Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fee 0 May 2011 - September 2015 June 2013 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 419,202,975...

2

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$ 3,422,994.00 $ 3,422,994.00 FY2011 4,445,142.00 $ FY2012 $ 5,021,951.68 FY2013 $ 3,501,670.00 FY2014 $0 FY2015 $0 FY2016 $0 FY2017 $0 FY2018 $0 FY2019 $0 Cumulative Fee Paid $16,391,758 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee $989,000,000 Contract Period: Contract Type: January 2010 - December 2019 Contract Number: EM Contractor Fee Site: Savannah River Site Office - Aiken, SC Contract Name: Comprehensive Security Services September 2013 Fee Information Maximum Fee $55,541,496 $5,204,095 $3,667,493 $5,041,415 Minimum Fee 0 Fee Available $5,428,947 $6,326,114

3

fees  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRIME CONTRACTOR FEES ON PRIME CONTRACTOR FEES ON SUBCONTRACTOR COSTS U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES AUDIT REPORT DOE/IG-0427 SEPTEMBER 1998 September 11, 1998 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Acting Inspector General SUBJECT: INFORMATION : Audit Report on "The U.S. Department of Energy's Prime Contractor Fees on Subcontractor Costs" BACKGROUND In Fiscal Year 1996, the Department's prime contractors awarded $5.3 billion in subcontracts. The purpose of this audit was to determine if the Department adjusted the fee bases of prime contractors to reflect the actual effort necessary to manage the technical and administrative activities of their subcontractors.

4

Cost-share Fee Waiver request form Request for a cost share for a GSSP fee waiver on the following project. Documentation from granting  

E-Print Network (OSTI)

Cost-share Fee Waiver request form Request for a cost share for a GSSP fee waiver on the following project. Documentation from granting agency with information regarding tuition as unallowable must____________________________________________________________ Project Name __________________________________________________________________ Funding Agency

Taylor, Jerry

5

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 1,516,646 Fee Available...

6

Requirements for Using and Administering Cost-plus-award-fee Contracts:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Using and Administering Cost-plus-award-fee Contracts: Requirements for Using and Administering Cost-plus-award-fee Contracts: Pre and Post FAC 2005-37 Pre FAC 2005-37 Prior to Federal Acquisition Circular (FAC) 2005-37, which has an effective date of October 14, 2009, the Federal Acquisition Regulation (FAR) required the following in using and administering a cost-plus-award-fee contract: 1. neither a firm-fixed-price nor a fixed-priced incentive contract was appropriate; 2. the limitations on use of a cost reimbursement contract were met; 3. the supplies or services could be acquired at lower costs, and in certain instances, with improved delivery or technical performance, by relating the amount of fee to the contractor's performance; 4. it was neither feasible nor effective to use predetermined objective incentive targets for cost,

7

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fee September, 2013 Site: Portsmouth Paducah Project Office Contract Name: Operation of DUF6 Contractor: Babcock & Wilcox Conversion Services, LLC Contract Number:...

8

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15,763,807 Contractor: 93,591,118 Fee Available Contract Period: Contract Type: URSCH2M Oak Ridge, LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract...

9

FOIA FEES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fees Fees The FOIA generally requires that requestors pay fees for processing their requests. If costs associated with the processing of a FOIA request are $15.00 or less, no fees are charged. Each FOIA request is reviewed for the purpose of placing a requestor in one of four fee categories described below: 1. Commercial use requestor: Responsible for all direct costs; i.e. search for responsive documents, review of documents located for responsiveness; 16% administrative costs; reproduction cost of $.05 per page; and the time it took the FOIA Contact Person to process the request. 2. Requestors who are representative of the news media: Responsible for reproduction costs after the first 100 pages. 3. Educational and non-commercial scientific institution requestors:

10

Economic and equity effects of transportation utility fees  

E-Print Network (OSTI)

­ Residential costs would decrease ­ Retail costs would increase substantially · Not all trips are "generated" ­ Gas stations, groceries are pass-by trips ­ Mixed-use developments internalize some trips · Not all residents use transportation equally ­ Fee should be avoidable by non-users #12;Feasibility · Fee calculated

Levinson, David M.

11

Effects of increasing filing fees for noncompetitive onshore oil and gas leases  

Science Conference Proceedings (OSTI)

The Government Accounting Office (GAO) examined the impact of increasing the fee charged to applicants for noncompetitive onshore oil and gas leases from $25.00 to $75.00. Interior believes the increased filing fee will: (1) reduce casual speculation and multiple filings, thereby reducing fraud potential, development delays caused by assignments, and administrative burden; and (2) generate significant additional revenue. Interior's analysis is, of necessity, based largely on conjecture, but the possibility that the positive results foreseen may not materialize to the degree projected cannot be ruled out. For example, while it is likely that the $75 fee will generate additional revenue over what was obtainable under either the $10 or $25 rate, Interior's projections of at least a million filings annually and $150 million in revenues are far from certain. GAO was also unable in the time available to determine the degree to which the problems the Department desires to overcome exist, or that they will be resolved through a fee increase. Results suggest that: reducing the number of filings is not necessarily the total or only solution to reducing the administrative burden; the casual speculator is not having that great an adverse effect on development, and in fact has certain positive aspects; and the true extent of fraud in the SOG may not be as great as initially supposed. In addition, there are possible adverse effects that may not have been fully considered. For example, the increased filing fee, when coupled with the increased rental, could adversely affect industry's exploration activities, particularly that of the smaller independent. GAO suggests, now that the increase is in effect, that the Interior Department and the Congress closely watch the results, and be prepared to take remedial action if deemed necessary.

Not Available

1982-03-19T23:59:59.000Z

12

OpenEI - Unit Cost Natural Gas  

Open Energy Info (EERE)

for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005...

13

Consumer Natural Gas Heating Costs  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: Mild weather has minimized residential gas consumption over most of the past 3 winters. Unlike heating oil, average increases in natural gas prices last winter were small....

14

Unit Cost Natural Gas | OpenEI  

Open Energy Info (EERE)

2 2 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281532 Varnish cache server Unit Cost Natural Gas Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

15

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

the construction costs of natural gas, oil, and petroleumR. Current pipeline costs. Oil & Gas Journal; Nov 21,cost projections for over 20,000 miles of natural gas, oil, and

Parker, Nathan

2004-01-01T23:59:59.000Z

16

EM Contractor Fee Payments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Fee Payments Contractor Fee Payments EM Contractor Fee Payments In the interest of furthering transparency in its government operations, the Department of Energy's Office of Environmental Management (EM) herein is releasing information relating to fee payments under its major cost-reimbursable contracts. Charts delineating fees that are paid under cost-plus-award-fee (CPAF), cost-plus-incentive-fee (CPIF), and cost-plus-fixed-fee (CPFF) contracts are listed by site location in the following hyperlinks. With CPFF contracts, the fee is negotiated and fixed at the inception of the contract. The fixed fee will not vary with the actual costs that the contractor incurs. In general, the contractor earns fee either by completing the work called for in the contract or devoting a specified

17

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

oil inspection license fees for oil-well plugging drill andselective sales tax on oil and gas well- servicing, andSERVICES Drilling oil and gas wells Oil and gas exploration

Delucchi, Mark

2005-01-01T23:59:59.000Z

18

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

19

Sample Invoice Cost & No Fee UT-B Contracts Div August 2009  

E-Print Network (OSTI)

SHIPPED VIA CUSTOMER NUMBER TERMS NET DAYS COST ELEMENT DESCRIPTION CURRENT COSTS CUMULATIVE COSTS DIRECT for the Department of Energy COMMENTS OR SPECIAL INSTRUCTIONS: SUBCONTRACT NUMBER BILLING PERIOD Begin/End Date: Company Name Address 1 Address 2 City, ST ZIP Code Street Address City, ST ZIP Code Name, Phone, E

20

Sample Invoice Cost & Fee UT-B Contracts Div August 2009  

E-Print Network (OSTI)

SHIPPED VIA CUSTOMER NUMBER TERMS NET DAYS COST ELEMENT DESCRIPTION CURRENT COSTS CUMULATIVE COSTS DIRECT for the Department of Energy COMMENTS OR SPECIAL INSTRUCTIONS: SUBCONTRACT NUMBER BILLING PERIOD Begin/End Date: Company Name Address 1 Address 2 City, ST ZIP Code Street Address City, ST ZIP Code Name, Phone, E

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Rate and Natural Gas Rate and Cost Recovery Authorization to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Google Bookmark Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Delicious Rank Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

22

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Adjustments in 1991. Oil & Gas Journal; Nov 23, 1992; 90,begin 1993 on upbeat. Oil & Gas Journal; Nov 22, 1993; 91,Current pipeline costs. Oil & Gas Journal; Nov 21, 1994;

Parker, Nathan

2004-01-01T23:59:59.000Z

23

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

24

Consumer Winter Natural Gas Costs - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Household Gas Heating Costs. Since ... percent more by our calculations for a typical ... coming season they spent less for it due to much lower resid ...

25

New pipeline project could lower natural gas transportation costs ...  

U.S. Energy Information Administration (EIA)

... natural gas transportation costs to New York City could be reduced with the expansion of the existing Texas Eastern Transmission pipeline from Linden, New ...

26

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

27

Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Favorable Supplies, Costs, Environmental Profile for Natural Gas Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study August 23, 2012 - 1:00pm Addthis Washington, DC - The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy (DOE) study. The report, Role of Alternative Energy Sources: Natural Gas Power Technology Assessment, was prepared by the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Analysts focused on seven criteria to evaluate the role of natural gas in the U.S. energy supply

28

Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Favorable Supplies, Costs, Environmental Profile for Natural Gas Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study August 23, 2012 - 1:00pm Addthis Washington, DC - The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy (DOE) study. The report, Role of Alternative Energy Sources: Natural Gas Power Technology Assessment, was prepared by the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Analysts focused on seven criteria to evaluate the role of natural gas in the U.S. energy supply

29

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

30

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

31

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

32

Natural Gas Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Cost Calculator Natural Gas Vehicle Cost Calculator Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/vehicles/natural_gas_calculator.html Determine the costs to acquire and use a Natural Gas Vehicle (Honda Civic GX) as compared to a conventional vehicle.

33

Consumer Natural Gas Winter Heating Costs  

Gasoline and Diesel Fuel Update (EIA)

5 of 26 Notes: Mild weather minimized residential gas consumption over most of the past 3 winters. Our projections for more or less normal winter weather through the remainder of...

34

Financing of Substitute Natural Gas Costs (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute encourages the development of local coal gasification facilities to produce substitute natural gas, calls on state energy utilities to enter into long-term contracts for the purchase...

35

Tight gas sands study breaks down drilling and completion costs  

Science Conference Proceedings (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

36

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:09am Addthis YOU ARE HERE Step 4 When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts. The major cost elements associated with developing and implementing a project are identified in Table 1. Table 1. Major Costs for Project Development and Implementation Cost Element Description Variables Project planning costs Preparatory work by building owners and design team. Benchmarking activities. Building audits. Developing statements of work for subcontractors. Selecting contractors. Integrated design process (for major renovations). Type of project; previous team experience; local markets; number of stakeholders

37

Russian gas resource base large, overstated, costly to maintain  

SciTech Connect

The natural gas resources of the Former Soviet Union are immense, with an officially estimated initial recoverable endowment of 250.7 trillion cu m (8,852 trillion cu ft). Of this volume, 85% is located in the Russian Federation, which will be the dominant world supplier of gas through 2015. Although Russia possesses an amazing gas resource base, official figures overstate both the recovery factor for gas in place and appear to systematically overestimate volumes of recoverable gas in undiscovered fields. Production and transportation of gas from the Yamal peninsula and the new discoveries in the Kara and Barents seas will cost many times the current average cost of gas production in Russian. The paper discusses resources and reserves and examines the reliability of Soviet-vintage data.

Grace, J.D. (Troika Energy Services, Dallas, TX (United States))

1995-02-06T23:59:59.000Z

38

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reduction Potential and Cost-Effectiveness Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:58am Addthis YOU ARE HERE: Step 3 After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies. Table 1. Framework for Identifying Optimal Vehicle Acquisition Strategies Step Summary Purpose PLAN and COLLECT 1 Determine vehicle acquisition requirements Establish a structured Vehicle Allocation Matrix (VAM) to determine the numbers and types of vehicles required to accomplish your fleet's mission

39

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

oil inspection license fees for oil-well plugging drill andselective sales tax on oil and gas well- servicing, andSERVICES Drilling oil and gas wells Oil and gas exploration

Delucchi, Mark

2005-01-01T23:59:59.000Z

40

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Commuting Employee Commuting Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:27pm Addthis YOU ARE HERE Step 4 For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated. The annual costs of commute trip reduction programs can vary greatly by worksite. This section outlines types of costs that might be incurred by an agency as well as savings and other benefits of commute trip reduction to an agency, its employees, and the communities surrounding its major worksites. It includes: Employer costs and benefits Employee costs and benefits

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:13pm Addthis YOU ARE HERE: Step 4 Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy. The costs to reduce GHG emissions can vary greatly from cost-free behavior modification to the high-cost of purchasing zero-emission battery electric vehicles and associated fueling infrastructure. This section provides an overview of the costs and savings to consider when planning for mobile source emissions reductions, including efforts to: Reduce vehicle miles traveled

42

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Warren R. U.S. interstate pipelines begin 1993 on upbeat. 66. ? True, Warren R. Current pipeline costs. Oil & GasWarren R. U.S. interstate pipelines ran more efficiently in

Parker, Nathan

2004-01-01T23:59:59.000Z

43

Estimation of the social costs of natural gas  

SciTech Connect

This study determines the extent to which it is possible to develop monetary estimates of the marginal social cost of fuels, using natural gas to test a methodology that could be applied to other fuels. This requires review of previous estimates of both market and nonmarket costs to the extent that such are available. For some components of social cost, calculation of estimates from secondary data is required. The feasibility of using these estimates to develop marginal social-cost estimates for the country and for states or regions must then be evaluated. In order to develop estimates of marginal social cost for use in determining minimum life-cycle costs of building space conditioning, economic theory is used to develop a conceptual model of the market cost of fuel extraction and conversion. Then, estimation methodologies for each component of nonmarket costs are examined to assess the applicability and validity of each methodology. On the basis of this analysis, empirical estimates of both market and nonmarket components of social cost are aggregated to calculate a social-cost estimate for natural gas. 38 references.

Nieves, L.A.; Lemon, J.R.

1979-12-01T23:59:59.000Z

44

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

45

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much does it cost to produce crude oil and natural gas? A measure of the total cost to produce crude oil and natural gas is the upstream costs.

46

Costs and Indices for Domestic Oil and Gas Field Equipment and ...  

U.S. Energy Information Administration (EIA)

Lease Equipment Costs for Gas Production in the Mid-Continent: Direct Annual Operating Costs for Gas Production in the Mid-Continent: Gas Production--the Rocky Mountains

47

Cost analysis of NOx control alternatives for stationary gas turbines  

SciTech Connect

The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

Bill Major

1999-11-05T23:59:59.000Z

48

Privacy Act Fees and Time Limits | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Privacy Act Fees and Time Limits The Act provides agencies to assess fees only for the cost of reproducing records. However, it is the policy of the DOE to provide an individual...

49

Indonesia Greenhouse Gas Abatement Cost Curve | Open Energy Information  

Open Energy Info (EERE)

Indonesia Greenhouse Gas Abatement Cost Curve Indonesia Greenhouse Gas Abatement Cost Curve Jump to: navigation, search Tool Summary Name: Indonesia Greenhouse Gas Abatement Cost Curve Agency/Company /Organization: Government of Indonesia Topics: Baseline projection, GHG inventory, Co-benefits assessment, Background analysis Resource Type: Software/modeling tools Website: www.dnpi.go.id/report/DNPI-Media-Kit/reports/indonesia-ghg_abatement_c Country: Indonesia UN Region: South-Eastern Asia Coordinates: -0.789275°, 113.921327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-0.789275,"lon":113.921327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Travel Business Travel Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Business Travel October 7, 2013 - 1:37pm Addthis YOU ARE HERE Step 4 Once business travel reduction strategies have been identified, a Federal agency may evaluate the cost of implementing those measures and any potential savings from avoided travel. The annual costs associated with reducing business travel may vary greatly by agency, program, and site depending on the current level of video conferencing and desktop collaboration solutions that are available between the organization's major travel destinations. This will be largely driven by whether the agency has to install or upgrade equipment or just make them more accessible and familiar to users. Strategies focused on policy and

51

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

52

Alternative Fuels Data Center: Ethanol Production Facility Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Fee to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Fee on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Fee on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Fee on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Facility Fee The cost to submit an air quality permit application for an ethanol production plant is $1,000. An annual renewal fee is also required for the

53

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Annual Fee to someone by E-mail Annual Fee to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Annual Fee Owners of compressed natural gas and propane powered vehicles are required

54

U.S. Imputed Value of Natural Gas Market Production (Cost)  

Gasoline and Diesel Fuel Update (EIA)

Imputed Value of Natural Gas Market Production (Cost) U.S. Imputed Value of Natural Gas Market Production (Cost) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

55

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

Costs of Crude Oil and Natural Gas Wells Drilled Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003 2004 2005 2006 2007 View History Thousand Dollars per Well All (Real*) 1,011.9 1,127.4 1,528.5 1,522.3 1,801.3 3,481.8 1960-2007 All (Nominal) 1,054.2 1,199.5 1,673.1 1,720.7 2,101.7 4,171.7 1960-2007 Crude Oil (Nominal) 882.8 1,037.3 1,441.8 1,920.4 2,238.6 4,000.4 1960-2007 Natural Gas (Nominal) 991.9 1,106.0 1,716.4 1,497.6 1,936.2 3,906.9 1960-2007 Dry Holes (Nominal) 1,673.4 2,065.1 1,977.3 2,392.9 2,664.6 6,131.2 1960-2007 Dollars per Foot All (Real*) 187.46 203.25 267.28 271.16 324.00 574.46 1960-2007 All (Nominal) 195.31 216.27 292.57 306.50 378.03 688.30 1960-2007

56

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard

2007-01-01T23:59:59.000Z

57

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

58

Local Option - Building Permit Fee Waivers for Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

permit fees. Class I renewable energy projects include energy derived from solar power, wind power, fuel cells (using renewable or non-renewable fuels), methane gas from...

59

Options and costs for offsite disposal of oil and gas exploration and production wastes.  

Science Conference Proceedings (OSTI)

In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that accept and manage E&P wastes for a fee. Their services include waste management and disposal, transportation, cleaning of vehicles and tanks, disposal of wash water, and, in some cases, laboratory analysis. Commercial disposal facilities offer a suite of waste management methods and technologies.

Puder, M. G.; Veil, J. A.; Environmental Science Division

2007-01-01T23:59:59.000Z

60

New pipeline project could lower natural gas transportation costs ...  

U.S. Energy Information Administration (EIA)

The spread between the price of natural gas at a supply ... Bottlenecks exist moving Marcellus natural gas out of Pennsylvania and delivering natural gas into ...

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low-Cost Miniature Multifunctional Solid-State Gas Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard J. Dunst Richard J. Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Eric D. Wachsman Principal Investigator University of Florida 339 Weil Hall Gainesville, FL 32611-4025 352-846-2991 ewach@mse.ufl.edu Low-Cost Miniature MuLtifunCtionaL soLid-state Gas sensors Description Research sponsored by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL), and performed by the University of Florida, has resulted in successful development of solid-state sensor technology that can provide an inexpensive, rugged device that is capable of measuring the concentration of multiple pollutants in lean-burn coal

62

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September 28, 2010 Next Release: Discontinued Excel Spreadsheet Model - 1994-2009 XLS (1,178 KB) Overview Oil and gas well equipment and operating costs, including coal bed methane costs, stopped their upward trend from the 1990s and fell sharply in 2009. The extremely high oil and gas prices during the first half of 2008 followed by an unprecedented drop to very low prices by the end of the year had a major impact on equipment demand. Operating costs tumbled also because fuel costs were reduced and well servicing rates fell in most areas. The exceptions were in California where electric rates continued to increase, causing a one (1) percent increase in annual operating costs for leases producing from 12,000 feet. Operating cost for coal bed methane wells in the Appalachian and Powder River areas increased because electric rates continued to climb. Due to the timing of the data collection, the cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other well completion costs, so the effect of the oil and gas prices on collected data may be lessened. Annual average electric rates and natural gas prices are used, which also helps to dampen cost variances.

63

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

64

U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

65

U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

66

U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Annual Energy Outlook 2012 (EIA)

Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

67

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...  

Annual Energy Outlook 2012 (EIA)

Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

68

U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry...  

Annual Energy Outlook 2012 (EIA)

Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1...

69

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. ... How much does it cost to produce crude oil and natural gas?

70

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

71

Agricultural greenhouse gas emissions : costs associated with farm level mitigation.  

E-Print Network (OSTI)

??Agricultural greenhouse gas emissions within New Zealand account for 48 percent of all national greenhouse gas emissions. With the introduction of the emissions trading scheme (more)

Wolken, Antony Raymond

2009-01-01T23:59:59.000Z

72

Performance Period Total Fee Paid FY2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

73

Abstract The natural gas price surged in 2004. As a result, the marginal cost of some generators burning gas also rose sharply.  

E-Print Network (OSTI)

Abstract ­ The natural gas price surged in 2004. As a result, the marginal cost of some generators marginal cost, which is closely related to the natural gas price. Since gas units are usually the marginal the sensitivity of Var benefit with respect to generation cost. The U.S. natural gas industry has been

Tolbert, Leon M.

74

Federal fees and contracts for storage and disposal of spent LWR fuel  

SciTech Connect

The methodology for establishing a fee for federal spent fuel storage and disposal services is explained along with a presentation of the cost centers and cost data used to calculate the fee. Results of the initial fee calculation and the attendant sensitivity studies are also reviewed. The current status of the fee update is presented. The content of the proposed contract for federal services is briefly reviewed.

Clark, H.J.

1979-01-01T23:59:59.000Z

75

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-2 hours of training per new employee Operating costs: 0 Telework centers Cost per square foot to lease telework centers varies widely by location. In DC area, agencies have...

76

Oil and Gas Lease Equipment and Operating Costs 1994 Through...  

Gasoline and Diesel Fuel Update (EIA)

cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other...

77

Cost Curves for Gas Supply Security: The Case of Bulgaria  

E-Print Network (OSTI)

.6% Natural gas* 5.7% Liquid fuels 1.2% Notes and sources: SEWRC, December 2008; * cogeneration 6 3.2 Bulgaria is unable to cope with gas supply disruptions Bulgaria was unable to cope with the gas supply disruption of January 2009... of an explanation. First, the Bulgarian gas industry is organised as a de-facto monopoly, with Bulgargaz part of the 100% government-owned Bulgarian Energy Holding. Accordingly, the company is very well...

Silve, Florent; Nol, Pierre

78

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

1998-03-01T23:59:59.000Z

79

Hydrogen leak detection - low cost distributed gas sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

leak detection that can be economically satisfied using our technology. * Due to limited refinery capacity, downtime in the oil and gas refining industry has become of critical...

80

Survey of state regulatory activities on least cost planning for gas utilities  

SciTech Connect

Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

1994-07-08T23:59:59.000Z

82

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

83

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fee to someone by E-mail and Fee to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Tax and Fee Compressed natural gas (CNG) used in motor vehicles is subject to a state

84

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

such as existing systems, ongoing operations, hazardous materials Energy savings Cost per unit of energy (e.g., kWh, kBtu) saved Rate schedules and applicable riders for...

85

International Emission Trading and the Cost of Greenhouse Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

the knowledge base concerning CC&S technologies. References Adams, D.M., R.J. Alig, B.A. McCarl, J.M. Callaway, and S.M. Winnett, (1999). "Minimum Cost Strategies for...

86

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

cost dependent on pipeline length and diameter against thedescribe with only the pipeline length and diameter. Labordescribed by the pipeline diameter and length alone. In some

Parker, Nathan

2004-01-01T23:59:59.000Z

87

DATA TRANSMISSION OPTIONS FOR VMT DATA AND FEE COLLECTION CENTERS  

E-Print Network (OSTI)

DATA TRANSMISSION OPTIONS FOR VMT DATA AND FEE COLLECTION CENTERS by Robert L. Bertini Kerri Date November 2002 4. Title and Subtitle DATA TRANSMISSION OPTIONS FOR VMT DATA AND FEE COLLECTION). The objectives of this report are to analyze data transmission options and provide cost estimates for VMT data

Bertini, Robert L.

88

Privacy Act Fees and Time Limits | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Fees and Time Limits | National Nuclear Security Administration Fees and Time Limits | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Privacy Act Fees and Time Limits Home > About Us > Our Operations > NNSA Office of General Counsel > Privacy Act (PA) of 1974 > Privacy Act Fees and Time Limits Privacy Act Fees and Time Limits The Act provides agencies to assess fees only for the cost of reproducing

89

Reduction in Fabrication Costs of Gas Diffusion Layers  

Science Conference Proceedings (OSTI)

Ballard Material Products (BMP) performed a pre-design technical and cost analysis of state of the art production technologies feasible for high volume GDL manufacturing. Based upon criteria that also included environmental health and safety, customer quality requirements, and future needs, BMP selected technologies that can be integrated into its current manufacturing process. These selections included Many-At-A-Time (MAAT) coating and continuous mixing technologies, as well as various on-line process control tools. These processes have allowed BMP to produce high performance GDLs at lower cost for near-term markets, as well as to define the inputs needed to develop a conceptual Greenfield facility to meet the cost targets for automotive volumes of 500,000 vehicles per year.

Jason Morgan; Donald Connors; Michael Hickner

2012-07-10T23:59:59.000Z

90

Cut Gas Costs This Holiday Traveling Season with Three Easy Tips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cut Gas Costs This Holiday Traveling Season with Three Easy Tips Cut Gas Costs This Holiday Traveling Season with Three Easy Tips Cut Gas Costs This Holiday Traveling Season with Three Easy Tips November 26, 2013 - 9:23am Addthis Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Drive smart this holiday season and stay informed with tools such as the speed penalty calculator on fueleconomy.gov. Yesterday you learned from Becky about three tools to help you save on fuel

91

Cut Gas Costs This Holiday Traveling Season with Three Easy Tips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cut Gas Costs This Holiday Traveling Season with Three Easy Tips Cut Gas Costs This Holiday Traveling Season with Three Easy Tips Cut Gas Costs This Holiday Traveling Season with Three Easy Tips November 26, 2013 - 9:23am Addthis Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Drive smart this holiday season and stay informed with tools such as the speed penalty calculator on fueleconomy.gov. Yesterday you learned from Becky about three tools to help you save on fuel

92

DOE to Join with WVU to Optimize Hot Gas Filter Cleaning, Lower Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

September 24, 1999 September 24, 1999 DOE to Join with WVU to Optimize Hot Gas Filter Cleaning, Lower Costs One of the keys to future, high efficiency, cleaner coal-fired power plants is the development of hot gas filters. Most of the devices available today to filter pollution-causing impurities from power plant gas streams operate at relatively low temperatures. Tomorrow's advanced power plants - those, for example, that use coal gasifiers and advanced fluidized bed combustors - will require filtering systems that are able to withstand much hotter gas flows and function reliably at lower costs. In an effort to reduce the operational costs of these future filter systems, the Department of Energy (DOE) and West Virginia University (WVU) will conduct experiments at the university's test facility to better understand how hot-gas filters are cleaned. DOE will provide $232,000 of the total $488,888 project that will ultimately help to optimize the cleaning process.

93

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

1996-08-01T23:59:59.000Z

94

Gas turbine electric plant construction cost and annual production expenses. First annual publication, 1972  

SciTech Connect

By the end of 1972, gas turbine power plants owned and operated by U.S. utilities had a capacity of 27,918 MW. Data from the 1972 annual reports filed with the Federal Power Commission by utility systems are presented which show the plant cost, generating expenses, capacity and generation, and plant and equipment characteristics of 299 gas turbine plants. (LCL)

1972-01-01T23:59:59.000Z

95

The Effect of Transaction Costs on Greenhouse Gas Emission Mitigation for Agriculture and Forestry  

E-Print Network (OSTI)

Climate change and its mitigation is rapidly becoming an item of social concern. Climate change mitigation involves reduction of atmospheric greenhouse gas concentrations through emissions reduction and or sequestration enhancement (collectively called offsets). Many have asked how agriculture and forestry can participate in mitigation efforts. Given that over 80 percent of greenhouse gas emissions arise from the energy sector, the role of agriculture and forestry depends critically on the costs of the offsets they can achieve in comparison with offset costs elsewhere in the economy. A number of researchers have examined the relative offset costs but have generally looked only at producer level costs. However there are also costs incurred when implementing, selling and conveying offset credits to a buyer. Also when commodities are involved like bioenergy feedstocks, the costs of readying these for use in implementing an offset strategy need to be reflected. This generally involves the broadly defined category of transaction costs. This dissertation examines the possible effects of transactions costs and storage costs for bioenergy commodities and how they affect the agriculture and forestry portfolio of mitigation strategies across a range of carbon dioxide equivalent prices. The model is used to simulate the effects with and without transactions and storage costs. Using an agriculture and forestry sector model called FASOMGHG, the dissertation finds that consideration of transactions and storage costs reduces the agricultural contribution total mitigation and changes the desirable portfolio of alternatives. In terms of the portfolio, transactions costs inclusion diminishes the desirability of soil sequestration and forest management while increasing the bioenergy and afforestation role. Storage costs diminish the bioenergy role and favor forest and sequestration items. The results of this study illustrate that transactions and storage costs are important considerations in policy and market design when addressing the reduction of greenhouse gas concentrations in climate change related decision making.

Kim, Seong Woo

2011-05-01T23:59:59.000Z

96

Guidelines for Energy Cost Savings Resulting from Tracking and Monitoring Electrical nad Natural Gas Usage, Cost, and Rates  

E-Print Network (OSTI)

This paper discusses how improved energy information in schools and hospitals from tracking and monitoring electrical and natural gas usage, cost, and optional rate structures, can reduce energy costs. Recommendations, methods, and guidelines for monitoring and tracking of utilities are provided. These recommendations, methods, and guidelines are the result of on-site work for schools and hospitals . Recently completed energy usage survey and observations of several hospitals in Texas are included. Opportunities exist for schools, hospitals, and other buildings t o achieve significant dollar savings by good utility management. Understanding utility rate structures is essential for minimizing energy costs. The authors' data is for Texas schools and hospitals, but the principles presented apply to other geographic areas.

McClure, J. D.; Estes, M. C.; Estes, J. M.

1989-01-01T23:59:59.000Z

97

Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.  

DOE Green Energy (OSTI)

Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

Mintz, M.; Gillette, J.; Elgowainy, A. (Decision and Information Sciences); ( ES)

2009-01-01T23:59:59.000Z

98

Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario  

SciTech Connect

In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

2004-10-06T23:59:59.000Z

99

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network (OSTI)

for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica reduce greenhouse gas (GHG) emissions by shifting energy demand from gasoline to electricity. GHG benefits. HEVs are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low

Michalek, Jeremy J.

100

Novel cost allocation framework for natural gas processes: methodology and application to plan economic optimization  

E-Print Network (OSTI)

Natural gas plants can have multiple owners for raw natural gas streams and processing facilities as well as for multiple products. Therefore, a proper cost allocation method is necessary for taxation of the profits from natural gas and crude oil as well as for cost sharing among gas producers. However, cost allocation methods most often used in accounting, such as the sales value method and the physical units method, may produce unacceptable or even illogical results when applied to natural gas processes. Wright and Hall (1998) proposed a new approach called the design benefit method (DBM), based upon engineering principles, and Wright et al. (2001) illustrated the potential of the DBM for reliable cost allocation for natural gas processes by applying it to a natural gas process. In the present research, a rigorous modeling technique for the DBM has been developed based upon a Taylor series approximation. Also, we have investigated a cost allocation framework that determines the virtual flows, models the equipment, and evaluates cost allocation for applying the design benefit method to other scenarios, particularly those found in the petroleum and gas industries. By implementing these individual procedures on a computer, the proposed framework easily can be developed as a software package, and its application can be extended to large-scale processes. To implement the proposed cost allocation framework, we have investigated an optimization methodology specifically geared toward economic optimization problems encountered in natural gas plants. Optimization framework can provide co-producers who share raw natural gas streams and processing plants not only with optimal operating conditions but also with valuable information that can help evaluate their contracts. This information can be a reasonable source for deciding new contracts for co-producers. For the optimization framework, we have developed a genetic-quadratic search algorithm (GQSA) consisting of a general genetic algorithm and a quadratic search that is a suitable technique for solving optimization problems including process flowsheet optimization. The GQSA inherits the advantages of both genetic algorithms and quadratic search techniques, and it can find the global optimum with high probability for discontinuous as well as non-convex optimization problems much faster than general genetic algorithms.

Jang, Won-Hyouk

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Contractor Fee Payments - Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Contractor Fee Payments - Office of River Protection Contractor Fee Payments - Savannah River Site Office Contractor Fee Payments - Carlsbad Field...

102

User's manual: GCOST: A gas cost-of-service program: Version 1. 0  

SciTech Connect

The process of rate design for a gas distribution utility requires the use of cost-of-service studies. A cost-of-service study finds the various costs of serving all of a utility's customers, and allocates these costs to individual customer classes. Costs include investments in plant and equipment, operating expenses, and taxes. There are two distinct approaches that underlie cost-of-service studies. One approach is based on marginal costs and the other on embedded costs. The marginal-cost allocation can be defined as the incremental cost of adding a single customer to the system. The embedded cost is the customer's share of historical costs. Of the two approaches, the latter is easier to implement and traditionally has been used for rate-making purposes. GCOST is designed to perform cost-of-service studies using the traditional embedded cost approach. It accepts accounting, financial, and operating data as user input. It then allocates the various items of utility plant and operating expenses to each customer class according to user-specified methods. For each cost item or account, the user has the option of specifying an allocation method or formula. This flexibility allows the user to experiment with different combinations of allocation methods. GCOST is interfaced with a database management program, which is used to prepare input data files prior to running GCOST. The user has the choice of either using DBMGR, developed by NRRI, or the commercial software dBASE III PLUS, as the database management program. GCOST is designed for use on an IBM Personal Computer XT, AT, or compatible system.

Harunuzzaman, M.; Iyyuni, G.

1989-05-01T23:59:59.000Z

103

Benchmarking Distributed Generation Cost of Electricity and Characterization of Green House Gas Emission  

Science Conference Proceedings (OSTI)

Understanding the economic competitiveness and green house gas (GHG) footprint of all energy supply-side options has been identified by EPRI advisors as a key priority. This project benchmarks the cost of electricity and characterizes the GHG footprint of distributed generation (DG) options in various applications. DG technologies include small gas turbines, spark-ignited and diesel internal combustion engines, micro turbines, several types of fuel cells, Stirling engines, and photovoltaic systems.

2009-03-26T23:59:59.000Z

104

Appendix D - Federal Highway User Fees  

NLE Websites -- All DOE Office Websites (Extended Search)

D - FEDERAL HIGHWAY USER FEES D - FEDERAL HIGHWAY USER FEES FEDERAL HIGHWAY-USER FEES 1/ OCTOBER 2001 TABLE FE-21B USER FEE TAX RATE DISTRIBUTION OF TAX EFFECTIVE DATE HIGHWAY TRUST FUND LEAKING UNDER- GROUND STORAGE TANK TRUST FUND GENERAL FUND HIGHWAY ACCOUNT MASS TRANSIT ACCOUNT Fuel Taxes (Cents per Gallon) Gasoline 18.3 01/01/96 12 2 - 4.3 18.4 10/01/97 15.44 2.86 0.1 - Diesel and Kerosene fuel 24.3 01/01/96 18 2 - 4.3 24.4 10/01/97 21.44 2.86 0.1 - Special fuels 2/ 3/ 18.3 01/01/96 12 2 - 4.3 Liquefied Petroleum Gas 13.6 10/01/97 11.47 2.13 - - Liquefied Natural Gas 11.9 10/01/97 10.04 1.86 - - Other Special Fuels 18.4 10/01/97 15.44 2.86 0.1 - Neat alcohol (85% alcohol) 3/ 4/ 9.25 10/01/97 7.72 1.43 0.1 - Compressed natural gas 5/ 4.3 10/01/93 - - - 4.3

105

Energy Cost Calculator for Electric and Gas Water Heaters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Gas Water Heaters Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters October 8, 2013 - 2:26pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of Water Heaters to be Purchased unit(s) 1 unit * See assumptions for various daily water use totals. † The comparison assumes a storage tank water heater as the input type. To allow demand water heaters as the comparison type, users can specify an input EF of up to 0.85; however, 0.66 is currently the best available EF for storage water heaters.

106

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

107

Fiscal year 1999 Battelle performance evaluation and fee agreement  

SciTech Connect

Fiscal Year 1999 represents the third fill year utilizing a results-oriented, performance-based evaluation for the Contractor's operations and management of the DOE Pacific Northwest National Laboratory (here after referred to as the Laboratory). However, this is the first year that the Contractor's fee is totally performance-based utilizing the same Critical Outcomes. This document describes the critical outcomes, objectives, performance indicators, expected levels of performance, and the basis for the evaluation of the Contractor's performance for the period October 1, 1998 through September 30, 1999, as required by Clauses entitled ''Use of Objective Standards of Performance, Self Assessment and Performance Evaluation'' and ''Performance Measures Review'' of the Contract DE-ACO6-76RL01830. Furthermore, it documents the distribution of the total available performance-based fee and the methodology set for determining the amount of fee earned by the Contractor as stipulated within the causes entitled ''Estimated Cost and Annual Fee,'' ''Total Available Fee'' and ''Allowable Costs and Fee.'' In partnership with the Contractor and other key customers, the Department of Energy (DOE) Headquarters (HQ) and Richland Operations Office (RL) has defined four critical outcomes that serve as the core for the Contractor's performance-based evaluation and fee determination. The Contractor also utilizes these outcomes as a basis for overall management of the Laboratory.

DAVIS, T.L.

1998-10-22T23:59:59.000Z

108

Spent fuel management fee methodology and computer code user's manual.  

Science Conference Proceedings (OSTI)

The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

Engel, R.L.; White, M.K.

1982-01-01T23:59:59.000Z

109

Fee Title: Renewable Energy Fee Measure #: Measure 44  

E-Print Network (OSTI)

Fee Title: Renewable Energy Fee Measure #: Measure 44 Ballot Information Shall the undergraduates and graduate students of UCSC amend Measure 28, the Renewable Energy fee passed in Spring 2006 as follows: The amendment would allow funds to be used for on-site renewables and energy efficiency projects

California at Santa Cruz, University of

110

The cost of agriculturally based greenhouse gas offsets in the Texas High Plains  

E-Print Network (OSTI)

The broad objective of this thesis involves investigation of the role agriculture might play in a society wide greenhouse gas emissions reduction effort. Specifically, the breakeven price for carbon emission offsets is calculated for agriculturally based emission reducing practices. The practices investigated in the Texas High Plains involve reduced tillage use, reduced fallow use, reduced crop fertilization, cropland conversion to grassland, feedlot enteric fermentation management and digester based dairy manure handling. Costs of emission reductions were calculated at the producer level. The calculated offset prices are classified into four cost categories. They are: negative cost, low cost (less than $20 per ton of carbon saved), moderate cost ($20 through $100 per ton of carbon saved), and high cost (over $100 for tons of carbon saved). Negative cost implies that farmers could make money and reduce emissions by moving to alternative practices even without any carbon payments. Alternatives in the positive cost categories need compensation to induce farmers to switch to practices that sequester more carbon. All fallow dryland crop practices, dryland and irrigated cotton zero tillage, dryland and irrigated wheat zero tillage, irrigated corn zero tillage, cotton irrigated nitrogen use reduction under minimum tillage and dryland pasture for all systems, and anaerobic lagoon complete mix and plug flow systems fall in the negative cost category. Dryland and irrigated wheat under minimum tillage are found to be in the low cost category. Cotton dryland under minimum tillage and cotton irrigated with nitrogen use reduction under zero tillage fell into the moderate cost class. Both corn and cotton irrigated minimum tillage are found to be in the high cost category. This study only considers the producer foregone net income less fixed costs as the only cost incurred in switching to an alternative sequestering practice. More costs such as learning and risk should probably be included. This limitation along with other constraints such as use of short run budget data, lack of availability and reliability of local budgets, overlooking any market effects, and lack of treatment of costs incurred in selling carbon offsets to buyers are limitations and portend future work.

Chandrasena, Rajapakshage Inoka Ilmi

2003-12-01T23:59:59.000Z

111

Contractor Fee Payments- Small Sites  

Energy.gov (U.S. Department of Energy (DOE))

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Small Sites office on these charts.

112

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

113

Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications  

Science Conference Proceedings (OSTI)

The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

2005-08-15T23:59:59.000Z

114

Asia Least-Cost Greenhouse Gas Abatement Study | Open Energy Information  

Open Energy Info (EERE)

Least-Cost Greenhouse Gas Abatement Study Least-Cost Greenhouse Gas Abatement Study Jump to: navigation, search Name Asia Least-Cost Greenhouse Gas Abatement Study (ALGAS) Agency/Company /Organization Global Environment Facility, United Nations Development Programme, Asian Development Bank Partner Lawrence Berkeley National Laboratory Sector Energy Topics GHG inventory, Resource assessment, Pathways analysis, Background analysis Resource Type Dataset Website http://ies.lbl.gov/?q=taxonomy UN Region Central Asia, "East Asia" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "SE Asia" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

115

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

116

Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation  

SciTech Connect

In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

Zeh, C.M.

1996-08-01T23:59:59.000Z

117

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

DOE Green Energy (OSTI)

The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

1990-10-01T23:59:59.000Z

118

Evaluation of low cost residual gas analyzers for ultrahigh vacuum applications  

DOE Green Energy (OSTI)

In recent years several low cost computer controlled residual gas analyzers (RGAs) have been introduced into the market place. It would be very useful to know the performance characteristics of these RGAs in order to make an informed selection for UHV applications. The UHV applications include extreme sensitivity helium leak detection and monitoring of the residual gas spectra in UHV systems. In this article, the sensitivity and linearity data for nitrogen, hydrogen, and helium are presented in the pressure range 10{sup {minus}8}---10{sup {minus}1} Pa. Further, the relationships between focus voltage and ion currents, relative sensitivity, and fragmentation factor are also included. A direct comparison method is used in obtaining this data. Spinning rotor and extractor gauges are the transfer standard gauges used in Jefferson Lab's vacuum calibration facility, with which all the reported measurements here were carried out.

M. Rao; D. Dong

1996-10-01T23:59:59.000Z

119

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies  

DOE Green Energy (OSTI)

Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an instant increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOEs Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

2013-09-20T23:59:59.000Z

120

Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options  

E-Print Network (OSTI)

Field-proven solutions already exist to reduce the loss of gas production when liquid loading begins to occur. However, the choice of remedial technique, its feasibility, and its cost, vary considerably depending on a field's location, size export route, and the individual operator's experience. The selection of the best remedial technique and the timeframe within which the remedial action is undertaken are critical to a project's profitability. Although there are literature reviews available regarding solutions to liquid loading problems in gas wells, a tool capable of helping an operator select the best remedial option for a specific field case still does not exist. This thesis proposes a newly developed decision matrix to screen the possible remedial options available to the operator. The matrix can not only provide a critical evaluation of potential solutions to the problem of liquid loading in gas wells vis-a?-vis the existing technical and economic constraints, but can also serve as a reference to operators for investment decisions and as a quick screening tool for the selection of production optimisation strategies. Under its current status of development, this new tool consists of a decision algorithm built around a decision tree. Unlike other data mining techniques, decision trees quickly allow for subdividing large initial datasets into successively smaller sets by a series of decision rules. The rules are based on information available in the public domain. The effectiveness of the matrix is now ready to be tested against real field datasets.

Park, Han-Young

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Levelized life-cycle costs for four residue-collection systems and four gas-production systems  

DOE Green Energy (OSTI)

Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

1983-01-01T23:59:59.000Z

122

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates in

Mills, Evan

2009-07-16T23:59:59.000Z

123

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

net median commissioning project cost was reduced by 49% oncommissioning project costs and savings. Commissioning isproportional to total project cost. The nature of activities

Mills, Evan

2010-01-01T23:59:59.000Z

124

Oil and Gas Lease Equipment and Operating Costs 1986 Through 2001  

U.S. Energy Information Administration (EIA)

Water handling costs are a major factor in coal bed methane operating costs and partially account for the difference in operating costs. Items tracked

125

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

implemented at relatively low cost. References [1] Averch,Departures from Marginal Cost Pricing, American EconomicCoase, R.H. , The Marginal Cost Controversy. Economica,

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

126

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

1: Residential Natural Gas Price Schedule For Massachusetts2: Residential Natural Gas Price Schedules for 2006, By3: Residential Natural Gas Price Schedules for 2006, By

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

127

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

Residential Market for Natural Gas, 2008, working paper. [of Electricity and Natural Gas, Journal of IndustrialPrices: Evidence from Natural Gas Distribution Utilities,

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

128

Design Principles and Remaining Needs for U.S. Federal Climate Policy: Emission Fees  

Science Conference Proceedings (OSTI)

Reducing greenhouse gas emissions almost certainly requires adding a price to those activities that cause emissions. Policy makers have largely overlooked the most direct option, which is to set a price on emissions (an emission fee), and ...

Paul A. T. Higgins

2010-05-01T23:59:59.000Z

129

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems  

SciTech Connect

This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

Nexant Inc.

2006-05-01T23:59:59.000Z

130

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network (OSTI)

of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

131

Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model  

E-Print Network (OSTI)

Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

Morris, Jennifer

132

Avoided Gigawatts Through Utility Capital Recovery Fees  

E-Print Network (OSTI)

Electric rate structures can be used to provide customers with the proper pricing signals as well as provide economic incentives for increased market penetration for energy efficient new buildings. An innovative, marginal (replacement cost) rate structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving credit for the more efficient loads placed on an electric utility system, a utility could rapidly advance the market penetration of commercially available, highly efficient building systems and equipment resulting in potential gigawatts of conserved energy. Simultaneously, the capital costs of new generating plants could be shifted to the end-user from the already debt-burdened electric utility industry. This paper will explore this pricing option and analyze its potential on future electric load growth and the design of efficient new buildings.

Frosenfeld, A. N.; Verdict, M. E.

1985-01-01T23:59:59.000Z

133

Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.  

Science Conference Proceedings (OSTI)

A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

Puder, M. G.; Veil, J. A.

2006-09-05T23:59:59.000Z

134

"Case Name","CO2 Fees",,"Cap and Trade","Fee/Allowance Revenue...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 1. CO2 FeeCap and Trade Runs for AEO Supplement" "Case Name","CO2 Fees",,"Cap and Trade","FeeAllowance Revenue Treatment",,,"Offsets" ,"Start ()","Real Rate of...

135

Evaluation of Borrowing as a Method to Contain Costs in a Greenhouse Gas Emissions Cap-and-Trade Program  

Science Conference Proceedings (OSTI)

This report evaluates the potential ability of "borrowing" to help reduce the costs and the cost volatility of cap-and-trade programs for greenhouse gas (GHG) emissions. Borrowing allows sources to emit more than the number of current (or banked) allowances available in the current period by utilizing allowances that otherwise could not be used until future years. Borrowing may be on an individual or system basis and it may be explicit or implicit.

2008-12-23T23:59:59.000Z

136

Interactions of Cost-Containment Measures and Linking of Greenhouse Gas Emissions Cap-and-Trade Programs  

Science Conference Proceedings (OSTI)

Many recent greenhouse gas (GHG) emissions cap-and-trade proposals in the United States0150including proposals in the Northeast, California, and at the national level0150include specific measures designed to contain the potential compliance costs of the proposed programs. These cost-containment measures include "new" provisions not included in existing emissions trading programs0150notably a "safety valve" that would cap the allowance price0150as well as provisions such as banking or the use of offsets t...

2006-12-05T23:59:59.000Z

137

Model relaxations for the fuel cost minimization of steady-state gas pipeline networks  

Science Conference Proceedings (OSTI)

Natural gas, driven by pressure, is transported through pipeline network systems. As the gas flows through the network, energy and pressure are lost due to both friction between the gas and the pipes' inner wall, and heat transfer between the gas and ... Keywords: Compressor stations, Lower bounds, Natural gas, Nonconvex objective, Pipelines, Steady state, Transmission networks

Suming Wu; R. Z. Ros-Mercado; E. A. Boyd; L. R. Scott

2000-01-01T23:59:59.000Z

138

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

139

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

payback time versus building size Project costs and energyPayback time (commissioning cost/annual energy savings) lessenergy payback time of 41 years, while the proper allocation of costs and

Mills, Evan

2010-01-01T23:59:59.000Z

140

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

79% of commercial natural gas demand came from coreWe estimate that demand for natural gas in all three sectorsthe elasticity of demand for natural gas. The estimates from

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

an unprecedented increase in natural gas prices since 2000.average City Gate natural gas prices in the EIA data, we docustomer on the log of natural gas prices, state*month-of-

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

142

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

increase in natural gas prices since 2000. networks, butaverage City Gate natural gas prices in the EIA data, we doon the log of natural gas prices, state*month-of-year ?xed

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

143

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

144

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

Market Structure and the Pricing of Electricity and Natural Gas,natural gas distribution market. In this section, we consider several possible explanations for the observed rate structure,

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

145

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

more information about natural gas regulation in the Unitednatural gas consumption per customer. In short, under traditional rate-of-return regulation

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

146

Design and Cost Estimating Procedures for SCR and SNCR Retrofits on Gas- and Oil-Fired Boilers  

Science Conference Proceedings (OSTI)

Utility companies have been reevaluating the feasibility of selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) retrofits in order to meet increasingly stringent nitrogen oxides (NOx) emission limits. This report describes two EPRI-developed models for helping utility companies screen the cost effectiveness of SCR and SNCR technologies for application at specific gas- and oil-fired boiler sites.

2002-09-04T23:59:59.000Z

147

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

the Full Social Costs and Benefits of Transportation, ed. bythe Full Social Costs and Benefits of Transportation, ed. bytransportation infrastructure and services, then we should set prices on the infrastructure and services equal to marginal social costs.

Delucchi, Mark

2005-01-01T23:59:59.000Z

148

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Severance taxes paid on oil and gas (attributed to MV use)Severance taxes paid on oil and gas (attributed to MV use)Severance taxes paid on oil and gas (attributed to MV use)

Delucchi, Mark

2005-01-01T23:59:59.000Z

149

Contractor Fee Payments- Idaho Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Idaho Operations Office on these charts.

150

Contractor Fee Payments- Oak Ridge Operations  

Energy.gov (U.S. Department of Energy (DOE))

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Oak Ridge Operations on these charts.

151

Contractor Fee Payments- Carlsbad Field Office  

Energy.gov (U.S. Department of Energy (DOE))

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Carlsbad Field Office on these charts.

152

Contractor Fee Payments- Savannah River Site Office  

Energy.gov (U.S. Department of Energy (DOE))

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Savannah River Site Office on these charts.

153

Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers  

SciTech Connect

A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

2008-05-15T23:59:59.000Z

154

Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report  

SciTech Connect

The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

Meyer, Howard, S.; Lu, Yingzhong

2012-08-10T23:59:59.000Z

155

Pros, cons of techniques used to calculate oil, gas finding costs  

SciTech Connect

A major problem facing the U.S. petroleum industry is the higher average finding costs that now exist within the U.S. compared with the average finding costs outside the U.S. It has been argued that federal lands and offshore areas need to be open for drilling in order to reduce average finding costs in the U.S. This article analyzes the strengths and weaknesses of conventional techniques for determining finding costs. Our goal is a finding costs measure that is a reliable indicator of future profitability.

Gaddis, D.; Brock, H.; Boynton, C. (Inst. of Petroleum Accounting, Denton, TX (US))

1992-06-01T23:59:59.000Z

156

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

157

External costs of oil and gas exploration in the Niger Delta Region of Nigeria.  

E-Print Network (OSTI)

?? The purpose of this study was to investigate the phenomenal impact of oil and gas exploration on the host communities, with a central focus (more)

Amaefule, Ezewuchi Fidelis

2010-01-01T23:59:59.000Z

158

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

July (1996). Motor Vehicle Manufacturers Association of theaddition, some motor-vehicle manufacturers have been finedEPA charges motor-vehicle manufacturers to cover the cost of

Delucchi, Mark

2005-01-01T23:59:59.000Z

159

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and on lubricating oils motor-vehicle salesmen; selectivefor example motor vehicles, oil and gas properties, housethe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark

2005-01-01T23:59:59.000Z

160

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Styrofoam cups are one of many Styrofoam cups are one of many products made from styrene monomer. Exelus Inc. (Livingston, NJ), established in 2000, develops and licenses "Cleaner-by- Design" chemical technologies to produce a vast array of products and materials used in consumer goods, transportation, and food processing. Currently, the company's principal process technologies are: ExSact - a refining technology that overcomes the environmental concerns, safety hazards and rising costs associated with conventional liquid acid technologies ExSyM - energy efficient, low cost SM production technology BTG - efficient, cost-effective conversion of biomass to clean, high-octane, gasoline-compatible fuel http://www.exelusinc.com/ New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sensors-00997-2005 Low-Cost Surface Mount LED Gas Sensor  

E-Print Network (OSTI)

INTRODUCTION EDs are being used far more commonly as light sources in optical chemical sensors due to the low-cost, low-power consumption, reliability and ever increasing range of devices and wavelengths available. The increased interest in LED sources has had a major impact on low-cost component based chemical sensors, where the main goal is to achieve analytical performance without the expense of more conventional instrumentation [1-5]. Typically a photodiode is used for detection, providing good sensitivity and a significant reduction in system cost. Usually the photodiode is operated at Vbias=0V and hence itself can be considered as a lowpower sensor, however, in addition to the detector, a good quality operational amplifier and mid-to-high resolution ADC are required to complete the device. These additional components not only increase system complexity and cost, but also add to the power requirements, which is of particular importance in battery-powered s

Sensor Films Results; Roderick L. Shepherd; William S. Yerazunis; Senior Member; King Tong Lau; Dermot Diamond

2005-01-01T23:59:59.000Z

162

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network (OSTI)

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

163

The competition between coal and natural gas : the importance of sunk costs  

E-Print Network (OSTI)

This paper explores the seeming paradox between the predominant choice of natural gas for capacity additions to generate electricity in the United States and the continuing large share of coal in meeting incremental ...

Ellerman, A. Denny

1996-01-01T23:59:59.000Z

164

Oil and natural gas reserve prices, 1982-2002 : implications for depletion and investment cost  

E-Print Network (OSTI)

A time series is estimated of in-ground prices - as distinct from wellhead prices ? of US oil and natural gas reserves for the period 1982-2002, using market purchase and sale transaction information. The prices are a ...

Adelman, Morris Albert

2003-01-01T23:59:59.000Z

165

HEALTH FEE/STUDENT HEALTH INSURANCE BENEFIT SUMMARY University policy requires all students registered for six or more credit hours (three hours for each  

E-Print Network (OSTI)

fee. The health fee supports all services at Redfern Health Center and includes: Professional services of primary health care providers, psychologists, and health educators; Reduced costs on over the counter pharmaceuticals, laboratory, and X-ray services; $500 urgent care EXCESS benefit for after

Stuart, Steven J.

166

Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and Performance Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia July 5, 2011 DOE/NETL- 2010/1402 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

167

Alternative Fuels Data Center: Electric Vehicle (EV) Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fee to someone by E-mail Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or

168

RELOCATION ASSISTANCE  

NLE Websites -- All DOE Office Websites (Extended Search)

charges * Impact fees * Inspection fees if customarily paid by buyer (structural, pest, asbestos, radon gas, etc.) * Legal, attorney, notary fees (not including cost of...

169

A cost effective trace gas measurement program for long term monitoring of the stratospheric circulation  

Science Conference Proceedings (OSTI)

A stratospheric trace gas measurement program using balloon-based sonde and AirCore sampler techniques, is proposed as a way to monitor the strength of the stratospheric mean meridional, or Brewer-Dobson circulation. Modeling work predicts a strengthening ...

Fred L. Moore; Eric A. Ray; Karen H. Rosenlof; James W. Elkins; Pieter Tans; Anna Karion; Colm Sweeney

170

COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT  

Science Conference Proceedings (OSTI)

The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline regulatory approaches and allow small operators to produce energy from areas that have become sub-economic for the major producers. The GWPC is working with states to develop a coal bed methane program, which will both manage the data and develop a public education program on the benefits of produced water. The CERA program benefits all oil and gas states by reducing the cost of regulatory compliance, increasing environmental protection, and providing industry and regulatory agencies a discussion forum. Activities included many small and large group forum settings for discussions of technical and policy issues as well as the ongoing State Class II UIC peer review effort. The accomplishments detailed in this report will be the basis for the next initiative which is RBDMS On-Line. RBDMS On-Line will combine data mining, electronic permitting and electronic reporting with .net technology. Industry, BLM, GWPC and all Oil and Gas states are partnering this effort.

Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

2004-12-21T23:59:59.000Z

171

Water Pollution Fee (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Pollution Fee (Michigan) Water Pollution Fee (Michigan) Water Pollution Fee (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Fees Siting and Permitting Provider Department of Environmental Quality The Groundwater Program regulates discharge to groundwater under Part 31, Water Resources Protection, of the Natural Resources and Environmental Protection Act, 1994 PA 451 and Part 22 Rules. Groundwater staff review

172

Contractor Fee Payments - Portsmouth Paducah Project Office ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- LATA of Kentucky Paducah Infrastructure Support Portsmouth D&D Operation of DUF6 Portsmouth Facility Support Services More Documents & Publications Contractor Fee...

173

A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings  

Science Conference Proceedings (OSTI)

This paper addresses the problem of predicting demand for natural gas for the purpose of realizing energy cost savings. Daily monitoring of a rooftop unit wireless sensor system provided feedback for a decision support system that supplied the demand ... Keywords: Artificial neural networks, Decision support system, Energy forecasting, Natural gas demand, Nearest neighbor method, Wireless sensor networks

James A. Rodger

2014-03-01T23:59:59.000Z

174

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year...

175

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

DOE Green Energy (OSTI)

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

176

The Cost of Improving Gas Supply Security in the Baltic States  

E-Print Network (OSTI)

with Estonian Competition Authority (Konkurentsamiet). 27 Based on an energy amount of 123TJ to replace natural gas fired heat in one day, an oil truck capable of carrying 14,300Kg, a calorific value of light fuel oil of 38.68GJ/1.0017m3 and a density of 980... by the geographical concentration of the oil processing and electricity generation industry. Source: authors phone interviews with energy industry and energy regulatory agency representatives in Finland and Singapore. HEATGENERATIONANDFUELINPUT Heatdemandforone"peak"day(TJ...

Noel, Pierre; Findlater, Sachi; Chyong, Chi Kong

2012-01-23T23:59:59.000Z

177

Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts  

SciTech Connect

This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U/sub 3/O/sub 8/ to UF/sub 6/ conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent /sup 235/U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent /sup 235/U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor.

Thomas, W.E.

1976-04-01T23:59:59.000Z

178

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

179

WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE DOE F 4220.23 (06-95) U.S. DEPARTMENT OF ENERGY 1. CONTRACTOR IDENTIFICATION 2. TYPE OF ACQUISTION ACTION (REFER TO OFPP MANUAL, FEDERAL PROCUREMENT DATA SYSTEMS - PRODUCT AND SERVICE CODES. APRIL 1980) a. Name c. Street address b. Division (If any) d. City e. State f. Zip code a. SUPPLIES & EQUIPMENT b. RESEARCH & DEVELOPMENT c. SERVICES: (1) ARCHITECT-ENGINEER: (2) MANAGEMENT SERVICES: (3) MEDICAL: (4) OTHER (e.g., SUPPORT SERVICES) 3. ACQUISITION INFORMATION a. Purchasing Offices b. Contract type d. FY c. RFP/RFQ No. e. Contract No. PROFIT/FEE OBJECTIVE COMPUTATION PROFIT/FEE CONSIDERATIONS a. MEASUREMENT BASE b. PROFIT/FEE WEIGHT RANGES (%) c. ASSIGNED

180

Water Use Fees (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Use Fees (Wisconsin) Water Use Fees (Wisconsin) Water Use Fees (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info Start Date 2011 State Wisconsin Program Type Fees Provider Department of Natural Resources Annual $125 water use fees are charged by the State of Wisconsin to each property that has the capacity to withdraw 100,000 gallons per day or more

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Report on Audit of Department of Energy Management and Operating Contractor Available Fees, IG-0390  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUDIT OF DEPARTMENT OF ENERGY MANAGEMENT AND OPERATING CONTRACTOR AVAILABLE FEES The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative address: Department of Energy Headquarters Gopher

182

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

183

Alternative Fuels Data Center: Fleet User Fee Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet User Fee Fleet User Fee Exemption to someone by E-mail Share Alternative Fuels Data Center: Fleet User Fee Exemption on Facebook Tweet about Alternative Fuels Data Center: Fleet User Fee Exemption on Twitter Bookmark Alternative Fuels Data Center: Fleet User Fee Exemption on Google Bookmark Alternative Fuels Data Center: Fleet User Fee Exemption on Delicious Rank Alternative Fuels Data Center: Fleet User Fee Exemption on Digg Find More places to share Alternative Fuels Data Center: Fleet User Fee Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fleet User Fee Exemption Fleets with 10 or more vehicles located in defined areas of the state must pay an annual user fee of $20 per vehicle. Owners of electric vehicles and

184

Nuclear Waste Fund fee adequacy: An assessment  

SciTech Connect

The purpose of this report is to present the Department of Energy`s (the Department) analysis of the adequacy of the 1.00 mill per kilowatt-hour (kWh) fee being paid by the utilities generating nuclear power for the permanent disposal of their spent nuclear fuel (SNF). In accordance with the Nuclear Waste Policy Act (NWPA), the SNF would be disposed of in a geologic repository to be developed by the Department. An annual analysis of the fee`s adequacy is required by the NWPA.

NONE

1990-11-01T23:59:59.000Z

185

Regulation and Political Costs in the Oil and Gas Industry: An Investigation of Discretion in Reporting Earnings and Oil and Gas Reserves Estimates.  

E-Print Network (OSTI)

??This study investigates the use of discretion by oil and gas companies in reporting financial performance and oil and gas reserve estimates during times of (more)

Kurdi, Ammr

2010-01-01T23:59:59.000Z

186

Annual Emission Fees (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Emission Fees (Michigan) Annual Emission Fees (Michigan) Annual Emission Fees (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Fees Provider Department of Environmental Quality The Renewable Operating Permit (ROP) is required by Title V of the Clean Air Act Amendments of 1990. The ROP program clarifies the requirements that apply to a facility that emits air contaminants. Any facility in Michigan

187

Audit fees and book-tax differences  

E-Print Network (OSTI)

We investigate whether book-tax differences are associated with higher audit fees, a proxy for auditor risk assessments and auditor effort. Our evidence suggests that there is a significantly positive relation. Further, ...

Hanlon, Michelle

188

VUV Detector Calibrations - Si Photodiode Fee Sheet  

Science Conference Proceedings (OSTI)

... from the x-ray region (response falls off at photon energies above ~10 ... The fee sheet for all detector types is available as a PDF ... Type, NIST Test No. ...

2012-01-26T23:59:59.000Z

189

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

190

Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Inefficient Fuel Inefficient Vehicle Fee to someone by E-mail Share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Facebook Tweet about Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Twitter Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Google Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Delicious Rank Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Digg Find More places to share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Inefficient Vehicle Fee New passenger vehicles meeting one of the following criteria are subject to an additional fee payable to the New Jersey Motor Vehicle Commission:

191

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Registration Fee The annual registration fee for an EV is $25.00 unless the vehicle is more

192

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year 2008 Civilian Radioactive Waste Management Fee Adequacy Letter Report presents an evaluation of the adequacy of the one mill per kilowatt-hour fee paid by commercial nuclear power generators for the permanent disposal of their spent nuclear fuel by the Government. This evaluation recommends no fee change. CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT More Documents & Publications FY 2007 Fee Adequacy, Pub 2008 Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report January 16, 2013 Secretarial Determination of the Adequacy of the Nuclear

193

Disposal Cost Savings Considerations in Curie Reduction Programs  

Science Conference Proceedings (OSTI)

In 1996, the Low Level Radioactive Waste (LLW) Disposal Facility in Barnwell, South Carolina, announced a new fee structure for the disposal of radioactive wastes based on waste density, dose rate, and activity (curies). This report provides a detailed discussion of the current Barnwell Disposal Fee Structure along with its cost impact on various types of wastes generated. The report also evaluates various curie reduction options, their practical application, and their cost savings potential to help LLW ...

1998-03-30T23:59:59.000Z

194

A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant  

DOE Green Energy (OSTI)

This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

Not Available

1993-06-30T23:59:59.000Z

195

Water pollution Control Permit Fee Schedules (West Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

pollution Control Permit Fee Schedules (West Virginia) pollution Control Permit Fee Schedules (West Virginia) Water pollution Control Permit Fee Schedules (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Siting and Permitting Provider Department of Environmental Protection This rule establishes schedules of permit application fees and annual permit fees for state water pollution control permits and national

196

Alternative Fuels Data Center: Alternative Fuels Tax or Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax or Fee to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax or Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax or Fee A state excise tax applies to special fuels at a rate of $0.25 per gallon on a gasoline gallon equivalent basis. Special fuels include compressed

197

VUV Detector Calibrations - Al Oxide Photodiode Fee Sheet  

Science Conference Proceedings (OSTI)

... Type, NIST Test No. Fee (US Dollars). 5 - 17, Al 2 O 3, 40599S, $2,613. ... Type, NIST Test No. Fee (US Dollars). 5 - 17, Al 2 O 3, 40599S, $2,169. ...

2012-01-26T23:59:59.000Z

198

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) User Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) User Fee Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) User Fee Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) User Fee Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) User Fee Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) User Fee Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) User Fee Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) User Fee Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) User Fee Study

199

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Parking Fee Exemption to someone by E-mail Parking Fee Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

200

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

202

Permit Fees for Hazardous Waste Material Management (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Material Management (Connecticut) Permit Fees for Hazardous Waste Material Management (Connecticut) Eligibility Agricultural Commercial Construction Fed. Government...

203

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology  

DOE Green Energy (OSTI)

This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

Nexant Inc.

2006-05-01T23:59:59.000Z

204

New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Maximum Rebate $10,000 Program Info State New Jersey Program Type Utility Loan Program Rebate Amount $2,500-$10,000 Provider New Jersey Natural Gas Through the SAVEGREEN Project, New Jersey Natural Gas (NJNG) provides an On-Bill Repayment Program. Qualified customers can borrow $2,500-$10,000 at 0% APR fixed rate for 10 years with no fees, points or closing costs. A variety of equipment and measures may qualify for financing under this

205

External costs of intercity truck freight transportation  

E-Print Network (OSTI)

From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2 % of private costs and user fees would need to be increased about

David J. Forkenbrock

1999-01-01T23:59:59.000Z

206

The impact of infrastructure-related taxes and fees on airline fares in the US and the European Union  

E-Print Network (OSTI)

The purpose of this thesis is to estimate the impact of infrastructure-related add-on taxes and fees on the direct cost of air travel in the United States and the European Union. Its scope includes domestic travel in the ...

Yamanaka, Shiro, 1975-

2005-01-01T23:59:59.000Z

207

Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas  

DOE Green Energy (OSTI)

This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

2008-05-31T23:59:59.000Z

208

The Hy-C process (thermal decomposition of natural gas): Potentially the lowest cost source of hydrogen with the least CO{sub 2} emission  

SciTech Connect

The abundance of natural gas as a natural resource and its high hydrogen content make it a prime candidate for a low cost supply of hydrogen. The thermal decomposition of natural gas by methane pyrolysis produces carbon and hydrogen. The process energy required to produce one mol of hydrogen is only 5.3% of the higher heating value of methane. The thermal efficiency for hydrogen production as a fuel without the use of carbon as a fuel, can be as high as 60%. Conventional steam reforming of methane requires 8.9% process energy per mole of hydrogen even though 4 moles of hydrogen can be produced per mole of methane, compared to 2 moles by methane pyrolysis. When considering greenhouse global gas warming, methane pyrolysis produces the least amount of CO{sub 2} emissions per unit of hydrogen and can be totally eliminated when the carbon produced is either sequestered or sold as a materials commodity, and hydrogen is used to fuel the process. Conventional steam reforming of natural gas and CO shifting produces large amounts of CO{sub 2} emissions. The energy requirement for non-fossil, solar, nuclear, and hydropower production of hydrogen, mainly through electrolysis, is much greater than that from natural gas. From the resource available energy and environmental points of view, production of hydrogen by methane pyrolysis is most attractive. The by-product carbon black, when credited as a saleable material, makes hydrogen by thermal decomposition of natural gas (the Hy-C process) potentially the lowest cost source of large amounts of hydrogen.

Steinberg, M.

1994-12-01T23:59:59.000Z

209

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee Reduction to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

210

Management Controls over Performance Fees in the Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Controls over Performance Fees in the Idaho National Management Controls over Performance Fees in the Idaho National Laboratory Contract, OAS-M-06-07 Management Controls over Performance Fees in the Idaho National Laboratory Contract, OAS-M-06-07 The Department of Energy (Department) did not always effectively and Fees use performance measures and fees to appropriately reward contractor performance. Specifically, the Department allocated approximately $1.1 million for 3 of the 27 performance measures and fees for Fiscal Year (FY) 2005, which were disproportionately high for the work performed. Four of the 49 measures and fees established for FY 2006 provided the contractor the opportunity to earn $1 million under similar circumstances. Also, some of the performance measures worth $460,000, were implemented well

211

Performance Period Total Fee Paid FY2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 FY2010 0 FY2011 0 FY2012 12,862 FY2013 0 Cumulative Fee Paid 12,862 1,111,678 URS Energy & Construction, Inc. DE-AT30-08CC60014SP16 Contractor: Contract Number: Minimum...

212

State Agency Employee Tuition Fee Waiver Application  

E-Print Network (OSTI)

State Agency Employee Tuition Fee Waiver Application Before completing this application, please: This application is for state agency employees only. If you are an employee of the University of Florida, please: Phone #: Alternate Phone #: Email Address: State Agency: Department: Work Address: Semester enrollment

Florida, University of

213

Microsoft Word - FeeAdequacyAssessmentReport-1-16-clean_FINAL_v2-cn-substantiveeditsCAFINALv1.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary of Energy Secretary of Energy Washington, DC 20565 Secretarial Detcl'lninatiou of the Adequacy of the Nuclear Waste Fund Fee Based on the attached U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Report, I detenuine that neither insufficient nor excess revenues nre being collected in order to recover the costs incurred by the Federal Government that are specified in the Nuclear Waste Policy Act of 1982, as amended. Accordingly, I do not propose an adjustment to the Nuclear Waste Flmd Fee at this time. -~ rlt~V JAN 1 6 2013 Steven Chu Date Attachment This Page Intentionally Left Blank i U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment Report January 2013 U.S. Department of Energy Washington, D.C. This publication was produced by the U.S. Department of Energy

214

A $70/tCO2 greenhouse gas mitigation backstop for Chinas industrial and electric power sectors: insights from a comprehensive CCS cost curve  

Science Conference Proceedings (OSTI)

As one of the world's fastest growing economies with abundant coal reserves, China's carbon dioxide (CO2) emissions have doubled in the last decade and are expected to continue growing for the foreseeable future. While the Central Government has been promoting development and growth of cleaner and more efficient energy systems, efforts to reduce carbon emissions from the heavily coal-based economy may require continued and increased development and deployment of carbon dioxide capture and storage (CCS) technologies. This paper presents the first detailed, national-scale assessment of CCS potential across the diverse geographic, geologic, and industrial landscape of China, through the lens of an integrated CCS cost curve. It summarizes the development of a cost curve representing the full chain of components necessary for the capture and geologic storage of CO2 from China's power generation and industrial sectors. Individual component cost estimates are described, along with the optimized source-sink matching of over 1,600 large stationary CO2 sources and 2300 gigatons of CO2 storage capacity within 90 major deep geologic onshore sedimentary sub-basins, to develop a cost curve incorporating CO2 capture, compression, transport, and storage. Results suggest that CCS can provide an important greenhouse gas mitigation option for most regions and industrial sectors in China, able to store more than 80% of emissions from these large CO2 sources (2900 million tons of CO2 annually) at costs less than $70/tCO2 for perhaps a century or more.

Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

2012-08-27T23:59:59.000Z

215

Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions  

E-Print Network (OSTI)

To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

Cuellar, Amanda Dulcinea

2012-01-01T23:59:59.000Z

216

Equity of commercial low-level radioactive waste disposal fees. Report to Congress  

SciTech Connect

In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees.

1998-02-01T23:59:59.000Z

217

1986 Federal Interim Storage fee study: a technical and economic analysis  

SciTech Connect

JAI examined alternative methods for structuring charges for federal interim storage (FIS) services and concluded that the combined interests of the Department and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with Section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under- or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination.

1986-09-01T23:59:59.000Z

218

1985 Federal Interim Storage Fee Study: a technical and economic analysis  

SciTech Connect

JAI examined alternative methods for structuring charges for FIS services and concluded that the combined interests of the Deaprtment and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination.

1985-09-01T23:59:59.000Z

219

Containment Versus Confinement for High-Temperature Gas Reactors: Regulatory, Design Basis, Siting, and Cost/Economic Considerations  

Science Conference Proceedings (OSTI)

This report provides the results of an investigation pertaining to the use of the confinement that has been proposed for the high temperature and very high temperature gas reactors (HTGR, VHTR). No comprehensive study of this question has been published since 1985. All power reactor designs to go into commercial service in the United States were light water reactors (LWR), except for Fort St. Vrain (FSV) and Peach Bottom Unit 1, which were steam cycle helium gas cooled reactors. All designs use a leak-ti...

2005-05-04T23:59:59.000Z

220

City of Asheville - Building Permit Fee Waiver | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Asheville - Building Permit Fee Waiver City of Asheville - Building Permit Fee Waiver City of Asheville - Building Permit Fee Waiver < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Program Info Start Date 7/01/2009 State North Carolina Program Type Green Building Incentive Provider Building Safety Department The City of Asheville waives fees for building permits and plan reviews for certain renewable energy technologies and green building certifications for homes and mixed-use commercial buildings. Waivers for building permit fees may apply to residences with the following designations (the regular fee is in parentheses): * HealthyBuilt Home Certification* ($100) * Energy Star Rating ($100) * Geothermal heat pumps ($50)

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Federal Court Dismisses Waste Fee Challenges | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Court Dismisses Waste Fee Challenges Federal Court Dismisses Waste Fee Challenges Federal Court Dismisses Waste Fee Challenges December 13, 2010 - 2:31pm Addthis The D.C. Circuit today dismissed petitions filed by the National Association of Regulatory Utility Commissioners (NARUC) and other entities seeking (1) to force the Department to issue an assessment of the adequacy of the nuclear waste fund fee and (2) compelling suspension of the fee. These petitions were filed before the Department's recent issuance of a new fee assessment, and, in that context, the court determined that the petitions were moot and unripe. The court's order can be found here. Addthis Related Articles NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) DOE Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding

222

Natural Gas Choice and Competition Act in 1999 (Pennsylvania) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choice and Competition Act in 1999 (Pennsylvania) Choice and Competition Act in 1999 (Pennsylvania) Natural Gas Choice and Competition Act in 1999 (Pennsylvania) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Utility Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Public Utilities Commission This act aims to regulate the distribution system for natural gas by utility companies in terms of contracts, costs, tariff structures and competition. These regulations include minimum standards for the construction, testing, corrosion protection, operation, release prevention, and repair and reuse of storage tanks, periodic inspection of the leak detection systems, release prevention measures and an annual registration fee to be paid by owners of storage tanks.

223

Rules and Regulations Governing the Establishment of Various Fees (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Establishment of Various Fees the Establishment of Various Fees (Rhode Island) Rules and Regulations Governing the Establishment of Various Fees (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management These regulations describe the fees associated with several Department of Environmental Management regulatory programs, including programs pertaining

224

Operating Permits and Emission Fees (New Mexico) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information New Mexico Program Type Environmental Regulations Fees The New Mexico Environment Department's Air Quality Bureau processes permit applications for industries that...

225

City of Asheville - Building Permit Fee Waiver | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Asheville waives fees for building permits and plan reviews for certain renewable energy technologies and green building certifications for homes and mixed-use commercial...

226

City of Tucson - Permit Fee Credit for Solar Energy Systems ...  

Open Energy Info (EERE)

Incentive Program Place Arizona Name City of Tucson - Permit Fee Credit for Solar Energy Systems Incentive Type Green Building Incentive Applicable Sector Commercial,...

227

City of Lakewood - Solar Permit Fee Rebate (Colorado) | Open...  

Open Energy Info (EERE)

Summary The City of Lakewood is providing rebates on permit fees paid by Lakewood homeowners and business owners who install solar water heating systems and photovoltaic (PV)...

228

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas  

DOE Green Energy (OSTI)

As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

Not Available

1993-12-01T23:59:59.000Z

229

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

the Full Social Costs and Benefits of Transportation, ed. bythe Full Social Costs and Benefits of Transportation, ed. bytransportation infrastructure and services, then we should set prices on the infrastructure and services equal to marginal social costs.

Delucchi, Mark

2005-01-01T23:59:59.000Z

230

Montana Oil and Natural Gas Production Tax Act (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

231

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Severance taxes paid on oil and gas (attributed to MV use)Severance taxes paid on oil and gas (attributed to MV use)Severance taxes paid on oil and gas (attributed to MV use)

Delucchi, Mark

2005-01-01T23:59:59.000Z

232

Gas Pipelines:- long, thin, bombs?  

Science Conference Proceedings (OSTI)

... Gas Pipelines:- long, thin, bombs? Gas pipelines attract substantial reseach to improve safety and cut costs. They operate ...

233

Selecting Optional Fees Optional fees include meal plans, money on Tigerstripe, and a TAPS yearbook. All  

E-Print Network (OSTI)

supports all of the services at Redfern and includes: · Professional services of primary health care on pharmaceuticals, psychological testing, laboratory and x- ray services. · After Hours Nursewise telephone service. http://sisweb.clemson.edu/ Health Fee Policy University policy requires all students registered for six

Bolding, M. Chad

234

Cost and Performance Baseline for Fossil Energy Plants; Volume 3c: Natural Gas Combined Cycle at Elevation  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline for Fossil Energy Plants Volume 3c: Natural Gas Combined Cycle at Elevation March 2011 DOE/NETL-2010/1396 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

235

Air Pollution Control Fees (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Fees (Ohio) Air Pollution Control Fees (Ohio) Air Pollution Control Fees (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Construction Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Fees Provider Ohio Environmental Protection Agency Facilities with a potential to emit any one regulated air pollutant of a quantity greater than or equal to 100 tons per year, or any one hazardous air pollutant (HAP) greater than or equal to 10 tons per year, or any combination of hazardous air pollutants greater than 25 tons per year, must submit, in a form and manner prescribed by the director, a fee emission report that quantifies the actual emission data for particulate matter,

236

PERFORMANCE EVALUATION AND MEASUREMENT PLAN (PEMP) AWARD FEE PLAN (AFP)  

NLE Websites -- All DOE Office Websites (Extended Search)

- March 2013 Page 1 - March 2013 Page 1 PERFORMANCE EVALUATION AND MEASUREMENT PLAN (PEMP) AWARD FEE PLAN (AFP) 1 OCTOBER 2012 through 30 SEPTEMBER 2013 Contract No. DE- EM-0001971 I. INTRODUCTION This Performance Evaluation and Measurement Plan (PEMP) provides a standard process for development, administration, and coordination of all phases of the fee determination process consistent with Section B.2 of the subject contract. Fee determinations are not subject to the Disputes Clause of the contract. II. ORGANIZATIONAL STRUCTURE AND DUTIES The following organizational structure is established for administering the fee provisions of the contract. A. Roles and Responsibilities 1. Fee Determination Official (FDO) - The Head of Contracting Activity (HCA) has appointed the CBFO Manager as the FDO. The FDO

237

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

238

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Emory S. De Castro BASF Fuel Cell, Inc. 39 Veronica Avenue Somerset, NJ 08873 Phone: (732) 545-5100 ext 4114 Email: Emory.DeCastro@BASF.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000384 Subcontractor: Dr. Vladimir Gurau Case Western Reserve University, Cleveland, Ohio Project Start Date: July 1, 2009 Project End Date: June 30, 2013 Fiscal Year (FY) 2012 Objectives Reduce cost in fabricating gas diffusion electrodes * through the introduction of high speed coating technology, with a focus on materials used for the high- temperature membrane electrode assemblies (MEAs)

239

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

240

Local Option - Building Permit Fee Waivers for Renewable Energy Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Building Permit Fee Waivers for Renewable Energy Local Option - Building Permit Fee Waivers for Renewable Energy Projects (Connecticut) Local Option - Building Permit Fee Waivers for Renewable Energy Projects (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government General Public/Consumer Industrial Installer/Contractor Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Connecticut Program Type Solar/Wind Permitting Standards Provider Department of Energy and Environmental Protection As of July 2011, Connecticut authorizes municipalities to pass a local

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: News Release - Favorable Supplies, Costs, Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental and cost profiles in comparison to other energy sources. The development of shale gas and other unconventional natural gas wells requires the use of technologies that...

242

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

July (1996). Motor Vehicle Manufacturers Association of theaddition, some motor-vehicle manufacturers have been finedEPA charges motor-vehicle manufacturers to cover the cost of

Delucchi, Mark

2005-01-01T23:59:59.000Z

243

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and on lubricating oils motor-vehicle salesmen; selectivefor example motor vehicles, oil and gas properties, housethe Use of Persian-Gulf Oil for Motor Vehicles, Report #15

Delucchi, Mark

2005-01-01T23:59:59.000Z

244

Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films  

DOE Green Energy (OSTI)

Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal.

Benson, D. K.; Tracy, C. E.; Lee, S-H. (National Renewable Energy Laboratory); Hishmeh, G. A.; Haberman, D. P. (DCH Technologies, Valencia, CA); Ciszek, P. A. (Evergreen Solar, Waltham, MA)

1998-10-20T23:59:59.000Z

245

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

246

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Storage Dispenser Delivery and Installation Cost Hydrogen Cost Natural GasNatural Gas Cost ($/MMBTU, HHV) Electricity Cost ($/kWh) Production Volume StorageNatural Gas Reformer Reformate Hydrogen H2 Purifier High -pressure hydrogen compressor Compressed hydrogen storage

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

247

City of Riverhead - Energy Conservation Device Permitting Fees | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Riverhead - Energy Conservation Device Permitting Fees City of Riverhead - Energy Conservation Device Permitting Fees City of Riverhead - Energy Conservation Device Permitting Fees < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Program Info Start Date 07/01/2005 (retroactive) State New York Program Type Green Building Incentive Provider Building Department In 2006 the Town of Riverhead on Long Island enacted a special allowance in its building permit fee structure to provide a discount to people wishing to install energy conservation devices on residential or commercial buildings. The provision in the town code applies to any energy conservation device "installed in or on a structure which qualifies for any federal, state or local tax exemption, tax credit or tax rebate", but

248

Property Tax Fee-In-Lieu (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Fee-In-Lieu (Mississippi) Property Tax Fee-In-Lieu (Mississippi) Property Tax Fee-In-Lieu (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Property Tax Incentive Provider Mississippi Department of Revenue The Property Tax Fee-In-Lieu allows for new or expansion projects in the

249

Small Business Administration (SBA) Guarantee Fee Tax Credit (Oklahoma) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration (SBA) Guarantee Fee Tax Credit Administration (SBA) Guarantee Fee Tax Credit (Oklahoma) Small Business Administration (SBA) Guarantee Fee Tax Credit (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Corporate Tax Incentive Provider Small Business Administration The Small Business Administration (SBA) Guarantee Fee Tax Credit allows for small businesses operating in Oklahoma to claim a credit against income tax liability. This credit may be claimed for tax year 2012 and subsequent tax

250

Solid Waste Assessment Fee Exemptions (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Assessment Fee Exemptions (West Virginia) Solid Waste Assessment Fee Exemptions (West Virginia) Solid Waste Assessment Fee Exemptions (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Rebate Program A person who owns, operates, or leases an approved solid waste disposal facility is exempt from the payment of solid waste assessment fees, upon the receipt of a Certificate of Exemption from the director, if that

251

City of Riverhead- Energy Conservation Device Permitting Fees  

Energy.gov (U.S. Department of Energy (DOE))

In 2006 the Town of Riverhead on Long Island enacted a special allowance in its building permit fee structure to provide a discount to people wishing to install energy conservation devices on...

252

City of Philadelphia- Streamlined Solar Permitting and Fee Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic systems of 10 kW or less installed on 1- or 2-family residential units are eligible for streamlined permitting and a fee reduction. PV projects can use a [http://www.phila.gov/green...

253

Policy Flash 2013-24 Fee Determinations: Requirement to Obtain...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Acquisition and Project Management at (202) 287-1337 or at Michael.Righi@hq.doe.gov. POLICYFLASH2013-24 disseminating the Dep Sec's memo of Jan 28 2013 on Fee...

254

The Economics of Interchange Fees and Their Regulation: An Overview  

E-Print Network (OSTI)

This essay surveys the economic literature on interchange fees and the debate over whether interchange should be regulated and, if so, how. We consider, first, the operation of unitary payment systems, like American Express, ...

Evans, David

2005-07-08T23:59:59.000Z

255

City of Riverhead - Energy Conservation Device Permitting Fees...  

Open Energy Info (EERE)

not eligible for the Fast-Track process. Prior to the code revision permitting fees for solar panel installations often approached 1,000. Incentive Contact Contact Name Sharon...

256

Winter Deadlines Dec. 20 Last day to pay fees  

E-Print Network (OSTI)

for third party through National Student Clearinghouse only; fees vary 6.00 Transcript--additional services services, and release of academic transcripts. See the Registration section for additional information

Jalali. Bahram

257

NanoFab User Facility Usage Fee Schedule  

Science Conference Proceedings (OSTI)

Page 1. NanoFab User Facility Usage Fee Schedule Effective 11/1/09 Tool Full Rate ($/hr) Reduced Rate ($/hr) Base NanoFab Use 60 30 ...

258

Exemption + Fee for Alternative Fuel Vehicles (Oklahoma) | Open...  

Open Energy Info (EERE)

tax by purchasing a flat fee decal rather than paying excise tax at the pump. Propane or LPG is taxed at a rate of 50 per year, per vehicle of less than 1-ton capacity. AFVs...

259

Exemption + Fee for Alternative Fuel Vehicles (Oklahoma) Personal...  

Open Energy Info (EERE)

tax by purchasing a flat fee decal rather than paying excise tax at the pump. Propane or LPG is taxed at a rate of 50 per year, per vehicle of less than 1-ton capacity. AFVs...

260

USA oilgas production cost : recent changes  

E-Print Network (OSTI)

During 1984-1989, oil development investment cost in the USA fell, but only because of lower activity. The whole cost curve shifted unfavorably (leftward). In contrast, natural gas cost substantially decreased, the curve ...

Adelman, Morris Albert

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Liquefaction and Pipeline Costs Bruce Kelly  

E-Print Network (OSTI)

1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 total installed cost #12;6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and downtown data Verified that historical natural gas pipeline cost data

262

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4: On-sitereforming of natural gas at the station b. MeOH 100 (case 3)cost of natural gas at the station is much lower (roughly

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

263

Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Office of Civilian Radioactive Waste Management Fee Adequacy Assessment Report is to present an analysis of the adequacy of the fee being paid by nuclear power utilities...

264

Commercial equipment cost database  

SciTech Connect

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

265

September 20, 2002: Last Day to Pay Fees September 26, 2002: Instruction Begins  

E-Print Network (OSTI)

an additional $50 late fee. For more information on paying fees, see "Billing." Mandatory Medical Insurance and is in addition to the amount due each term. To request MIP, students select it by marking that item materials fee, which is billed through the BAR statement, for the entire quarter. In addition, certain

Grether, Gregory

266

University Health Services -Routine Fees and Charges Effective July 1, 2012  

E-Print Network (OSTI)

University Health Services - Routine Fees and Charges Effective July 1, 2012 Visit Fees STUDENT's Health Annual/Wellness Exam New Patient $40.00 99385 $90.00 Women's Health Annual/Wellness Exam $116.00 Yellow Fever - 0.5cc $113.00 90717 $122.00 Laboratory Fees HIV 1 + 2 $28.00 86703 $28.00 Pap

267

Primer on gas integrated resource planning  

Science Conference Proceedings (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

268

Hyrogen Production from Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2003 Hydrogen Coordination Meeting Arthur Hartstein Program Manager Natural Gas and Oil ProcessingHydrogen Introduction * Natural gas is currently the lowest cost...

269

Data:Fee0631d-1763-440b-9014-ac4cd388a9e2 | Open Energy Information  

Open Energy Info (EERE)

Fee0631d-1763-440b-9014-ac4cd388a9e2 Fee0631d-1763-440b-9014-ac4cd388a9e2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Public Utility District No 2 Effective date: 2011/10/01 End date if known: Rate name: Small Commercial Single Phase Sector: Commercial Description: This schedule is applicable to SMALL commercial and other services not eligible under other rate schedules where measured demand is less than 50 kW. Commercial accounts are billed on a regular monthly cycle. Power Cost Adjustment Factor = 7% The Power Cost Adjustment is based on rate adjustments from BPA . Minimum Charge Single Phase - $ 21.00 per meter per month

270

GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions February 26, 2010 - 3:17pm Addthis Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee will be made available to the public on DOE's website shortly after DOE makes a determination. The report relied upon in determining fee adequacy for 2008, the most recent year for which DOE has made a determination, is available here: (2008 Fee Adequacy Letter Report). Addthis Related Articles DOE Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee Department of Energy Files Motion to Withdraw Yucca Mountain License

271

Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Registration Reduced Registration Fee for Fuel-Efficient Vehicles to someone by E-mail Share Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Facebook Tweet about Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Twitter Bookmark Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Google Bookmark Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Delicious Rank Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Digg Find More places to share Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on AddThis.com... More in this section... Federal State Advanced Search

272

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

273

Natural Gas Conveyance and Rates  

Reports and Publications (EIA)

Natural gas transportation market; Competition vs. market power; Rate structures Cost-of-service Performance based rates

Information Center

2001-02-01T23:59:59.000Z

274

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

275

Student Fee Advisory Committee Orientation Handbook  

E-Print Network (OSTI)

Discovery Center at Long Marine Lab and to help fund animal care and facility costs (not currently supported are appointed for a two year term, they are given enough time to develop a significant level of expertise are elected during the spring quarter for one-year terms * The number of student members and the balance

California at Santa Cruz, University of

276

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

Because shale gas production is projected to be a large proportion of U.S. and North American gas production, changes in the cost and productivity of U.S. shale gas ...

277

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

transmission, and distribution of electricity and gas. Wedistribution chain, and the installation cost. Electricity and

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

278

New Process for Producing Styrene Cuts Costs, Saves Energy, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse...

279

Energy Department Invests to Drive Down Costs of Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in...

280

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

gas supply contracts and natural gas storage. As is shown inor Storage Cost Gas Price Falls Gas Price Rises Natural Gas

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

282

Cost Effective Water Heating Solutions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELECTRIC 0.92 ELECTRIC 0.92 ELECTRIC HPWH(2) HPWH(3) HPWH Standard 0.62 EF WH unless high natural gas costs (>1.50therm), in which case recommendations consistent with new...

283

Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Fee Determinations: Requirement to Obtain 4 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Attached is Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input. Questions concerning this policy flash should be directed to Michael Righi of the Contract and Financial Assistance Policy Division, Office of Policy, Office Acquisition and Project Management at (202) 287-1337 or at Michael.Righi@hq.doe.gov. POLICY_FLASH_2013-24 disseminating the Dep Sec's memo of Jan 28 2013 on Fee Determ and AEs.pdf Fee Determinations - Requirement to Obtain Acquisition Executive's Input.pdf More Documents & Publications Policy Flash: 2013-52 Contractor Legal Management Requirements: Final Rule

284

Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Fee Determinations: Requirement to Obtain 4 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Attached is Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input. Questions concerning this policy flash should be directed to Michael Righi of the Contract and Financial Assistance Policy Division, Office of Policy, Office Acquisition and Project Management at (202) 287-1337 or at Michael.Righi@hq.doe.gov. POLICY_FLASH_2013-24 disseminating the Dep Sec's memo of Jan 28 2013 on Fee Determ and AEs.pdf Fee Determinations - Requirement to Obtain Acquisition Executive's Input.pdf More Documents & Publications Policy Flash: 2013-52 Contractor Legal Management Requirements: Final Rule

285

Reducing Home Heating and Cooling Costs  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . 19 B1. Annual Cost of Oil Heat in Various Climates for a Range of Heating Oil Prices and System Efficiencies . . . . . 21 B2. Annual Cost of Gas Heat in...

286

2012 Comparison Chart: Halls of Residence at Victoria University of Wellington Hall of Residence Suitable for Places Housing style Weekly fee * Meals  

E-Print Network (OSTI)

Suitable for Places Housing style Weekly fee * Meals Electricity included in fee Internet included in fee Twin$175 Catered Yes Yes + Gym area Music room 15 free off-street car parks available. Karori--10

Frean, Marcus

287

An analysis of the costs of running a station car fleet  

SciTech Connect

Station cars are electric vehicles available at transit stations which may be used for transportation between the transit station and home, work, and/or for errands. This transportation service would be provided by the local transit agency. This report discusses an economic model of the costs of running a station car fleet. While some of these costs are highly uncertain, this analysis is a first look at the required user fees for full cost recovery. The model considers the capital costs of the vehicles and the required infrastructure; the annual fixed vehicle costs for insurance, registration, etc.; the mileage-based costs; and the annual non-vehicle costs for administration, infrastructure maintenance, etc. The model also includes various factors such as the fleet size, the annual mileage, the number of transit stations that would have facilities for station cars, and the number of users. The model specifically examines the cost of using of electric vehicles; however, for comparison, the cost of using a fleet of gasoline-powered vehicles also is calculated. This report examines the sensitivity of the model to the various factors. A principal conclusion from the analysis is that the largest cost contributor is the initial vehicle purchase price. For a given initial purchase price, the factor driving the user fee required for full cost recovery is the number of different daily users of a vehicle. The model also compares the annual cost of transportation using station cars and mass transit to the annual cost of solo commuting. If a station car is used by more than one person a day, and this use replaces the ownership of a conventional vehicle, the annual cost of transportation may be similar. However, for the base case assumptions, the station car user fee required for full cost recovery is higher than the cost of solo commuting.

Zurn, R.M.

1995-02-01T23:59:59.000Z

288

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

costs (energy + demand) Natural gas Contingency Installationcosts (energy + demand) Natural gas Contingency InstallationNatural gas ($/MMBtu) Electricity ($/kWh) Demand charge ($/

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

289

Data:4b09a129-5371-4f7c-9fee-f53c3d9e67b4 | Open Energy Information  

Open Energy Info (EERE)

5371-4f7c-9fee-f53c3d9e67b4 5371-4f7c-9fee-f53c3d9e67b4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Muscoda, Wisconsin (Utility Company) Effective date: 2010/10/26 End date if known: Rate name: Cp-2 Large Power Service Primary Metering and Transformer Ownership Discount Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0844 per kilowatt-hour.

290

Data:026252f1-6b41-4fee-9f3f-7cce15266aee | Open Energy Information  

Open Energy Info (EERE)

2f1-6b41-4fee-9f3f-7cce15266aee 2f1-6b41-4fee-9f3f-7cce15266aee No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jefferson Utilities Effective date: 2009/06/01 End date if known: Rate name: Gs-2 General Service Single Phase Optional Time-of-Day 7am-7pm Sector: Commercial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0686 per kilowatt-hour.

291

Data:3ea0fee4-3855-46d5-8ef4-0e966af0073f | Open Energy Information  

Open Energy Info (EERE)

fee4-3855-46d5-8ef4-0e966af0073f fee4-3855-46d5-8ef4-0e966af0073f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Kaukauna, Wisconsin (Utility Company) Effective date: 2011/02/01 End date if known: Rate name: Cp-3 Industrial Power Time-of-Day Service above 5,000kW Demand 8am-8pm Primary Metering and Transformer Ownership Discount (2,300-15,000 volts)with Parallel Generation(20kW or less) Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0605 per kilowatt-hour.

292

Data:B6577e2e-fee7-4b31-a4d9-1559df47d447 | Open Energy Information  

Open Energy Info (EERE)

e-fee7-4b31-a4d9-1559df47d447 e-fee7-4b31-a4d9-1559df47d447 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Hartford Electric Effective date: 2005/07/01 End date if known: Rate name: Cp-1 Small Power Service between 50kW and 200kW Demand Transformer Ownership Discount Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0452 per kilowatt-hour.

293

LIFE Cost of Electricity, Capital and Operating Costs  

Science Conference Proceedings (OSTI)

Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

Anklam, T

2011-04-14T23:59:59.000Z

294

The Big Curve: Trends in University Fees and Financing in the EU and US  

E-Print Network (OSTI)

Series Douglass and Keeling Trends in University Fees andUniversity, revised. College Board (2008). Trends in CollegePricing: 2008, Trends in Higher Education Series, College

Douglass, John Aubrey; Keeling, Ruth

2008-01-01T23:59:59.000Z

295

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

296

Electricity Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs journal International Journal of Energy Economics and Policy volume year month chapter...

297

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

and incentives, and continued uncertainty about the future cost and liabilities of conventional natural gas

2008-01-01T23:59:59.000Z

298

Natural Gas from Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas from Shale Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective...

299

Federal Energy Management Program: Energy Cost Calculator for Electric and  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Cost Energy Cost Calculator for Electric and Gas Water Heaters to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on AddThis.com...

300

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

purchasing natural gas imports at a lower price. Natural gasin the price of natural gas imports is a net bene?t to thesocial cost of natural gas imports was consid- erably less

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

March 20, 2003: Last Day to Pay Fees March 28, 2003: Classes Dropped  

E-Print Network (OSTI)

be made in person at 1125 Murphy Hall and are assessed an additional $50 late fee. For more information statement, for the entire quarter. In addition, certain professional schools are authorized to charge verification (official, each copy) 5.00 Transcripts -- additional services/fees Same day Processing Service

Grether, Gregory

302

Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline Baseline for Fossil Energy Plants Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity September 2011 DOE/NETL-2010/1399 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

303

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

304

Fee Waiver and Reduction Criteria | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Fee Waiver and Reduction Criteria Fee Waiver and Reduction Criteria Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Advisory Exemptions How to Submit a FOIA Request Fee Waiver and Reduction Criteria Electronic Reading Room ISC Conventional Reading Rooms Reference Links Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Freedom of Information Act (FOIA) Fee Waiver and Reduction Criteria Print Text Size: A A A RSS Feeds FeedbackShare Page The FOIA generally requires that requesters pay fees for processing their requests. In accordance with 5 U.S.C 552(a)(4)(A)(iv), an agency is

305

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

DOE Green Energy (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

306

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

307

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining the equipment for reclamation? Types of Costs #12;· Marginal Cost: ­ Change in total cost ­ Any production process involves fixed and variable costs. As production increases/expands, fixed costs are unchanged, so

Boisvert, Jeff

308

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fuel to Generate Electricity of Fuel to Generate Electricity Cost of Fuel to Generate Electricity Herb Emmrich Gas Demand Forecast, Economic Analysis & Tariffs Manager SCG/SDG&E SCG/SDG&E Federal Utility Partnership Working Group (FUPWG) 2009 Fall Meeting November 18, 2009 Ontario, California The Six Main Costs to Price Electricity are:  Capital costs - the cost of capital investment (debt & equity), depreciation, Federal & State income taxes and property taxes and property taxes  Fuel costs based on fuel used to generate electricity - hydro, natural gas, coal, fuel oil, wind, solar, photovoltaic geothermal biogas photovoltaic, geothermal, biogas  Operating and maintenance costs  Transmission costs  Distribution costs  Social adder costs - GHG adder, low income adder,

309

HTGR Cost Model Users' Manual  

Science Conference Proceedings (OSTI)

The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

310

Is it Worth it? A Comparative Analysis of Cost-Benefit Projections for State Renewables Portfolio Standards  

E-Print Network (OSTI)

electricity and natural gas prices. Over half of the studiesfactors, such as the natural gas price forecast and thecapital costs and natural gas prices. Since wind is expected

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

311

Is it Worth it? A Comparative Analysis of Cost-Benefit Projections for State Renewables Portfolio Standards  

E-Print Network (OSTI)

electricity and natural gas prices. Over half of the studiessuch as the natural gas price forecast and the presumedcapital costs and natural gas prices. Since wind is expected

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

312

SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.  

SciTech Connect

The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

2004-09-25T23:59:59.000Z

313

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

MN 55441 Background Electronic data acquisition systems are necessary to make deep oil and gas drilling and production cost effective, yet the basic electronic components...

314

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic...

315

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Natural gas tariff Technology costs and financial considerations (such as interests rate, policy incentives

Feng, Wei

2013-01-01T23:59:59.000Z

316

Natural Gas from Shale  

Energy.gov (U.S. Department of Energy (DOE))

Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices and data development, making hundreds of trillions of cubic feet of gas technically recoverable where they once were not.

317

Laclede Gas Company - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Infrared Heaters: 300unit Gas-fired Boiler Tune Up: 75% of cost (non-profit); 50% of cost (C&I Customers) Steam-Trap Replacements: 50% of cost Vent Dampers: 50% of cost...

318

National Lab Uses OGJ Data to Develop Cost Equations  

Science Conference Proceedings (OSTI)

For the past 30 years, the Oil and Gas Journal (OGJ) has published data on the costs of onshore and offshore oil and gas pipelines and related equipment. This article describes the methodology employed and resulting equations developed for conceptual capital cost estimating of onshore pipelines. Also described are cost trends uncovered during the course of the analysis.

Brown, Daryl R.; Cabe, James E.; Stout, Tyson E.

2011-01-03T23:59:59.000Z

319

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

320

City of Tucson - Permit Fee Credit for Solar Energy Systems | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Tucson - Permit Fee Credit for Solar Energy Systems City of Tucson - Permit Fee Credit for Solar Energy Systems City of Tucson - Permit Fee Credit for Solar Energy Systems < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State Arizona Program Type Green Building Incentive Provider City of Tucson The City of Tucson passed Resolution No. 20193 on September 27, 2005, to encourage the installation of solar energy systems throughout the city. The resolution established a policy whereby the director of the Department of Planning and Development Services will waive the fee paid by an applicant for a permit for the installation of a qualifying solar system up to $1,000 for a single installation, or $5,000 for a subdivision or multiple project

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ISSUES REGARDING FEE STRUCTURE FOR THREE ENVIRONMENTAL MANAGEMENT CONTRACTS, CR-B-01-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CR-B-01-01 CR-B-01-01 AUDIT REPORT ISSUES REGARDING FEE STRUCTURE FOR THREE ENVIRONMENTAL MANAGEMENT CONTRACTS MAY 2001 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES DEPARTMENT OF ENERGY Washington, DC 20585 May 9, 2001 MEMORANDUM FOR THE DIRECTOR, OFFICE OF MANAGEMENT AND ADMINISTRATION FROM: Phillip L. Holbrook (Signed) Deputy Inspector General for Audit Services Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Issues Regarding Fee Structure for

322

Modeling of Cost Curves 1.0 Costs of Generating Electrical Energy  

E-Print Network (OSTI)

production costs. Some typical average costs of fuel are given in the following table for coal, petroleum [1] Petroleum [2] Natural Gas [3] All Fossil Fuels Receipts (Billion BTU) Average Cost Avg. Sulfur fuel, kerosene, petroleum coke (converted to liquid petroleum, see Technical Notes for conversion

McCalley, James D.

323

Inspection of Westinghouse Savannah River Company Fees for Managing and Operating the Savannah River Site, IG-0377  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IG-1 IG-1 INFORMATION: Report on "Inspection of Westinghouse Savannah River Company Fees for Managing and Operating the Savannah River Site" The Secretary BACKGROUND: During the first five years of its contract with the Department of Energy, Westinghouse Savannah River Company was paid over $130 million in fees to manage and operate the Savannah River Site. Fees paid to Westinghouse steadily increased over the five year period. For example, fees paid for the last six months of this five year period were over three times as large as fees paid for the first six months. The purpose of this inspection was to review the Department's annual negotiation of total available fees with Westinghouse, and to examine the reasons for the growth

324

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

supply contracts and natural gas storage. Lacking sufficientsupply contracts and natural gas storage facilities. Since,natural gas utilities, Xcel Energy noted that the cost of seasonal storage

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

325

Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program  

SciTech Connect

The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE`s Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs.

NONE

1989-05-01T23:59:59.000Z

326

NETL: Turbine Projects - Cost Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

327

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

328

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

329

Payment Of the New Mexico Environment Department- Hazardous Waste Bureau Annual Business and Generation Fees Calendar Year 2011  

Science Conference Proceedings (OSTI)

The purpose of this letter is to transmit to the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB), the Los alamos National Laboratory (LANL) Annual Business and Generation Fees for calendar year 2011. These fees are required pursuant to the provisions of New Mexico Hazardous Waste Act, Chapter 74, Article 4, NMSA (as amended). The Laboratory's Fenton Hill Facility did not generate any hazardous waste during the entire year, and is not required to pay a fee for calendar year 2011. The enclosed fee represents the amount for a single facility owned by the Department of Energy and co-operated by the Los Alamos National Security, LLC (LANS).

Juarez, Catherine L. [Los Alamos National Laboratory

2012-08-31T23:59:59.000Z

330

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408) costs apply to those items that are consumed in production process and are roughly proportional to level in cash flow analysis and in the decision to use the equipment for reclamation? Types of Costs #12

Boisvert, Jeff

331

Carbon Dioxide Transport and Storage Costs in NETL Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering and Economic Assessment. 2 This study utilized a similar basis for pipeline costs (Oil and Gas Journal's pipeline cost data up to the year 2000) but added a CO 2...

332

SF6432-CR (02-01-12) Cost Reimbursement  

NLE Websites -- All DOE Office Websites (Extended Search)

2/01/12 2/01/12 Page 1 of 24 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-CR (02/01/12) SECTION II STANDARD TERMS AND CONDITIONS FOR COST-REIMBURSEMENT CONTRACTS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY IDENTIFIED AS BEING CHANGED, SUPPLEMENTED, OR AMENDED IN WRITING ISSUED BY THE SANDIA CONTRACTING REPRESENTATIVE. (CTRL+CLICK ON A LINK BELOW TO ADVANCE DIRECTLY TO THAT SECTION) ACCEPTANCE OF TERMS AND CONDITIONS (Ts&Cs) ALLOWABLE COSTS AND FEE APPLICABLE LAW ASSIGNMENT AUTHORIZED DISTRIBUTORS BANKRUPTCY CLAIM OF COSTS INCURRED DEFINITIONS DISPUTES EXCESS FREIGHT CHARGES

333

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

334

Pennsylvania's use of natural gas for power generation has grown ...  

U.S. Energy Information Administration (EIA)

Changes in relative fuel prices. Prices of coal and natural gas are key input costs at electric power ... Pennsylvania coal and natural gas generation additions were ...

335

Capital costs have major impact on projected power sector ...  

U.S. Energy Information Administration (EIA)

Natural gas-fired power plants dominate the 2011 Annual ... AEO2011 also includes several alternative cases with lower assumed capital costs of nuclear, fossil fuel ...

336

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT SECTION Input the following data (if any parameter is missing,...

337

Volatile Energy Costs and the Floundering Deregulation of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

A generation capacity shortage, combined with spiraling natural gas costs and a flawed electricity market structure, have led to unprecedented wholesale electricity prices,...

338

Figure 34. Ratio of average per megawatthour fuel costs ...  

U.S. Energy Information Administration (EIA)

Title: Figure 34. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the RFC west ...

339

Implications of Cost Effectiveness Screening Practices in a Low...  

NLE Websites -- All DOE Office Websites (Extended Search)

Implications of Cost Effectiveness Screening Practices in a Low Natural Gas Price Environment: Case Study of a Midwestern Residential Energy Upgrade Program NOTICE Due to the...

340

For appliances, choosing the most cost-effective option depends on ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, ... Solar Energy in Brief ... Customers can quickly review costs, factor in rebates or incentives, ...

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Rules and Regulations Pertaining to a User Fee System for Point Source Dischargers that Discharge Pollutants into the Waters of the State (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish a user fee system for point source dischargers that discharge pollutants into the surface waters of the State. The funds from such fees are used by the Department of...

342

PAFC Cost Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ...

343

Biomass Power Project Cost Analysis Database  

Science Conference Proceedings (OSTI)

The development of biomass power projects presents a variety of challenges that result in high capital costs associated with developing, engineering, procuring, constructing, and operating biomass power projects. Although projects that rely on more homogeneous fuels such as natural gas must still account for site-specific issues when estimating development and construction costs, the complexities are not comparable.Recognizing the difficulties in estimating the capital costs for ...

2012-12-21T23:59:59.000Z

344

The impact of shrouded fees: evidence from a natural experiment in the Indian mutual funds market  

E-Print Network (OSTI)

We study a natural experiment in the Indian mutual funds sector that created a 22 month period in which closed-end funds were allowed to charge an arguably shrouded amortized fee whereas open-end funds were forced to charge standard entry loads. We find that allowing closed-end funds to charge the shrouded type of fee led to a proliferation of closed-end funds in the market; 45 new closed-end funds were started over this 22 month period collecting 9.1 billion $U.S, whereas only two closed-end funds were started in the 66 months prior to this period collecting.42 billion $U.S., and no closed-end funds were started in the 20 months after this period. We argue that other theoretical determinants of the closed versus open ended organizational form did not change discretely around the natural experiment and thus are unlikely to explain the sudden emergence and disappearance of closed-end funds. We find closed-end funds did not perform better in terms of raw or risk-adjusted returns. If all the investors in closed-end funds during this period had invested in the lower fee open fund variety instead they would have paid 4.25 percent less in fees over this 22 month period, equal to approximately 500 million dollars in extra fees. 1

Santosh Anagol; Hoikwang Kim

2012-01-01T23:59:59.000Z

345

U.S. Department of Energy Office of Inspector General report on inspection of Westinghouse Savannah River Company fees for managing and operating the Savannah River Site  

Science Conference Proceedings (OSTI)

During the first five years of its contract with the Department of Energy, Westinghouse Savannah River Company was paid over $130 million in fees to manage and operate the Savannah River Site. Fees paid to Westinghouse steadily increased over the five year period. For example, fees paid for the last six months of this five year period were over three times as large as fees paid for the first six months. The purpose of this inspection was to review the Department`s annual negotiation of total available fees with Westinghouse, and to examine the reasons for the growth in fees over this five year period. The review disclosed that, after Fiscal Year 1989, the Department used an increasing number of fee bases in calculating Westinghouse Savannah River Company`s fixed-fee-equivalents from the maximum fee schedules within the Department of Energy Acquisition Regulation. The authors found that the Department had significantly increased the percentage of the dollar value of subcontracts being placed in Westinghouse`s fee bases for fee calculation purposes. They found that the Department had effectively increased Westinghouse`s fixed-fee-equivalents by approximately $3 million in both Fiscal Year 1993 and 1994 to, in large part, fund an unallowable employee incentive compensation program. They found that Westinghouse`s total paid fees for the five year period increased significantly over what they would have been had the terms resulting from the original competitive negotiations been maintained. The authors recommended that the Deputy Assist Secretary for Procurement and Assistance Management require that changes in either the number or composition of fee bases used in calculating fees from the maximum fee schedules be submitted to the Department`s Procurement Executive for approval.

NONE

1995-08-03T23:59:59.000Z

346

Data:51dec43f-216e-4fee-b2ac-6f68d5ad42db | Open Energy Information  

Open Energy Info (EERE)

dec43f-216e-4fee-b2ac-6f68d5ad42db dec43f-216e-4fee-b2ac-6f68d5ad42db No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: United Illuminating Co Effective date: 2008/11/01 End date if known: Rate name: NE Sector: Description: Availability: This rider is available to any Distributed Generating Facility on the Customer's Premises with installed nameplate capacity of 500 kilowatts or less if fueled by a Non Class I renewable energy resource, or 50 kilowatts or less if a Fossil Fuel is used. Metering: Customers electing service under this rider in conjunction with a demand-metered supplemental service rate shall be metered by two meters, one meter to measure supplemental service sold to the Customer and one meter to measure kilowatt hours purchased by the Company. Customers electing service under this rider and a non-demand metered supplemental service rate may be metered by one meter. The appropriate meter provision(s) will be provided by the Customer. The Company may install, at its own cost, time-differentiated meters for load research purposes.

347

Minimum Changeover Cost Arborescence  

E-Print Network (OSTI)

having minimum changeover cost, a cost that we now describe. ... We define the changeover cost at j, denoted by d(j), as the sum of the costs at j paid for each of ...

348

Economics of gas from coal  

SciTech Connect

This study deals with three questions: What does gas from coal cost and what affects this cost; How do different approaches and processes compare; and How near to competitive cost-levels is present-day technology. Discussion covers production of both substitute natural gas (SNG) and medium calorific gas (MCG: 10-16 MJ/Nm3 or 250-400 Btu/SCF). Conclusions are that SNG from low-cost U.S. coal and West German brown coal are, on the basis of mature technology and Government rates-of-return, roughly competitive with gas imports into the U.S. and Europe respectively. Similarly MCG from second-generation gasifiers is competitive with gas-oil or No. 2 heating oil in Europe, North America and Japan. However, capital costs form about half total gas costs at 10 percent rate-of-return, so that the competitiveness of gas from coal is sensitive to capital costs: this is the area of greatest uncertainty.

Teper, M.; Hemming, D.F.; Ulrich, W.C.

1983-01-01T23:59:59.000Z

349

City of Santa Monica - Building Permit Fee Waiver for Solar Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Santa Monica - Building Permit Fee Waiver for Solar Projects City of Santa Monica - Building Permit Fee Waiver for Solar Projects < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State California Program Type Green Building Incentive Provider City of Santa Monica In early 2002, the City of Santa Monica began waiving building permit fees for solar energy systems. In December 2008, after months of working with industry trainers, solar contractors and staff from the Solar Santa Monica office, the city released their [http://www.solarsantamonica.com/documents/PVSubmittalRequirement2010.pdf

350

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

of separate costs for natural gas or oil, and electricity.receives oil-fired boilers INPUTS First Cost Inputs The flowfurnaces, and oil-fired furnaces, we scaled the cost for

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

351

Review of Some of the Literature on the Social Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

concludes that oil dependency costs the State of CaliforniaL. Parker, External Costs of Oil Used in Transportation, 92-such as gas, oil and parts; the indirect costs, such as

Murphy, James; Delucchi, Mark

1997-01-01T23:59:59.000Z

352

Unit Cost Electricity | OpenEI  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281518 Varnish cache server Unit Cost Electricity Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

353

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Costs CNG = compressed natural gas CPUC = California PublicNatural Gas Reformer Reformate Hydrogen H2 Purifier High -pressure hydrogen compressor CompressedNatural gas Air Burner air blower Steam methane reformer (SMR) & pressure shift adsorption reactor (PSA) Compressed

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

354

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Costs CNG = compressed natural gas CPUC = California PublicNatural Gas Reformer Reformate Hydrogen H2 Purifier High-pressure hydrogen compressor CompressedNatural gas Air Burner air blower Steam methane reformer (SMR) & pressure shift adsorption reactor (PSA) Compressed

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

355

Drilling costs drop 7% in 1985  

SciTech Connect

Drilling costs dropped about 7% last year. This decline cancels a slight increase in 1984. Total costs to drill now run about 59% of the 1981 highs. Comparable figures for the previous 2 years are 63 and 61%. Deeper wells showed the biggest drops. Shallow well costs fell about 6%. Energy Information Administration (EIA) indexes drilling costs on a 1976 base year. Costs for shallow wells (5,000 ft or less) show an index about 138. Deeper wells have an index around 149. Cost declines were the greatest in West and North Texas and the Rockies, of 11%. The Northeast and Western areas showed greater than average declines, 9% or so. The High Plains, New Mexico, and Midcontinent areas recorded near the average 7% decline. Costs in South Louisiana, the Southeast, and Ark-La-Tex 2%. West Central Texas costs were off only 1%. The Southeast was essentially unchanged. Indexes by area show generally that drilling costs have declined since 1983. The summary here comes from EIA's ''Indexes and Estimates of Domestic Well Drilling Costs 1984 and 1985''. That report covers oil, gas, and dry hole costs, cost components, and overall costs.

Anderson, T.; Funk, V.

1986-03-24T23:59:59.000Z

356

Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

supply contracts and natural gas storage. Lacking sufficientsupply contracts and natural gas storage facilities. Since,natural gas utilities, Xcel Energy noted that the cost of seasonal storage

Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

2002-01-01T23:59:59.000Z

357

Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

Against Volatile Natural Gas Prices Mark Bolinger, Ryanof unprecedented natural gas price volatility during thethe cost of hedging gas price risk through financial hedging

Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

2002-01-01T23:59:59.000Z

358

Berkshire Gas - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy efficiency rebates. Berkshire Gas will pay residential customers that use gas to heat their homes 75% of the installed cost (up to 2,000) of certain pre-determined energy...

359

Laser Oil & Gas Well Drilling [Laser Applications Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

benefit in reducing the high costs of operating a drill rig. Today, a typical land-based oil or gas well costs around 400,000 to drill, while costs for an offshore well average...

360

Solid State Gas Sensors - Energy Innovation Portal  

The total cost of ownership (TCO) for gas sensors today is a limiting factor in improving safety, air quality, and energy efficiency.

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Qualified Projects of Natural Gas Utilities (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Permits a natural gas utility to construct the necessary facilities of a qualifying project and to recover the eligible infrastructure development costs necessary to develop the eligible...

362

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

poor. Other policies, such as low natural gas price for CHPNatural gas tariff Technology costs and financial considerations (such as interests rate, policy

Feng, Wei

2013-01-01T23:59:59.000Z

363

Inspection of the cost reduction incentive program at the Department of Energy`s Idaho Operations Office  

SciTech Connect

The purpose of this inspection was to review the economy and efficiency of Idaho`s Fiscal Year 1992 Cost Reduction Incentive Program, as well as to provide information to Departmental officials regarding any difficulties in administering these types of programs. The report is of the findings and recommendations. According to Idaho officials, their Cost Reduction Incentive Program was designed to motivate and provide incentives to management and operating contractors which would result in cost savings to the Department while increasing the efficiency and effectiveness of the contractors` operations. Idaho officials reported that over $22.5 million in costs were saved as a result of the Fiscal Year 1992 Cost Reduction Incentive Program. It was found that: (1) Idaho officials acknowledged that they did not attempt a full accounting records validation of the contractor`s submitted cost savings; (2) cost reduction incentive programs may result in conflicts of interest--contractors may defer work in order to receive an incentive fee; (3) the Department lacks written Department-wide policies and procedures--senior Procurement officials stated that the 1985 memorandum from the then-Assistant Secretary for Management and Administration was not the current policy of the Department; and (4) the Department already has the management and operating contract award fee provisions and value engineering program that can be used to provide financial rewards for contractors that operate cost effectively and efficiently.

Not Available

1994-07-07T23:59:59.000Z

364

Data:1fa28776-b008-449b-8dd7-8491526fee38 | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:1fa28776-b008-449b-8dd7-8491526fee38 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: New York State Elec & Gas Corp Effective date: 2013/11/01 End date if known: Rate name: SERVICE CLASSIFICATION NO. 1 - RESIDENTIAL SERVICE NSS (Non-Retail) Sector: Residential Description: APPLICABLE TO THE USE OF SERVICE FOR: Residential Customers in individual private dwellings, flats or apartments, and Religious Customers utilizing service exclusively in connection with religious purposes by a corporation or association organized and conducted in good faith for religious purposes. Applicable also to use exclusively in connection with a community residence for the mentally disabled, as defined in subdivision 28, 28-a, or 28-b of section 1.03 of the mental hygiene law, provided that such residence is operated by a not-for-profit corporation and, if supervisory staff is on site 24 hours a day, that the residence provides living accommodations for 14 or fewer residents. Also applicable to any not-for-profit corporation that is a veterans' organization that owns or leases a post or hall. Flat rate Adjustments = Transition Charge+MFC

365

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

366

File:Geothermal fee schedule 08-08-10.pdf | Open Energy Information  

Open Energy Info (EERE)

fee schedule 08-08-10.pdf fee schedule 08-08-10.pdf Jump to: navigation, search File File history File usage File:Geothermal fee schedule 08-08-10.pdf Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 33 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 20:19, 16 November 2012 Thumbnail for version as of 20:19, 16 November 2012 1,650 × 1,275 (33 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from "http://en.openei.org/w/index.php?title=File:Geothermal_fee_schedule_08-08-10.pdf&oldid=537711"

367

Royalties vs. upfront lump-sum fees in data communication environments  

Science Conference Proceedings (OSTI)

Mobile communications markets worldwide, today, are saturated, the number of mobile network operators (MNOs) in market is declining, mobile revenues are stagnant or falling, MNOs are becoming wireless Internet service providers, and economies of scope ... Keywords: Auction, Economies of scope, Lump-sum fee, Royalty, Spectrum

Youngsun Kwon; Buhm-Kyu Kim

2012-03-01T23:59:59.000Z

368

Electricity Plant Cost Uncertainties (released in AEO2009)  

Reports and Publications (EIA)

Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

Information Center

2009-03-31T23:59:59.000Z

369

Emission control cost-effectiveness of alternative-fuel vehicles  

DOE Green Energy (OSTI)

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

370

Cost Study Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2012 28, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a percent of payroll exceeds the comparator group by more than five percent. For example, if per capita benefit costs for the comparator group are $10,000 and the benefit costs as a percent of payroll for the comparator group are 20%, the threshold for the contractor's benefits as a

371

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

purchasingratesfornetmetering,inter?tiefees,variabletothegrid,includingnetmetering,timeofusepricing,purchasingratesfornetmetering,intertiefees,peak

Al-Beaini, S.

2010-01-01T23:59:59.000Z

372

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

373

Natural Gas Purchasing Options  

E-Print Network (OSTI)

As a result of economic and regulatory changes, the natural gas marketplace now offers multiple options for purchasers. The purpose of this panel is to discuss short-term purchasing options and how to take advantage of these options both to lower energy costs and to secure supply.

Watkins, G.

1988-09-01T23:59:59.000Z

374

Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

In many of the operating flue gas desulfurization (FGD) systems throughout the world, materials corrosion leads to considerable costs and downtime. Utilities are often required to maintain, repair, replace, and/or upgrade existing materials to combat corrosion issues. This document provides the results of a recent EPRI survey that examined the various types of corrosion and materials damage in FGD systems.

2005-12-23T23:59:59.000Z

375

Transparent Cost Database | Transparent Cost Database  

Open Energy Info (EERE)

Hide data for this chart (-)Show data for this chart (+) Loading data... Transparent Cost Database Generation Showing: Historical Projections Year Published: Release mouse to...

376

Gas utilization technologies  

SciTech Connect

One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

Biljetina, R.

1994-09-01T23:59:59.000Z

377

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

378

Site: Contract Name: Contractor: Contract Number: Contract Type...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract Name: Contractor: Contract Number: Contract Type: Total Estimated Contract Cost: Contract Period: Minimum Fee Maximum Fee Performance Period Fee Available Total Fee Paid...

379

Chapter 3 Appendices 1 Appendix 3A: Levelized Cost of Electricity and  

E-Print Network (OSTI)

on the costs of coal, capital, and labor in Table 3A.1, natural gas with CCS becomes economic at the prices of higher than 100$/ tCO2 for a range $2­6$/MMBtu natural gas prices. At the higher natural gas prices, coal-Cost Generation Technology Zones for Coal and Natural Gas with and without CCS for Different Natural Gas Prices

Reuter, Martin

380

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

382

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

383

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate and Analyze Greenhouse Gas Mitigation Strategy Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs October 7, 2013 - 10:18am Addthis Analyzing the cost of implementing each greenhouse gas (GHG) mitigation measure provides an important basis for prioritizing different emission reduction strategies. While actual costs should be used when available, this guidance provides cost estimates or considerations for the major emission reduction measures to help agencies estimate costs without perfect information. Cost criteria the agency may consider when prioritizing strategies include: Lifecycle cost Payback Cost effectiveness ($ invested per MTCO2e, metric tonne carbon dioxide equivalent avoided). Implementation costs should be analyzed for each emissions source:

384

gas | OpenEI  

Open Energy Info (EERE)

gas gas Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

385

Nuclear stimulation of gas fields  

SciTech Connect

From National Technical Canadian Gas Association; Calgary, Alberta, Canada (17 Oct 1973). The technical bases of the emerging technology of nuclear stimulation of natural gas fields, the potential of this method for increasing the gas supply of the US, and public issues related to this technology are discussed. A technical appendix is provided with information on: reservoir producing characteristics; explosive design, availability, and cost; firing and space of explosives; economic parameters; and tabulated statistics on past and current projects on nuclear stimulation. (LCL)

Randolph, P.L.

1973-09-01T23:59:59.000Z

386

OOTW COST TOOLS  

Science Conference Proceedings (OSTI)

This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

HARTLEY, D.S.III; PACKARD, S.L.

1998-09-01T23:59:59.000Z

387

A Review of the Literature on the Social Cost of Motor Vehicle Use in the United States  

E-Print Network (OSTI)

L. Parker. 1992. External Costs of Oil Used in Transporta-such as gas, oil and parts; the indirect costs, such asTABLE 3 Estimated External Costs of Oil Used in Transport

Murphy, James; Delucchi, Mark

1998-01-01T23:59:59.000Z

388

Production optimization of a tight sandstone gas reservoir with well completions: A numerical simulation study.  

E-Print Network (OSTI)

??Tight gas sands have significant gas reserves, which requires cost-effective well completion technology and reservoir development plans for viable commercial exploitation. In this study, a (more)

Defeu, Cyrille W.

2010-01-01T23:59:59.000Z

389

Operations Cost Allocation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

390

Minimum Cost Arborescences ?  

E-Print Network (OSTI)

In this paper, we analyze the cost allocation problem when a group of agents or nodes have to be connected to a source, and where the cost matrix describing the cost of connecting each pair of agents is not necessarily symmetric, thus extending the well-studied problem of minimum cost spanning tree games, where the costs are assumed to be symmetric. The focus is on rules which satisfy axioms representing incentive and fairness properties. We show that while some results are similar, there are also significant differences between the frameworks corresponding to symmetric and asymmetric cost matrices.

Bhaskar Dutta; Debasis Mishra; We Thank Daniel Granot; Anirban Kar; Herve Moulin For Comments

2011-01-01T23:59:59.000Z

391

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

392

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to (more)

Elkjr, Jonas Bondegaard

2009-01-01T23:59:59.000Z

393

Long-run incremental costs and the pricing of electricity. Part II. [Comparative evaluation of marginal cost pricing and average cost pricing  

SciTech Connect

Total costs have essentially the same cost components whether long-run average costs or long-run incremental costs are used. The variable components, chiefly fuel, may be somewhat different in the new incremental plant compared to the old average plant; where the difference is between nuclear fuel and fossil fuel, its size is substantial. However, given the same kind of plant, the current prices of materials and labor will be essentially the same whether used in the new or the old plant with long-run incremental costs (LRIC) or long-run average costs (LRAC). The lower cost of electricity produced in nuclear plants constructed today, as compared to fossil fuel plants constructed at the same time, is not to be confused with the relation between LRIC and LRAC. LRAC is the average cost of electricity from all existing plants priced at their historical costs, which were generally lower than current costs. These average historical costs per kilowatt are still likely to be lower than the current incremental cost per kilowatt of the newest nuclear plant built at present price levels. LRAC is, therefore, still likely to be lower than LRIC for either fossil or nuclear. Data from the Wisconsin Power and Light Company, the Madison Gas and Electric Company, and Tuscon Gas and Electric Company are examined to study some comparisons. Some pricing principles that vary seasonally for resort hotels are reviewed. (MCW)

Morton, W.A.

1976-03-25T23:59:59.000Z

394

Canada Oil and Gas Operations Act (Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1985 Program Type Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Provider Canada National Energy Board The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

395

Natural Gas Monthly, August 1984  

SciTech Connect

Dry gas production during August 1984 was estimated at 1441 billion cubic feet (Bcf), 8.4% above August 1983 dry gas production. Consumption of natural gas during August 1984 was an estimated 1182 Bcf, 3.7% above the August 1983 level. Compared to the previous July, residential and commercial consumption was down 4.6 and 6.2%, respectively, industrial consumption was up 13.2%, and electric utility consumption was up 11.1% during July 1984. The volume of working gas in underground storage reservoirs at the end of August 1984 was 5.8% below the August 31, 1983 level. The average wellhead price of natural gas in June 1984 was $2.61 per thousand cubic feet (Mcf). In June 1983, the average was $2.62 per Mcf. In August 1984, the average residential price of natural gas was $6.17 per Mcf. The comparable price in August 1983 was $6.16 per Mcf. The average wellhead (first sale) price for natural gas purchases projected for September 1984 by selected interstate pipeline companies was $2.67 per Mcf. In September 1983, the average price was $2.64 per Mcf. The average price projected for Old Gas (NGPA Sections 104, 105, and 106) in September 1984 was $1.23 per Mcf; for New Gas (NGPA Sections 102, 103, 108, and 109), $3.66 per Mcf; and for High Cost Gas (NGPA Section 107), $5.18 per Mcf. In September 1983, the prices projected for Old Gas, New Gas, and High Cost Gas averaged $1.35, $3.47, and $5.66 per Mcf, respectively. On September 26, 1984 the FERC approved extension of the authorized natural gas producer and pipeline special marketing programs (SMP) for another year. The North Great Plains coal gasification plant in North Dakota begun producing gas in July of this year.

Not Available

1984-10-01T23:59:59.000Z

396

Natural gas market under the Natural Gas Policy Act  

Science Conference Proceedings (OSTI)

This first of a series of analyses presents data on the exploration, development, production, and pricing of US natural gas since the passage of the Natural Gas Policy Act in 1978. Designed to give pricing incentives for new-well activity, the NGPA has apparently eliminated many of the pricing differences that existed between interstate and intrastate markets. Estimates of the annual production volumes in trillion CF/yr of gas for the categories defined by the NGPA include new gas 4.5, new onshore wells 4.1, high-cost unconventional gas 0.7, and stripper wells 0.4. Preliminary statistics on the end-use pricing of natural gas suggest that significant changes in the average wellhead prices have not caused correspondingly large increases in the price of delivered gas.

Carlson, M.; Ody, N.; O'Neill, R.; Rodekohr, M.; Shambaugh, P.; Thrasher, R.; Trapmann, W.

1981-06-01T23:59:59.000Z

397

Regional GHG Emissions O tlook Greenhouse Gas and the Regional  

E-Print Network (OSTI)

6/5/2013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Natural Gas Prices 6. Potential Federal CO2 regulatory cost policy Two basic CO2 Cost 10 20 30 40 Million Generation Coal 19 % 15 % 13 % Natural Gas 10 % 10 % 14 % Wind & Other Renewables 8 % 12 % 13 % Emission

398

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

399

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

400

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

402

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

403

Documents: Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Search Documents: Search PDF Documents View a list of all documents Cost Analysis PDF Icon Summary of the Cost Analysis Report for the Long-term Management of Depleted UF6...

404

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

405

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

406

Cost Estimation Recommendations  

Science Conference Proceedings (OSTI)

...D.P. Hoult and C.L. Meador, Manufacturing Cost Estimating, Materials Selection and Design, Vol 20, ASM Handbook,

407

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

408

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

409

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 26, 2012 January 26, 2012 The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. Producing Natural Gas From Shale By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet. When you consider that 1 tcf of natural gas is enough to heat 15 million homes for one year, the importance of this resource to the nation becomes obvious. January 26, 2012 Natural Gas Production and U.S. Oil Imports Take a look at the Energy Information Administration's projections for

410

Figure 33. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 33. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the SERC southeast ...

411

Figure 27. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 27. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in five cases, 2008-2040

412

DOE Hydrogen and Fuel Cells Program Record 5035: Cost Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Date: May 22, 2006 Title: Cost Analysis of Hydrogen Production from Natural Gas 2003 - 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Approval Date: May 22, 2006 Item...

413

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Determining the Real Cost: Why Renewable Power is More Cost-Previously Believed. Renewable Energy World, 6(2): pp. 52-Price Risk When Comparing Renewable to Gas-Fired Generation:

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

414

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

415

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

Technology. Stoffel, F.C. (Xcel Energy). 2001. In the Matternatural gas utilities, Xcel Energy noted that the cost of

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

416

Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?  

E-Print Network (OSTI)

Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

Paltsev, S.

417

Gas, Mister, not gasoline  

SciTech Connect

A prototype rechargeable CNG commuter car with an LP-gas standby reserve avoids the need for area fueling stations while providing an emergency range-extending technique through its LPG system. Operating on a household power line, the charging compressor fills each tank to 1000 psig at an electric cost of less than 7 cents/100 CF of compressed gas. The four fuel tanks weigh only 120 lb and give the small Opel GT car a range of 75 miles. A 10-gal LPG tank adds 300 miles to this range.

Axworthy, R.T.

1982-10-01T23:59:59.000Z

418

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

centimeter or cubic centimeters CNG = compressed natural gascompressed natural gas (CNG) refueling stations providessimilar cylinders for storing CNG. In general, the cost of a

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

419

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

41000 gal 41000 gal Gas Cost therm 0.60 therm 0.60 therm Electricity Cost kWh 0.06 kWh 0.06 kWh Minutes per Day of Operation minutes 30 minutes 20 minutes Days...

420

Oil and Gas Gross Production Tax (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Gross Production Tax (North Dakota) Oil and Gas Gross Production Tax (North Dakota) Oil and Gas Gross Production Tax (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Fees A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from taxation under this chapter.

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CenterPoint Energy - Business Gas Heating Rebates (Arkansas)...  

Open Energy Info (EERE)

install natural gas energy efficiency measures such as faucet aerators and pre-rinse spray valves that reduce natural gas use as well as reducing water and sewer costs....

422

Methods | Transparent Cost Database  

Open Energy Info (EERE)

Methods Methods Disclaimer The data gathered here are for informational purposes only. Inclusion of a report in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a single discount rate in order to compare technology costs only. About the Cost Database For emerging energy technologies, a variety of cost and performance numbers are cited in presentations and reports for present-day characteristics and potential improvements. Amid a variety of sources and methods for these data, the Office of Energy Efficiency and Renewable Energy's technology development programs determine estimates for use in program planning. The Transparent Cost Database collects program cost and performance

423

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

424

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

425

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

426

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

427

What solar heating costs  

SciTech Connect

Few people know why solar energy systems cost what they do. Designers and installers know what whole packages cost, but rarely how much goes to piping, how much for labor and how much for the collectors. Yet one stands a better chance of controlling costs if one can compare where the money is going against where it should be going. A detailed Tennessee Valley Authority study of large solar projects shows how much each component contributes to the total bill.

Adams, J.A.

1985-05-01T23:59:59.000Z

428

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

429

CAES Updated Cost Assessment  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage Systems (CAES) for bulk energy storage applications have been receiving renewed interest. Increased penetration of large quantities of intermittent wind generation are requiring utilities to re-examine the cost and value of CAES systems. New second generation CAES cycles have been identified which offer the potential for lower capital and operating costs. This project was undertaken to update and summarize the capital and operating costs and performance features of second ge...

2008-12-23T23:59:59.000Z

430

Incremental cost analysis of advanced concept CAES systems  

SciTech Connect

The costs of compressed air energy storage (CAES) systems using thermal energy storage (TES) are compared to the costs of CAES systems without TES and simple cycle gas turbine systems. Comparisons are made in terms of the system energy costs levelized over the operating life of the systems. These are in 1985 price levels which is the assumed first year of operation for the systems.

Knutsen, C.A.

1979-09-01T23:59:59.000Z

431

GasSense: appliance-level, single-point sensing of gas activity in the home  

Science Conference Proceedings (OSTI)

This paper presents GasSense, a low-cost, single-point sensing solution for automatically identifying gas use down to its source (e.g., water heater, furnace, fireplace). This work adds a complementary sensing solution to the growing body of work in ... Keywords: gas, sensing, sustainability, ubiquitous computing

Gabe Cohn; Sidhant Gupta; Jon Froehlich; Eric Larson; Shwetak N. Patel

2010-05-01T23:59:59.000Z

432

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Determining the Real Cost: Why Renewable Power is More Cost-Previously Believed. Renewable Energy World, 6(2), March-the Risk Profiles of Renewable and Natural Gas Electricity

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

433

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Historically, the average fuel cost of operating a combined-cycle natural gas generator exceeded that for a coal-fired generator. Until 2010, ...

434

NETL: News Release - Natural Gas Compression Technology Improves...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Innovative Compressor Design Can Extend Productive Life of Stripper Wells,...

435

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Lower natural gas prices have allowed some fertilizer plants to boost production, with at least one stating that the shift in production costs will lead to plant ...

436

Advanced Laser Machining Techniques for Cooling Holes in Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

that will improve the predictability and repeatability of cooling hole performance in gas turbine blades while meeting manufacturing cost objectives. The water guided laser...

437

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

utilities, the electricity tariff has time- of-use (TOU)energy loads, 4 electricity and natural gas tariff structurewhen the tariff structure and costs of electricity supply

Stadler, Michael

2010-01-01T23:59:59.000Z

438

Today in Energy - Natural gas use for power generation ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... (through November), relative to the same time period in 2012. ... given the large cost advantage of natural gas.

439

Waste Heat Recovery from Industrial Smelting Exhaust Gas  

Science Conference Proceedings (OSTI)

For a cost efficient capture of more valuable heat (higher exergy), heat exchangers should operate on the exhaust gases upstream of the gas treatment plants.

440

Energy Information Administration (EIA) - Analysis of Oil and Gas ...  

U.S. Energy Information Administration (EIA)

Also, other provisions in the CEB could reduce the price of natural gas, ... the effective fuel cost of the biomass returns to pre-PTC levels, ...

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: News Release - Storing Liquefied Natural Gas in Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 22, 2003 Storing Liquefied Natural Gas in Underground Salt Caverns Could Boost Global LNG Trade Novel Process May be Half the Cost of Conventional Liquid Tank Terminals...

442

Cost Affordable Titanium IV  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Enhancing the Cost Effectiveness of High Performance Titanium Alloy Component Production by Powder Metallurgy Evolution of Texture in...

443

Cost Effective Single Crystals  

Science Conference Proceedings (OSTI)

three relevant technologies, namely casting, alloy development and orientation measurement, developed by Rolls-Royce to enable the cost effective production.

444

Sharing Supermodular Costs  

E-Print Network (OSTI)

the costs collectively incurred by a group of cooperating agents. ..... Mixed integer programming formulations for production planning and scheduling prob- lems.

445

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia?s petroleum producing basins, both onshore and offshore. I analyse a substantial (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

446

COST REVIEW and ESTIMATING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programming Guide. OMB Circular A-94, Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs, dated October 29, 1992 Page | 41 APPENDIX A ICRICE...

447

The Cost of Debt ?  

E-Print Network (OSTI)

We estimate firm-specific marginal cost of debt functions for a large panel of companies between 1980 and 2007. The marginal cost curves are identified by exogenous variation in the marginal tax benefits of debt. The location of a given companys cost of debt function varies with characteristics such as asset collateral, size, book-to-market, asset tangibility, cash flows, and whether the firm pays dividends. By integrating the area between benefit and cost functions we estimate that the equilibrium net benefit of debt is 3.5 % of asset value, resulting from an estimated gross benefit of debt of 10.4 % of asset value and an estimated cost of debt of 6.9%. We find that the cost of being overlevered is asymmetrically higher than the cost of being underlevered and that expected default costs constitute approximately half of the total ex ante cost of debt. We thank Rick Green (the Acting Editor), and an anonymous referee, Heitor Almeida, Ravi Bansal,

Jules H. Van Binsbergen; John R. Graham; Jie Yang

2010-01-01T23:59:59.000Z

448

Reducing Energy Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy expense is becoming increasingly dominant in the operating costs of high-performance computing (HPC) systems. At the same time, electricity prices vary significantly at...

449

Target Cost Management Strategy  

E-Print Network (OSTI)

Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

Okano, Hiroshi

1996-01-01T23:59:59.000Z

450

Hydrogen and Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

451

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

fixed-price gas supply contracts and natural gas storage. Asnatural gas prices, rather than on prices that can be locked in through futures, swap, or fixed- price physical supplySupply, Renewable Energy Gas Options, Gas Storage Option Premium or Storage Cost Gas Price Falls Gas Price Rises Natural

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

452

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

453

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

454

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network (OSTI)

Station Storage Storage Cost $500/kg Natural gas feedstocknatural gas steam methane reforming (SMR) includes hydrogen production and storagefor storage, distribution or use H 2 Natural gas Figure 3

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

455

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

456

ANNEX A TO APPENDIX G, Standard Remittance Advice For Payment of Fees  

U.S. Energy Information Administration (EIA) Indexed Site

Department of Energy Department of Energy Energy Information Administration Form NWPA-830G (Revised 03/12) ANNEX A TO APPENDIX G Standard Remittance Advice For Payment of Fees OMB No: 1901-0260 Expires: 3-31-2016 Burden: 5 Hours Section 1. Identification Information: Please first read the instructions on the back. Section 2. Net Electricity Generated Calculation 1.1 Purchaser Information: Item Unit 1 Unit 2 Unit 3 Station Total 1 1.11 Name:____________________________________________ 2.1 Unit ID Code: 1.12 Address:__________________________________________

457

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas-Saving Tips Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed number, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to several factors, including how the vehicle is driven, the vehicle's mechanical condition, and the environment in which it is driven. That's good news. It means you may be able to improve your vehicle's gas mileage through proper maintenance and driving habits. In fact, studies suggest the average driver can improve his/her fuel economy by roughly 10 percent. Here are a few simple tips to help you get the best possible fuel economy from your vehicle and reduce your fuel costs. Adopt Good Driving Habits Drive Sensibly Aggressive driving (speeding, rapid acceleration and braking)

458

Preliminary estimates of the total-system cost for the restructured program: An addendum to the May 1989 analysis of the total-system life cycle cost for the Civilian Radioactive Waste Management Program  

SciTech Connect

The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 - a fee levied on electricity generated and sold by commercial nuclear power plants - is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee. The costs contained in this report represent a preliminary analysis of the cost impacts associated with the Secretary of Energy`s Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program issued in November 1989. The major elements of the restructured program announced in this report which pertain to the program`s life-cycle costs are: a prioritization of the scientific investigations program at the Yucca Mountain candidate site to focus on identification of potentially adverse conditions, a delay in the start of repository operations until 2010, the start of limited waste acceptance at the monitored retrievable storage (MRS) facility in 1998, and the start of waste acceptance at the full-capability MRS facility in 2,000. Based on the restructured program, the total-system cost for the system with a repository at the candidate site at Yucca Mountain in Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $26 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $34 to $35 billion, depending on the quantity of spent fuel and high-level waste (HLW) requiring disposal. 17 figs., 17 tabs.

NONE

1990-12-01T23:59:59.000Z

459

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

460

Software Cost Estimation  

E-Print Network (OSTI)

Software cost estimation is the process of predicting the effort required to develop a software system. Many estimation models have been proposed over the last 30 years. This paper provides a general overview of software cost estimation methods including the recent advances in the field. As a number of these models rely on a software size estimate as input, we first provide an overview of common size metrics. We then highlight the cost estimation models that have been proposed and used successfully. Models may be classified into 2 major categories: algorithmic and non-algorithmic. Each has its own strengths and weaknesses. A key factor in selecting a cost estimation model is the accuracy of its estimates. Unfortunately, despite the large body of experience with estimation models, the accuracy of these models is not satisfactory. The paper includes comment on the performance of the estimation models and description of several newer approaches to cost estimation.

Hareton Leung Zhang; Zhang Fan

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cost-Affordable Titanium III  

Science Conference Proceedings (OSTI)

Cost-Effective Production and Thermomechanical Consolidation of Titanium Alloy Powders Cost Affordable Developments in Titanium Technology and...

462

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

Cost Assumptions Wind power is often found to be the least-cost renewable energycost studies. The capacity value of renewable energy (wind,wind costs persist. Natural Gas Price Forecasts The difference between renewable energy

Chen, Cliff

2009-01-01T23:59:59.000Z

463

Transmission line capital costs  

Science Conference Proceedings (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

464

Cost of Radiotherapy Versus NSAID Administration for Prevention of Heterotopic Ossification After Total Hip Arthroplasty  

Science Conference Proceedings (OSTI)

Purpose: Heterotopic ossification (HO), or abnormal bone formation, is a common sequela of total hip arthroplasty. This abnormal bone can impair joint function and must be surgically removed to restore mobility. HO can be prevented by postoperative nonsteroidal anti-inflammatory drug (NSAID) use or radiotherapy (RT). NSAIDs are associated with multiple toxicities, including gastrointestinal bleeding. Although RT has been shown to be more efficacious than NSAIDs at preventing HO, its cost-effectiveness has been questioned. Methods and Materials: We performed an analysis of the cost of postoperative RT to the hip compared with NSAID administration, taking into account the costs of surgery for HO formation, treatment-induced morbidity, and productivity loss from missed work. The costs of RT, surgical revision, and treatment of gastrointestinal bleeding were estimated using the 2007 Medicare Fee Schedule and inpatient diagnosis-related group codes. The cost of lost wages was estimated using the 2006 median salary data from the U.S. Census Bureau. Results: The cost of administering RT was estimated at $899 vs. $20 for NSAID use. After accounting for the additional costs associated with revision total hip arthroplasty and gastrointestinal bleeding, the corresponding estimated costs were $1,208 vs. $930. Conclusion: If the costs associated with treatment failure and treatment-induced morbidity are considered, the cost of NSAIDs approaches that of RT. Other NSAID morbidities and quality-of-life differences that are difficult to quantify add to the cost of NSAIDs. These considerations have led us to recommend RT as the preferred modality for use in prophylaxis against HO after total hip arthroplasty, even when the cost is considered.

Strauss, Jonathan B. [Department of Radiation Oncology, Rush University Medical Center, Chicago, IL (United States)], E-mail: Jonathan_Strauss@rush.edu; Chen, Sea S.; Shah, Anand P.; Coon, Alan B. [Department of Radiation Oncology, Rush University Medical Center, Chicago, IL (United States); Dickler, Adam [Department of Radiation Oncology, Little Company of Mary Hospital, Evergreen Park, IL (United States)

2008-08-01T23:59:59.000Z

465

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

466

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

467

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

468

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

469

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

470

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

471

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

472

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

473

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

474

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

475

Optimal structure of gas transmission trunklines  

E-Print Network (OSTI)

ments at supply and delivery nodes are known as well as the costs to buy and ...... [9] Cheeseman A. P., How to optimize Gas Pipeline Design by computer, Oil &.

476

Proceedings: 1989 EPRI Gas Turbine Procurement Seminar  

Science Conference Proceedings (OSTI)

Information presented in this workshop will enable equipment specifiers to formulate more-effective specifications for new gas turbine generating equipment. Properly drafted specifications improve the quality of a procurement and can result in lower unit life-cycle cost.

1990-03-22T23:59:59.000Z

477

Uncertainty Quantification and Calibration in Well Construction Cost Estimates  

E-Print Network (OSTI)

The feasibility and success of petroleum development projects depend to a large degree on well construction costs. Well construction cost estimates often contain high levels of uncertainty. In many cases, these costs have been estimated using deterministic methods that do not reliably account for uncertainty, leading to biased estimates. The primary objective of this work was to improve the reliability of deterministic well construction cost estimates by incorporating probabilistic methods into the estimation process. The method uses historical well cost estimates and actual well costs to develop probabilistic correction factors that can be applied to future well cost estimates. These factors can be applied to the entire well cost or to individual cost components. Application of the methodology to estimation of well construction costs for horizontal wells in a shale gas play resulted in well cost estimates that were well calibrated probabilistically. Overall, average estimated well cost using this methodology was significantly more accurate than average estimated well cost using deterministic methods. Systematic use of this methodology can provide for more accurate and efficient allocation of capital for drilling campaigns, which should have significant impacts on reservoir development and profitability.

Valdes Machado, Alejandro

2013-08-01T23:59:59.000Z

478

Electricity Generation Cost Simulation Model (GenSim)  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

DRENNEN, THOMAS E.; KAMERY, WILLIAM

2002-11-01T23:59:59.000Z

479

Electricity Generation Cost Simulation Model (GenSim).  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercuty. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

Kamery, William (Hobart and William Smith Colleges, Geneva, NY); Baker, Arnold Barry; Drennen, Thomas E.

2003-07-01T23:59:59.000Z

480

Lookin g for data personnel costs, indirect costs, equipment costs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Negotiating Group Question/Answer Sessions November 19, 2009 Q: What happens now? A: The negotiation process starts tomorrow [November 20, 2009], when DOE will be sending the Awardees an e-mail with information about which website to go to for clarification and direction, information from the Office of Civil Rights, and answers to some of the questions that came up in the meeting. DOE will be gathering information about the questions concerning cyber requirements, metrics, and reporting requirements and will be getting back to the awardees about those issues the week after Thanksgiving. We have done a review of the budgets, and emails will be sent giving opportunities to address any issues. We will also re-review technical and cost proposals.

Note: This page contains sample records for the topic "fee costs gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

operating costs, long-term fixed-price renewable energyRenewable Energy Gas Options, Gas Storage Option Premium or Storage Costrenewable power is more cost- competitive than previously believed, Renewable Energy

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

482

Financial and Cost Assessment Model (FICAM) | Open Energy Information  

Open Energy Info (EERE)

Financial and Cost Assessment Model (FICAM) Financial and Cost Assessment Model (FICAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial and Cost Assessment Model (FICAM) Agency/Company /Organization: UNEP-Risoe Centre Sector: Climate Focus Area: Greenhouse Gas Topics: Finance, Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: tech-action.org/models.htm Cost: Free Financial and Cost Assessment Model (FICAM) Screenshot References: FICAM[1] "The Financial and Cost Assessment Model (FICAM) evaluates the contribution of technologies and practices towards mitigation of greenhouse gases, and carries a comprehensive financial analysis." References ↑ "FICAM" Retrieved from "http://en.openei.org/w/index.php?title=Financial_and_Cost_Assessment_Model_(FICAM)&oldid=383091"

483

NETL - Bituminous Baseline Performance and Cost Interactive Tool | Open  

Open Energy Info (EERE)

NETL - Bituminous Baseline Performance and Cost Interactive Tool NETL - Bituminous Baseline Performance and Cost Interactive Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bituminous Baseline Performance and Cost Interactive Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: Bituminous Baseline Performance and Cost Interactive Tool [1] Bituminous Baseline Performance and Cost Interactive Tool The Bituminous Baseline Performance and Cost Interactive Tool illustrates key data from the Cost and Performance Baseline for Fossil Energy Plants - Bituminous Coal and Natural Gas to Electricity report. The tool provides an

484

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

485

Innovative Nanocoatings Unlock the Potential for Major Energy and Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanocoatings Unlock the Potential for Major Energy and Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry Innovative Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry July 17, 2012 - 3:33pm Addthis Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Bob Gemmer Technology Manager, Research and Development for the Advanced Manufacturing Office What does this mean for me? WIth help from DOE, one company has developed a nanocoating that has the potential to improve the energy efficiency of aircrafts and save the airline industry hundreds of millions of dollars in fuel costs annually.