provides an estimate of the total cost of attendance for an academic year at financialaid.wvu.edu/tuition-cost-information/ cost-of-attendance . This estimate includes tuition and feesWest Virginia University 1 Tuition, Fees, and Residency Cost of an Academic Year's Work The WVU

  18. West Virginia University 1 Tuition, Fees & Residency

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Year's Work The WVU Financial Aid Office provides an estimate of the total cost of attendance for an academic year at financialaid.wvu.edu/tuition-cost-information/ cost-of-attendance. This estimate includesWest Virginia University 1 Tuition, Fees & Residency In this section: Cost: ∑ Cost of an Academic

  19. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20T23:59:59.000Z

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  20. Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.

    E-Print Network [OSTI]

    Franz, Nico M.

    3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

  1. "MBUF Demo" "Mn Road Fee Test"

    E-Print Network [OSTI]

    Minnesota, University of

    (40 mpg) Electric Vehicle (non-gas powered) State Tax * Federal Tax ** State Tax * Federal Tax"MBUF Demo" "Mn Road Fee Test" "IntelliDrive Connected Vehicles for Safety, Mobility and User Fee Overview Six Months In-Vehicle Data Collection Participant Recruited Equipment Deployed First Odometer

  2. Abstract The natural gas price surged in 2004. As a result, the marginal cost of some generators burning gas also rose sharply.

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Abstract ­ The natural gas price surged in 2004. As a result, the marginal cost of some generators marginal cost, which is closely related to the natural gas price. Since gas units are usually the marginal the sensitivity of Var benefit with respect to generation cost. The U.S. natural gas industry has been

  3. Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas

    E-Print Network [OSTI]

    Shaw, Joseph A.

    Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

  4. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs

    E-Print Network [OSTI]

    Parker, Nathan

    2004-01-01T23:59:59.000Z

    future estimates of hydrogen pipelines. Construction Cost (does this mean for hydrogen pipelines? The objective of thisinto the cost of hydrogen pipelines. To this end I will

  5. Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

  6. Optimal transition from coal to gas and renewable power under capacity constraints and adjustment costs

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal transition from coal to gas and renewable power under capacity constraints and adjustment existing coal power plants to gas and renewable power under a carbon budget. It solves a model of polluting, exhaustible resources with capacity constraints and adjustment costs (to build coal, gas, and renewable power

  7. Survey of state regulatory activities on least cost planning for gas utilities

    SciTech Connect (OSTI)

    Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

    1991-04-01T23:59:59.000Z

    Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

  8. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-08T23:59:59.000Z

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

  9. FOIA FEES

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- Enron Documents FOIA -Fees The FOIA

  10. Oil and Gas Lease Equipment and Operating Costs 1994 Through...

    Gasoline and Diesel Fuel Update (EIA)

    10 producing wells, 11 injection wells and 1 water supply well. Costs for water storage tanks, injection plant, filtering systems, injection lines and drilling water supply wells...

  11. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  12. The Costs of Greenhouse Gas Mitigation with Induced Technological Change

    E-Print Network [OSTI]

    Watson, Andrew

    -analysis of the costs of mitigating global GHG emissions over the period to 2100, with and without the effects trading allowances at a regional or global level. It reports a wide range of costs with confusing-analyses done by the World Resources Institute for the US economy, 1997, and the IPCC post-SRES models

  13. A royalty pain in the gas: What costs may be properly deducted from a gas royalty interest?

    SciTech Connect (OSTI)

    Raynes, R.S. Jr.

    1996-10-01T23:59:59.000Z

    It is emphasized that parties contracting for oil and gas leases are always free to allocate the costs of compression, transportation and processing in their agreements, thereby avoiding many potential problems. However, it must be recognized that all too often lease agreements fail to apportion expenses that may be incurred after the discovery of oil or gas. In the likely event that the West Virginia courts are faced with this issue, they would be wise to adopt the implied duty to market theory, thereby, putting the onus on the lessee to either provide up front in the lease for the apportionment of costs after the discovery of the gas, or in those instances where the lease is silent as to who will incur the cost, to place the burden on the lessee to cover those costs. Regarding transportation costs, even in jurisdictions such as Oklahoma, where the lessee is obligated to develop the gas he has found so that it will bring the highest possible market value, the lessee is not required to provide for pipeline facilities beyond the lease premises. Kansas courts have also held that the lessee has a general duty to see that the gas is marketed, but that it is not required to pay the lessor`s share of transportation charges form the well to some distant place. Thus, in West Virginia when a gas lease is silent as what costs a lessee may properly deduct from a lessor`s royalty payment, the lessee should bear the costs under the implied duty to market theory if those costs do not involve enhancing the product or transporting it to some place of sale off the leased premises.

  14. Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy.

  15. Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting

    Broader source: Energy.gov [DOE]

    For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated.

  16. Reduction in Fabrication Costs of Gas Diffusion Layers

    SciTech Connect (OSTI)

    Jason Morgan; Donald Connors; Michael Hickner

    2012-07-10T23:59:59.000Z

    Ballard Material Products (BMP) performed a pre-design technical and cost analysis of state of the art production technologies feasible for high volume GDL manufacturing. Based upon criteria that also included environmental health and safety, customer quality requirements, and future needs, BMP selected technologies that can be integrated into its current manufacturing process. These selections included Many-At-A-Time (MAAT) coating and continuous mixing technologies, as well as various on-line process control tools. These processes have allowed BMP to produce high performance GDLs at lower cost for near-term markets, as well as to define the inputs needed to develop a conceptual Greenfield facility to meet the cost targets for automotive volumes of 500,000 vehicles per year.

  17. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the1 S u mCosts

  18. New Student Orientation Student Health Service Fee

    E-Print Network [OSTI]

    Firestone, Jeremy

    New Student Orientation Fee Student Health Service Fee Student Center Fee Student Comprehensive Fee Registration Fee International Student Service Fee Fall 2014 Spring 2015 $516 $599 Student Teaching Fee Lab Fee Descriptions This is a one-time fee charged to all new undergraduate students in order to support

  19. West Virginia University 1 Tuition, Fees and Residency

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Year's Work The WVU Financial Aid Office provides an estimate of the total cost of attendance for an academic year at financialaid.wvu.edu/tuition-cost-information/ cost-of-attendance. This estimate includesWest Virginia University 1 Tuition, Fees and Residency In this section: Cost: ∑ Cost of an Academic

  20. West Virginia University 1 Tuition, Fees and Residency

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    of an Academic Year's Work The WVU Financial Aid Office provides an estimate of the total cost of attendance for an academic year at financialaid.wvu.edu/tuition-cost-information/ cost-of-attendance. This estimate includesWest Virginia University 1 Tuition, Fees and Residency In this section: COST: ∑ Cost of an Academic

  1. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    SciTech Connect (OSTI)

    David Cist; Alan Schutz

    2005-03-30T23:59:59.000Z

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  2. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

  3. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  4. Universal model for water costs of gas exchange by animals and plants

    E-Print Network [OSTI]

    terrestrial animals and plants exchange O2 and CO2 with the atmosphere and thereby incur costs in the currency Hemphill Brown, University of New Mexico, Albuquerque, NM, and approved March 30, 2010 (received for review), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model

  5. What is greener than a VMT tax? The case for an indexed energy user fee to finance us surface transportation

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2011-01-01T23:59:59.000Z

    Highway finance in the United States is perceived by many to be in a state of crisis, primarily due to the erosion of motor fuel tax revenues due to inflation, fuel economy improvement, increased use of alternative sources of energy and diversion of revenues to other purposes. Monitoring vehicle miles of travel (VMT) and charging highway users per mile has been proposed as a replacement for the motor fuel tax. A VMT user fee, however, does not encourage energy efficiency in vehicle design, purchase and operation, as would a user fee levied on all forms of commercial energy used for transportation and indexed to the average efficiency of vehicles on the road and to inflation. An indexed roadway user toll on energy (IRoUTE) would induce two to four times as much reduction in greenhouse gas (GHG) emissions and petroleum use as a pure VMT user fee. However, it is not a substitute for pricing GHG emissions and would make only a small but useful contribution to reducing petroleum dependence. An indexed energy user fee cannot adequately address the problems of traffic congestion and heavy vehicle cost responsibility. It could, however, be a key component of a comprehensive system of financing surface transportation that would eventually also include time and place specific monitoring of VMT for congestion pricing, externality charges and heavy vehicle user fees.

  6. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    SciTech Connect (OSTI)

    Bedient, P.B.

    1995-01-16T23:59:59.000Z

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  7. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  8. 16 TAC, part 1, chapter 3, rule 3.78 Fees and Financial Security...

    Open Energy Info (EERE)

    Abstract These regulations outline the requirements for fees and financial security with the Oil and Gas Division of the Railroad Commission of Texas. Published NA...

  9. Miscellaneous Fees Associate Student

    E-Print Network [OSTI]

    Levi, Ran

    ). [Fees for the supervised MD and ChM will be at the standard part-time postgraduate rate] £900 Re

  10. Avoided Gigawatts Through Utility Capital Recovery Fees

    E-Print Network [OSTI]

    Frosenfeld, A. N.; Verdict, M. E.

    1985-01-01T23:59:59.000Z

    structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving...

  11. Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment

    E-Print Network [OSTI]

    Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

  12. MINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE

    E-Print Network [OSTI]

    Minnesota, University of

    Policy Center Oregon Road User Fee Pilot Program Other Interest: Nevada, Texas, Ohio, Idaho, etc. May Cellular Tower Data Warehouse May 24, 2012 6 #12;Determination of Mileage Fees · MBUF Rate StructureMINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE STRUCTURE CONCEPT 23rd Annual Transportation

  13. The marginal costs and pricing of gas system upgrades to accommodate new electric generators

    SciTech Connect (OSTI)

    Ambrose, B.

    1995-12-31T23:59:59.000Z

    In the coming years, competitive forces and restructuring in the electric industry can be expected to increase substantially the demand for gas delivery service to new electric generating units by local distribution companies (LDCs) and pipeline companies across the United States. In meeting this demand, it is important that the prices paid by electric generators for gas delivery service properly reflect the costs of the resources utilized in providing service to them in order that their decisions regarding what to build and where as well as the manner in which their units are dispatched are as efficient as possible from a societal standpoint. This will assure that society`s resources will be neither squandered nor underutilized in providing service to these generators and aid in assuring that, once built, the units are run in an efficient manner. While the most efficient solution to this problem is a secondary market in tradeable pipeline capacity rights, we do not have such a system in place at this time. Further, tradeable rights for LDC capacity may be difficult to establish. An interim solution that will work in the confines of the present system and not create problems for the transition to tradeable rights is required. This purpose of this paper is to set out the important first principals involved in applying marginal costing to the provision of gas delivery service to new electric generating units rather than to present empirical data on the marginal costs of such service. Experience has shown that marginal costs are usually unique to the particular situation being costed.

  14. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  15. Carbon black: A low cost colloidal additive for controlling gas-migration in cement slurries

    SciTech Connect (OSTI)

    Calloni, G.; Moroni, N.; Miano, F.

    1995-11-01T23:59:59.000Z

    The effect of different additives on the permeability of cement slurries to formation gas has been studied with the aid of a gas flow apparatus. The performance of two commercial additives (polymer latex and silica fume) has been compared to that of a novel additive (carbon black) that has been developed in the authors laboratories with the aim of simplifying the cement slurry composition and reducing field operational costs. Data on the thickening time, fluid loss, rheology and compressive strength are also presented to provide a clear picture of the potential of carbon black as a substitute for silica fume and polymer latex in some field applications. Finally, the paper describes the results of a field application using carbon black as a gas-block additive in the cement slurry.

  16. Selecting the proper fuel gas for cost-effective oxyfuel cutting

    SciTech Connect (OSTI)

    Lyttle, K.A.; Stapon, W.F.G. [Praxair, Inc., Danbury, CT (United States); Guimaraes, A.

    1997-07-01T23:59:59.000Z

    The motivating factor behind recent research and development efforts in metal cutting has been the growing need for companies everywhere to embrace emerging technologies if they are to complete in the global economy. To quickly implement these productivity improvements and gain lower bottom line costs for welding and cutting operations, rapid commercialization of these process advancements is needed. Although initially more expensive, additive-enhanced fuel gases may be the most cost-effective choice for certain cutting applications. The cost of additive-enhanced fuel gases can be justified where oxygen pricing is low (such as with bulk oxygen). Propylene exhibited equal cutting speeds to acetylene and improved cutting economy under specific conditions, which involved longer cuts on thicker base materials. With a longer cut distance, the extra time required to reach the kindling temperature (when compared to acetylene) becomes less critical. It is important to note that kindling temperature was reached more rapidly with propylene than it was with propane, but both fuel gases were slower than acetylene. When factors such as these are considered, many applications are found to be more cost effectively performed with the more expensive acetylene or propylene fuel gases. Each individual application must be studied on a singular basis to determine the most cost-effective choice when selecting the fuel gas.

  17. Fiscal year 1999 Battelle performance evaluation and fee agreement

    SciTech Connect (OSTI)

    DAVIS, T.L.

    1998-10-22T23:59:59.000Z

    Fiscal Year 1999 represents the third fill year utilizing a results-oriented, performance-based evaluation for the Contractor's operations and management of the DOE Pacific Northwest National Laboratory (here after referred to as the Laboratory). However, this is the first year that the Contractor's fee is totally performance-based utilizing the same Critical Outcomes. This document describes the critical outcomes, objectives, performance indicators, expected levels of performance, and the basis for the evaluation of the Contractor's performance for the period October 1, 1998 through September 30, 1999, as required by Clauses entitled ''Use of Objective Standards of Performance, Self Assessment and Performance Evaluation'' and ''Performance Measures Review'' of the Contract DE-ACO6-76RL01830. Furthermore, it documents the distribution of the total available performance-based fee and the methodology set for determining the amount of fee earned by the Contractor as stipulated within the causes entitled ''Estimated Cost and Annual Fee,'' ''Total Available Fee'' and ''Allowable Costs and Fee.'' In partnership with the Contractor and other key customers, the Department of Energy (DOE) Headquarters (HQ) and Richland Operations Office (RL) has defined four critical outcomes that serve as the core for the Contractor's performance-based evaluation and fee determination. The Contractor also utilizes these outcomes as a basis for overall management of the Laboratory.

  18. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01T23:59:59.000Z

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  19. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01T23:59:59.000Z

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  20. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    SciTech Connect (OSTI)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20T23:59:59.000Z

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an ďinstantĒ increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOEís Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  1. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    SciTech Connect (OSTI)

    Not Available

    1986-02-01T23:59:59.000Z

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  2. Fee Title: Renewable Energy Fee Measure #: Measure 44

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Fee Title: Renewable Energy Fee Measure #: Measure 44 Ballot Information Shall the undergraduates and graduate students of UCSC amend Measure 28, the Renewable Energy fee passed in Spring 2006 as follows: The amendment would allow funds to be used for on-site renewables and energy efficiency projects

  3. Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Fee Paid 1,514,656 Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract...

  4. Green fees: Getting paid for getting it right -- Performance based fee contracts for new construction

    SciTech Connect (OSTI)

    Hubbard, G. [Rocky Mountain Inst., Snowmass, CO (United States). Green Development Services; Eley, C. [Eley Associates, San Francisco, CA (United States)

    1997-12-31T23:59:59.000Z

    Energy-efficient design in buildings today is too often the exception, rather than the rule. Building to code is not enough. That only means if the building was any worse, it would be illegal. The designers of exceptional buildings are showing that integrated design--architects, engineers, clients, and, ideally, contractors working closely together from the start--creates high performance buildings without additional capital cost, just increased design time. Agreement throughout the design profession shows that high performance buildings would be more prevalent if there were incentives to put the extra time into design integration. Rocky Mountain Institute (RMI) and Eley Associates are working to create Performance Based Fee contracts to demonstrate design incentive fees that can help architects, engineers, and building owners create extremely energy-efficient buildings. These fees will reward design professionals for what they save, not just for what they spend--thus aligning designers` interests with owners.

  5. TRANSPORTATION SERVICES VEHICLE RENTAL FEES

    E-Print Network [OSTI]

    ENVIRONMENT FEES AIR CONDITIONER SERVICE $75.00 PARTS + 10% BATTERY CHARGE $25.00 BATTERY REPLACEMENT $25

  6. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16T23:59:59.000Z

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

  7. Economic viability of shale gas production in the Marcellus Shale; indicated by production rates, costs and current natural gas prices.

    E-Print Network [OSTI]

    Duman, Ryan J.

    2012-01-01T23:59:59.000Z

    ?? The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largestÖ (more)

  8. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  9. Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing

    E-Print Network [OSTI]

    Davis, Lucas; Muehlegger, Erich

    2009-01-01T23:59:59.000Z

    Residential Market for Natural Gas,Ē 2008, working paper. [of Electricity and Natural Gas,Ē Journal of IndustrialPrices: Evidence from Natural Gas Distribution Utilities,Ē

  10. Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems

    E-Print Network [OSTI]

    Griswold, Julia Baird

    2013-01-01T23:59:59.000Z

    of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/

  11. Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems

    E-Print Network [OSTI]

    Griswold, Julia Baird

    2013-01-01T23:59:59.000Z

    Working Group on Social Cost of Carbon, United StatesSupport Document: Social Cost of Carbon for Regulatory

  12. Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model

    E-Print Network [OSTI]

    Morris, Jennifer

    Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

  13. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    SciTech Connect (OSTI)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07T23:59:59.000Z

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  14. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05T23:59:59.000Z

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

  15. The University of North Carolina at Chapel Hill Student Fees

    E-Print Network [OSTI]

    Crews, Stephen

    Operating Expenses CHILD CARE SERVICES FEE h. Child Care Services RENEWABLE ENERGY FEE i. Renewable Energy

  16. CONCUR: AWARD FEE PLAN - FY15

    Office of Environmental Management (EM)

    2 4. RESPONSIBILITIES 3 5. AWARD FEE AMOUNTS AND PERIODS 4 6. AWARD FEE PROCESS 5 7. TERMINATION FOR CONVENIENCE 8 8. TERMINATION FOR DEFAULT 8 9. FEE PLAN CHANGE PROCEDURE 8...

  17. Reduction on synthesis gas costs by decrease of steam/carbon and oxygen/carbon ratios in the feedstock

    SciTech Connect (OSTI)

    Basini, L.; Piovesan, L. [Snamprogetti S.p.A. Research Labs., Milano (Italy)] [Snamprogetti S.p.A. Research Labs., Milano (Italy)

    1998-01-01T23:59:59.000Z

    The costs for syngas production at low steam/carbon and oxygen/carbon ratios have been analyzed for simplified process schemes of the main syngas production technologies (steam-CO{sub 2} reforming, autothermal reforming, and combined reforming) and different synthesis gas compositions. The broad analysis arises from experimental indication on the possibility of preventing carbon formation at low steam/carbon and oxygen/carbon ratios in the feedstock by choosing an appropriate catalyst or by introducing small amounts of sulfur compounds in the reactant feed. The analysis is limited to the synthesis gas production step and does not include its downstream processes. The results indicate that technologies at low steam/carbon and oxygen/carbon ratios would have a significant positive impact on synthesis gas costs.

  18. TRANSPORTATION SERVICES VEHICLE RENTAL FEES

    E-Print Network [OSTI]

    ,472.00 #12;ITEM FEE ADDITIONAL AIR CONDITIONER SERVICE $120.00 PARTS + 10% BATTERY CHARGE $30.00 BATTERY

  19. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2004-09-29T23:59:59.000Z

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  20. Tuition and Fees Your education is an investment that can lead to new professional opportunities, personal

    E-Print Network [OSTI]

    Vertes, Akos

    Tuition and Fees Your education is an investment that can lead to new professional opportunities,485 per credit hour*** Cost of books is not included in the course tuition. Specific details

  1. Full-Time Segregated Fee Distribution for All EXCEPT Grad Students Fall 2013 and Spring 2014

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    of the segregated fees provides tuition grants to students with children to pay for child care costs. Student Gov ­ Madison student government association and other student group funding that is distributed by ASM. SAC

  2. Full-Time Segregated Fee Distribution for Grad Students Fall 2013 and Spring 2014

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    of the segregated fees provides tuition grants to students with children to pay for child care costs. Student Gov ­ Madison student government association and other student group funding that is distributed by ASM. SAC

  3. OCEAN SCIENCES CENTRE USER FEE DOCUMENT

    E-Print Network [OSTI]

    Oyet, Alwell

    ............................................................................................................ 4 2.2 Storage Fees.6 Cold Rooms support research programs of our Government and Industrial Partners The following user fee schedules

  4. Equity Evaluation of Vehicle Miles Traveled Fees in Texas

    E-Print Network [OSTI]

    Larsen, Lisa Kay

    2012-10-19T23:59:59.000Z

    to the infrastructure but the money needed to maintain and improve roadways is not being adequately generated. One proposed alternative to the gas tax is the creation of a vehicle miles traveled (VMT) fee; with equity being a crucial issue to consider. This research...

  5. The Effect of Transaction Costs on Greenhouse Gas Emission Mitigation for Agriculture and Forestry

    E-Print Network [OSTI]

    Kim, Seong Woo

    2011-08-08T23:59:59.000Z

    increasing the bioenergy and afforestation role. Storage costs diminish the bioenergy role and favor forest and sequestration items. The results of this study illustrate that transactions and storage costs are important considerations in policy and market...

  6. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  7. Tuitioon & Fees Broc Bowling Gree

    E-Print Network [OSTI]

    Moore, Paul A.

    the outofstate surcharge. Tuition Rates by Campus Bowling Green State University offers programs from three 1001 Ea 132 Admin Bowling G 419 Bursa en State Unive ast Wooster S nistration Bui Green, OH. 4 bursar without advanced notice. Fees/Policies All tuition and fees are approved by Bowling Green State

  8. Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing

    E-Print Network [OSTI]

    Davis, Lucas; Muehlegger, Erich

    2009-01-01T23:59:59.000Z

    natural gas consumers rises, but tax collection introduces distortions in other parts of the economy.natural gas users, these gains are o?set by tax distortions in other parts of the economy.

  9. Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing

    E-Print Network [OSTI]

    Davis, Lucas; Muehlegger, Erich

    2009-01-01T23:59:59.000Z

    natural gas is used for home heating. Net revenue follows abeing, from heating and cooling our homes and businesses to

  10. Mandatory Student Fees FY 2014 2015

    E-Print Network [OSTI]

    Maccabe, Barney

    Mandatory Student Fees FY 2014 ­ 2015 Mandatory Student Fees, as prescribed in UNM Policy 1310 to assess. The Board of Regents approves the final amount. Below is the annual budget detailing how these fees will be allocated. April 21, 2014 Budget (in dollars) STUDENT ACTIVITY FEES (assessed to all

  11. The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century

    SciTech Connect (OSTI)

    Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

    1994-04-01T23:59:59.000Z

    The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%.

  12. Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Business Travel

    Broader source: Energy.gov [DOE]

    Once business travel reduction strategies have been identified, a Federal agency may evaluate the cost of implementing those measures and any potential savings from avoided travel.

  13. Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems

    E-Print Network [OSTI]

    Griswold, Julia Baird

    2013-01-01T23:59:59.000Z

    cost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or enginecost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or engine

  14. Sandia National Laboratories: User Fees for NSTTF Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilityUser Fees for NSTTF Capabilities User Fees for NSTTF Capabilities NSTTFpricing A site access fee is charged for all projects. The fee includes such things as office space,...

  15. The competition between coal and natural gas : the importance of sunk costs

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1996-01-01T23:59:59.000Z

    This paper explores the seeming paradox between the predominant choice of natural gas for capacity additions to generate electricity in the United States and the continuing large share of coal in meeting incremental ...

  16. Flue gas desulfurization : cost and functional analysis of large-scale and proven plants

    E-Print Network [OSTI]

    Tilly, Jean

    1983-01-01T23:59:59.000Z

    Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

  17. Oil and natural gas reserve prices, 1982-2002 : implications for depletion and investment cost

    E-Print Network [OSTI]

    Adelman, Morris Albert

    2003-01-01T23:59:59.000Z

    A time series is estimated of in-ground prices - as distinct from wellhead prices ? of US oil and natural gas reserves for the period 1982-2002, using market purchase and sale transaction information. The prices are a ...

  18. The cost of agriculturally based greenhouse gas offsets in the Texas High Plains

    E-Print Network [OSTI]

    Chandrasena, Rajapakshage Inoka Ilmi

    2004-09-30T23:59:59.000Z

    as shown in equation (2), (2) ) NR is the net revenue ($ per acre), TR is the total revenue ($ per acre), TVC is the total variable cost ($ per acre), and TFC is the total fixed cost ($ per acre). 21 3.1.2 Calculation of Breakeven Carbon Price (BCP...) The Breakeven Carbon price (BCP) is calculated according to equation (3). (3) BCPQGHGPDC =?? )( or (4) BCPQGHGQGHG NR base base = ? ? ) The GHG quantity in the denominator of equation (3) is the amount of net GHGE stored or emitted by each alternative...

  19. COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT

    SciTech Connect (OSTI)

    Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

    2004-12-21T23:59:59.000Z

    The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline regulatory approaches and allow small operators to produce energy from areas that have become sub-economic for the major producers. The GWPC is working with states to develop a coal bed methane program, which will both manage the data and develop a public education program on the benefits of produced water. The CERA program benefits all oil and gas states by reducing the cost of regulatory compliance, increasing environmental protection, and providing industry and regulatory agencies a discussion forum. Activities included many small and large group forum settings for discussions of technical and policy issues as well as the ongoing State Class II UIC peer review effort. The accomplishments detailed in this report will be the basis for the next initiative which is RBDMS On-Line. RBDMS On-Line will combine data mining, electronic permitting and electronic reporting with .net technology. Industry, BLM, GWPC and all Oil and Gas states are partnering this effort.

  20. STUDENT SERVICES FEE ASSESSMENT REQUEST To elect to pay the Student Services Fee, fill out the form completely and return

    E-Print Network [OSTI]

    Amin, S. Massoud

    STUDENT SERVICES FEE ASSESSMENT REQUEST DIRECTIONS To elect to pay the Student Services Fee, fill the Student Services Fee, you may elect to pay the fee to use or support the services covered by the fee. You of the Student Services Fee. If you are enrolled in the Senior Citizen Education Program, Regents' Scholarship

  1. Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options

    E-Print Network [OSTI]

    Park, Han-Young

    2008-10-10T23:59:59.000Z

    rotation using an electric motor at the surface. Fig. 2.9 Ė PCP system (Schlumberger, 2007). Applications PCP can be applied to the wells producing sand-laden heavy oil and bitumen, high water-cut wells, and in the gas wells that require...

  2. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  3. WIPP Revised Fee Chart.xlsx

    Office of Environmental Management (EM)

    6,008,123 6,008,123 * Final Fee Determination is pending. EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations...

  4. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey

    SciTech Connect (OSTI)

    Not Available

    1986-02-01T23:59:59.000Z

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  5. The Cost of Improving Gas Supply Security in the Baltic States

    E-Print Network [OSTI]

    Noel, Pierre; Findlater, Sachi; Chyong, Chi Kong

    2012-01-23T23:59:59.000Z

    to replace a failed compressor station on a transmission pipeline; 12 most disruptions caused by pipeline failures could be repaired in a week or less. A failure of the Latvian underground storage could potentially disrupt supply to Estonia and Latvia... it is important to note that both types of disruptions have the same practical consequences. For example in the Baltic States, an accidental pipeline explosion or compressor failure would interrupt gas supply to district heating plants, just as a voluntary...

  6. Student Fee Advisory Committee Orientation Handbook

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Student Fee Advisory Committee Orientation Handbook 2011-2012 Student Services 245 Hahn Student Services 1156 High Street Santa Cruz, CA 95064 (831) 459-1676 #12;2 Student Fee Advisory Committee (SFAC) The Student Fee Advisory Committee (SFAC) is perhaps the most influential committee at UCSC. Not only

  7. Student Fee Advisory Committee Orientation Handbook

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Student Fee Advisory Committee Orientation Handbook 2013-2014 Student Services 245 Hahn Student Services 1156 High Street Santa Cruz, CA 95064 (831) 459-4446 #12;2 Student Fee Advisory Committee (SFAC) The Student Fee Advisory Committee (SFAC) is perhaps the most influential committee at UCSC. Not only

  8. Non-nuclear submarine tankers could cost-effectively move Arctic oil and gas

    SciTech Connect (OSTI)

    Kumm, W.H.

    1984-03-05T23:59:59.000Z

    Before the advent of nuclear propulsion for U.S. Navy submarines, fuel cells were considered to be the next logical step forward from battery powered submarines which required recharging. But with the launching of the USS Nautilus (SSN-571) in 1954, the development of fuel-cell propulsion was sidelined by the naval community. Nearly 30 years later fuel-cell propulsion on board submarines is actually more cost-effective than the use of nuclear propulsion. In the Artic Ocean, the use of the submarine tanker has long been considered commercially appropriate because of the presence of the polar ice cap, which inhibits surface ship transport. The technical difficulty and high operating cost of Arctic icebreaking tankers are strong arguments in favor of the cheaper, more efficient submarine tanker. Transiting under the polar ice cap, the submarine tanker is not an ''Arctic'' system, but merely a submerged system. It is a system usable in any ocean around the globe where sufficient depth exists (about 65% of the global surface). Ice breakers are another story; their design only makes them useful for transit through heavy sea ice in coastal environments. Used anywhere else, such as in the open ocean or at the Arctic ice cap, they are not a cost-effective means of transport. Arctic sea ice conditions require the Arctic peculiar icebreaking tanker system to do the job the hard way-on the surface. But on the other hand, Arctic sea ice conditions are neatly set aside by the submarine tanker, which does it the energy-efficient, elegant way submerged. The submarine tanker is less expensive to build, far less expensive to operate, and does not need to be nuclear propelled.

  9. Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost Direct

  10. Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3113315,0,482272Oil and GasOil

  11. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2005-09-29T23:59:59.000Z

    This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

  12. Tuitioon & Fees Broc Bowling Gree

    E-Print Network [OSTI]

    Moore, Paul A.

    are approved by Bowling Green State University's Board of Trustees and are subject to change, without notice the instructional fee plus the outofstate surcharge. Tuition Rates by Campus Bowling Green State University the Bowling Gree 1001 Ea 132 Admin Bowling 419 Bursa en State Unive ast Wooster S nistration Bui Green, OH 4

  13. UC Davis Student Services Fee (excludes Mental Health funds) Student Services and Fees Administrative Advisory Committee

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    UC Davis Student Services Fee (excludes Mental Health funds) Student Services and Fees Management Capital Projects 2 943,666.00$ (2,807.79)$ (946,473.79)$ -$ Child Care 45,325.16$ 144,957.08$ 99 and Institutional Analysis #12;UC Davis Student Services Fee (excludes Mental Health funds) Student Services

  14. The Allocative Cost of Price Ceilings: Lessons to be Learned from the U.S. Residential Market for Natural Gas,Ē Unpublished paper

    E-Print Network [OSTI]

    Lucas W. Davis; Lutz Kilian; Jel D; Comments William; James Adams; James R. Hines

    2007-01-01T23:59:59.000Z

    Following a Supreme Court decision in 1954, natural gas markets in the U.S. were subject to 35 years of intensive federal regulation. Several studies have measured the deadweight loss from the price ceilings that were imposed during this period. This paper concentrates on an additional component of welfare loss that is rarely discussed. In particular, when there is excess demand for a good such as natural gas for which secondary markets do not exist, an additional welfare loss occurs when the good is not allocated to the buyers who value it the most. We quantify the overall size of this allocative cost, its evolution during the post-war period, and its geographical distribution across states, and we highlight implications of our analysis for the regulation of other markets. Using a household-level, discrete-continuous model of natural gas demand we estimate that the allocative cost averaged $8.1 billion annually in the U.S. residential market for natural gas during 1950-2000, effectively doubling previous estimates of the total welfare losses from natural gas regulation. We find that these allocative costs were borne disproportionately by households in the Northeast, Midwest, and South Atlantic states.

  15. AWARD FEE DETERMINATION SCORECARD Contractor: Restoration Services...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fee available or available amount of 52,456.20). o Adjective Rating: Very Good - Total of 44,762 earned. - Quality and Effectiveness of Performing Environment, Safety &...

  16. Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy...

    Broader source: Energy.gov (indexed) [DOE]

    Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report U.S....

  17. Water pollution Control Permit Fee Schedules (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit application fees and annual permit fees for state water pollution control permits and national pollutant discharge elimination system permits issued by the...

  18. Policy Flash 2013-24 Fee Determinations: Requirement to Obtain...

    Office of Environmental Management (EM)

    Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's...

  19. User fees, health staff incentives, and service utilization in Kabarole District, Uganda

    E-Print Network [OSTI]

    Scharfstein, Daniel

    User fees, health staff incentives, and service utilization in Kabarole District, Uganda Walter in Kabarole District, western Uganda. Methods Of the 38 government health units that had introduced user incentive plans; Cost sharing; Community health centers/utilization; Health; Health care surveys; Uganda

  20. Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling

    E-Print Network [OSTI]

    Fthenakis National Photovoltaics Environmental Research CenterNational Photovoltaics Environmental Research service costs (labor, contract fees) Transportation costs (fuel cost, mpg, truck size) Maximum capacity) System optimal cost ($K) >586 563 - 586 360 - 563 216 - 360 178 - 216 56 -178 R16 586 1529 2115 R13+R15

  1. Office of Inspector General report on audit of Department of Energy management and operating contractor available fees

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Office of Procurement and Assistance Management has proposed changes to the method used to annually calculate and negotiate ``for profit`` management and operating contractor available fees. This proposal will increase contractor fees in exchange for the contractor`s purported assumption of additional risk. In 1991, the Department, through the Accountability Rule, increased contractor fees as an incentive to improve contractor performance and accountability. Despite the lack of measurable benefits of this effort, the Department is crafting a new fee policy which will, depending upon how it is executed, increase fees above the amount provided through the Accountability Rule as an incentive to the Department`s management and operating contractors. The objective of the audit was to determine whether the Department`s proposed change to the fee structure for determining management and operating contractor fees will be cost effective. This report describes the study`s approach, its findings and recommendations, management and auditor comments, and includes appendices with further data.

  2. Property Tax Fee-In-Lieu (Mississippi)

    Broader source: Energy.gov [DOE]

    The Property Tax Fee-In-Lieu allows for new or expansion projects in the state that have a private capital investment in excess of $100,000,000, a negotiated fee can be set that is paid in place of...

  3. Advance disposal fees and recycling: Partners or foes?

    SciTech Connect (OSTI)

    Woods, R.

    1995-05-01T23:59:59.000Z

    A political trend of shifting government responsibilities from the federal to the state and local level is beginning to take hold in many municipalities this year. Evidence of this shift recently was codified by the passage of Congress`s unfunded mandates bills, which require a panel review of any federal government mandates that create a cost burden of at least $50 million on state and local government. Expecting to be freed from the yoke of the most costly unfunded federal laws, many states are taking a second look at their expensive recycling laws and considering reassessment of how funding mechanisms are structured. This search for ways to raise revenue has renewed the continuing debate over advance disposal fees (ADFs), which are included in the cost of a product to pay for its ultimate disposal or reuse. These ADFs have been used for several years in a majority of US states to help handle scrap tire disposal. Due to concern over fire hazards posed by the nation`s growing scrap tire piles, several states have implemented a $1--$2 fee on each tire to help pay for disposal, most of which have been reasonably successful.

  4. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

    2008-10-15T23:59:59.000Z

    Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

  5. DATA TRANSMISSION OPTIONS FOR VMT DATA AND FEE COLLECTION CENTERS

    E-Print Network [OSTI]

    Bertini, Robert L.

    , VMT fee, data processing, fuel tax alternatives, fee collection center, customer service center 18DATA TRANSMISSION OPTIONS FOR VMT DATA AND FEE COLLECTION CENTERS by Robert L. Bertini Kerri-based fee collection centers, including the identification of issues related to data transmission, data

  6. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01T23:59:59.000Z

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  7. Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability

    SciTech Connect (OSTI)

    Maziasz, P.J.; Swindeman, R.W.; Browning, P.F. (Solar Turbines, Inc.); Frary, M.E. (Caterpillar, Inc.); Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

    2004-06-01T23:59:59.000Z

    In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused laboratory-scale alloy development effort on modified cast austenitic stainless steels at ORNL. Isothermal fatigue testing at 700 C also showed that standard CN12 was far superior to SiMo cast iron, but somewhat less than the desired behavior. During the first year, 3 new modified CF8C heats and 8 new modified CN12 heats were made, based on compositional changes specifically designed to change the nature, dispersion and stability of the as-cast and high-temperature aging-induced microstructures that consisted of carbides and other precipitate phases. Screening of the alloys at room-temperature and at 850 C (tensile and creep-rupture) showed -a ten-fold increase in rupture life of the best modified CN12 relative to the baseline material, better room-temperature ductility after aging, caused by less precipitation in the as-cast material and much less aging-induced precipitation. The best new modified CF8C steel showed strength at tensile and creep-rupture strength comparable to standard CN12 steel at 850 C, due to a unique and very stable microstructure. The CRADA was scheduled to end in July 2001, but was extended twice until July 2002. Based on the very positive results on the newly developed modified CF8C and CN12 cast austenitic stainless steels, a new CRADA with Caterpillar has been set up to commercially scale-up, test and evaluate, and make trial components from the new steels.

  8. fees

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |JoinZero-Energy Home Tour:a7 (07-97)eGallon

  9. Sacramento Ordinance to Waive Solar PV Fees

    Broader source: Energy.gov [DOE]

    This is an ordinance by the city of Sacramento to suspend for the calendar years 2007-2009 all fees related to installation of photovoltaic systems on existing residences.

  10. Underground Injection Control Fee Schedule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit fees for state under?ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is...

  11. Solid Waste Assessment Fee Exemptions (West Virginia)

    Broader source: Energy.gov [DOE]

    A person who owns, operates, or leases an approved solid waste disposal facility is exempt from the payment of solid waste assessment fees, upon the receipt of a Certificate of Exemption from the...

  12. City of Asheville- Building Permit Fee Waiver

    Broader source: Energy.gov [DOE]

    The City of Asheville waives fees for building permits and plan reviews for certain renewable energy technologies and green building certifications for homes and mixed-use commercial buildings....

  13. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    SciTech Connect (OSTI)

    Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

    2013-12-01T23:59:59.000Z

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  14. OMB Control # 0648-0376 Expires 2/29/2012 Fee Collector's Name

    E-Print Network [OSTI]

    OMB Control # 0648-0376 Expires 2/29/2012 Fee Collector's Name Mailing Address City State Zip Phone BBGS-001WS 1.50 Total Fees ($) Fee Adjustment Instructions: 1. Complete the fee collector's name

  15. Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions

    E-Print Network [OSTI]

    Cuellar, Amanda Dulcinea

    2012-01-01T23:59:59.000Z

    To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

  16. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof EnergyThe EnergyDepartment7 th ,Top Value AddedTotal Energy

  17. Total Estimated Contract Cost: Contract Option Period: Maximum Fee

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program.Definition and Scope Answer/Comment

  18. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program.Definition and Scope FY2002 $15,829

  19. EMC Phenomena in HEP Detectors: Prevention and Cost Savings

    SciTech Connect (OSTI)

    Arteche, F.; /Imperial Coll., London /CERN; Rivetta, C.; /SLAC

    2006-06-06T23:59:59.000Z

    This paper addresses electromagnetic compatibility (EMC) studies applied to high-energy physics (HEP) detectors. They are focused on the quantification of the front-end electronic (FEE) sensitivity to conductive noise coupled through the input/output cables. Immunity tests performed on FEE prototypes of both the CMS hadron calorimeter and the CMS silicon tracker are presented. These tests characterize the sensitivity of the FEE to common and differential mode noise coupled through the power cables and the slow control network. Immunity tests allow evaluating the weakest areas of the system to take corrective actions before the integration of the overall detector, saving time and important costs.

  20. Should You Join a Landowner Group? Gas Royalties

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Should You Join a Landowner Group? Gas Royalties Penn State is committed to affirmative action will sign for the exact same rental fees and royalties, landowners in the bargaining unit will receive with this group. It could be an up-front fee per acre or a per- centage of the royalty, or both. What are other

  1. Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title:Cost Study Manual Cost

  2. Cost and Performance Baseline for Fossil Energy Plants; Volume 3c: Natural Gas Combined Cycle at Elevation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title:Cost Study Manual Cost

  3. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas Fueled Power Plants: August 2012 - December 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title:CostCost-Benefit Analysis

  4. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  5. Does Abolishing Fees Reduce School Quality? Evidence from Kenya

    E-Print Network [OSTI]

    Oxford, University of

    Does Abolishing Fees Reduce School Quality? Evidence from Kenya Tessa Bold, Mwangi Kimenyi, Germano Mwabu and Justin Sandefur This Version: December 30, 2010 Abstract In 2003 Kenya abolished user fees

  6. Permit Fees for Hazardous Waste Material Management (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

  7. Subject: Fee Payment and Open Enrollment Hello from Queen's!

    E-Print Network [OSTI]

    Ellis, Randy

    of paying your fees by monthly deductions via a payment plan (PPL). The School of Graduate Studies, Graduate

  8. West Virginia University 1 Tuition, Fees and Residency

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University 1 Tuition, Fees and Residency Page Contents: · Residency Policy · Fee of adoption. Section 2: Classification for Admission and Fee Purposes 1. Students enrolling in a West Virginia status to another public institution in West Virginia. Section 3: Residence Determined by Domicile 1

  9. UCF TECHNOLOGY FEE GUIDELINES Academic Year 2013-2014

    E-Print Network [OSTI]

    Foroosh, Hassan

    UCF TECHNOLOGY FEE GUIDELINES Academic Year 2013-2014 The 2007 Florida Legislature amended Florida Statutes, Section 1009.24, to establish "a technology fee of up to 5 percent of the tuition per credit hour to enhance instructional technology resources for students and faculty." UCF TECHNOLOGY FEE COMMITTEE Revenue

  10. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  11. Montana Oil and Natural Gas Production Tax Act (Montana)

    Broader source: Energy.gov [DOE]

    The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

  12. The MVR fee for all other states, US territories and provinces is as follows: State/Province Fee (USD) State/Province Fee (USD)

    E-Print Network [OSTI]

    Kirschner, Denise

    The MVR fee for all other states, US territories and provinces is as follows: State/Province Fee (USD) State/Province Fee (USD) Alabama $11.25 North Carolina $11.50 Alaska $8.50 North Dakota.50 Georgia $11.50 Tennessee $10.50 Hawaii $26.50 Texas $10.00 Idaho $12.50 Utah $12.50 Illinois

  13. DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse...

    Energy Savers [EERE]

    DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 -...

  14. New Process for Producing Styrene Cuts Costs, Saves Energy, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas...

  15. Special Fees Help Document Updated 8/23/12 Page 1 of 9

    E-Print Network [OSTI]

    Farritor, Shane

    Special Fees Help Document ­ Updated 8/23/12 Page 1 of 9 Special Fees Request Form Help Document Affairs ­ Special Fee Forms section, select add new. #12;Special Fees Help Document ­ Updated 8/23/12 Page. Click Next to continue. #12;Special Fees Help Document ­ Updated 8/23/12 Page 3 of 9 Complete the course

  16. OMB Control # 0648-0376 Expires 2/29/2012 Fee Collector's Name

    E-Print Network [OSTI]

    OMB Control # 0648-0376 Expires 2/29/2012 Fee Collector's Name Mailing Address City State Zip Phone Number Fee Collector's Permit or Buyer Code Settlement Sheet Date Month and Year of Landings Contact the fee collector's name, address, telephone number, fee collector's permit number, date of this fee

  17. Collected LWA Engineering Memos from the Development of the Front End Electronics (FEE)

    E-Print Network [OSTI]

    Ellingson, Steven W.

    , LWA FEE Version 1.7, 2009 March 17 · FEE0023: Brian Hicks, Jacob Hartman, and Norman McGlothlin, Long and Bill of Materials, 2009 July 2 · FEE0024: Jacob Hartman and Brian Hicks, FEE0024: Linearity boards in the FEE subsystem never be required to bear any mechanical load. The unexpected failure

  18. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Bedient, P.B.

    1994-04-25T23:59:59.000Z

    This report covers work completed during the sixth quarter for the project. The project consists of three tasks: the first relates to developing a database of waste volumes and disposal methods used by the industry; the second and third tasks are aimed at investigating technologies that could be used for the treatment of produced waters and developing cost estimates for those technologies. The remainder of this report describes progress related to the three tasks in the project. Overall, construction of the Production Environmental Database (PED) is ongoing. While much of the data has been collected and entered into the database, a few data categories are still missing, for example, soils and geology and geohydrology. Work is currently under way to collect these data. In addition, a detailed data analysis has begun in order to develop relationships between oil and gas activities and environmental characteristics. In terms of the treatment of produced water, much of the work in the past quarter was focused on analyzing the costs associated with the treatment and disposal of waste residuals such as sludges.

  19. ETH-Bibliothek Fees ETH staff and doc-toral students with

    E-Print Network [OSTI]

    Gilli, Adrian

    additional: 5.­ 1-2 images: 20.­ each additional: 10.­ Publication and royalty fees Copies (PDF) per page fees and royalty fees free of charge free of charge free of charge ex publication: 20

  20. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  1. AWARD FEE DETERMINATION SCORECARD Contractor: Fluor B&W Portsmouth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surrounding the return of the complete GFP the development of a performance measurement baseline was delayed. The AWARD FEE PLAN for this contract period is available at:...

  2. Fees For Disposal Of Hazardous Waste Or Substances (Alabama)

    Broader source: Energy.gov [DOE]

    The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

  3. FY 13 Award Fee Determination Scorecard Contractor: Swift &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    There were no significant deficiencies but improvements are expected in work controls and conduct of operations in fiscal year 2014. Performance Based Incentives Award Fee...

  4. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Broader source: Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  5. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    SciTech Connect (OSTI)

    Benson, D. K.; Tracy, C. E.; Lee, S-H. (National Renewable Energy Laboratory); Hishmeh, G. A.; Haberman, D. P. (DCH Technologies, Valencia, CA); Ciszek, P. A. (Evergreen Solar, Waltham, MA)

    1998-10-20T23:59:59.000Z

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal.

  6. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Yearly report, July 1, 1992--June 30, 1993

    SciTech Connect (OSTI)

    Bedient, P.B.

    1993-07-30T23:59:59.000Z

    The project consists of 3 tasks: (1) Developing a Production Environmental Database (PED) with the purpose of investigating the current industry waste storage and disposal practices by different regions, states and types of waste and investigating the environmental impacts associated with these practices; (2) Evaluating the suitability of available and developing technologies for treating produced water and identifying applicable unit process configurations; and (3) Evaluating the costs associated with various degrees of treatment achievable by different configurations. Records of wells drilled during the years 1986 through 1991 were compiled from industry reports. Overall, drilling has decreased from an average of 60,000 wells/yr for the period 1981 through 1985 to 20,000/yr during 1986 through 1991. A produced water database was developed from data and information provided by the various state and federal agencies. Currently, the database has information on the production of oil, gas and brines from 24 states. The data from the produced water database indicate that for the most part, Class II Injection seemed to be the common disposal method. Other methods included evaporation, surface disposal via NPDES permit, road spreading, hauling out-of-state, and annular disposal. A survey of oil and gas operators has been developed, reviewed and edited. The survey is divided-by topic into three sections. (1) drilling wastes; (2) associated wastes; and (3) produced water. The objective of the survey is to develop more current information on the waste volumes and disposal methods used during 1986 through 1991. The possible treatment scenarios for produced water have been identified. Organic and inorganic contaminant removal, liquid/solid separation and liquid/emulsified oil separation have been identified as the main objectives of the treatment of produced water.

  7. USA oilgas production cost : recent changes

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1991-01-01T23:59:59.000Z

    During 1984-1989, oil development investment cost in the USA fell, but only because of lower activity. The whole cost curve shifted unfavorably (leftward). In contrast, natural gas cost substantially decreased, the curve ...

  8. Student Action Committee Report on the Student Comprehensive Fee

    E-Print Network [OSTI]

    Hayden, Nancy J.

    1 Student Action Committee Report on the Student Comprehensive Fee April, 2010 #12;2 Table:................................................................................................................15 #12;3 Executive Summary: The SGA formally adopted a definition of the Student Comprehensive Fee requiring that all sections support specific services and facilities accessible to all current students

  9. audit fees evidence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    audit fees evidence First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Audit fees and book-tax differences...

  10. Colorado School of Mines 1 Tuition, Fees, Financial

    E-Print Network [OSTI]

    Colorado School of Mines 1 Tuition, Fees, Financial Assistance, Housing & Dining Rates 2014-2015 Tuition and fees are established by the Board of Trustees of Colorado School of Mines following the annual budget process and action by the Colorado General Assembly and Governor. Undergraduate Tuition

  11. CO{sub 2} reduction potential in power production and its cost efficiency

    SciTech Connect (OSTI)

    Aijala, M.; Salokoski, P.; Alin, J.; Siikavirta, H.; Nykaenen, J.

    1998-07-01T23:59:59.000Z

    CO{sub 2} reduction potential and the economy of it in power production are handled in this presentation. The main focus is on combined heat and power production, CHP. The reference case has been the conventional coal fired condensing power plant and district heating with heavy fuel oil. Various CHP concepts are handled as substitutive technology for the reference case. Considered fuels are coal and biomass. CO{sub 2} produced in biomass firing processes is not regarded to increase the net CO{sub 2} emissions to the atmosphere. Reference case can be substituted by a more efficient coal-fired power plant, so called USC plant or by natural gas-fired combined cycle power plant. Both changes lead to very limited reduction in CO{sub 2} emissions. On the other hand the shifting is profitable. CO{sub 2} reduction potential differs in various CHP concepts according to the fuel used. With biomass the reduction is 100% and in the smallest considered coal-fired industrial power plant it is only 6%. Looking at CO{sub 2} reduction costs, ECU/t CO{sub 2}, the best alternative seems to be the changing to coal-fired CHP in industrial power plants. Due to different reduction potentials of different methods the reduction cost illustrates poorly the quality of the method. For example, in a case where the profitability is good but reduction potential is small the reduction cost is strongly negative and the case seems to be cost-effective. To avoid the previous effects the profitability of the changes has to be studied with and without CO{sub 2} emission fees. Biomass-CHP will be cost-effective compared to coal-CHP with the prices 2.5--5 ECU/t CO{sub 2} saved. The industrial CHP plant will be cost-effective despite of the fuel used and without CO{sub 2} emission fees. The district heating CHP plant will be cost-effective, if the plant size is large. The small district heating CHP plants are cost-effective, if the saved CO{sub 2} ton has a price.

  12. Enterprise budget development and production cost allocation

    E-Print Network [OSTI]

    Minear, Kelly Don

    1991-01-01T23:59:59.000Z

    , wage rates, and benefits can be determined from several sources. The "going rate" in the local area is the most-used source. Labor contractors may provide workers an on job basis for one total fee, while union contracts may set wage rates, benefits... general ledger accounts. The movement of cost measures through these accounts should reflect the flow of resources through an operation's production and distribution. Such accounts such as Machinery Repairs, Wages and Salaries, Power and Heating...

  13. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

    1993-12-01T23:59:59.000Z

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  14. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Equine Tests Equine Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 4 hours for equine. For more information, see Equine Cushing's Tests or AppendixC. For Equine only

  15. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Feline Tests Feline Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 Tests, Equine Cushings Tests , Feline Adrenal Function Tests, or Appendix C. Endocrinology22.00 ACTH

  16. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Canine Tests Canine Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 in insulated container with ice pack. For more information, see Canine Adrenal & Pituitary Function Tests

  17. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactorBatteries for Advanced26, 2005 The HonorableProgram |Fee

  18. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactorBatteries for Advanced26, 2005 The HonorableProgram |Fee

  19. Operating Costs Estimates Cost Indices

    E-Print Network [OSTI]

    Boisvert, Jeff

    to update costs of specific equipment, raw material or labor or CAPEX and OPEX of entire plants Cost Indices

  20. Integrated supercritical water gasification combined cycle (IGCC) systems for improved performance and reduced operating costs in existing plants

    SciTech Connect (OSTI)

    Tolman, R.; Parkinson, W.J.

    1999-07-01T23:59:59.000Z

    A revolutionary hydrothermal heat recovery steam generator (HRSG) is being developed to produce clean fuels for gas turbines from slurries and emulsions of opportunity fuels. Water can be above 80% by weight and solids below 20%, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge and bitumen/Orimulsion. The patented HRSG tubes use a commercial method of particle scrubbing to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. A continuous-flow pilot plant is planned to test the HRSG over a wide range of operating conditions, including the supercritical conditions of water, above 221 bar (3,205 psia) and 374 C (705 F). Bench scale data shows, that supercritical water gasification below 580 C (1,076 F) and low residence time without catalysts or an oxidizer can produce a char product that can contain carbon up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This char can be burned with coal in an existing combustion system to provide the heat required for gasification. The new HRSG tubes can be retrofitted into existing power plant boilers for repowering of existing plants for improved performance and reduced costs. A special condensing turbine allows final low-temperature cleaning and maintains quality and combustibility of the fuel vapor for modern gas turbine in the new Vapor Transmission Cycle (VTC). Increased power output and efficiency can be provided for existing plants, while reducing fuel costs. A preliminary computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC on sewage sludge and coal. Results predict over 40% HHV thermal efficiency to electric power from sewage sludge at more than 83% water by weight. The system appears to become autothermal (no supplemental fuel required) at about 35% fixed carbon in the feed. Thus, bituminous and lignite coal slurries could be gasified at less than 25% coal and more than 75% water. Preliminary life cycle cost analyses indicate that disposal fees for sewage sludge improve operating economics over fuel that must be purchased, the cost and schedule advantages of natural gas-fired combined cycle systems are preserved. Sensitivity analyses show that increasing capital costs by 50% can be offset by an increase in sewage sludge disposal fees of $10/metric ton.

  1. The Economics of Interchange Fees and Their Regulation: An Overview

    E-Print Network [OSTI]

    Evans, David

    2005-07-08T23:59:59.000Z

    This essay surveys the economic literature on interchange fees and the debate over whether interchange should be regulated and, if so, how. We consider, first, the operation of unitary payment systems, like American Express, ...

  2. SUMMARY OF FEE EARNED IN FY14.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    incentivized. * Metric 3 MAXIMUM FEE FOR METRIC 3 - 2,500,000 3.a Completion of the 220 preventive maintenance procedures by April 30, 2014 will earn the contractor 450,000....

  3. City of Philadelphia- Streamlined Solar Permitting and Fee Reduction

    Broader source: Energy.gov [DOE]

    Photovoltaic systems of 10 kW or less installed on 1- or 2-family residential units are eligible for streamlined permitting and a fee reduction. PV projects can use a [http://www.phila.gov/green...

  4. City of Riverhead- Energy Conservation Device Permitting Fees

    Broader source: Energy.gov [DOE]

    In 2006 the Town of Riverhead on Long Island enacted a special allowance in its building permit fee structure to provide a discount to people wishing to install energy conservation devices on...

  5. FY 13 Award Fee Determination Scorecard Contractor: LATA Environmenta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 13 Award Fee Determination Scorecard Contractor: LATA Environmental Services of Kentucky, LLC Contract: DE-AC30-10CC40020 Award Period: October 1, 2012 - September 30, 2013...

  6. Small Business Administration (SBA) Guarantee Fee Tax Credit (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Small Business Administration (SBA) Guarantee Fee Tax Credit allows for small businesses operating in Oklahoma to claim a credit against income tax liability. This credit may be claimed for tax...

  7. Energy Department Invests to Drive Down Costs of Carbon Capture...

    Energy Savers [EERE]

    Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions...

  8. Cost-Competitive Advanced Thermoelectric Generators for Direct...

    Broader source: Energy.gov (indexed) [DOE]

    vehicles by 5% using advanced low cost TE technology: - Low cost materials, modules, heat exchangers, power conditioning, and vehicle integration for exhaust gas waste heat...

  9. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Broader source: Energy.gov (indexed) [DOE]

    vehicles by 5% using advanced low cost TE technology: - Low cost materials, modules, heat exchangers, power conditioning, and vehicle integration for exhaust gas waste heat...

  10. Microsoft Word - DRAFT FY15 Award Fee Plan LATA - 09-19-2014...

    Office of Environmental Management (EM)

    2 5. RESPONSIBILITIES 3 6. AWARD FEE AMOUNTS AND PERIODS 3 7. AWARD FEE PROCESS 4 8. TERMINATION FOR CONVENIENCE 7 EXHIBITS 1. Performance Evaluation Board (PEB) Members and...

  11. Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Office of Civilian Radioactive Waste Management Fee Adequacy Assessment Report is to present an analysis of the adequacy of the fee being paid by nuclear power utilities...

  12. OMB Control # 0648-0376 Expires 2/29/2012 Fee Collector's Name

    E-Print Network [OSTI]

    OMB Control # 0648-0376 Expires 2/29/2012 Fee Collector's Name Mailing Address City State Zip Phone Verification: Instructions: 1. Complete the fee collector's name, address, phone number, crab receiver permit

  13. H.A.R. 19-102 - Fee Schedule for the Issuance of a Permit to...

    Open Energy Info (EERE)

    H.A.R. 19-102 - Fee Schedule for the Issuance of a Permit to Perform Work on State HighwaysLegal Abstract This regulation outlines the fee schedule for the...

  14. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  15. Cost Estimator

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

  16. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  17. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14T23:59:59.000Z

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  18. Licensing Uncertain Patents: Per-Unit Royalty vs. Up-Front Fee

    E-Print Network [OSTI]

    Boyer, Edmond

    Licensing Uncertain Patents: Per-Unit Royalty vs. Up-Front Fee David Encaouay and Yassine Lefouiliz schemes are investigated: the per-unit royalty rate and the up-front fee. We provide conditions under-unit royalty scheme, the opportunity to do so does not exist under the up-front fee scheme. We also establish

  19. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

  20. Cost-Effective Industrial Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

  1. A computerized student fee system for Texas A&M University

    E-Print Network [OSTI]

    Wood, Lester Seth

    1972-01-01T23:59:59.000Z

    /add period had expired, A computer program calculated the amount of academic fees duc from each student based on the courses for which he was registered at the end of the period. This total was compared to the fees actually paid by the student during... has been produced and the fees paid. During the drop/add procedure, changes may be made in a stu- dent's total credit hours or in the amount of laboratory fees that is due. These changes are recorded on the student's fee record by updating...

  2. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17T23:59:59.000Z

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  3. Cost effectiveness of recycling: A systems model

    SciTech Connect (OSTI)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

    2013-11-15T23:59:59.000Z

    Highlights: ē Curbside collection of recyclables reduces overall system costs over a range of conditions. ē When avoided costs for recyclables are large, even high collection costs are supported. ē When avoided costs for recyclables are not great, there are reduced opportunities for savings. ē For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

  4. Queens College Student Technology Fee Plan A Summary of the Plans for Student Technology Fee

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Plan College: Queens College Recurring Cost: Instructional Resources Capitalization Expected Start Date-10 Recurring Costs 2,694,000$ Capitalization 640,000$ Maintenance 130,000$ Staff 600,000$ Instructional Support access points TBD 8,000$ 7,200$ 9,000$ Software (Provide product name and estimated cost, if known

  5. Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title:Cost Study Manual

  6. Financial sustainability in municipal solid waste management Ė Costs and revenues in Bahir Dar, Ethiopia

    SciTech Connect (OSTI)

    Lohri, Christian Riuji, E-mail: christian.lohri@eawag.ch; Camenzind, Ephraim Joseph, E-mail: ephraimcamenzind@hotmail.com; ZurbrŁgg, Christian, E-mail: christian.zurbruegg@eawag.ch

    2014-02-15T23:59:59.000Z

    Highlights: ē Cost-revenue analysis over 2 years revealed insufficient cost-recovery. ē Expenses for motorized secondary collection increased by 82% over two years. ē Low fee collection rate and reliance on only one revenue stream are problematic. ē Different options for cost reduction and enhanced revenue streams are recommended. ē Good publicĖprivate alliance is crucial to plan and implement improvement measures. - Abstract: Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Darís SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident financial deficit could else endanger the public-private partnership (PPP) and lead to failure of this setup in the medium to long term, thus also endangering the now existing improved and currently reliable service. We present four options on how financial sustainability of the SWM system in Bahir Dar might be enhanced: (i) improved fee collection efficiency by linking the fees of solid waste collection to water supply; (ii) increasing the value chain by sales of organic waste recycling products; (iii) diversifying revenue streams and financing mechanisms (polluter-pays-, cross-subsidy- and business-principles); and (iv) cost reduction and improved cost-effectiveness. We argue that in a PPP setup such as in Bahir Dar, a strong alliance between the municipality and private enterprise is important so that appropriate solutions for improved financial sustainability of a SWM system can be sought and implemented.

  7. West Virginia University 1 Tuition, Fees and Residency

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University 1 Tuition, Fees and Residency Page Contents: · Academic Common Market Academic Common Market West Virginia provides its residents the opportunity, through the Academic Common. The programs are restricted to West Virginia residents who have been accepted for admission to one

  8. THE UNIVERSITY OF HONG KONG Payment of Application Fee

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    : "06" Other Fees 4) Enter Bill Account Number: For HSBC / Hang Seng Bank / JETCO: 20999999834001 5 of the following websites: HSBC hsbc.com.hk> Hang Seng Bank JETCO the account transfer function for payment) HSBC: View and Pay Bills Hang Seng Bank: View and Pay Bills JETCO

  9. DEVELOPMENT IMPACT FEE ADOPTION AND ITS EFFECTS IN TEXAS

    E-Print Network [OSTI]

    Ambs, Jonathan G.

    2010-01-20T23:59:59.000Z

    as the dependent variable and the second model looked at the total impact fee assed on new residential units as the dependent variable. Both models used the gross tax rate, debt per capita, change in city population as a percentage, city population, average price...

  10. Federal Register /'Vol. 51, No. 243 / Thursday, December 18, 1986 / Proposed Rules fees. Only two fee items on the 1984

    E-Print Network [OSTI]

    Federal Register /'Vol. 51, No. 243 / Thursday, December 18, 1986 / Proposed Rules fees. Only two of the Secretary, Room 2215, Interstate Commerce Commission Building, Washington, DC 20423 or call (202) 275- 7428 of energy nor should it have a significant effect on a substantial number of small entities. List

  11. 1. Preconstruction Phase Payments Preconstruction Phase fees are negotiated as a lump sum amount, with fees being associated with individual

    E-Print Network [OSTI]

    Sura, Philip

    , if any), and are to be submitted to the Facilities Design and Construction Office (FDC). If any by the schedule of values. Fee and General Conditions Pay Request Documentation: a) The overhead and profit in writing from the FSU project manager. Line item amounts from the GMP for salaries shall not be exceeded

  12. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01T23:59:59.000Z

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  13. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01T23:59:59.000Z

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in Chinaís and Indiaís iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., Chinaís, and Indiaís iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and Indiaís iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  14. Berkshire Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Berkshire Gas offers all commercial customers various energy efficiency rebates. Berkshire Gas will pay residential customers that use gas to heat their homes 75% of the installed cost (up to $2...

  15. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01T23:59:59.000Z

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  16. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect (OSTI)

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25T23:59:59.000Z

    The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

  17. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    ∑ Types of Costs ∑ Types of Cost Estimates ∑ Methods to estimate capital costs MIN E 408: Mining% accuracy. ≠ 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive ≠ Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships ∑ Capital Costs (or

  18. The Essentials of Preparing Cost Estimates Yielding Long-Run Profitability

    E-Print Network [OSTI]

    Khan, Sadia

    2010-05-14T23:59:59.000Z

    appropriately. The five primary cost estimating methods are:(Garrett 2008) 1. Analogy Method: This approach is based on using historical data from similar projects in the past. The advantages of using this method are that it can be used early in project... (WBS) and includes all overhead and fees added to material cost and labor hours. Essentials of Winning Cost Estimates Cost estimating is an inexact practice, a blend of art and science and, therefore, full of risk.(Garrett 2008) Yet an estimate...

  19. Rules and Regulations Governing the Establishment of Various Fees (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations describe the fees associated with several Department of Environmental Management regulatory programs, including programs pertaining to pollutant and wastewater discharge,...

  20. Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases

    Broader source: Energy.gov [DOE]

    For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type.

  1. Proposals for Technology Innovation Projects Student technology fees are intended to enhance student learning and the student

    E-Print Network [OSTI]

    Farritor, Shane

    Proposals for Technology Innovation Projects Student technology fees Technology Committee is allocating a portion of the student technology fees received technology in this context. The committee is particularly looking for projects that

  2. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    05-1 ∑ Types of Costs ∑ Types of Cost Estimates ∑ Methods to estimate capital costs MIN E 408-Revenue Relationships ∑ Capital Costs (or first cost or capital investment): ≠ Expenditures made to acquire or develop capital assets ≠ Three main classes of capital costs: 1. Depreciable Investment: ∑ Investment allocated

  3. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  4. Natural Gas Regulation- Delaware Public Service Commission (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are...

  5. Mid-South Metallurgical Makes Electrical and Natural Gas System...

    Broader source: Energy.gov (indexed) [DOE]

    Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

  6. Per-Unit Royalty vs Fixed Fee: The Case of Weak Patents

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Per-Unit Royalty vs Fixed Fee: The Case of Weak Patents Rabah Amiry David Encaouaz Yassine a per-unit royalty or a ...xed fee when her innovation is covered by a weak patent, i.e. a patent of competition is not speci...ed, we show that the patent holder prefers to use a per-unit royalty scheme

  7. For information on current fee levels, see: www.strath.ac.uk/registry/students/finance

    E-Print Network [OSTI]

    Mottram, Nigel

    Fees For information on current fee levels, see: www.strath.ac.uk/registry/students/finance How Enquiries can be made to either of the following in the Department of Accounting & Finance: Professor Dick Davies Course Director, Investment & Finance t: +44 (0)141 548 3710 e: jr.davies@strath.ac.uk Barbara

  8. Fees are subject to change. See studyguide.au.dk *PLACE OF STUDY

    E-Print Network [OSTI]

    on two areas: Renewable Energy, where stu- dents develop and apply technologies within renewable energyFees are subject to change. See studyguide.au.dk *PLACE OF STUDY Herning ANNUAL TUITION FEE EU/EEA/Swiss equips students to design the software and electronics of the future ≠ to design energy-friendly systems

  9. Fees are subject to change. See studyguide.au.dk *PLACE OF STUDY

    E-Print Network [OSTI]

    .au.dk/agrobiology Climate change and population growth pose a huge, multifaceted, worldwide challenge to agriculturalFees are subject to change. See studyguide.au.dk *PLACE OF STUDY Aarhus ANNUAL TUITION FEE EU, and organic agriculture ≠ and tailor their degree with elective courses on top of the mandatory courses

  10. People's Climate Stewardship / Carbon Fee and Dividend Act of 2010: Proposed Findings

    E-Print Network [OSTI]

    Hansen, James E.

    ) job growth in low-carbon energy and energy conservation, efficiency and retrofitting, 4) reducing energy sources. 5. Benefits of Carbon Fees: Steadily-increasing carbon fees on fossil fuels are the most incentives for businesses and households to increase their energy-efficiency and reduce their carbon

  11. UNIVERSITY OF NEVADA, LAS VEGAS DIFFERENTIAL FEE PROPOSAL FOR UNLV PHYSICAL THERAPY

    E-Print Network [OSTI]

    Hemmers, Oliver

    Course Fee PT - Doctoral. $450 450 $0 PT - Materials Fee $250 250 $0 DPT 730 $50 $0 $50 DPT 741 $50 $0 $50 DPT 744 $450 $0 $450 DPT 745 $450 $0 $450 DPT 750 $75 $0 $75 DPT 752 $50 $0 $50 DPT 753 Course

  12. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  13. Capturing Waste Gas: Saves Energy, Lower Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPEDepartment ofDepartment of

  14. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Cost ($/MWh) Regulation Load Following Unit Commitment Gas31 Regulation and load-following impacts are generally found

  15. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

  16. UCOR Contract & Fee Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy,UCOR Contract & Fee Determination UCOR

  17. Please complete the following information, check the meeting date you plan to attend, and return, along with $15 registration fee (checks or money order only), via mail

    E-Print Network [OSTI]

    Guiltinan, Mark

    , along with $15 registration fee (checks or money order only), via mail to: Brittany Dittemore Headwaters

  18. Can the Trucking Industry Benefit From Distance-Based Fees?

    E-Print Network [OSTI]

    Minnesota, University of

    capital cost: $129 billion (over 30 years); today's reconstruction cost estimate: $1.3 to $2.5 trillion trucks pay more ∑ Neither trucks nor cars pay for most cost externalities ∑ Estimated THF revenues: $32B and other highways Comments: ∑ Initial capital and ongoing maintenance costs were paid for ∑ The system

  19. Employee Replacement Costs

    E-Print Network [OSTI]

    Dube, Arindrajit; Freeman, Eric; Reich, Michael

    2010-01-01T23:59:59.000Z

    Employee Replacement Costs Arindrajit Dube, Eric Freeman andproperties of employee replacement costs, using a panel2008. We establish that replacement costs are sub- stantial

  20. Computational Optimization of Gas Compressor Stations: MINLP ...

    E-Print Network [OSTI]

    Daniel Rose

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... Abstract: When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper†...

  1. COMPUTER FEE ALLOCATION COMMITTEE PROPOSAL MONTANA STATE UNIVERSITY

    E-Print Network [OSTI]

    Lawrence, Rick L.

    as an end-of-project assessment. 7. Provide a prioritized list of HARDWARE/EQUIPMENT and the estimated cost

  2. Coordinated Fee Structure for Developed Recreation Sites on the Ashley, Uinta, and Wasatch-Cache

    E-Print Network [OSTI]

    Standiford, Richard B.

    Federal and State agencies and private campgrounds in geographical areas of concern to determine fee, such as water, sewer, electricity and recreational equipment/infrastructure. 1 An abbreviated version

  3. GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions

    Broader source: Energy.gov [DOE]

    Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee...

  4. FY 12 Award Fee Determination Scorecard Contractor: B&W Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award Fee The first PBI was based on the state of readiness of the Paducah and Piketon Depleted Uranium Hexafluoride (DUF 6 ) conversion plants as of September 30, 2011. BWCS...

  5. Title 46 Alaska Statutes Section 03.385 Registration Fee for...

    Open Energy Info (EERE)

    Registration Fee for Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska...

  6. City of Santa Monica- Building Permit Fee Waiver for Solar Projects

    Broader source: Energy.gov [DOE]

    In early 2002, the City of Santa Monica began waiving building permit fees for solar energy systems. In December 2008, after months of working with industry trainers, solar contractors and staff...

  7. Local Option- Building Permit Fee Waivers for Renewable Energy Projects (Connecticut)

    Broader source: Energy.gov [DOE]

    As of July 2011, Connecticut authorizes municipalities to pass a local ordinance to exempt "Class I" renewable energy projects from paying building permit fees. Class I renewable energy projects...

  8. Comprehensive Equity Analysis of Mileage Based User Fees: Tazation and Expenditures for Roadways and Transit

    E-Print Network [OSTI]

    Carlton, Justin David

    2014-01-07T23:59:59.000Z

    Lack of sustainable revenue generation for transportation infrastructure has created a need for alternative funding sources. The most prominent of which is the Mileage Based User Fee (MBUF), where drivers would be charged based on the number...

  9. [Type text] 2012 Higher Education Units and Fees (version 1) October 2011 Page 1

    E-Print Network [OSTI]

    EDUCATION UNITS AND FEES UNIT CODE UNIT TITLE CreditPts EFTSL UnitFeefor 2012/11/10CSP UnitFeeforpre- 2010CSP UnitFeeforpre- 2009CSP UnitFeeforpre- 2008CSP FullTuitionFees fornon-CSP ACH400 RESEARCHFeefor 2012/11/10CSP UnitFeeforpre- 2010CSP UnitFeeforpre- 2009CSP UnitFeeforpre- 2008CSP Full

  10. Updated May 7th, 2014 Graduate May 2014 April 2015 Program Specific Tuition Fees

    E-Print Network [OSTI]

    de Leon, Alex R.

    .00 $28,160.00 Executive MBA (Global Energy) $106,050.00 $106,050.00 Graduate Programs in Education Ed ­ Educational Psychology Continuing Fees on 4th year onward at anniversary $1,164.00 N/A Master of Counselling-Course Fee (For students not in MPP program) $1,615.98 $2,424.02 MSC in Sustainable Energy Development SEDV

  11. Updated April 22, 2013 Graduate May 2013 April 2014 Program Specific Tuition Fees

    E-Print Network [OSTI]

    de Leon, Alex R.

    ,880.72 $27,880.72 Executive MBA (Global Energy) $110,000.00 $110,000.00 Graduate Programs in Education Ed ­ Educational Psychology Continuing Fees on 4th year onward at anniversary $1,152.15 N/A Master of Counselling,217.50 MPP Half-Course Fee (For students not in MPP program) $1,600.00 $2,400.00 MSC in Sustainable Energy

  12. Electricity Plant Cost Uncertainties (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

  13. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    solar radiation, electricity tariff, technology costs, andrequirements, usage patterns, tariffs, and incentives. Toassessment Electricity tariff Natural gas tariff Technology

  14. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  15. Costing of Joining Methods -Arc Welding Costs

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems.S. Colton © GIT 2009 5 #12;LaborLabor Di t ti f ldi· Direct time of welding ­ time to produce a length of weld ­ labor rate ­ multiplication gives labor cost per length · Set-up time, etc. · Personal time

  16. Payment Of the New Mexico Environment Department- Hazardous Waste Bureau Annual Business and Generation Fees Calendar Year 2011

    SciTech Connect (OSTI)

    Juarez, Catherine L. [Los Alamos National Laboratory

    2012-08-31T23:59:59.000Z

    The purpose of this letter is to transmit to the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB), the Los alamos National Laboratory (LANL) Annual Business and Generation Fees for calendar year 2011. These fees are required pursuant to the provisions of New Mexico Hazardous Waste Act, Chapter 74, Article 4, NMSA (as amended). The Laboratory's Fenton Hill Facility did not generate any hazardous waste during the entire year, and is not required to pay a fee for calendar year 2011. The enclosed fee represents the amount for a single facility owned by the Department of Energy and co-operated by the Los Alamos National Security, LLC (LANS).

  17. Natural gas liquids remain strong petrochemical feedstock

    SciTech Connect (OSTI)

    Greek, B.F.

    1984-03-12T23:59:59.000Z

    The supply of petrochemical feedstocks in the USA are discussed. The US petrochemical network starts with three main sources, i.e., olefins, aromatics, and natural gas. Petrochemical technology has been pushed to lower costs and improve yields in the face of a determined market drive from new petrochemical producing regions with vast supplies of low-cost gas liquids.

  18. Inspection of the cost reduction incentive program at the Department of Energy`s Idaho Operations Office

    SciTech Connect (OSTI)

    Not Available

    1994-07-07T23:59:59.000Z

    The purpose of this inspection was to review the economy and efficiency of Idaho`s Fiscal Year 1992 Cost Reduction Incentive Program, as well as to provide information to Departmental officials regarding any difficulties in administering these types of programs. The report is of the findings and recommendations. According to Idaho officials, their Cost Reduction Incentive Program was designed to motivate and provide incentives to management and operating contractors which would result in cost savings to the Department while increasing the efficiency and effectiveness of the contractors` operations. Idaho officials reported that over $22.5 million in costs were saved as a result of the Fiscal Year 1992 Cost Reduction Incentive Program. It was found that: (1) Idaho officials acknowledged that they did not attempt a full accounting records validation of the contractor`s submitted cost savings; (2) cost reduction incentive programs may result in conflicts of interest--contractors may defer work in order to receive an incentive fee; (3) the Department lacks written Department-wide policies and procedures--senior Procurement officials stated that the 1985 memorandum from the then-Assistant Secretary for Management and Administration was not the current policy of the Department; and (4) the Department already has the management and operating contract award fee provisions and value engineering program that can be used to provide financial rewards for contractors that operate cost effectively and efficiently.

  19. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  20. GTL technologies focus on lowering costs

    SciTech Connect (OSTI)

    Corke, M.J. [Purvin and Gertz Inc., London (United Kingdom)

    1998-09-21T23:59:59.000Z

    Difficulties in the development of major natural-gas production projects and the limitations imposed by saturated markets for LNG or pipeline gas have focused attention on alternative gas utilization approaches. At the same time, technology improvements have transformed the Fischer-Tropsch (F-T) conversion of natural gas-to-liquid (GTL) hydrocarbons from a technically interesting but uneconomic option into an option worthy of serious consideration. This two-part series reviews GTL technology developments which have led to today`s situation (Part 1) and examines the economics of GTL conversion (Part 2). The economic viability of GTL projects mainly depends on feed-gas pricing, investment costs, and the potential to produce liquids with natural-gas production.

  1. Yes, you can control lost and unaccounted-for gas

    SciTech Connect (OSTI)

    Hale, D.

    1984-05-01T23:59:59.000Z

    In 1982, lost and unaccounted-for gas cost the US gas industry $1.983 billion, based on a gas worth of $5.00/1000 CF. A survey of key gas operators across the country produced a list of 23 suggestions for reducing gas losses in the areas of leakage control, measurement practices, accounting accuracy, and theft prevention.

  2. Course Materials Fees policy -http://manuals.ucdavis.edu/ppm/330/330-86.htm College/School Department Course Title Fee Expires

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Care & Management 36$ 6/30/2013 ANS 144 Beef Cattle & Sheep Production 42$ 6/30/2013 ANS 146 Dairy 2010-11 COURSE MATERIALS FEES Course Agricultural and Environmental Sciences cont. Environmental Design-Landscape Architecture LDA 021 Landscape Drafting & Visualization 12$ 6/30/2012 LDA 023 Computer Graphics for Landscape

  3. Course Materials Fees policy -http://manuals.ucdavis.edu/ppm/330/330-86.htm College/School Department Course Title Fee Expires

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Care & Management 36$ 6/30/2010 ANS 144 Beef Cattle & Sheep Production 42$ 6/30/2010 ANS 146 Dairy-10 COURSE MATERIALS FEES Course Agricultural and Environmental Sciences cont. Environmental Design-Landscape Architecture LDA 021 Landscape Drafting & Visualization 12$ 6/30/2012 LDA 023 Computer Graphics for Landscape

  4. Cost Effectiveness Analysis for Conservation Investments

    E-Print Network [OSTI]

    Reid, M. W.

    1984-01-01T23:59:59.000Z

    of investment capital as the principal reason for the abundance of cost effective The Alliance to Save Energy is a nonprofit conservation projects awaiting funding. In coalition of business, labor, government, many firms the in-practice "hurdle rates... considered. Assume, for example, that natural gas prices are expected to escalate and oil prices are expected to remain constant. If these assumptions are not reflected in the quantitative assessment of IRR, the relatively greater attractiveness of gas...

  5. Rules and Regulations Pertaining to a User Fee System for Point Source Dischargers that Discharge Pollutants into the Waters of the State (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish a user fee system for point source dischargers that discharge pollutants into the surface waters of the State. The funds from such fees are used by the Department of...

  6. INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

  7. U.S. Department of Energy Office of Inspector General report on inspection of Westinghouse Savannah River Company fees for managing and operating the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-08-03T23:59:59.000Z

    During the first five years of its contract with the Department of Energy, Westinghouse Savannah River Company was paid over $130 million in fees to manage and operate the Savannah River Site. Fees paid to Westinghouse steadily increased over the five year period. For example, fees paid for the last six months of this five year period were over three times as large as fees paid for the first six months. The purpose of this inspection was to review the Department`s annual negotiation of total available fees with Westinghouse, and to examine the reasons for the growth in fees over this five year period. The review disclosed that, after Fiscal Year 1989, the Department used an increasing number of fee bases in calculating Westinghouse Savannah River Company`s fixed-fee-equivalents from the maximum fee schedules within the Department of Energy Acquisition Regulation. The authors found that the Department had significantly increased the percentage of the dollar value of subcontracts being placed in Westinghouse`s fee bases for fee calculation purposes. They found that the Department had effectively increased Westinghouse`s fixed-fee-equivalents by approximately $3 million in both Fiscal Year 1993 and 1994 to, in large part, fund an unallowable employee incentive compensation program. They found that Westinghouse`s total paid fees for the five year period increased significantly over what they would have been had the terms resulting from the original competitive negotiations been maintained. The authors recommended that the Deputy Assist Secretary for Procurement and Assistance Management require that changes in either the number or composition of fee bases used in calculating fees from the maximum fee schedules be submitted to the Department`s Procurement Executive for approval.

  8. Contracting with reading costs and renegotiation costs

    E-Print Network [OSTI]

    Brennan, James R.

    2007-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Contracting with Reading Costs andrents, and the competitive contracting process. Journal ofReiche. Foundation of incomplete contracting in a model of

  9. Systems Engineering Cost Estimation

    E-Print Network [OSTI]

    Bryson, Joanna J.

    on project, human capital impact. 7 How to estimate Cost? Difficult to know what we are building early on1 Systems Engineering Lecture 3 Cost Estimation Dr. Joanna Bryson Dr. Leon Watts University of Bath: Contrast approaches for estimating software project cost, and identify the main sources of cost

  10. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  11. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  12. Statistics Fees Scholarship R E G U L A T I O N S F O R 2 0 1 4

    E-Print Network [OSTI]

    Waikato, University of

    Statistics Fees Scholarship R E G U L A T I O N S F O R 2 0 1 4 BACKGROUND These Scholarships were will be known as the Statistics Fees Scholarships. 2. The Scholarship will have a value of up to $2. 4. The Statistics Fees Scholarship is open to applicants who are enrolling in the second or third

  13. The licensing of patents in return for a fee or royalties has a key role in drug discovery.

    E-Print Network [OSTI]

    Cai, Long

    The licensing of patents in return for a fee or royalties has a key role in drug discovery. Now the licensee brings out a new product, it may be unclear whether they need to pay royalty fees to the patentee patents in exchange for royalty payments; however, they disputed whether the licence of two patents

  14. EIR Charging Policy The University can charge a fee for the provision of information requested under the Environmental

    E-Print Network [OSTI]

    Glasgow, University of

    under the Environmental Information (Scotland) Regulations 2004. This policy is the UniversityEIR Charging Policy The University can charge a fee for the provision of information requested policy, the University will process the first £100 free of charge. Above the £100 threshold, fees

  15. EPA Natural Gas STAR Program Accomplishments

    E-Print Network [OSTI]

    unknown authors

    Established in 1993, the Natural Gas STAR program is a partnership between the U.S. EPA and the oil and natural gas industry designed to cost-effectively reduce methane emissions from voluntary activities undertaken at oil and natural gas operations both

  16. OOTW COST TOOLS

    SciTech Connect (OSTI)

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01T23:59:59.000Z

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  17. Technology and economics of gas utilization: Methanol

    SciTech Connect (OSTI)

    Seddon, D.

    1994-12-31T23:59:59.000Z

    The paper reviews the current and emerging technology for the conversion of natural gas into methanol and assesses its impact on the production economics. Technologies of potential use for offshore developments of large gas reserves or associated gas are discussed. New technologies for the production of methanol synthesis-gas, such as autothermal reforming and GHR technology, are described and the economic advantages over conventional steam reforming are quantified. New methanol synthesis technology, such as slurry phase reactors, are outlined but appear to offer little advantage over conventional technology for offshore gas utilization. The purification of methanol for fuel and chemical grade product is outlined and the cost of transport presented. The data presented gives an overview of the production costs for production of methanol from large gas reserves (> 1Tcf, 25--35PJ/a) and smaller scale reserves (10--20MMscfd, 4--10PJ/a). The variation of the production cost of methanol with gas price indicates that the gas price is the principal economic consideration. However, adoption of new technology will improve production economics by an amount equivalent to an incremental gas cost of about $0.5/GJ. For gas reserves of low development cost, the adoption of new technology is not a prerequisite to economic viability.

  18. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Elec Del Cali: Del Investment Cost Delivery Cost OperatingCost Feedstock Cost Investment Cost Delivery Cost Operatingcosts Annualized investment cost, 1000$/yr Total annualized

  19. Valorization of winery waste vs. the costs of not recycling

    SciTech Connect (OSTI)

    Devesa-Rey, R., E-mail: rosa.devesa.rey@uvigo.es [Dpt. Ingenieria Quimica, E.T.S. Ingenieros Industriales, Campus As Lagoas, Marcosende, Universidad de Vigo (Spain); Vecino, X.; Varela-Alende, J.L. [Dpt. Ingenieria Quimica, E.T.S. Ingenieros Industriales, Campus As Lagoas, Marcosende, Universidad de Vigo (Spain); Barral, M.T. [Dpt. Edafologia y Quimica Agricola, Facultad de Farmacia, Campus Sur, Universidad de Santiago de Compostela (Spain); Cruz, J.M.; Moldes, A.B. [Dpt. Ingenieria Quimica, E.T.S. Ingenieros Industriales, Campus As Lagoas, Marcosende, Universidad de Vigo (Spain)

    2011-11-15T23:59:59.000Z

    Graphical abstract: Highlights: > Lactic acid, biosurfactants, xylitol or ethanol may be obtained from wine residues. > By-products valorization turns wine wastes into products with industrial applications. > The costs of waste disposal enhances the search of economically viable solutions for valorizing residues. - Abstract: Wine production generates huge amounts of waste. Before the 1990s, the most economical option for waste removal was the payment of a disposal fee usually being of around 3000 Euros. However, in recent years the disposal fee and fines for unauthorized discharges have increased considerably, often reaching 30,000-40,000 Euros, and a prison sentence is sometimes also imposed. Some environmental friendly technologies have been proposed for the valorization of winery waste products. Fermentation of grape marc, trimming vine shoot or vinification lees has been reported to produce lactic acid, biosurfactants, xylitol, ethanol and other compounds. Furthermore, grape marc and seeds are rich in phenolic compounds, which have antioxidants properties, and vinasse contains tartaric acid that can be extracted and commercialized. Companies must therefore invest in new technologies to decrease the impact of agro-industrial residues on the environment and to establish new processes that will provide additional sources of income.

  20. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01T23:59:59.000Z

    Clean Air Amendments helped lower the cost of natural gas turbines vis-a-vis coal based technologies.

  1. Effect of Proposed Port User Fees on Export Grain Flow Patterns.

    E-Print Network [OSTI]

    Viscencio-Brambila, Hector; Fuller, Stephen W.

    1987-01-01T23:59:59.000Z

    and the resulting user fee is proj ected to redirect nearly 160 million bushels of corn and soybeans from this port area. This grain is redirected to Mississippi River ports which are projected to increase export volume by 248 million bushels. A portion..., and North Atlantic port areas. The Mississippi River port area is the most impor tant grain outlet in the nation, accounting for up to 40 percent of U.S. agriculture's grain exports. Depend ing on the user fee scenario analyzed, increases in export...

  2. !Y-Y-2000062! J:\\Registration,Readmits,Spec. programs\\Data (Forms, Reports, Etc.)\\Registrar Forms and Petitions\\Word Docs\\Partial Fee Reduction_Barcoded.doc

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    and Petitions\\Word Docs\\Partial Fee Reduction_Barcoded.doc Revised 5/26/2011 SS REQUEST FOR PARTIAL FEE Educational Fee and must be submitted to the Office of the Registrar. A petition for a deficit load should to a complete withdraw from the University. 2. Approval for partial fee reduction is not automatic. To qualify

  3. Total Cost Per MwH for all common large scale power generation...

    Open Energy Info (EERE)

    or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in...

  4. Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?

    E-Print Network [OSTI]

    Paltsev, S.

    Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

  5. E-Print Network 3.0 - adoption analysis cost-effectiveness Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p. 1 10 Cost-Effectiveness of Greenhouse Gas Emission ... Source: Kammen, Daniel M. - Renewable and Appropriate Energy Laboratory, University of California at Berkeley...

  6. Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles

    E-Print Network [OSTI]

    Noel, Michael

    2007-01-01T23:59:59.000Z

    Atkinson, B . (2006) "Retail Gasoline Price Cycles: Evidenceof Adjustment of U K Retail Gasoline Prices to Cost Changes"1993) "Gas Wars: Retail Gasoline Price Fluctuations", of and

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  8. S.1919: Federal Oil and Gas Stripper Well Preservation Act of 1998, introduced in the US Senate, One Hundred Fifth Congress, Second Session, April 2, 1998

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The purpose of this bill is to provide for the energy security of the Nation through encouraging the production of domestic oil and gas resources from stripper wells on Federal lands, and for other purposes. The law would authorize reduction of royalty rates for stripper wells on federal lands and suspend minimum royalty and per acre rental fees.

  9. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  10. Environmental Cost Analysis

    E-Print Network [OSTI]

    Edge, D.

    Environmental Cost Analysis David Edge Texas Natural Resource Conservation Commission 131 ESL-IE-00-04-21 Proceedings from the Twenty-second National Industrial Energy Technology Conference, Houston, TX, April 5-6, 2000 Tuas Natural... Resource Conservation CorDDliuion Environmental Cost Analysis Presented By David Edge Determine the Costs c> Input co Output c> Hidden c> Capital (non recurring) Envirormenlal Cost Analy.;is "There has to be a measurable result...

  11. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

    2012-07-15T23:59:59.000Z

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  12. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01T23:59:59.000Z

    Nexus of Natural Gas and Renewable Energy. Ē The Electricity2007. ďCan Deployment of Renewable Energy Put DownwardDetermining the Real Cost: Why Renewable Power is More Cost-

  13. International Trade in Natural Gas: Golden Age of LNG?

    E-Print Network [OSTI]

    Du, Y.

    The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where global prices may eventually be differentiated by the transportation costs between world ...

  14. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  15. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect (OSTI)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01T23:59:59.000Z

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

  16. acid gas removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost. In mixed matrix membrane (MMM) superior gas separation properties of inorganic membranes and economical processes ability of polymeric membranes are exploited by combining...

  17. Natural Gas Choice and Competition Act in 1999 (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act aims to regulate the distribution system for natural gas by utility companies in terms of contracts, costs, tariff structures and competition. These regulations include minimum standards...

  18. Decentralized licensing of complementary patents: Comparing the royalty, ...xed-fee and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Decentralized licensing of complementary patents: Comparing the royalty, ...xed-fee and two-unit royalty and two-part tari¤ regimes, and compare their performances in terms of licensing revenue, price increased steeply (Bekkers et al., 2002; Simcoe, 2005), thereby rais- ing a royalty stacking problem, also

  19. Fee-For-Service Contracts in the Pharmaceutical Industry (Extended Abstract)

    E-Print Network [OSTI]

    Lin, Xiaodong

    Fee-For-Service Contracts in the Pharmaceutical Industry (Extended Abstract) Kathleen Martino and Yao Zhao Starting from 2005, the pharmaceutical industry has experienced a drastic change in the pricing contracts between manufacturers and distributors as the industry moved from the dominating Buy

  20. STATEMENT OF UNDERSTANDING UCLA ACADEMIC APPRENTICE PERSONNEL FEE REMISSION BENEFITS FOR 2014-2015

    E-Print Network [OSTI]

    Williams, Gary A.

    STATEMENT OF UNDERSTANDING UCLA ACADEMIC APPRENTICE PERSONNEL FEE REMISSION BENEFITS FOR 2014-2015 Congratulations on receiving an academic apprentice appointment at UCLA! Academic apprentice titles are intended in teaching and research. Apprentice personnel in the research series (i.e., Graduate Student Researchers

  1. Page 1 of 2 2014-15 Postgraduate Tuition Fees for Institute of Petroleum

    E-Print Network [OSTI]

    Painter, Kevin

    Page 1 of 2 2014-15 Postgraduate Tuition Fees for Institute of Petroleum Engineering programmes Programme title Award FT PT FT PT FT PT Petroleum Geoscience MSc / PGDip £9,720 - £11,470 - £25,920 - Petroleum Engineering MSc / PGDip £9,720 - £11,470 - £25,920 - Reservoir Evaluation & Management MSc / PGDip

  2. Page 1 of 3 2013-14 Postgraduate Tuition Fees for Institute of Petroleum

    E-Print Network [OSTI]

    Painter, Kevin

    Page 1 of 3 2013-14 Postgraduate Tuition Fees for Institute of Petroleum Engineering programmes Overseas Home/EU Overseas Programme title Award FT PT FT PT FT PT FT PT FT PT Petroleum Geoscience MSc campus) MSc / PGDip / PGCert £4,600 - £5,430 - £12,000 - £4,520 - £23,400 - Petroleum Engineering MSc

  3. Electric Power Costs in Texas in 1985 and 1990

    E-Print Network [OSTI]

    Gordon, J. B.; White, D. M.

    1979-01-01T23:59:59.000Z

    since utilities in Texas will be using a mix of fuels. This paper analyzes the cost of generating electricity from nuclear power, out-of-state coal, in-state lignite, fuel oil, natural gas, geothermal, and solar power. These costs are then used...

  4. Cost effective lighting

    SciTech Connect (OSTI)

    Morse, O.; Verderber, R.

    1987-07-01T23:59:59.000Z

    Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen-hours are determined for each lamp system. We find the most important lighting cost component is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial cost of $15.00, is the most cost effective source of illumination compared to the incandescent lamp and lamp systems examined. 3 refs., 6 tabs.

  5. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  6. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  8. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  9. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

  10. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19T23:59:59.000Z

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  11. Rental rate includes liability insurance (LDW), vehicle licensing fees, unlimited roundtrip mileage; $0.25/mile for one-way rentals and no drop fees for vehicles that are picked up and returned in the

    E-Print Network [OSTI]

    Arnold, Jonathan

    ; $0.25/mile for one-way rentals and no drop fees for vehicles that are picked up and returned in setting up direct billing for your department, please click link below: http://www

  12. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    SciTech Connect (OSTI)

    Kreutz, Thomas G.; Ogden, Joan M.

    2000-07-01T23:59:59.000Z

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., single family, residential, multi-dwelling, neighborhood).

  13. Hybrid Membranes for Light Gas Separations

    E-Print Network [OSTI]

    Liu, Ting

    2012-07-16T23:59:59.000Z

    Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas...

  14. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10T23:59:59.000Z

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  15. Pension costs and liabilities

    E-Print Network [OSTI]

    Courtney, Harley Macon

    1961-01-01T23:59:59.000Z

    be to charge the cost over the current and subsequent years on the assumption that the cost, even though measured by past services, is incurred in contemplation of present and future 1 services. 1'he development of accounting thought concerning retire...? present liabilities are under- stated and owner's equity is overstated by a corresponding amount. It seems, however, that charging retained earnings with the past service cost does not, represent the true picture. Pension payments based solely on past...

  16. LMFBR fuel component costs

    SciTech Connect (OSTI)

    Epperson, E.M.; Borisch, R.R.; Rice, L.H.

    1981-10-29T23:59:59.000Z

    A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

  17. SUMMARY OF PROPOSED AMENDMENT TO REGULATION FSU-2.024, TUITION AND FEES; MS-NURSE ANESTHESIA PROGRAM; MD TUITION

    E-Print Network [OSTI]

    Weston, Ken

    SUMMARY OF PROPOSED AMENDMENT TO REGULATION FSU-2.024, TUITION AND FEES; MS-NURSE ANESTHESIA for a new Master of Science in Nurse Anesthesia program at the Panama City Florida Campus. The new program

  18. Hydrogen and Infrastructure Costs

    Broader source: Energy.gov (indexed) [DOE]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

  19. Target Cost Management Strategy

    E-Print Network [OSTI]

    Okano, Hiroshi

    1996-01-01T23:59:59.000Z

    Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

  20. ''When Cost Measures Contradict''

    SciTech Connect (OSTI)

    Montgomery, W. D.; Smith, A. E.; Biggar, S. L.; Bernstein, P. M.

    2003-05-09T23:59:59.000Z

    When regulators put forward new economic or regulatory policies, there is a need to compare the costs and benefits of these new policies to existing policies and other alternatives to determine which policy is most cost-effective. For command and control policies, it is quite difficult to compute costs, but for more market-based policies, economists have had a great deal of success employing general equilibrium models to assess a policy's costs. Not all cost measures, however, arrive at the same ranking. Furthermore, cost measures can produce contradictory results for a specific policy. These problems make it difficult for a policy-maker to determine the best policy. For a cost measures to be of value, one would like to be confident of two things. First one wants to be sure whether the policy is a winner or loser. Second, one wants to be confident that a measure produces the correct policy ranking. That is, one wants to have confidence in a policy measure's ability to correctly rank policies from most beneficial to most harmful. This paper analyzes empirically these two properties of different costs measures as they pertain to assessing the costs of the carbon abatement policies, especially the Kyoto Protocol, under alternative assumptions about implementation.

  1. Avoidable waste management costs

    SciTech Connect (OSTI)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01T23:59:59.000Z

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  2. Apportioning Climate Change Costs

    E-Print Network [OSTI]

    Farber, Daniel A.

    2008-01-01T23:59:59.000Z

    Apportioning Climate Change Costs Daniel A. Farber* I. II.ON CLIMATE CHANGE FOUR QUESTIONS ABOUTof how to respond to climate change. Most public attention

  3. Please note the following requests and limitations for this appeal: Interview Date Name of Residency State City Type of expense Flight Cost Rental Car Cost Hotel Cost Gasoline Cost Other Cost-list and explain

    E-Print Network [OSTI]

    Cui, Yan

    of Residency State City Type of expense Flight Cost Rental Car Cost Hotel Cost Gasoline Cost Other Cost- list

  4. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  5. An Examination of Avoided Costs in Utah

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    existing avoided cost methodology and established thefor certain avoided cost methodologies or avoided cost inpu

  6. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26T23:59:59.000Z

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  7. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01T23:59:59.000Z

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  8. Fuel option for gas turbine

    SciTech Connect (OSTI)

    Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

    1995-12-31T23:59:59.000Z

    Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

  9. Development of a Compressed Hydrogen Gas

    E-Print Network [OSTI]

    Kpsi "Saran Wrap" Tank Energy Density for Hydrogen Storage Systems " Advance the development of a cost ¬∑ Satisfying hydrogen gas permeation requirements ¬∑ Increasing energy density efficiency ¬∑ Developing cost ¬∑ Design ¬Ľ T700 carbon fiber overwrap with high interspersed winding pattern with design FOS of 2.45 ¬Ľ NGV

  10. How regulators should use natural gas price forecasts

    SciTech Connect (OSTI)

    Costello, Ken

    2010-08-15T23:59:59.000Z

    Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the most economical. (author)

  11. POSTGRADUATE TUITION FEES 2013/14 FULL TIME PROGRAMMES -UK/EU STUDENTS

    E-Print Network [OSTI]

    Anderson, Jim

    & IS Management £8,000 Msc Strategy and Innovation (new from Oct 2013) £8,000 Msc Finance (new from Oct 2013) £8,500 Msc Risk and Finance (new from Oct 2013) £8,500 MSC Project Management(new from Oct 2013) £8,000 Law in Public Health Practice (non professional) lower fee £5,700 MSc Leadership & Management in Health & Social

  12. Carbon offsets as a cost containment instrument : a case study of reducing emissions from deforestation and forest degradation

    E-Print Network [OSTI]

    Kim, Jieun, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Carbon offset is one type of flexibility mechanism in greenhouse gas emission trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take advantage of lower abatement cost ...

  13. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  14. Natural gas 1995: Issues and trends

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  15. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  16. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  17. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  18. Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    Fact sheet provides framework for gas station owners to access what a reasonable cost would be to install E85 infrastructure.

  19. Motorola's Exhaust Optimization Program: Tracer Gas Application for Gas Panel Enclosures

    E-Print Network [OSTI]

    Myart, H. R.; Camacho, R.

    of as high as 70% of manufacturer's specifications per gas enclosure. This approach leads to energy conservation and infrastructure cost avoidance for new exhaust fans, ductwork, abatement equipment, and make-up air systems....

  20. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    none,

    1993-01-01T23:59:59.000Z

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  1. Power Plant Cycling Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (say, a trip) and such factors are not fully captured in this dataset. 9. Older combined cycle units were a step change in lower operating costs due to cycling...

  2. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  3. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09T23:59:59.000Z

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  4. Investments of uncertain cost

    E-Print Network [OSTI]

    Pindyck, Robert S.

    1992-01-01T23:59:59.000Z

    I study irreversible investment decisions when projects take time to complete, and are subject to two types of uncertainty over the cost of completion. The first is technical uncertainty, i.e., uncertainty over the amount ...

  5. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  6. Standard costs for labor

    E-Print Network [OSTI]

    Khan, Mohammed Nurul Absar

    1960-01-01T23:59:59.000Z

    STANDARD COSTS FOR LABOR A Thesis By MD. NURUL ABSAR KHAN Submitted to the Graduate School of the Agricultural and Mechanical College of Texms in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION... January 1960 Ma/or Sub)acts Accounting STANOAHD COSTS FOR LABOR ND, NURUL ABSAR KHAN Approved as t style and content bys Chairman of Committee Head of Hepartment January 1960 The author acknowledges his indebtedness to Mr. T. M. Leland, Mr. T. D...

  7. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOE Patents [OSTI]

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27T23:59:59.000Z

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  8. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01T23:59:59.000Z

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  9. Saving Money with Air and Gas Leak Surveys

    E-Print Network [OSTI]

    Woodruff, D.

    2010-01-01T23:59:59.000Z

    uncorrected air leaks and gas leaks cost your businesses time and money as well as being environmentally unfriendly. ? Air Leak Surveys ? Nitrogen Leak Surveys ? Gas Leak Survey (H2, O2, Natural Gas) ? Steam Leak Surveys ? Steam Trap Surveys ? Safe... costly problems ? Are caused by dozens, perhaps hundreds of hard to pinpoint outflows which are caused by vibrations and a corrosive atmosphere. ?We can find your leaks in areas that that would be unnoticed and undetected to the human ear ? Details...

  10. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16T23:59:59.000Z

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

  11. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  12. Roadway Improvement Project Cost Allocation

    E-Print Network [OSTI]

    Minnesota, University of

    Roadway Improvement Project Cost Allocation CTS 21st Annual Transportation Research Conference costs #12;Potential Applications · Roadway Project Feasibility Studies ­ Identified potential roadway infrastructure improvement ­ Documentation of estimated project costs ­ Determine property assessments

  13. Sunk Costs and Competitive Bidding

    E-Print Network [OSTI]

    French, Kenneth R.; McCormick, Robert E.

    1982-01-01T23:59:59.000Z

    SUNK COSTS AND COMPETITIVE BIDDING Kenneth R. FrenchRevised: November 1982 SUNK COSTS AND COMPETITIVE BIDDINGl the winning bid be? I f sunk costs do not matter, I f the

  14. Mandatory Photovoltaic System Cost Analysis

    Broader source: Energy.gov [DOE]

    The Arizona Corporation Commission requires electric utilities to conduct a cost/benefit analysis to compare the cost of line extension with the cost of installing a stand-alone photovoltaic (PV)...

  15. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

    2013-07-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  16. Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets

    E-Print Network [OSTI]

    Keyaerts, Nico

    This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

  17. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  18. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  19. QGESS: Capital Cost Scaling Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (costs and values of inputs, outputs, and processes, including capital and operating costs) and performance (mass conversion, energy efficiency, and, generally speaking,...

  20. Carbon capture retrofits and the cost of regulatory uncertainty

    SciTech Connect (OSTI)

    Reinelt, P.S.; Keith, D.W. [SUNY College of Fredonia, Fredonia, NY (United States). Dept. of Economics

    2007-07-01T23:59:59.000Z

    Power generation firms confront impending replacement of an aging coal-fired fleet in a business environment characterized by volatile natural gas prices and uncertain carbon regulation. We develop a stochastic dynamic programming model of firm investment decisions that minimizes the expected present value of future power generation costs under uncertain natural gas and carbon prices. We explore the implications of regulatory uncertainty on generation technology choice and the optimal timing of investment, and assess the implications of these choices for regulators. We find that interaction of regulatory uncertainty with irreversible investment always raises the social cost of carbon abatement. Further, the social cost of regulatory uncertainty is strongly dependent on the relative competitiveness of IGCC plants, for which the cost of later carbon capture retrofits is comparatively small, and on the firm's ability to use investments in natural gas generation as a transitional strategy to manage carbon regulation uncertainty. Without highly competitive IGCC or low gas prices, regulatory uncertainty can increase the expected social cost of reducing emissions by 40 to 60%.

  1. Changing Patterns of Rangeland Use: Functional Characteristics of the Economics and Operations of Fee Hunting Enterprises in Central and South Texas

    E-Print Network [OSTI]

    Sultenfuss, Sherry D.

    2010-07-14T23:59:59.000Z

    ......................................................... 23 3 Reasons a Landowner Would Lease Land for Fee Hunting. Percent Response Data .......................................................... 24 4 Factors a Landowner May Consider When Leasing Land for Fee Hunting. Average Response Data....................................... 25 5 Characteristics of Lease Types. .............................................. 27 6 Comparison of Lease Characteristics. .................................... 27 7 Leased ?By? Characteristics...

  2. Computer Graphic Design Fees Scholarship R E G U L A T I O N S F O R 2 0 1 5

    E-Print Network [OSTI]

    Waikato, University of

    Computer Graphic Design Fees Scholarship R E G U L A T I O N S F O R 2 0 1 5 BACKGROUND This Scholarship was established in 2009 by the Faculty of Computing and Mathematical Sciences. REGULATIONS 1. The Scholarship will be known as the Computer Graphic Design Fees Scholarship. 2. The Scholarship will have

  3. 32192UniprintNT11.09NJ HE105 Updated November 2013 Controlled by Coordinator Higher Education Enrolments & Fees PAGE 1 of 1

    E-Print Network [OSTI]

    32192UniprintNT11.09NJ HE105 Updated November 2013 · Controlled by Coordinator Higher Education Enrolments & Fees PAGE 1 of 1 Higher Education Employer Authorisation Form Higher Education to withdraw this contract, for any reason, during 2014. Higher Education Fees are subject to the Higher

  4. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17T23:59:59.000Z

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  5. Cost Type Examples Salary costs for staff working

    E-Print Network [OSTI]

    Rambaut, Andrew

    . Equipment access charges Service contracts, running costs, materials and consumables and staff time

  6. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30T23:59:59.000Z

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  7. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30T23:59:59.000Z

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  8. Design of a diesel exhaust-gas purification system for inert-gas drilling

    SciTech Connect (OSTI)

    Caskey, B.C.

    1982-01-01T23:59:59.000Z

    To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

  9. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01T23:59:59.000Z

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  10. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01T23:59:59.000Z

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  11. Fee Waiver and Reduction Criteria | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScatteringFacilitiesU.S. DOE Office ofFee

  12. FY14 AWARD FEE DETERMINATION SCORECARD Contractor: Wastren-EnergX Mission Support, LLC.

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrial HygieneEnergy Nevada3,4 Report124 VehiclesandAWARD FEE

  13. Title 43 CFR 3203.12 What Fees Must I Pay to Nominate Lands? | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl.,InformationInformation 2 What Fees Must I Pay

  14. Hay Harvesting Costs $$$$$ in Texas.

    E-Print Network [OSTI]

    Long, James T.; Taylor, Wayne D.

    1972-01-01T23:59:59.000Z

    Hay is an important crop in Ta 1 Harvesting costs constitute the major5 pense of hay production in many M Mg and Wayne D . Taylor INTRODUCTION .................................................... 2 Fixed Costs or Ownership Costs... ............................................. 10 Totarl Cost .............................................................. 10 HAY HARVESTING ALTERNATIVES COMPARED ...................... 11 HOW TO MAKE WISE DECISIONS CONCERNING INVESTMENTS IN MACHINERY...

  15. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION .............................................................................13 Definition of Levelized Cost ........................................................................................................13 Levelized Cost Components

  16. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION............................................................ 3 Definition of Levelized Cost.................................................................................... 3 Levelized Cost Categories

  17. Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section

    E-Print Network [OSTI]

    Li, X.; Wang, T.; Day, B.

    2006-01-01T23:59:59.000Z

    ) thermography inspection indicated a high-temperature area (500~560įF) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal... within the natural gas industry, the Venice plant is seeking various means to reduce cost. As part of the project to improve the energy efficiency of the plant and thus reduce energy costs, Dynegy contracted the Energy Conversion & Conservation...

  18. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Combined Heat and Power in the Industrial Sector, January 2000 Review of CHP Technologies, October 1999 Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels...

  19. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrict EnergyCensus,Core5intoNovember 1999

  20. Indonesia Greenhouse Gas Abatement Cost Curve | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information

  1. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem for

  2. Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FYRANDOMOverview The652 PleaseHydrocarbonsin New

  3. Natural Gas Vehicle Cost Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to: navigation, search Logo: Natural

  4. DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 byElectricRegistration2.4HQ FEmissions |

  5. DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 byElectricRegistration2.4HQ FEmissions |Emissions

  6. Hydrogen Leak Detection - Low-Cost Distributed Gas Sensors | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals,Slides |Infrastructureof

  7. Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 CategoricalApproach for Energy 07-21-2014

  8. Reduction in Fabrication Costs of Gas Diffusion Layers | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartmentHatch,DepartmentDeliveryMay 1,HereWrap

  9. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATE RELEASE AprilGrowthERDAEffects

  10. Hydrogen leak detection - low cost distributed gas sensors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federalas ain the Heavy

  11. Reduction in Fabrication Costs of Gas Diffusion Layers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofofDepartment of

  12. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02T23:59:59.000Z

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  13. Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications

    E-Print Network [OSTI]

    Kosanovic, D.; Ambs, L.

    for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

  14. Analysis of natural gas supply strategies at Fort Drum

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01T23:59:59.000Z

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

  15. Interdependency of electricity and natural gas markets in the United States : a dynamic computational model

    E-Print Network [OSTI]

    Jenkins, Sandra Elizabeth

    2014-01-01T23:59:59.000Z

    Due to high storage costs and limited storage availability, natural gas is generally used as a just-in- time resource that needs to be delivered as it is consumed. With the shale gas revolution, coal retirements and ...

  16. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Fuel Cell Technologies Publication and Product Library (EERE)

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

  17. About the SimCCS model A cost surface, i.e. a raster grid of the cost to lay a

    E-Print Network [OSTI]

    Boyer, Edmond

    ; · An "offshore scenario" exports CO2 towards the North sea through Normandy and toward an hypothetical storageA B C About the SimCCS model A cost surface, i.e. a raster grid of the cost to lay a pipeline across each grid cell, was estimated using geographical datasets including protected areas, existing gas

  18. Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a

    E-Print Network [OSTI]

    Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate% · Natural Gas-fired Power Plant: Adv. 7F Gas Turbine Capacity Factor 75% · Cost Basis: 2007$, constant 7

  19. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01T23:59:59.000Z

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  20. WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or

    E-Print Network [OSTI]

    Wright, Francis

    WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or system Electricity and Gas: A system used to distribute electricity and gas around the world/certain area, by compromising to minimise costs and generate the most electricity and gas as possible, which maximises profits

  1. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01T23:59:59.000Z

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  2. Unaccounted-for gas project. Data bases. Volume 5. Final report

    SciTech Connect (OSTI)

    Cowgill, R.; Waller, R.L.; Grinstead, J.R.

    1990-06-01T23:59:59.000Z

    The study identifies, explains, and quantifies unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric (PG E) Co.'s gas transmission and distribution systems during 1987. The results demonstrate that the UAF volumes are reasonable for determining the indirectly billed gas requirements component of the gas cost and for operating the PG E gas system. Gas leakage is a small percentage of UAF. Summaries of studies on gas leakage, gas theft, measurement inaccuracies, and accounting methodologies are presented along with recommendations for further work which could reduce or more accurately measure UAF.

  3. LOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS

    E-Print Network [OSTI]

    common hydrocarbon fuels (e.g., natural gas, propane, and bio-derived fuel) as well as hydrogenLOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS Dr. Christopher E. Milliken, Materials Group Boulevard Cleveland, Ohio 44108 216-541-1000 Abstract Fuel cell technologies are described in the 2001 DOE

  4. Energy Use and Costs in Texas Schools and Hospitals

    E-Print Network [OSTI]

    Dunn, J. R.

    1998-01-01T23:59:59.000Z

    performance indices among the participating institutions. For participating elementary schools, the annual electrical energy use/area ranged from 5.52 to 16.84 kwh/ft^2, the gas use from 9,363 to 66,639 Btu/ft^2, the electrical cost/area from 0.29 to 0.98 $/ft...

  5. The Potential for Low-Cost Concentrating Solar Power Systems

    SciTech Connect (OSTI)

    Price, H. W. (National Renewable Energy Laboratory); Carpenter, S. (Enermodal Engineering Limited)

    1999-07-08T23:59:59.000Z

    Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.

  6. Reducing Life Cycle Cost By Energy Saving in Pump Systems

    E-Print Network [OSTI]

    Bower, J. R.

    % by the available NPSH. The system should provide the highest NPSHA that is cost effective. Losses in the pump suction line are therefore even more wasteful of energy than those on the discharge ? Suction pipes should avoid restrictions which can cause gas...

  7. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  8. Kelly House Apartment Community (236 Students, Co-ed by Apt. / Tier 3 Single or Double Occupancy Fee)

    E-Print Network [OSTI]

    Kunkle, Tom

    Kelly House Apartment Community (236 Students, Co-ed by Apt. / Tier 3 Single or Double Occupancy Fee) Kelly House is a four story an apartment complex for upperclassmen at the corner of St. Philip and Vanderhorst Streets. Constructed in 1995, Kelly house features a central courtyard and central laundry room

  9. Physics Tutoring List Names shown are either graduate students or Physics majors charging fees for their tutoring services. These

    E-Print Network [OSTI]

    Durian, Douglas

    6/5/2014 Physics Tutoring List Names shown are either graduate students or Physics majors charging fees for their tutoring services. These persons are not sponsored by UCLA or the Physics & Astronomy Department. Tutor Name Phone E-mail Subject(s) Bauer, David 419.460.1267 dbauer88@gmail.com Physics

  10. Econometrics of Models with Strategic Interaction Presenter: Elie Tamer (Northwestern) Fee: HE delegates: 90; other delegates: 720

    E-Print Network [OSTI]

    Saunders, Mark

    Econometrics of Models with Strategic Interaction Presenter: Elie Tamer (Northwestern) Fee: HE of the econometrics questions that arise when analyzing models with multiple decision makers interacting a set of econometric theorists, applied economists and economic theorists that will share their views

  11. Lifecycle Cost and GHG Implications of a Hydrogen Energy Storage Scenario (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.

    2010-05-01T23:59:59.000Z

    Overview of life cycle cost and green house gas implications of a hydrogen energy storage scenario presented at the National Hydrogen Association Conference & Expo, Long Beach, CA, May 3-6, 2010

  12. Oil and gas journal databook, 1987 edition

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

  13. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-30T23:59:59.000Z

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  14. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  15. INDEPENDENT COST REVIEW (ICR)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistoryia/802871 IA Blog|INDEPENDENT COST

  16. Environmental Health & Safety Department -Chemical Storage and Distribution Facility (CSDF) Use this form if you would like the EH&S Department to ship DOT regulated materials. Contact the Chemical Hygiene

    E-Print Network [OSTI]

    will be charged for packaging materials, labels, customs fee, and shipping costs. Please allow 7-10 business days hazards of material to be shipped. (e.g. flammable liquid, solid or gas, corrosive, pyrophoric, toxic, etc

  17. User cost in oil production

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1990-01-01T23:59:59.000Z

    The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

  18. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05T23:59:59.000Z

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  19. Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

  20. Missouri Gas Energy (MGE)- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Missouri Gas Energy (MGE) offers rebates to its residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements. Home...

  1. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...

    Open Energy Info (EERE)

    inclusion gas analysis of drill chip cuttings in a similar fashion as used in the petroleum industry. Thus the results of this project may lower exploration costs both in the...

  2. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01T23:59:59.000Z

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  3. Check Estimates and Independent Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  4. Cost Effectiveness NW Energy Coalition

    E-Print Network [OSTI]

    1 Action 8 Cost Effectiveness Manual Kim Drury NW Energy Coalition Context · Inconsistent understanding of cost effectiveness contributed to under performing conservation E.g: individual measures vs Action Plan for Energy Efficiency published a comprehensive guide on cost effectiveness: best practices

  5. Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.

    SciTech Connect (OSTI)

    Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

    2006-03-01T23:59:59.000Z

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

  6. Developing a gas purchasing strategy using a linear model

    SciTech Connect (OSTI)

    Alst, K.M. Van [Midland Cogeneration Venture Limited Partnership, Midland, MI (United States)

    1995-12-31T23:59:59.000Z

    This paper outlines the process of developing a gas purchasing strategy with the use of a linear programming model. The linear model is used to determine the least cost approach regarding the acquisition of natural gas which has a considerable impact on the company`s financial performance. The author discusses the importance of optimizing gas costs from an end-user`s perspective. The Midland Cogeneration Venture (MCV) is the country`s largest cogeneration facility. The Facility has been certified by FERC (Federal Energy Regulatory Commission) as a Q.F. (Qualifying Facility) under PURPA (Public Utility Regulatory Policies Act of 1978). Unlike utilities, who have the ability to pass costs through to customers, MCV`s revenues are based on long-term contracts with its utility and industrial customers. Therefore, MCV cannot pass costs through to its customers. As such, effectively managing costs is vital to the success of the company.

  7. User's manual for the INDCEPT code for estimating industrial steam boiler plant capital investment costs

    SciTech Connect (OSTI)

    Bowers, H I; Fuller, L C; Hudson, II, C R

    1982-09-01T23:59:59.000Z

    The INDCEPT computer code package was developed to provide conceptual capital investment cost estimates for single- and multiple-unit industrial steam boiler plants. Cost estimates can be made as a function of boiler type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs. Boiler plant cost models are provided to reflect various types and sources of coal and alternate means of sulfur and particulate removal. Cost models are also included for low-Btu and medium-Btu gas produced in coal gasification plants.

  8. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

  9. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  10. Energy Policy 34 (2006) 32183232 Beyond the learning curve: factors influencing cost reductions

    E-Print Network [OSTI]

    Kammen, Daniel M.

    2006-01-01T23:59:59.000Z

    Energy Policy 34 (2006) 3218≠3232 Beyond the learning curve: factors influencing cost reductions-reducing improvements in low-carbon energy systems are important sources of uncertainty in future levels of greenhouse-gas emissions. Models that assess the costs of climate change mitigation policy, and energy policy in general

  11. COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement that is not bourn by

    E-Print Network [OSTI]

    Cui, Yan

    1 COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement. There are primarily three types of cost sharing that may occur on sponsored projects: Mandatory cost sharing. For example, the National Science Foundation requires mandatory cost sharing for some of its projects. COST

  12. Combustion modeling in advanced gas turbine systems

    SciTech Connect (OSTI)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1995-12-31T23:59:59.000Z

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  13. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01T23:59:59.000Z

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

  14. MyUCSC : Info For Faculty/Staff : FAQ : Announcements : Contact Us Publications and Scheduling : Enrollment : Fees : Transcripts : Special Programs : Graduation

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Educational Opportunity Programs (EOP) Academic Excellence Program Multicultural Engineering Program (MEP to the detailed discussion of each program, including its courses, later in the catalog. Undergraduate Education : Enrollment : Fees : Transcripts : Special Programs : Graduation UCSC General Catalog Welcome Introducing UCSC

  15. Steam driven centrifugal pump for low cost boiler feed service

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    This article describes a steam driven centrifugal pump for boiler feed-water and other high pressure water applications, which was awarded Top Honors in the special pumps category of the 1982 Chemical processing Vaaler competition, because the simple design with turbine, pump and controls combined in an integral unit provides high operating efficiency and reliable performance with minimal maintenance. Single source responsibility for all components when the pump may have to be serviced is another advantage. These features meet the requirements for boiler feed pumps that are critical to maintaining a consistent steam supply in a process plant where downtime can be extremely expensive. The annual cost to operate the pump for 8000 hours is about $100,000, if electricity costs 5 cents/kwh. These pumps can be run for about $30,000 on steam, if natural gas costs $4.00/mcf. Cost savings are $70,000 annually.

  16. Emissions Scenarios, Costs, and Implementation Considerations of REDD Programs

    SciTech Connect (OSTI)

    Sathaye, Jayant; Andrasko, Ken; Chan, Peter

    2011-04-11T23:59:59.000Z

    Greenhouse gas emissions from the forestry sector are estimated to be 8.4 GtCO2-eq./year or about 17percent of the global emissions. We estimate that the cost forreducing deforestation is low in Africa and several times higher in Latin America and Southeast Asia. These cost estimates are sensitive to the uncertainties of how muchunsustainable high-revenue logging occurs, little understood transaction and program implementation costs, and barriers to implementation including governance issues. Due to lack of capacity in the affected countries, achieving reduction or avoidance of carbon emissions will require extensive REDD-plus programs. Preliminary REDD-plus Readiness cost estimates and program descriptions for Indonesia, Democratic Republic of the Congo, Ghana, Guyana and Mexico show that roughly one-third of potential REDD-plus mitigation benefits might come from avoided deforestation and the rest from avoided forest degradation and other REDD-plus activities.

  17. Annual Running Cost

    E-Print Network [OSTI]

    unknown authors

    Energyh Inut:ż 4,500,000 tons of coal 19 tons enriche'd Uranium tewn _____________ _ 350,000 barrels of oil 250,000 ltons of coal Pollution: ( 9,400,000 tons of carbon * 6 tons of spent fuel none operation)I eraion) dioxide e Emissions of highly radioactive * 270,000 tons of scrubber gases (400,000 Curies of Kr-85, sludge and ash for disposal 18,000 Curies of tritium) * 800,000 tons of Uranium ore 12,000 tons of sulfur tailings dioxide, nitrous oxides and * 37 tons of depleted Uranium mercury * 500,000 tons of greenhouse gas * 100 trillion BTU's of heat 0 100 trillion BTU's ē of heat Water required: 10 billion galons 13 billion jgalions none ż0.5%).

  18. Natural gas-assisted steam electrolyzer

    DOE Patents [OSTI]

    Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  19. Task 8.8 -- Low cost ceramic materials

    SciTech Connect (OSTI)

    NONE

    1997-06-30T23:59:59.000Z

    This subtask was originally titled ``Reheat Combustor Materials`` and was proposed in anticipation of the addition of a reheat combustor to the ICR gas turbine cycle. When the emphasis of ATS became the optimized recuperated cycle, the goal of the subtask was changed to the evaluation of low cost materials for gas turbine combustor liners. It now supplements similar work being conducted by Solar under DOE Contract No.DE-ACO2-92-CE40960, titled ``Ceramic Stationary Gas Turbine (CSGT) Development.`` The use of a ceramic combustor liner in gas turbines contributes to emissions reductions by freeing cooling air for use as primary combustion air and by allowing higher wall temperatures, which contribute to more complete combustion of hydrocarbons. Information from a literature survey, manufacturer`s data, and Solar`s experience was used to select three materials for testing. In addition to material properties requirements for selection, subscale combustor liner cost was required to be at least half of the high modulus continuous fiber reinforced composite part cost. The three materials initially selected for evaluation are listed in Table 1. Four hour subscale rig tests were planned for eight inch diameter liners made from each material. Upon successful completion of each four hour test, a fifty hour test was planned.

  20. APPROVAL SIGNATURES DATE SIGNED DEPARTMENT CHAIR

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    vendors (ski passes, professional accreditation fees, licensing costs, liability insurance, ice skating rink fees, etc.). · Extraordinary Instructional Expenses: Fees may be justified to cover extraordinary

  1. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Sheldon Kramer

    2003-09-01T23:59:59.000Z

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

  2. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modulesó23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  3. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modulesó24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  4. aerial natural gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerial natural gas First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A Low-Cost Natural GasFreshwater...

  5. Gas Powered Air Conditioning Absorption vs. Engine-Drive

    E-Print Network [OSTI]

    Phillips, J. N.

    1996-01-01T23:59:59.000Z

    It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although...

  6. Shale Gas and Climate Targets: Can They Be Reconciled?

    E-Print Network [OSTI]

    objectives. Second, because industry must incur the cost of CO2 separation as part of the production process this strategy creates for its GHG objectives. In recent years, natural gas exploration and development have is normally vented to the atmosphere as the gas is processed to market standards. While the expansion of B

  7. Micromachined thin-film gas flow sensor for microchemical reactors

    E-Print Network [OSTI]

    Besser, Ronald S.

    Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

  8. Cost Model and Cost Estimating Software - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is basically a cost model, which forms the basis for estimating software. g4301-1chp22.pdf -- PDF Document, 190 KB Writer: John Makepeace Subjects: Administration...

  9. An Examination of Avoided Costs in Utah

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Subject An Examination of Avoided Costs in Utah Date Januarystate by seeking changes to the avoided cost tariff paid tomethod of calculating avoided costs that has been officially

  10. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

  11. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25T23:59:59.000Z

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  12. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31T23:59:59.000Z

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  13. Cost and Profit of Ginning Cotton in Texas.

    E-Print Network [OSTI]

    Paulson, W. E. (William E.)

    1942-01-01T23:59:59.000Z

    his actual cost and profit with his computed standard cost and profit may ascertain his om relative efficiency. The profit outlook of the ginning enterprise and the valuation forming the basis of purchase and sale engage the attention of bankers... as Percentages of Total Number1 Number Type of Power Year Gaso- Elec- Steam Water line Animal tric Diesel Gas Total IDepartm~nt of Commerce, Bureau of the Census: Cotton Production and Distribution, Sea- son of 1919-20, Bulletin 145, pages 36-43. Cotton...

  14. Tight sands gain as U.S. gas source

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hoak, T.E.; Kuuskraa, J.A. [Advanced Resources International Inc., Arlington, VA (United States); Hansen, J. [Gas Research Inst., Chicago, IL (United States)

    1996-03-18T23:59:59.000Z

    This report, the last of a four part series assessing unconventional gas development in the US, examines the state of the tight gas sands industry following the 1992 expiration of the qualification period for the Sec. 29 Nonconventional Fuels Tax Credit. Because tight gas sands were the most mature of the unconventional gas sources and received only a modest tax credit, one would not expect much change when the tax credit qualification period ended, and post-1992 drilling and production data confirm this. What the overall statistics do not show, and thus the main substance of this article, is how rediscovered tight gas plays and the evolution in tight gas exploration and extraction technology have shifted the outlook for tight gas drilling and its economics from a low productivity, marginally economic resource to a low cost source of gas supply.

  15. Multi-Echelon Supply Chain Design in Natural Gas Industry

    E-Print Network [OSTI]

    Mehrdad Nikbakht; N. Zulkifli; N. Ismail; S. Sulaiman; Abdolhossein Sadrnia; M. Suleiman

    Abstract: In this paper, a framework is proposed for integrating of the operational parts of Natural Gas Transmission Systems (NGTSs) through pipelines and better coordination for the flow of natural gas and information in the system. The objective functions of this study are to provide a brief review of literature in natural gas supply chain modeling and to design a multi-echelon Supply Chain for the Natural Gas Transmission Systems (NSTSC). To achieve this, extensive and detailed studies in this field of research have been done. Subsequently, a complete study on the transmission of natural gas through pipelines, as well as the supply chain and its application, has been made in gas industry. Next, based on the operational systems in the natural gas industry, the supply chain levels are developed. These designs are very effective for modeling and optimization of the gas networks. In addition, the developed supply chain helps to reduce the costs of the NGTSs and increase customer satisfaction.

  16. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  17. Lower Cost Carbon Fiber Precursors

    Broader source: Energy.gov (indexed) [DOE]

    production and conversion parameters must be optimized. Lower cost fiber enable CF composite applications. Approach: 1. Complete previous effort by scaling to the CF production...

  18. Lower Cost Carbon Fiber Precursors

    Broader source: Energy.gov (indexed) [DOE]

    performing fiber. (600-750 KSI) Barriers: Addresses the need for higher performance low cost fiber for hydrogen storage tanks and energy management structures of automobiles....

  19. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01T23:59:59.000Z

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  20. Audit Costs for the 1986 Texas Energy Cost Containment Program

    E-Print Network [OSTI]

    Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

    1987-01-01T23:59:59.000Z

    Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

  1. A case study of the implementation of a parking fee at R. A. Apffel Park in Galveston, Texas

    E-Print Network [OSTI]

    Albers, Sheryl Druggan

    1982-01-01T23:59:59.000Z

    and Atmospheric Administration 1978). Through this effort, Cape Hatteras National Seashore was established. In 1955 the National Park Service (NPS ) issued a report entitled, A Re ort on a Seashore Recreation Area Surve ~ This report inventoried the amount...A CASF. STUDY OF THE IMFLEMENTAT ION OF A PARKING FEE AT R. A. APFFEL FARY. IN GALVESTON, TEXAS A Thesis by SHERYL DRUGGAN ALBERS Su'bmitted to the Graduate College of Texas A&M University in partial fulfillment of the reouirement...

  2. The Oil and Gas Journal databook, 1986 edition

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This annual contains the following: Foreword by Gene Kinney; OGJ 400; Crude Oil Assays; Worldwide Petrochemical Survey; Midyear Forecast and Review; Worldwide Gas Processing Report; Ethylene Report; Sulfur Survey; International Refining; Catalyst Compilation; Pipeline Economics Report; Worldwide Production and Refining Report; Annual Refining Survey; Morgan Pipeline Cost Index, Oil and Gas; Nelson Cost Index; Hughes Rig Count; Smith Rig Count; OGJ Production Report and the API Refinery Reports. Also featured is the Oil and Gas Journal Index, which lists every article published in the Journal in 1985, referenced by article title or subject.

  3. Renewable Energy Certificate (REC) Tracking Systems: Costs & Verification Issues (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2013-10-01T23:59:59.000Z

    This document provides information on REC tracking systems: how they are used in the voluntary REC market, a comparison of REC systems fees and information regarding how they treat environmental attributes.

  4. Gasification Plant Cost and Performance Optimization

    SciTech Connect (OSTI)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01T23:59:59.000Z

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

  5. Hydrogen demand, production, and cost by region to 2050.

    SciTech Connect (OSTI)

    Singh, M.; Moore, J.; Shadis, W.; Energy Systems; TA Engineering, Inc.

    2005-10-31T23:59:59.000Z

    This report presents an analysis of potential hydrogen (H{sub 2}) demand, production, and cost by region to 2050. The analysis was conducted to (1) address the Energy Information Administration's (EIA's) request for regional H{sub 2} cost estimates that will be input to its energy modeling system and (2) identify key regional issues associated with the use of H{sub 2} that need further study. Hydrogen costs may vary substantially by region. Many feedstocks may be used to produce H{sub 2}, and the use of these feedstocks is likely to vary by region. For the same feedstock, regional variation exists in capital and energy costs. Furthermore, delivery costs are likely to vary by region: some regions are more rural than others, and so delivery costs will be higher. However, to date, efforts to comprehensively and consistently estimate future H{sub 2} costs have not yet assessed regional variation in these costs. To develop the regional cost estimates and identify regional issues requiring further study, we developed a H{sub 2} demand scenario (called 'Go Your Own Way' [GYOW]) that reflects fuel cell vehicle (FCV) market success to 2050 and allocated H{sub 2} demand by region and within regions by metropolitan versus non-metropolitan areas. Because we lacked regional resource supply curves to develop our H{sub 2} production estimates, we instead developed regional H{sub 2} production estimates by feedstock by (1) evaluating region-specific resource availability for centralized production of H{sub 2} and (2) estimating the amount of FCV travel in the nonmetropolitan areas of each region that might need to be served by distributed production of H{sub 2}. Using a comprehensive H{sub 2} cost analysis developed by SFA Pacific, Inc., as a starting point, we then developed cost estimates for each H{sub 2} production and delivery method by region and over time (SFA Pacific, Inc. 2002). We assumed technological improvements over time to 2050 and regional variation in energy and capital costs. Although we estimate substantial reductions in H{sub 2} costs over time, our cost estimates are generally higher than the cost goals of the U.S. Department of Energy's (DOE's) hydrogen program. The result of our analysis, in particular, demonstrates that there may be substantial variation in H{sub 2} costs between regions: as much as $2.04/gallon gasoline equivalent (GGE) by the time FCVs make up one-half of all light-vehicle sales in the GYOW scenario (2035-2040) and $1.85/GGE by 2050 (excluding Alaska). Given the assumptions we have made, our analysis also shows that there could be as much as a $4.82/GGE difference in H{sub 2} cost between metropolitan and non-metropolitan areas by 2050 (national average). Our national average cost estimate by 2050 is $3.68/GGE, but the average H{sub 2} cost in metropolitan areas in that year is $2.55/GGE and that in non-metropolitan areas is $7.37/GGE. For these estimates, we assume that the use of natural gas to produce H{sub 2} is phased out. This phase-out reflects the desire of DOE's Office of Hydrogen, Fuel Cells and Infrastructure Technologies (OHFCIT) to eliminate reliance on natural gas for H{sub 2} production. We conducted a sensitivity run in which we allowed natural gas to continue to be used through 2050 for distributed production of H{sub 2} to see what effect changing that assumption had on costs. In effect, natural gas is used for 66% of all distributed production of H{sub 2} in this run. The national average cost is reduced to $3.10/GGE, and the cost in non-metropolitan areas is reduced from $7.37/GGE to $4.90, thereby reducing the difference between metropolitan and non-metropolitan areas to $2.35/GGE. Although the cost difference is reduced, it is still substantial. Regional differences are similarly reduced, but they also remain substantial. We also conducted a sensitivity run in which we cut in half our estimate of the cost of distributed production of H{sub 2} from electrolysis (our highest-cost production method). In this run, our national average cost estimate is reduced even further, to

  6. Estimates of Energy Cost Savings Achieved from 2009 IECC Code-Compliant, Single Family Residences in Texas

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J.

    The annual energy cost savings were estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. 2009 IECC Cost Savings Report, p.ii January 2011 Energy Systems Laboratory, Texas A...). 3.2 Annual Total Energy Cost Similar trends were observed in the annual energy costs estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. Across the counties, the 2001...

  7. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  8. Oil and gas: Oilfield class actions

    SciTech Connect (OSTI)

    McArthur, J.B.

    1997-06-01T23:59:59.000Z

    The use of class actions is getting alot of attention in the oilfield. Plaintiffs have filed class actions challenging two of the most rooted industry practices, oil posted prices and deregulated natural gas affiliate deduction and charges. The classes will include tens or hundreds of thousands of plaintiffs and may transform two of the industry`s most settled practices. The emotions surrounding the class action risk obscuring the fact that it is an old and oft-used tool in oilfield litigation. The class action {open_quotes}provides a means by which, where a large group of persons are interested in a matter, one or more may sue or be sued as representatives of the class without needing to join every member of the class.{close_quotes} The procedure avoids waste by combining scattered disputes, even if some injured might sue individually, and it enables plaintiffs who could not afford to sue to be represented anyway. The lawyers draw their fees from any recovery. Almost all oilpatch class actions are brought to resolve a {open_quotes}common question{close_quotes} under Federal Rules of Civil Procedure 23(b)(3) or state counterparts. The rule`s {open_quotes}opt-out{close_quotes} provisions give class actions a tremendous boost because members stay in unless they take steps to get out. This article discusses present and future class actions.

  9. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

  10. 5, 14791509, 2008 Staged cost

    E-Print Network [OSTI]

    Boyer, Edmond

    HESSD 5, 1479­1509, 2008 Staged cost optimization of urban storm drainage systems M. Maharjan et al Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing optimization of urban storm drainage systems M. Maharjan et al. Title Page Abstract Introduction Conclusions

  11. Reactor Cost Analysis Brian James

    E-Print Network [OSTI]

    Reactor Cost Analysis Brian James Directed Technologies, Inc. 6-7 November 2007 This presentation specification & optimization · Capital cost estimation · Projected hydrogen $/kg #12;Directed Technologies, Inc/WGS Membrane Reactor OTM/ Water-Splitting ANL With WGS #12;Directed Technologies, Inc. 6-7 November 2007 BILIWG

  12. Use of Cost Estimating Relationships

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

  13. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect (OSTI)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01T23:59:59.000Z

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

  14. Human Services in a Market Economy: Implications of Program Fee Reliance among Nonprofit Human Service Organizations

    E-Print Network [OSTI]

    Howard, David Benjamin

    2013-01-01T23:59:59.000Z

    of Profits. Stanford Social Innovation Review, Winter 2004,for innovation (e.g. , the Social Innovation Fund, ďpay formarket-focused social innovations, reduced cost structures,

  15. FINANCING ELECTRONIC WASTE RECYCLING - Californian Householdsí Willingness to Pay Advanced Recycling Fees

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    led to a patchwork of programs and higher costs, particularly for collection, which is a major expense for e-waste recycling (

  16. Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas....................................................................... 1 Analysis of the Direct Use of Natural Gas for the Sixth Power Plan electricity to natural gas for residential space and water heating a lower-cost and lower-risk alternative

  17. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  18. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  19. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  20. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...