National Library of Energy BETA

Sample records for federal research facilities

  1. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    SciTech Connect (OSTI)

    Weigl, M. [Forschungszentrum Karlsruhe GmbH, Projekttragerforschungszentrum Karlsruhe (PTKA-WTE), Karlsruhe (Germany)

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich and Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)

  2. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired...

  3. Commissioning Process for Federal Facilities

    Broader source: Energy.gov [DOE]

    The commissioning process for federal facilities can be completed in four steps: planning, investigation, implementation, and hand-off and integration.

  4. Idaho National Engineering Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Federal Facility Agreement and Consent Order State Idaho Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts...

  5. Commissioning for Federal Facilities | Department of Energy

    Office of Environmental Management (EM)

    for Federal Facilities Commissioning for Federal Facilities Guide describes building commissioning, recommissioning, retrocommissioning, and continuous commissioning for federal facilities. PDF icon commissioning_fed_facilities.pdf More Documents & Publications Chapter 9: Commissioning the Building Guide to Operating and Maintaining EnergySmart Schools Example Retro-Commissioning Scope of Work to Include Services as Part of an ESPC Investment-Grade Audit

  6. Long-Term Suveillance and Maintenance Plan for hte Former Laboratory for Energy-Related Health Research Federal Facility University of California

    Office of Legacy Management (LM)

    for the Former Laboratory for Energy-Related Health Research Federal Facility University of California, Davis September 2015 LMS/LEH/S07300-4.0 This page intentionally left blank U.S. Department of Energy LEHR Long-Term Surveillance and Maintenance Plan September 2015 Doc. No. S07300-4.0 Page i Contents Abbreviations ................................................................................................................................. iii 1.0 Introduction

  7. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  8. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and systems, ensuring integration with the U.S. electric grid. Learn more Integrated Biorefinery Research Facility (IBRF) Integrated Biorefinery Research Facility (IBRF) Work with...

  9. Federal Facility Agreement progress report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The (SRS) Federal Facility Agreement (FFA) was made effective by the US. Environmental Protection Agency Region IV (EPA) on August 16, 1993. To meet the reporting requirements in Section XXV of the Agreement, the FFA Progress Report was developed. The FFA Progress Report is the first of a series of quarterly progress reports to be prepared by the SRS. As such this report describes the information and action taken to September 30, 1993 on the SRS units identified for investigation and remediation in the Agreement. This includes; rubble pits, runoff basins, retention basin, seepage basin, burning pits, H-Area Tank 16, and spill areas.

  10. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  11. 2015 Assisting Federal Facilities with Energy Conservation Technologie...

    Energy Savers [EERE]

    2015 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients 2015 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) ...

  12. National Environmental Justice Advisory Council Federal Facilities Working Group Report

    Broader source: Energy.gov [DOE]

    Environmental Justice and Federal Facilities: recommendations for improving stakeholder relations between federal facilities and environmental justice communities, October 2004

  13. Assisting Federal Facilities with Energy Conservation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    On March 6, 2015, FEMP issued a funding opportunity announcement (FOA) on the EERE Exchange titled Assisting Federal Facilities with Energy Conservation Technologies (AFFECT), ...

  14. Potential Hydroelectric Development at Existing Federal Facilities...

    Open Energy Info (EERE)

    Potential Hydroelectric Development at Existing Federal Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Potential Hydroelectric Development at...

  15. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  16. Greening Federal Facilities: An Energy, Environmental, and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEDERAL FACILITIES An Energy, Environmental, and Economic Resource Guide for Federal ... Greening Federal Facilities An Energy, Environmental, and Economic Resource Guide for ...

  17. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic ...

  18. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research...

  19. Environmental Justice and Federal Facilities: Recommendations for Improving Stakeholder Relations Between Federal Facilities and Enviornmental Justice Communities

    Office of Environmental Management (EM)

    E J FEDERAL FACILITIES R IMPROVING S R BETWEEN FEDERAL F E JUSTICE COMMUNITIES October 2004 Prepared by the National Environmental Justice Advisory Council Waste and Facility Siting Subcommittee Federal Facilities Working Group NVIRONMENTAL USTICE AND ECOMMENDATIONS FOR TAKEHOLDER ELATIONS ACILITIES AND NVIRONMENTAL ENVIRONMENTAL JUSTICE AND FEDERAL FACILITIES RECOMMENDATIONS FOR IMPROVING STAKEHOLDER RELATIONS BETWEEN FEDERAL FACILITIES AND ENVIRONMENTAL JUSTICE COMMUNITIES October 2004

  20. Federal Finance Facilities Available for Energy Efficiency Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy...

  1. Greening Federal Facilities: An Energy, Environmental, and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Resource Guide for Federal Facility managers and Designers; Second Edition Greening Federal Facilities: An Energy, Environmental, and Economic Resource ...

  2. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  3. LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION...

    Office of Environmental Management (EM)

    LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION PLAN Los Alamos National ... Safety and Security LFRG Low-Level Waste Disposal Facility Federal Review Group LLW ...

  4. EISA Federal Covered Facility Management and Benchmarking Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Independence & Security Act, Section 432 EISA Federal Covered Facility Management and Benchmarking Data EISA Federal Covered Facility Management and Benchmarking Data The ...

  5. Procuring Solar Energy: A Guide for Federal Facility Decision...

    Energy Savers [EERE]

    Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010 Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010 This guide ...

  6. Low-Level Waste Disposal Facility Federal Review Group (LFRG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Compliance Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Low-Level Waste...

  7. Federal Finance Facilities Available for Energy Efficiency Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy ...

  8. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  9. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's premier ground-based observations facility advancing climate change research Feature Tracking Clouds Down Under Tracking Clouds Down Under While penguins and seals are the main inhabitants of Macquarie Island, a remote grassy outcrop which lies about half-way between New Zealand and Antarctica, they will soon be joined by a suite of instruments from the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. These instruments will measure

  10. Privatizing federal energy research

    SciTech Connect (OSTI)

    Copulos, M.R.

    1983-01-01

    The government has abandoned an increasing number of research projects, of which the Clinch River Breeder Reactor is the most recent, despite the large sums of public and private dollars already invested. Privatization may be the best way to solve energy problems, save taxpayers a minimum of $2 billion in return, and depoliticize energy research. The Electric Power Research Institute can serve as a model for a system in which industry users would be assessed for a research trust fund that would provide stable funding and allow long-range planning. The EPRI model could also help to overcome information sharing and antitrust constraints. (DCK)

  11. Weldon Spring Site Federal Facility Agreement

    Office of Legacy Management (LM)

    Response to Comments September 26, 2006 Weldon Spring Site Federal Facility Agreement Page 1 of 8 The U.S. Environmental Protection Agency (EPA) Region 7, the U.S. Department of Energy (DOE), and the Missouri Department of Natural Resources (MDNR) entered into a new Federal Facility Agreement (FFA) for the DOE's Weldon Spring Site near St. Charles, Missouri. EPA made the FFA available for public comment for a period of thirty (30) days beginning April 19, 2006 and ending May 19, 2006. Comments

  12. Credibility and trust in federal facility cleanups

    SciTech Connect (OSTI)

    Raynes, D.B.

    1995-12-01

    The most important indicator of a well-managed site cleanup effort may no longer be funding or scientific expertise. While support for federal facility cleanup has included appropriations of more than $10 billion annually, these expenditures alone are unlikely to assure progress toward environmental remediation. {open_quotes}Trust{close_quotes} is now overwhelmingly mentioned as a prerequisite for progress with site cleanup in DOE`s weapons complex. In part, federal budget deficits are forcing participants to focus on factors that build consensus and lead to cost-effective cleanup actions. In some cases, the stakeholders at cleanup sites are making efforts to work cooperatively with federal agencies. A report by 40 representatives of federal agencies, tribal and state governments, associations, and others developed recommendations to create a {open_quotes}new era of trust and consensus-building that allows all parties to get on with the job of cleaning up federal facilities in a manner that reflects the priorities and concerns of all stakeholders.{close_quotes} Changes are underway affecting how federal agencies work with federal and state regulators reflecting this concept of shared responsibility for conducting cleanup. This paper addresses these changes and provides examples of the successes and failures underway.

  13. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology Working with Us Did you find what you needed? Yes 1 No 0 Thank you for your

  14. Greening Federal Facilities: An Energy, Environmental, and Economic

    Energy Savers [EERE]

    Resource Guide for Federal Facility managers and Designers; Second Edition | Department of Energy Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility managers and Designers; Second Edition Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility managers and Designers; Second Edition A nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the

  15. 2015 Assisting Federal Facilities with Energy Conservation Technologies

    Office of Environmental Management (EM)

    (AFFECT) Funding Recipients | Department of Energy 2015 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients 2015 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients On March 6, 2015, the Federal Energy Management Program (FEMP) issued a funding opportunity announcement on the EERE Exchange titled Assisting Federal Facilities with Energy Conservation Technologies (AFFECT), Fiscal Year 2015. On January 27,

  16. Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement | Department of Energy Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act (TSCA) Uranium Enrichment Federal Facility Compliance Agreement establishes a plan to bring DOE's Uranium Enrichment Plants (and support facilities) located in Portsmouth, Ohio and Paducah, Kentucky and DOE's former Uranium Enrichment Plant (and support

  17. MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT May/June 2005 Report Period: May 1 -June 30, 2005 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS DOE constmction, as identified in the Millsite Restoration Plan, was substantially completed on June 3. Seeding of disturbed areas was completed on June 15. MSG DOE completed constmction of the permeable reactive treatment cell and initiated operations in June. The cell is an enhancement to the existing pe1meable reactive ban*ier and was

  18. MSGOUID MONTICELLO PROJECTS *FEDERAL FACILITIES AGREEMENT REPORT

    Office of Legacy Management (LM)

    MSGOUID MONTICELLO PROJECTS *FEDERAL FACILITIES AGREEMENT REPORT Report Period: Aprill -June 30, 2006 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS DOE submitted the draft Consolidated LTSM Administrative mid Operating Procedures Manual to EPA and UDEQ on May 4, 2006. Document transmittal met the stipulated penalty milestone of May 6, 2006. Semi-annual ground water and surface water monitoring was completed in May 2006 as scheduled. Three FY 2006 Program Directives were prepared and issued

  19. Procuring Solar for Federal Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Procuring Solar Energy: A Guide for Federal Facility Decision Makers is a Web guide for federal site managers, site contractors, and procurement specialists to help them navigate ...

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman October 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  1. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman November 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  5. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  9. Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman January 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April 2014 DOE/SC-ARM-14-014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman January 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  14. California Federal Facilities: Rate-Responsive Buidling Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy...

  15. NREL: Research Facilities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Research Facilities Here you'll find information about the National Renewable Energy Laboratory's R&D facility and laboratory capabilities. These state-of-the-art facilities...

  16. Federal Finance Facilities Available for Energy Efficiency Upgrades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment A Guide for State, Local & Tribal Leaders and their Partners August 28, 2013 2 Contents 1 Foreword ................................................................................................................................... 5 2 Acknowledgements ................................................................................................................... 6 3 Federal Finance Facilities

  17. NREL: Research Facilities - Test and User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test

  18. Operations and Maintenance in Federal Facilities | Department of Energy

    Energy Savers [EERE]

    Operations and Maintenance in Federal Facilities Operations and Maintenance in Federal Facilities Effective operations and maintenance plans help ensure federal equipment, such as this water recovery- and recycling-type pump, works properly over the long term. Effective operations and maintenance plans help ensure federal equipment, such as this water recovery- and recycling-type pump, works properly over the long term. Federal facilities rely on pumps, motors, fans, and other mechanical systems

  19. Operations and Maintenance in Federal Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Maintenance in Federal Facilities Operations and Maintenance in Federal Facilities Effective operations and maintenance plans help ensure federal equipment, such as this water recovery- and recycling-type pump, works properly over the long term. Effective operations and maintenance plans help ensure federal equipment, such as this water recovery- and recycling-type pump, works properly over the long term. Federal facilities rely on pumps, motors, fans, and other mechanical systems for

  20. Purchasing Renewable Power at Federal Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Renewable Power at Federal Facilities Purchasing Renewable Power at Federal Facilities Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited. There are three methods for purchasing renewable energy that is not generated on a federal site:

  1. Renewable Energy Projects at Federal Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects at Federal Facilities Renewable Energy Projects at Federal Facilities The Federal Energy Management Program (FEMP) tracks the following examples of renewable energy projects at federal facilities. To find a federal renewable energy project, browse the table by agency, technology, or project financials, or search by keyword. Click a column heading to sort the table. Case studies are also available. Contact FEMP to add your renewable energy project to the table below. Agency,

  2. Federal Finance Facilities Available for Energy Efficiency Upgrades and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Deployment | Department of Energy Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment. PDF icon Presentation Microsoft Office document icon

  3. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility (ARM) Biological and ... BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ...

  4. Federal-facilities Hazardous-Waste Compliance Manual. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-09

    In the continuing effort to achieve a higher level of compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) at Federal facilities, the Federal Facilities Hazardous Waste Compliance Office (FFHWCO) has developed the Federal Facilities Hazardous Waste Compliance Manual. The manual includes an overview of the Federal-facilities hazardous-waste compliance program, relevant statutory authorities, model provisions for Federal facility agreements, enforcement and other applicable guidance, Federal facilities docket and NPL listings, data-management information, selected DOD and DOE program guidance, and organization charts and contacts. This compendium is intended to be used as a reference by Regional RCRA and CERCLA enforcement personnel and Regional Counsels, particularly as an orientation guide for new Federal facilities staff.

  5. Federal Finance Facilities Available for Energy Efficiency Upgrades and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Deployment | Department of Energy Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment The Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment resource guide lists the various federal financing programs for which energy efficiency and clean energy qualify - meant to make it easier for state, local

  6. California Federal Facilities: Rate-Responsive Buidling Operating for

    Office of Environmental Management (EM)

    Deeper Cost and Energy Savings | Department of Energy Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings Fact sheet from the Federal Energy Management Program (FEMP) describes rate-responsive building operations for cost and energy savings in California federal facilities. PDF icon ca_incentives_rate_response.pdf More Documents & Publications

  7. Energy Management in Federal Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management in Federal Facilities Energy Management in Federal Facilities Data Centers Data Centers Federal data centers used nearly 10% of federal electricity use in 2013. Find out how to make data centers more energy efficient. Read more Laboratories Laboratories Laboratory activities and ventilation requirements can be energy intensive. Find out how to make laboratories more efficient. Read more Operations and Maintenance Operations and Maintenance Facilities rely on pumps, motors, and

  8. Federal Agency Facility Reporting Requirements and Performance Data |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reporting & Data » Federal Agency Facility Reporting Requirements and Performance Data Federal Agency Facility Reporting Requirements and Performance Data The Federal Energy Management Program (FEMP) provides information and tools to help agencies report annual energy and water consumption and resource management efforts for federal facilities. FEMP also collects and publishes agency performance data. Reporting Requirements Agencies are required to report progress

  9. Search for Efficient Technologies and Products for Federal Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Products & Technologies » Technology Deployment » Efficient Technologies & Products » Search for Efficient Technologies and Products for Federal Facilities Search for Efficient Technologies and Products for Federal Facilities The Federal Energy Management Program provides information and resources about energy- and water-efficient technologies and products that can help agencies meet federal facility goals and requirements. Search for technologies and products

  10. Efficient Technologies and Products for Federal Facilities | Department of

    Office of Environmental Management (EM)

    Energy Technology Deployment » Efficient Technologies and Products for Federal Facilities Efficient Technologies and Products for Federal Facilities The Federal Energy Management Program (FEMP) provides a one-stop shop for finding energy- and water-efficient technologies and products that can help agenices meet federal facility goals and requirements. Find technologies and products by category or efficiency program below, or use the advanced search to sort by program, topic, or campaigns

  11. Assisting Federal Facilities with Energy Conservation Technologies (AFFECT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity | Department of Energy Technical Assistance » Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity The Federal Energy Management Program (FEMP) provides project assistance through the AFFECT funding opportunity. AFFECT provides grants for the development of capital projects to increase the energy efficiency and renewable energy

  12. NREL: Buildings Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL...

  13. Paducah Site Federal Facility Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Facility Agreement Paducah Site Federal Facility Agreement The Federal Facility Agreement (FFA) governs the corrective action/response action process from site investigation through site remediation as agreed to by DOE, the U.S. Environmental Protection Agency, and Kentucky under the Comprehensive Environmental Response, Compensation, and Liability Act; the Resource Conservation and Recovery Act; Kentucky Revised Statute 224; and other laws and regulations identified in the FFA. PDF icon

  14. Idaho Site Launches Startup of Waste Treatment Facility Following Federal

    Energy Savers [EERE]

    Inspection, DOE Milestone | Department of Energy Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the

  15. 2014 Assisting Federal Facilities with Energy Conservation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (AFFECT) Funding Recipients | Department of Energy Technical Assistance » 2014 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients 2014 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients On November 5, 2013, FEMP issued a funding opportunity announcement (FOA) on the EERE Exchange titled Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) DE-FOA-0000901. The release of the FOA

  16. Procuring Solar Energy: A Guide for Federal Facility Decision Makers,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2010 | Department of Energy Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010 Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010 This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement

  17. Procuring Solar Energy: A Guide for Federal Facility Decision...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Screening Evaluation Checklist, September 2010 Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Solar Screening Evaluation Checklist, September 2010 This ...

  18. Procuring Solar Energy: A Guide for Federal Facility Decision...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendix B, September 2010 Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Appendix B, September 2010 This guide presents an overview of the process for ...

  19. Adopting LED Technology: What Federal Facility Managers Need to Know

    Broader source: Energy.gov [DOE]

    This document describes the presentation slides for the "Adopting LED Technology: What Federal Facility Managers Need to Know" webinar that took place on September 11, 2014.

  20. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility managers and Designers; Second Edition

    Office of Environmental Management (EM)

    FEDERAL FACILITIES An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers SECOND EDITION DOE/GO-102001-1165 Section DOE/GO-102001-1165 NREL/BK-710-29267 May 2001 i Greening Federal Facilities An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers SECOND EDITION "Then I say the earth belongs to each ... generation during its course, fully and in its own right, no generation can contract debts greater than

  1. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Institute Ion Beam Laboratory Combustion Research Facility Joint BioEnergy Laboratory Explosive Components Facility Nuclear Magnetic Resonance (NMR) Spectroscopy Facility...

  2. Procuring Solar for Federal Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Solar for Federal Facilities Procuring Solar for Federal Facilities Pre-screening and Planning - understand federal requirements and conducting a site pre-screening Project Planning - identify goals, assembling an on-site team, evaluating the pre-screening information, and considering requirements Financing Selection - understand the options and selecting the final financing Project Implementation - implement the project, dependant on the financing selected. Procuring Solar Energy: A

  3. Waste Treatment Facility Passes Federal Inspection, Completes Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milestone, Begins Startup | Department of Energy Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup April 23, 2012 - 12:00pm Addthis Media Contact Erik Simpson, 208-390-9464 Danielle Miller, 208-526-5709 The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive

  4. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories NREL has laboratories available to industry and other organizations for researching, developing, and testing renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's laboratories. A | B | C | D | E | F | G | H | I | J | K | L | M | N |O | P | Q |R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Researchers use temperature- and humidity-controlled chambers in this lab to study weathering

  5. CMR: Chemistry and Metallurgy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR)...

  6. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Volume 4 - Nuclear Safety Basis Program Review During Facility Decommissioning and Environmental Restoration February 2015 i Standard Review Plan Volume 4 Nuclear Safety Basis Program Review during Facility Decommissioning and Environmental Restoration Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February

  7. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  8. Low-Level Waste Disposal Facility Federal Review Group Manual

    Office of Environmental Management (EM)

    Low- LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and

  9. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR)...

  10. Breakwater Research Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Basic Specifications Facility Name Breakwater Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  11. Flood Fighting Research Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Basic Specifications Facility Name Flood Fighting Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  12. Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal Permit to Increase Its...

  13. Low-Level Waste Disposal Facility Federal Review Group Manual

    Broader source: Energy.gov [DOE]

    This Revision 3 of the Low-Level Waste Disposal  Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

  14. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  15. Weldon Spring Federal Facility Agreement, January 28, 1992 Summary

    Office of Environmental Management (EM)

    Weldon Spring Site Agreement Name First Amended Federal Facility Agreement Cercla-VII-85- F-0057 State Missouri Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Identify and implement Operable Unit Remedial Action alternatives at the Weldon Spring Site Parties US EPA; US DOE Date 1/28/92 SCOPE * Investigate the environmental impacts of past and present activities at the Site on the public health, welfare and the environment. * Establish a procedural framework and

  16. Savannah River Site Federal Facility Agreement, January 15, 1993 Summary

    Office of Environmental Management (EM)

    Site Agreement Name Savannah River Site Federal Facility Agreement Under Section 120 of CERCLA, January 15, 1993 State South Carolina Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts associated with past and present activities at the Savannah River Site are thoroughly investigated and that appropriate response actions are taken to protect the public health, welfare, and the environment. Parties DOE; US EPA; South Carolina

  17. Monticello Mill site Federal Facility Agreement, December 22, 1988

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility AgreemPage 1 of 36 EM Home | Regulatory Compliance | Environmental Compliance Agreements Monticello (Utah) Site: Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility Agreement Pursuant to CERCLA Section 120, December 22, 1988 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VIII and THE STATE OF UTAH DEPARTMENT OF HEALTH and THE UNITED STATES DEPARTMENT OF ENERGY IN THE MATTER:

  18. Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monticello Agreement Name Monticello (Utah) Site: Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility Agreement Pursuant to CERCLA Section 120, December 22, 1988 State Utah Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; US EPA; State of Utah Department of Environmental Health Date 12/22/1988

  19. Mound Plant Federal Facility Agreement, July 15, 1993 Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Environmental Protection Agency Region V and the State of Ohio Federal Facility Agreement State Ohio Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary DOE shall identify Interim Remedial Actions (IRAs) alternatives and implement US EPA and OEPA approved remedies for the site in accordance with CERCLA Parties EPA; Ohio EPA (OEPA); DOE Date 07/15/1993 SCOPE * Identify Interim Remedial Action (IRA) alternatives which include Remedial Investigations (RI)

  20. MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT Report Period: January 1-

    Office of Legacy Management (LM)

    PROJECTS FEDERAL FACILITIES AGREEMENT REPORT Report Period: January 1- March 31, 2006 DOE Project Coordinator: Ray Plieness HIGHLIGHTS The Federal Facilities Agreement meeting was held February 21-22 in Salt Lake City, UT. Representatives from the U.S. Depattment of Energy (DOE), U.S. Environmental Protection Agency (EPA), Utah Department of Environmental Quality (UDEQ), and the DOE contractor attended. The schedule of work through the end of the fiscal year was determined. MSG-OUIII The scope

  1. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  2. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  3. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-008 Atmospheric Radiation Measurement Program Climate Research Facility ...

  4. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-10-029 Atmospheric Radiation Measurement Program Climate Research Facility ...

  5. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-002 Atmospheric Radiation Measurement Program Climate Research Facility ...

  6. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-11-022 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-019 Atmospheric Radiation Measurement Program Climate Research Facility ...

  9. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Volume 2 -- Nuclear Safety Basis Program Review During Design February 2015 i Standard Review Plan Volume 2 Nuclear Safety Basis Program Review during Design Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February 2015 ii Table of Contents Acronyms

  11. MSG MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT

    Office of Legacy Management (LM)

    FACILITIES AGREEMENT REPORT Report Period: October 1- December 31, 2005 DOE Project Coordinator: Ray Plieness HIGHLIGHTS The Final Report-2005 Avian Wetland Surveys at the Monticello Mill Tailings Site and the Final Report-Monticello Mill Tailings Site Macroinvertebrate Sampling for 2005 were transmitted to the Environmental Protection Agency (EPA) and the Utah Department of Environmental Quality (UDEQ) on December 13. These reports are required under the Monticello Mill Tailings Site Operable

  12. Waste treatment facility passes federal inspection, completes final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    milestone, begins startup 23, 2012 Media Contact: Danielle Miller, 208-526-5709 Erik Simpson, 208-390-9464 Waste treatment facility passes federal inspection, completes final milestone, begins startup The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. An exterior view of the

  13. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  14. Coordination of Federal Authorizations for Electric Transmission Facilities: Federal Register Notice Volume 73, No. 183- Sep. 19, 2008

    Broader source: Energy.gov [DOE]

    Federal Register Notice of proposed rulemaking and opportunity for comment on the coordination of federal authorizations for electric transmission facilities, September 19, 2008

  15. Environmental partnering at federal facilities success through communications and teamwork

    SciTech Connect (OSTI)

    Ferraro, P.

    1995-12-01

    Construction partnering has been used on many government and private construction projects for at least a decade while environmental partnering at federal facilities has only recently received some attention. The Federal government is exploring how to implement the concepts of environmental partnering at federal facilities. It appears that some federal facilities are utilizing partnering concepts while others are not. Environmental partnering as a federal facility consists of a cooperative effort by all facility stakeholders working as a team to achieve the goal of environmental restoration. The regulatory members must join with other stakeholders in dealing with environmental issues in a timely manner. The key elements of environmental partnering are: commitment, trust, common goals, timely response and continuous evaluation. The partnering process is only a guide since each project or program is unique and the stakeholder will vary requiring a tailored partnering approach. The process consists of: early preparation, identification of stakeholders, management commitments, kick-off meeting or workshop and periodic evaluations. This paper presents the concepts of environmental partnering, including benefits, stakeholders, and the environmental partnering process. It also discusses examples of construction partnering and environmental partnering.

  16. Research Facilities | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities In keeping with its integrated approach to environmental research, SREL has a wide range of analytical and experimental capabilities, from biogeochemical, radiological, and genetic analyses to plant, animal, and microbial facilities, two unique experimental facilities, and standard tools for an array of field research. Radioecology Microbiology Experimental Facilities Biogeochemistry DNA Laboratory Field Research RADIOECOLOGY Scintillation spec. Gamma counter Animal body

  17. Federal Laboratory Multiplies Its Research Capacity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Multiplies Its Research Capacity September 21, 2000 Thanks to high-tech development work and some creative tuning and tweaking, the $650 million Thomas Jefferson National Accelerator Facility in Newport News, Va., can now accelerate beams of electrons to 6 billion electron volts - more energy by half than taxpayers originally paid for. With higher-energy electron beams, researchers using this U.S. Department of Energy laboratory can probe deeper than ever into the atom's

  18. High-Efficiency Parking Lighting in Federal Facilities

    Energy Savers [EERE]

    High-Efficiency Parking Lighting in Federal Facilities FEdEraL EnErgy ManagEMEnt PrograM MC Realty Group Saving Energy and Money with the IRS MC Realty Group, LLC, won a 2014 LEEP Award for cutting energy use by 76% at the Internal Revenue Service (IRS) Facility Parking Garage in Kansas City, Missouri. MC Realty replaced 1,500 metal halide fxtures with an equal number of T8 fuorescent fxtures in the fve-story parking structure to cut energy use by 2 million kilowatt-hours (kWh) annually, which

  19. Regulatory and Financial Reform of Federal Research Policy: Recommenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy: ...

  20. Better Buildings Workforce Guidelines Energy Manager and Federal Facility Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Workforce Guidelines Energy Manager and Federal Facility Manager 2014 Building Technologies Office Peer Review Framework for a Better Buildings Workforce Phil Coleman, pecoleman@lbl.gov LBNL Project Summary Timeline Start date: August 2013 Planned end date: December 2014 Key Milestones 1. Present draft plan for energy manager and facility manager to CWCC Board of Direction (11/7/13) 2. Coordinate with NIBS to convene subject matter experts (SMEs) for the development of job task

  1. NREL: Research Facilities - Laboratories and Facilities by Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities by Technology The following NREL research programs have laboratory, and/or test and user facility capabilities for researching, developing, and testing a variety of renewable energy and energy efficiency technologies. Biomass Our biomass research laboratory capabilities include user facilities for converting renewable feedstocks into a variety of products such as transportation fuels, high-value chemicals, and electricity. These facilities and labs can be used to test

  2. NREL: Sustainable NREL - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Biorefinery Research Facility A photo of a grey, three-story research facility on a large campus. The Integrated Biorefinery Research Facility The Integrated Biorefinery Research Facility (IBRF) incorporates a large number of energy efficiency and sustainability practices into its cutting-edge design. This facility received a Leadership in Energy and Environmental Design (LEED®) Gold-level certification from the U.S. Green Building Council and supports a variety of advanced biofuels

  3. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  4. ARM Climate Research Facility Data Management Facility Quarterly...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Government or any agency thereof. DOESC-ARM-15-023 ARM Climate Research Facility Data Management Facility Quarterly Report Second Quarter: January 1 to March 31, 2015 NN...

  5. Facilities | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities PARC has three laboratories located in Brauer Hall on the Danforth Campus at Washington University in St. Louis. These labs are available to all PARC members and are used to further the goals of PARC: Ultrafast Laser Facility Photobioreactor Facility Mass Spectrometer Facility PARC's facilities are part of the Danforth Campus Green Labs Initiative which features real-time online energy usage graphs and a network of lab energy representatives. Facilities Ultrafast Laser

  6. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  7. NREL Research Support Facilities (RSF)

    High Performance Buildings Database

    Golden, CO NREL's Research Support Facilities building (RSF) will be a total of 218,000 sq. feet. It will have two parallel secured employee wings, one of which will be 4 stories and the other 3 stories. A connector building housing most of the public spaces will run perpendicular through both wings. The RSF will provide workspace for 742 employees. The RSF is designed to be a zero energy building through the use of innovative energy efficiency, daylighting, and renewable energy strategies, including photovoltaic solar electric systems to generate electricity.

  8. CMR: Chemistry and Metallurgy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) building supports research and experimental activities for plutonium and uranium analytical chemistry and metallurgy. CMR capabilities support a number of national security programs, such as non-proliferation and nuclear safeguards. The CMR Facility In 1952, the first LANL CMR facility was completed. At that time, the

  9. NREL: Energy Systems Integration Facility - Research Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The foundation of the Energy Systems Integration Facility is its research infrastructure. In addition to extensive fixed equipment, the facility incorporates electrical, thermal, fuels, and data acquisition bus work throughout. These research buses tie individual laboratories together and allow interconnection of equipment between laboratories as well as rapid reconfiguration of systems under test. The Energy Systems Integration Facility offers the following research

  10. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  11. Expedited site characterization for remedial investigations at federal facilities

    SciTech Connect (OSTI)

    Burton, J.C.

    1994-04-01

    Argonne National Laboratory`s Expedited Side Characterization (ESC) methodology gives federal agencies a process for producing high-quality CERCLA and RCRA site characterizations and remedial investigations in a cost- and time-efficient manner. The ESC process has been successfully tested and applied at numerous federal facilities. Examples include expanded site investigations for the Department of Interior`s Bureau of Land Management and remedial investigations for the Commodity Credit Corporation/US Dept. of Agriculture (CCC/USDA). In particular, the CCC/USDA has been the major sponsor in the development of the ESC process at Argonne. The technical successes and the cost and time savings of the ESC process for these programs have been detailed in previous papers. The Argonne ESC is currently being implemented at a Department of Energy facility (Pantex) and is schedules for implementation in the Department of Defense base closure program in order to meet accelerated schedules for remedial actions by these agencies.

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  13. Federal Facility Agreement and Consent Order Regulatory Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Facility Agreement and Consent Order Regulatory Strategy * Gather new data to enhance models developed for each of the five (5) historic underground nuclear test areas (repeat as necessary) * Review results: geology, hydrology, source term, groundwater and transport models, modeling approach (repeat as necessary) Investigation Stage Decision/Action Stage Closure Stage * Develop a model evaluation plan to challenge and refine model forecasts * Use model evaluation plan to identify

  14. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The purpose of this Guide is to provide U.S. Department of Energy (DOE) line management with guidance that may be useful to them in effectively and efficiently implementing the requirements of DOE O 226.1B, Implementation of Department of Energy Oversight Policy, date April 25, 2011, as applied to Federal line management of hazard category 1, 2, and 3 nuclear facilities.

  15. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    SciTech Connect (OSTI)

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  16. NREL: Photovoltaics Research - Outdoor Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor Test Facility (OTF) researchers study and evaluate advanced or emerging PV technologies under simulated, accelerated indoor and outdoor, and prevailing outdoor conditions. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV devices.

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications.

  18. Pollution prevention research within the federal community. Project report (Compendium), January 1990-September 1994

    SciTech Connect (OSTI)

    Hoagland, N.T.; Bridges, J.S.

    1995-04-01

    The report describes the WREAFS and SERDP (Waste Reduction Evaluations at Federal Sites and Strategic Environmental Research and Development Program) support of pollution prevention research throughout the Federal community and provides an assessment of the current status of implementation for all projects completed as of September 1994. These projects include joint efforts with the Departments of Defense, Energy, Transportation, Agriculture, Veterans Affairs, EPA (Federal Facility Enforcement Office), National Aeronautics and Space Administration, the White House, and the Postal Service. Most of the projects describe the results of pollution prevention opportunity assessments (PPOAs) or technology demonstrations conducted at Federal facilities.

  19. NREL: Electricity Integration Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize, test, and evaluate...

  20. Distributed Energy Resources at Federal Facilities. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.

    2001-07-16

    This two-page overview describes how the use of distributed energy resources at Federal facilities is being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  1. Solar Energy Research Center Instrumentation Facility

    SciTech Connect (OSTI)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was ?¢????shell space?¢??? that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

  2. Ground-Source Heat Pumps Applied to Federal Facilities - Second Edition

    SciTech Connect (OSTI)

    2001-03-01

    Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition, technology for reducing heating and air-conditioning costs.

  3. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  4. Computational Research and Theory (CRT) Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Research and Theory (CRT) Facility Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description The Computational Research and Theory (CRT) Facility will be on the forefront of high-performance supercomputing research and will be DOE's most efficient facility of its kind. Designed to take

  5. Weldon Spring Site Federal Facility Agreement UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    Office of Legacy Management (LM)

    Site Federal Facility Agreement UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VII UNITED STATES DEPARTMENT OF ENERGY MISSOURI DEPARTMENT OF NATURAL RESOURCES IN THE MATTER OF: The United States Department of Energy's Weldon Spring Site, St. Charles, Missouri Docket No. CERCLA-07-2006-0161 FEDERAL FACILITY AGREEMENT FOR THE WELDON SPRING SITE Weldon Spring Site Federal Facility Agreement i TABLE OF CONTENTS I. PRELIMINARY

  6. NREL: Sustainable NREL - Research Support Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Research Support Facility (RSF) is the laboratory's newest sustainable green building. This 360,000 ft2 Leadership in Energy and Environmental Design (LEED) Platinum office ...

  7. NREL: Photovoltaics Research - Science and Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of laboratory space, office space, and lobby connected by an elevated bridge to the Solar Energy Research Facility (SERF). The S&TF houses the Process Development and...

  8. Title Federal Facility Agreement and Consent Order Author

    National Nuclear Security Administration (NNSA)

    ; '*'*' *'. *'' FFACO , Page 4 of 34 March 15, 1996 or streamlining of; duplicative or unnecessary procedures. II.:i.f. Satisfying the corrective action requirements of 40 CFR 264.101 .and Sections 3004(u) and 3004(v) of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. §6924 (u) & (v)) and through incorporation by reference * . "/ into DOE's RCRA permit number NEV HW009. II.2. This Agreement Is .not intended to fulfill the Federal Facility Compliance Act requirement for a

  9. NREL: Transportation Research - Vehicle Thermal Management Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Thermal Management Facilities Image of a building with two semi truck cabs in front of it. The VTIF is used for thermal testing of every class of on-road vehicle. Photo by Dennis Schroeder, NREL The National Renewable Energy Laboratory (NREL) uses research and testing facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and Integration Facility The Vehicle Testing and Integration Facility features a test pad to conduct vehicle thermal soak testing

  10. Nuclear Science Research facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE lansce facility at LANL Introduction to LANSCE The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons for experiments supporting national security, academic and industrial research. LANSCE has two spallation neutron sources: the Manuel Lujan Jr. Neutron Scattering Center (Target-1) and the Neutron and Nuclear Science Research facility (Target-4). Together they provide neutrons over a

  11. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  12. NREL: Hydrogen and Fuel Cells Research - Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Photo of person at work in laboratory setting. NREL researcher evaluates catalyst activity at the Electrochemical Characterization Laboratory. Photo by Dennis Schroeder, NREL NREL conducts hydrogen and fuel cell R&D at a variety of research facilities at our main 327-acre campus in Golden, Colorado, as well as the National Wind Technology Center near Boulder, Colorado. Industry, government, and university partners benefit from access to our state-of-the-art facilities and

  13. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  14. NREL: Energy Systems Integration Facility - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Themes Access to the Energy Systems Integration Facility and its resources is prioritized based on three research themes aligned with U.S. Department of Energy goals and priorities. The Energy Systems Integration Facility supports the private sector, academia, and the national laboratory system by providing capabilities to accelerate the research, development, and demonstration needed to transform the nation's energy system. Photo of a man in safety glasses in a laboratory. Researchers use the

  15. Federal Geothermal Research Program Update - Fiscal Year 2004...

    Open Energy Info (EERE)

    Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Federal Geothermal Research Program Update - Fiscal...

  16. Federal Geothermal Research Program Update Fiscal Year 2003

    SciTech Connect (OSTI)

    Not Available

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  17. Federal Geothermal Research Program Update Fiscal Year 2002

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  18. Ames Laboratory Research Reactor Facility Ames, Iowa

    Office of Legacy Management (LM)

    ,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival

  19. EISA Federal Facility Management and Benchmarking Reporting Requirements

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program is responsible for tracking Federal agency progress toward meeting Section 432 of the Energy Independence and Security Act of 2007.

  20. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA CHP Partnership Meeting, October 2002 | Department of Energy rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 This is an announcement of the 3rd Annual National CHP Roadmap Workshop which was held in conjunction with the CHP and Distributed Energy Resources for Federal Facilities Workshop, October 23-25,

  1. Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection

    Office of Environmental Management (EM)

    JUN 1 1 2013 Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection Division of Waste Management 200 Fair Oaks Lane, 2 nd Floor Frankfort, Kentucky 40601 Ms. Jennifer Tufts Federal Facility Agreement Manager U.S. Environmental Protection Agency, Region 4 61 Forsyth Street Atlanta, Georgia 30303 Dear Mr. Mullins and Ms. Tufts: PPPO-02-1813000-13B TRANSMITTAL OF THE COMMUNITY RELATIONS PLAN UNDER THE FEDERAL FACILITY AGREEMENT AT THE U.S. DEPARTMENT OF

  2. Information Security: Coordination of Federal Cyber Security Research and

    Energy Savers [EERE]

    Development | Department of Energy Security: Coordination of Federal Cyber Security Research and Development Information Security: Coordination of Federal Cyber Security Research and Development GAO recommends that the Office of Science and Technology Policy establish timelines for developing a federal agenda for cyber security research. GAO also recommends that the Office of Management and Budget (OMB) issue guidance to agencies for providing cyber security research data to repositories. In

  3. Regulatory and Financial Reform of Federal Research Policy: Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the NRC Committee on Research Universities | Department of Energy and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the

  4. Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Screening Evaluation Checklist, September 2010 | Department of Energy Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Solar Screening Evaluation Checklist, September 2010 Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Solar Screening Evaluation Checklist, September 2010 This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal

  5. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am Addthis EERE's Federal Energy Management Program issued a new resource that provides best practices and helpful guidance for federal agencies developing large-scale renewable energy projects. The resource, Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger than 10 MWs at

  6. EERE Success Story-FEMP Helps Federal Facilities Develop Large-Scale

    Office of Environmental Management (EM)

    Renewable Energy Projects | Department of Energy FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects EERE Success Story-FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am Addthis EERE's Federal Energy Management Program issued a new resource that provides best practices and helpful guidance for federal agencies developing large-scale renewable energy projects. The resource, Large-Scale Renewable Energy Guide:

  7. Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment

    Broader source: Energy.gov [DOE]

    This webinar, held on Sept. 24, 2013, provides information on federal finance facilities available for energy efficiency upgrades and clean energy deployment.

  8. Geothermal research at the Puna Facility

    SciTech Connect (OSTI)

    Chen, B.

    1987-06-01

    This report consists of two research papers: (1) Isotopic and Mineralogical Analyses of Samples from the HGP-A Well; (2) Report on Kapoho Geothermal Reservoir Study at the Puna Facility. These papers contain results of recent research and outline future activities.

  9. NREL Research Support Facility (RSF) Documentary

    ScienceCinema (OSTI)

    None

    2013-05-29

    he ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

  10. Other Federal Agency Small Business Innovation Research and Small Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Programs | Department of Energy Other Federal Agency Small Business Innovation Research and Small Business Technology Transfer Programs Other Federal Agency Small Business Innovation Research and Small Business Technology Transfer Programs In addition to the U.S. Department of Energy and the Office of Energy Efficiency and Renewable Energy (EERE) Small Business and Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs, other federal agencies also

  11. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  12. NREL: Energy Systems Integration Facility - Research Electrical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Bus Electrical Distribution Bus The Research Electrical Distribution Bus is the Energy Systems Integration Facility's internal utility infrastructure interconnecting its laboratories. It facilitates complex integrated system testing of both AC and DC systems up to a 1-MW scale across the laboratories. Photo of laboratory equipment with four different color-coded wires plugged into it. Equipment and experiments throughout the Energy Systems Integration Facility can plug into the

  13. Federal Technical Capability Policy for Defense Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-12-10

    The policy regarding the Federal Technical Capability Program, which provides for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities.

  14. The Sanford underground research facility at Homestake

    SciTech Connect (OSTI)

    Heise, J.

    2014-06-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  15. The Business Case for Sustainable Design in Federal Facilities

    SciTech Connect (OSTI)

    2003-08-01

    This document provides a better understanding of the Federal government's effort to build a more sustainable real estate portfolio.

  16. Sandia Energy - Cyber Research Facility Opens at Sandia's California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Home Energy Assurance Cyber Energy Surety Facilities News News & Events Cybersecurity Technologies Research Laboratory Cyber Research Facility Opens at Sandia's...

  17. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  18. Breaking Ground on Computational Research and Theory Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Breaks Ground on New Computational Research Facility Breaking Ground on Computational Research and Theory Facility CRT to Foster Scientific Collaboration in...

  19. Using Distributed Energy Resources, A How-To Guide for Federal Facility Managers

    SciTech Connect (OSTI)

    Distributed Utility Associates

    2002-05-01

    The Department of Energy's Federal Energy Management Program (FEMP) established the Distributed Energy Resources (DER) Program to assist Federal agencies in implementing DER projects at their facilities. FEMP prepared this How-To Guide to assist facility managers in evaluating potential applications and benefits. It provides step-by-step advice on how to carry out a Federal DER project. It also describes and explains DER applications and potential benefits in Federal facilities; DER technologies and how to match them to applications; a step-by-step approach to implementing projects; potential barriers and how to overcome them; and resources to assist you in implementing new DER projects.

  20. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Volume 3 - Nuclear Safety Basis Program Review During Facility Operations and Transitions February 2015 i Standard Review Plan Volume 3 Nuclear Safety Basis Program Review during Facility Operations and Transitions Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February 2015 ii Table of Contents Acronyms

  1. Idaho National Engineering Laboratory Federal Facility Agreement and Consent Order, December 9, 1991

    Office of Environmental Management (EM)

    Idaho National Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 EM Home | Regulatory Compliance | Environmental Compliance Agreements Idaho National Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, REGION 10, THE STATE OF IDAHO, DEPARTMENT OF HEALTH AND WELFARE, AND THE UNITED STATES DEPARTMENT OF ENERGY IN THE MATTER OF: ) FEDERAL

  2. Field Campaign Guidelines (ARM Climate Research Facility)

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17

    The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

  3. Testing Promising Technologies: A Role for Federal Facilities

    Broader source: Energy.gov [DOE]

    Presentation covers the testing of promising technologies and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  4. EERE Success Story-FEMP Helps Federal Facilities Develop Large...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities, provides a comprehensive framework that includes active project management strategies, common terms, and principles that reduce project uncertainties and promote ...

  5. Monticello, Utah, National Priorities List Sites Federal Facility...

    Office of Legacy Management (LM)

    left blank U.S. Department of Energy Monticello NPL Sites FFA Quarterly .........3 3.1.2 Temporary Storage Facility ......

  6. Haselden/RNL - Research Support Facility Documentary

    ScienceCinema (OSTI)

    None

    2013-05-29

    The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  7. Federal Geothermal Research Program Update - Fiscal Year 2001

    SciTech Connect (OSTI)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  8. Aerial Flyover of New Research Facilities

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

  9. Cummins Executives Visit Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cummins Executives Visit Combustion Research Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  10. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities.

  11. ARM Climate Research Facilities on the North Slope of Alaska...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Research Facilities on the North Slope of Alaska: Field Campaigns in 2007, New Facilities, and the International Polar Year Radiative Heating in Underexplored Bands...

  12. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect (OSTI)

    Hadley, Donald L.

    2001-03-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  13. Performing Energy Security Assessments: A How-To Guide for Federal Facility Managers

    Broader source: Energy.gov [DOE]

    Guide describes the best practices and recommended process for federal facility managers to prepare for the following sections of a facility’s energy security plan: vulnerability assessments, energy preparedness and operations plans, and remedial action plans.

  14. FOA for Assisting Federal Facilities with Energy Conservation Technologies Informational Webinar

    Broader source: Energy.gov [DOE]

    This webinar will highlight the funding opportunity announcement (FOA) that was issued on March 6, 2015. The AFFECT grant will provide funding for renewable energy projects at federal facilities...

  15. Research Call to DOE/Federal Laboratories: Technical Support for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. | Department of Energy Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. The entities that DOE has selected under the American Recovery and Reinvestment Act to

  16. The Oak Ridge Reservation PCB Federal Facilities Compliance Agreement, October 28, 1996 Summary

    Office of Environmental Management (EM)

    Compliance Agreement Between The United States Department of Energy and The United States Environmental Protection Agency Region 4 - Toxic Substances Control Act (Also Known As The Oak Ridge Reservation Polychlorinated Biphenyl Federal Facilities Compliance Agreement (ORR-PCB-FFCA)) State Tennessee Agreement Type Federal Facility Agreement Legal Driver(s) TSCA Scope Summary Bring DOE's Oak Ridge Reservation (ORR) into compliance with TSCA and its implementing regulations at 40 CFR Part 761,

  17. Toxic Substances Control Act Uranium Enrichment Federal Facilities Compliance Agreement, February 20, 1992

    Office of Environmental Management (EM)

    Thomas L. McCall, Jr. http://www.em.doe.gov/ffaa/ortsca.html 4/25/2001 Toxic Substances Control Act Uranium Enrichment Federal Facilities Compliance Agree.. Page 12 of 26 Deputy Assistant Administrator for Federal Facilities Enforcement Office of Enforcement U.S. Environmental Protection Agency Michael F. Wood, Director Compliance Division Office of Compliance Monitoring Office of Pesticides and Toxic Substances U.S. Environmental Protection Agency William H. Young Assistant Secretary for

  18. Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 96/97-5002 State California Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 2/24/1997 SCOPE * Require compliance by the DOE

  19. Regulatory and Financial Reform of Federal Research Policy

    Energy Savers [EERE]

    Regulatory and Financial Reform of Federal Research Policy Recommendations to the NRC Committee on Research Universities January 21, 2011 Introduction At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the Association of Public and Land-grant Universities (APLU) have assembled a set of ten recommendations for regulatory reform that would improve research

  20. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    1 -- Nuclear Safety Basis Program Review Overview and Management Oversight February 2015 i Standard Review Plan Volume 1 Nuclear Safety Basis Program Review Overview and Management Oversight Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February 2015 ii Table of Contents Acronyms ................................................................................................................................... iii

  1. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    5 - Nuclear Safety Basis Program Review of TSRs, USQs and SERs February 2015 i Standard Review Plan Volume 5 Nuclear Safety Basis Program Review of TSRs, USQs and SERs Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February 2015 ii Table of Contents Acronyms ................................................................................................................................... iii Introduction

  2. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities. Supersedes DOE G 226.1-2

  3. Title Federal Facility Agreement and Consent Order Author

    National Nuclear Security Administration (NNSA)

    ..'** .'*'*,. '*'' * *.. *' ' ' ; '' * 9. * Il.i.b. Establishing specific sampling and monitoring 10 requirements, including drilling and subsurface sampling, 11 - ' * ' * designed to: ' * . ' , . * , . : . * 1 2 . ' * * ; * ' * ' ' ' * . . - * * . ' : . : * ' . . , - . * . - . . . . . . . _ . - * * * * ' * * * * ' - * * 13|... .Il.l.b.i, . ; Ensure the. health and safety,, at all 14 i . times, of NDEP personnel,, 'site, workers at. the 15 facilities, and any members of the public present at 16

  4. Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Screening Evaluation Checklist, September 2010 | Department of Energy Solar Screening Evaluation Checklist, September 2010 Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Solar Screening Evaluation Checklist, September 2010 This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability

  5. Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Largest Federally Owned ... Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons Facility Posted: August 13, 2013 - 12:01pm WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will

  6. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    SciTech Connect (OSTI)

    Moss, R. H.; Delgado, A.; Malone, E L.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before final conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure; (4) Vulnerability assessments can be connected to efforts to improve facility resilience to motivate participation; and (5) Efficient, scalable methods for vulnerability assessment can be developed, but additional case studies and evaluation are required.

  7. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Through IARC access to many Fermilab facilities would be possible. These facilities are further detailed below, but include: conventional and superconducting magnet testing and assembly facilities, SRF cavity assembly, processing and test facilities, access to various particle beams, superconducting cabling manufacturing and testing, particle detector manufacturing and development and high performance computing resources. 1) Beam Test Facilities: NML Pulsed SRF Facility A RF unit test

  8. Carbon Fiber Pilot Plant and Research Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant and Research Facilities Carbon Fiber Pilot Plant and Research Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm003_warren_2010_o.pdf More Documents & Publications Lower Cost Carbon Fiber Precursors Carbon Fiber Technology Facility Carbon Fiber Technology Facility

  9. ARM Climate Research Facility Annual Report 2005

    SciTech Connect (OSTI)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  10. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  11. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

  12. Environmental Protection Agency Research Triangle Park (RTP) Research Facility

    High Performance Buildings Database

    Research Triangle Park, NC The EPA's new RTP campus houses over 2,000 people in 600 laboratory modules--one of the largest multi-disciplinary groups of environmental scientists in the world. The complex includes four 5-story laboratory blocks, three 3-story office blocks, and a 6-story office building that also houses special program areas. The facility design embodies the EPA's environmental ethics.

  13. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 PDF icon 000521 & ...

  14. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  15. Federal Laboratory Consortium Highlights NREL Research - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Federal Laboratory Consortium Highlights NREL Research Mid-continent region selects parabolic trough and microbattery for tech transfer excellence September 16, 2009 The Federal Laboratory Consortium for Technology Transfer's (FLC) Mid-Continent Region recently recognized the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and its partners with two awards for excellence in technology transfer. The SkyTrough(tm) Parabolic Trough Solar Concentrating Collector uses

  16. Federal Laboratory Consortium Highlights Three NREL Research Projects -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Federal Laboratory Consortium Highlights Three NREL Research Projects McDonough Lauded as Outstanding Laboratory Representative September 16, 2011 The Federal Laboratory Consortium for Technology Transfer's (FLC) Mid-Continent Region recently recognized the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and its partners with three awards for excellence in technology transfer. It also named NREL Commercialization and Technology Transfer

  17. Measuring the Economic Impacts of Federal Investments in Research

    SciTech Connect (OSTI)

    Olson, S; Merrill, S

    2011-08-31

    Measuring the Economic Impacts of Federal Investments in Research evaluates approaches to measuring the returns on federal research investments. This report identifies new methodologies and metrics that can be developed and used for assessing returns on research across a wide range of fields (biomedical, information technology, energy, agriculture, environment, and other biological and physical sciences, etc.), while using one or more background papers that review current methodologies as a starting point for the discussion. It focuses on tools that are able to exploit available data in the relatively near term rather than on methodologies that may require substantial new data collection. Over the last several years, there has been a growing interest in policy circles in identifying the payoffs from federal agency research investments, especially in terms of economic growth, competitiveness, and jobs. The extraordinary increase in research expenditures under the American Recovery and Reinvestment Act (ARRA) of 2009 and the President'?s commitment to science and technology (S&T) funding increases going forward have heightened the need for measuring the impacts of research investments. Without a credible analysis of their outcomes, the recent and proposed increases in S&T funding may not be sustained, especially given competing claims for federal funding and pressures to reduce projected federal budget deficits. Motivated by these needs and requirements, Measuring the Economic Impacts of Federal Investments in Research reviews and discusses the use of quantitative and qualitative data to evaluate the returns on federal research and development (R&D) investments. Despite the job-focused mandate of the current ARRA reporting requirements, the impact of S&T funding extend well beyond employment. For instance, federal funding in energy research may lead to innovations that would reduce energy costs at the household level, energy imports at the national level, and greenhouse gas emissions at the global level. In principle, these benefits can be measured as a return on research investments, with appropriate consideration of time lags to research outcomes and attribution to private as well as public expenditure. With appropriate metrics, the same could be true for benefits to public health, environmental quality, and food productivity and security. Federal funding of research leads to the development of human capital that is deployed in a variety of occupations with economic and social impacts. Research also produces information that is used in formal (e.g., regulatory and judicial) and informal (e.g., firm and consumer) decision making processes. In addition to reviewing the range of work (by academics, consultants, and research agencies themselves) that has been done in measuring research outcomes and providing a forum to discuss their methods, this report also considers the different methodologies used across fields of research (e.g., agriculture and energy research) to identifies which are applicable to a range of federal S&T funding.

  18. NSTX: Facility/Research Highlights and Near Term Facility Plans

    SciTech Connect (OSTI)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  19. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  20. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  1. Federal Geothermal Research Program Update Fiscal Year 1999

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  2. Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy: A Guide for Federal Facility Decision Makers SEPTEMBER 2010 Solar Energy Technologies Program Federal Energy Management Program National Renewable Energy Laboratory NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,

  3. Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment

    Office of Environmental Management (EM)

    September 24, 2013 Clean Energy Finance: A Guide to Federal Financing Programs Available for Energy Efficiency Upgrades and Clean Energy Deployment 2 Agenda * Welcome - Molly Lunn, DOE * Overview and Invitation for Feedback - Colin Bishopp, DOE * USDA's Electric Loan Program - Jon Claffey, USDA * HUD's PowerSaver Home Improvement Loans Program - Michael Freedberg, HUD * SBA's 504 Loan Program - Patrick Kelley, SBA * Case Study: Leveraging Two Federal Finance Facilities in New York State - Jim

  4. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This step-by-step manual guides readers through the process of implementing a fuel cell stationary power project. The guide outlines the basics of fuel cell technology and describes how fuel cell projects can meet on-site energy service needs as well as support strategic agency objectives and sustainability requirements. This guide will help

  5. Research Facilities | ANSER Center | Argonne-Northwestern National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Facilities Home > Research > Research Facilities Facilities Beyond the extensive facilities available in laboratories of ANSER Center members, the participating institutions below bring substantial collateral resources that strengthen ANSER Center programs. The Argonne Advanced Photon Source (APS): a third-generation synchrotron hard x-ray source providing unprecedented brilliance and photon flux for state-of-the-art time-resolved structural characterization The Northwestern

  6. Mass Spectrometer Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Facility Mass Spectrometer Facility The PARC Mass Spectrometer Facility uses customized instrumentation to directly measure the individual polypeptide mass of different light-harvesting complexes to do assignment to specific gene products and investigate protein processing. Newly developed techniques are also applied to measure the mass of native protein complexes. Structural information of complexes is extracted by combining protein chemical modification and H/D exchange

  7. Photobioreactor Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photobioreactor Facility The PARC photobioreactors feature the unique combination of a reactor and monitoring device, which allows for a high level of accuracy in temperature,...

  8. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities, is to provide capabilities to simulate a wide range of environments for component and system testing. The environments can range from normal in-use environments...

  9. Sandia National Laboratories: Research: Facilities: Sandia Pulsed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor...

  10. NREL: Research Facilities - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, testing and user facilities. We typically develop technology partnership...

  11. Ultrafast Laser Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Laser Facility, under the direction of Associate Director and Theme 3 Leader Dewey Holten, utilizes four integrated state-of-the-art instruments to probe diverse natural...

  12. LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION PLAN

    Office of Environmental Management (EM)

    LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION PLAN Los Alamos National Laboratory Paducah Idaho National Laboratory Hanford Site Savannah River Site Nevada National Security Site Oak Ridge Portsmouth Revision 0 September 2015 3 Contents Acronyms ........................................................................................................................................ 5 1.0 Introduction

  13. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    SciTech Connect (OSTI)

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  14. California Federal Facilities: Rate-Responsive Building Operation for Deeper Cost and Energy Savings

    SciTech Connect (OSTI)

    2012-05-01

    Dynamic pricing electricity tariffs, now the default for large customers in California (peak demand of 200 kW and higher for PG&E and SCE, and 20 kW and higher for SDG&E), are providing Federal facilities new opportunities to cut their electricity bills and help them meet their energy savings mandates. The U.S. Department of Energy’s (DOE) Federal Energy Management Program (FEMP) has created this fact sheet to help California federal facilities take advantage of these opportunities through “rate-responsive building operation.” Rate-responsive building operation involves designing your load management strategies around your facility’s variable electric rate, using measures that require little or no financial investment.

  15. Breaking Ground on Computational Research and Theory Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Breaks Ground on New Computational Research Facility Breaking Ground on Computational Research and Theory Facility CRT to Foster Scientific Collaboration in Energy-Efficient Setting February 1, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510-486-5849 Department of Energy Secretary Steven Chu, along with Lawrence Berkeley National Laboratory (Berkeley Lab) and University of California leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility, Wednesday, Feb. 1. The

  16. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eric Liese of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first virtual energy plant for training,

  17. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Priyadarshi Mahapatra of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first virtual energy plant for

  18. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terry Jordan of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first virtual energy plant for training,

  19. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-11-21

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  20. Maintaining History of the ARM Climate Research Facility Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining History of the ARM Climate Research Facility Data Koontz, Annette Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Martin,...

  1. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Z X-ray source, world's most powerful pulsed power facility Saturn X-ray and HERMES gamma-ray sources for large area, volume exposures SPHINX X-ray source for small area...

  2. Guidebook to excellence: A directory of federal facilities and other resources for mathematics and science education improvement. [Contains acronym list

    SciTech Connect (OSTI)

    Shipman, T.

    1993-01-01

    The Guidebook to Excellence is a State-by-State directory of Federal facilities and other resources for improving mathematics and science education. This directory, the first of its kind, is being published to assist educators, parents, and students across the country in attaining the National Education Goals, particularly Goal No. 4: By the year 2000, US students will be first in the world in science and mathematics achievement. Some of the larger research facilities in this directory, such as those of NASA, EPA and the Departments of Energy, Commerce, and the Interior, provide a wide range of education programs, and some offer students and teachers hands on experience with state-of-the-art research in world class facilities. Other sites, such as those of the Department of Transportation or Agriculture may be quite small, but can provide assistance in a single field of research or workforce expertise. Also listed are individuals responsible for State or regional coordination of major programs, such as the US Department of Education's Eisenhower Mathematics and Science Education Program, or the National Science Foundation's Statewide Systemic Initiative Program. In addition, each State listing includes facilities or coordinators providing regional assistance from neighboring States.

  3. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  4. Charter for the ARM Climate Research Facility Science Board

    SciTech Connect (OSTI)

    Ferrell, W

    2013-03-08

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  5. Ground Broken for New Job-Creating Accelerator Research Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supported jointly by the state of Illinois and DOE, the construction of the Illinois Accelerator Research Center (IARC) will provide a state-of-the-art facility for research, ...

  6. Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary

    SciTech Connect (OSTI)

    1995-03-24

    This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals.

  7. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  8. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  9. Toxic Substances Control Act Uranium Enrichment Federal Facilities Compliance Agreement, February 20, 1992 Summary

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement (TSCA-UE- FFCA), February 20, 1992 State Kentucky Agreement Type Compliance Agreement Legal Driver(s) TSCA Scope Summary Establishes responsibilities and commitments for bringing DOE's former and active Uranium Enrichment Plants in Paducah, Portsmouth, and Oak Ridge into compliance with TSCA and PCB Regulations Parties DOE; U.S. EPA Date 2/20/1992 SCOPE * Establish a plan and the responsibilities and

  10. Toxic Substances Control Act Uranium Enrichment Federal Facilities Compliance Agreement, February 20, 1992 Summary

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement (TSCA-UE- FFCA), February 20, 1992 State Ohio Agreement Type Compliance Agreement Legal Driver(s) TSCA Scope Summary Establishes responsibilities and commitments for bringing DOE's former and active Uranium Enrichment Plants in Paducah, Portsmouth, and Oak Ridge into compliance with TSCA and PCB Regulations Parties DOE; U.S. EPA Date 2/20/1992 SCOPE * Establish a plan and the responsibilities and commitments

  11. U.S. Federal Facility Compliance Agreement for the Hanford Site, February 7, 1994 Summary

    Office of Environmental Management (EM)

    for Radionuclide NESHAP State Washington Agreement Type Federal Facility Compliance Agreement Legal Driver(s) CAA Scope Summary Bring DOE's Hanford site into compliance with CAA Parties EPA; DOE; Richland Operations Office (RL) Date 02/07/1994 SCOPE * Bring DOE's Hanford site into compliance with CAA. This Compliance Plan contains a schedule for DOE to evaluate the monitoring systems associated with Designated Stacks to ensure that these systems conform to the standards for continuous monitoring

  12. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers OCTOBER 2011 Fuel Cell Technologies Program Oak Ridge National Laboratory 2 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  13. MONTICELLO NPL SITES Minutes and Action Items of the Federal Facilities Agreement Meeting

    Office of Legacy Management (LM)

    Minutes and Action Items of the Federal Facilities Agreement Meeting September 16 and 17,2008 Meeting Location U.S. Department of Energy Site Office, Monticello, Utah Meeting Attendees Jalena Dayvault- U.S. Department of Energy Tim Bartlett- S.M. Stoller Todd Moon- S.M. Stoller Linda Sheader- S. M. Stoller Paul Wetherstein- S.M. Stoller Brent Everett- Utah Department of Environmental Quality Duane Mortensen- Utah Department of Environmental Quality Paul Mushovic- U.S. Environmental Protection

  14. Monticello NPL Sites Federal Facilities Agreement Meeting Minutes & Action Items

    Office of Legacy Management (LM)

    NPL Sites Federal Facilities Agreement Meeting Minutes & Action Items Location Monticello, Utah- DOE Office of Legacy Management field office Date September 27,2006 Attendees David Bird- Utah Department of Environmental Quality Paul Mushovic- U.S. Environmental Protection Agency Att Kleinrath- U.S. Depmtment of Energy Tim Bartlett- S. M. Stoller Meeting topics and discussion points are summarized separately under the headings that follow. Attaclunent 1 to this report includes the agenda and

  15. Mr. Tim Murphy, Chief Bureau of Federal Facilities Division of Environmental Protection

    Office of Legacy Management (LM)

    Tim Murphy, Chief Bureau of Federal Facilities Division of Environmental Protection 2030 E. Flamingo Road, Suite 230 Las Vegas, NV 89119-0818 October 11, 2011 PATH FORWARD: 2011 SHORT-TERM DATA ACQUISITION PLAN PROJECT SHOAL AREA, SUB SURF ACE CORRECTIVE ACTION UNIT 447, NEVADA Dear Mr. Murphy: The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is providing this Short-Term Data Acquisition Plan for the Project Shoal Area (Shoal), Subsurface Corrective Action Unit 447, near

  16. Office of Legacy Management Tim Murphy, Chief Bureau of Federal Facilities

    Office of Legacy Management (LM)

    Office of Legacy Management Tim Murphy, Chief Bureau of Federal Facilities Division of Environmental Protection 2030 E. Flamingo Road, Suite 230 Las Vegas, NV 89119-0818 NOV 2 4 2009 Subject: Final Path Forward: Shoti-Term Data Acquisition Plan for New Closure Strategy Subsmface Corrective Action Unit 447, Project Shoal Area, Nevada Dear Mr. Murphy: On July 20, 2009, the U.S. Department of Energy, Office of Legacy Management (DOE-LM), issued the draft Path Forward for Subswface, Corrective

  17. Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1

    SciTech Connect (OSTI)

    1994-08-31

    This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan.

  18. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    2 Annual Energy Expenditures per Gross Square Foot of Federal Floorspace Stock, by Year ($2010) FY 1985 2.13 FY 2000 1.36 FY 2001 1.58 FY 2002 1.49 FY 2003 1.45 FY 2004 1.54 FY 2005 1.59 FY 2006 2.01 (1) FY 2007 2.01 Note(s): Source(s): Total Federal buildings and facilities energy expenditures in FY 2006 were $5.79 billion (in $2010). 1) Increase due to change in FEMP categorization of Federal buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-9, p. 97 and Table

  19. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) High Altitude Chamber High Altitude chamber Technical Characteristics 27-foot diameter vacuum sphere Simulate altitudes up to 230,000 feet Test articles up to 1-ton weight and 60 inch diameter Testing centrifuge to 600 rpm 15-20 minutes to reach maximum altitude Explosive and pyrotechnic testing Ejection, inflation, and free-fall testing Remote high-speed video capability

  20. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) Hypersonic Wind Tunnel Technical Characteristics Blowdown to vacuum M = 5, 8, 14 Re = 0.2 - 10 x 106/ft Run times: ~45 sec at 45 minute intervals Gases: air at Mach 5 N2 at Mach 8 and 14 18" diameter test section 4" - 5" maximum diameter model size Stagnation temperature to 2500°R Related Links Wind tunnel operation maps Overview briefing of the wind tunnels

  1. NREL: Wind Research - Dynamometer Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamometer Test Facilities Dynamometer test configuration for a wind turbine drivetrain. Enlarge image Dynamometers enable industry and testing agencies to verify the performance and reliability of wind turbines drivetrain prototypes and commercial machines. Designs are tested by simulating operating field conditions in a laboratory environment. In a typical dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. Wind turbine dynamometer testing focuses on the

  2. Fire Protection for Underground Research Facilities

    Broader source: Energy.gov [DOE]

    Presenter: James Priest, Ph.D., Senior Fire Protection Engineer ES&H, Universities Research Associates ‐ FNAL

  3. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Technical Characteristics Blowdown to atmosphere M∞= 0.5 - 1.3, 1.5, 2.0, 2.5, 3.0 Re = 3 - 20 × 106/ft Run times: 20-120 seconds at 20-30 minute intervals 12" × 12" test section ~1" diameter model size Transonic Test Section Multiple configurations 4 porous walls 3 porous & 1 solid wall (half-body models) 2 porous walls, 2 solid walls (imaging) 4 solid walls Test section enclosed in

  4. Polymer matrix composites research: A survey of federally sponsored programs

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report identifies research conducted by agencies of the federal government other than the Department of Energy (DOE) in the area of advanced polymer matrix composites (PMCs). DOE commissioned the report to avoid duplicating other agencies' efforts in planning its own research program for PMCs. PMC materials consist of high-strength, short or continuous fibers fused together by an organic matrix. Compared to traditional structural metals, PMCs provide greater strength and stiffness, reduced weight and increased heat resistance. The key contributors to PMC research identified by the survey are the Department of Defense (DOD), the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Transportation (DOT). The survey identified a total of 778 projects. More than half of the total projects identified emphasize materials research with a goal toward developing materials with improved performance. Although an almost equal number of identified materials projects focus on thermosets and thermoplastics receive more attention because of their increased impact resistance and their easy formability and re-formability. Slightly more than one third of projects identified target structures research. Only 15 percent of the projects identified focus on manufacturing techniques, despite the need for efficient, economical methods manufacturing products constructed of PMCs--techniques required for PMCs to gain widespread acceptance. Three issues to be addressed concerning PMCs research are economy of use, improvements in processing, and education and training. Five target technologies have been identified that could benefit greatly from increased use of PMCs: aircraft fuselages, automobile frames, high-speed machinery, electronic packaging, and construction.

  5. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  6. Research Support Facility - Zero Energy Building Moves Closer to Reality

    SciTech Connect (OSTI)

    2010-04-01

    The DOE's Research Support Facility showcases high-performance design features, passive energy strategies, and renewable energy. It is a prototype for future large-scale net-zero energy buildings.

  7. New Research Facility Holds Promise For Nation's Energy Future - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL New Research Facility Holds Promise For Nation's Energy Future Leaders Praise Innovative Design For NREL's First Major Expansion In Decade July 27, 2004 Golden, Colo. - Ground was broken today on a new facility at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), designed to increase collaboration among researchers and speed the time it takes for new technologies to move from the laboratory bench to commercial manufacturing. Speaking at a

  8. Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss030_keller_2010_p.pdf More Documents & Publications AVTA: Quantifying the Effects of Idle Stop Systems on Fuel Economy Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and

  9. NREL Selects Contractor for New Research Support Facility - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Selects Contractor for New Research Support Facility Building to showcase renewable energy and energy efficiency technologies August 2, 2006 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has selected J.E. Dunn Rocky Mountain Construction to design and construct the first phase of the Laboratory's new Research Support Facilities (RSF). The value of the contract is $9.4 million, appropriated by the Energy and Water Development Subcommittee of the U.S.

  10. NREL's Research Support Facility Garners Second LEED® Platinum - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL's Research Support Facility Garners Second LEED® Platinum November 20, 2012 The Research Support Facility (RSF) on the campus of the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colo. has earned its second LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction. The Leadership in Energy and Environmental

  11. NREL: Sustainable NREL - Awards for the Research Support Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards for the Research Support Facility Designations Leadership in Energy and Environmental Design (LEED) Platinum, 2011 LEED Platinum, 2012 ENERGY STAR® certified, 2011 NREL's Research Support Facility (RSF) has been honored with 40 prestigious awards for being a showcase for energy efficiency and renewable energy technologies. The awards have been presented in these categories: Architectural Construction Engineering Sustainability and Environmental U.S. Department of Energy Other

  12. NREL: Sustainable NREL - Photographs of the Research Support Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographs of the Research Support Facility This photo gallery includes a sample of photos and computer renderings of the Research Support Facility. Visit NREL's Image Gallery for the complete collection of RSF photographs. See the interactive RSF rendering for details on the building design, structure, and features. Obtaining Images Obtain low and high-resolution images from the Image Gallery by clicking the image number. A photo of the side of a tan office building at the corner of a street.

  13. ARM Climate Research Facility Annual Report 2004

    SciTech Connect (OSTI)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  14. Comments by the American Electric Power System on Proposed Coordination of Federal Authorizations for Electric Transmission Facilities

    Broader source: Energy.gov [DOE]

     Proposed Coordination of Federal Authorizations for Electric Transmission Facilities – Interim Final Rule and Proposed Rule (DOE, 10 CR Part 900): The utility operating companies of the American...

  15. Buildings Energy Data Book: 4.2 Federal Buildings and Facilities Characteristics

    Buildings Energy Data Book [EERE]

    2 Federal Buildings and Facilities Characteristics March 2012 4.2.1 Federal Building Gross Floorspace, by Year and Agency Fiscal Year Agency FY 1985 3.37 DOD 63% FY 1986 3.38 USPS 10% FY 1987 3.40 GSA 6% FY 1988 3.23 VA 5% FY 1989 3.30 DOE 3% FY 1990 3.40 Other 13% FY 1991 3.21 Total 100% FY 1992 3.20 FY 1993 3.20 FY 1994 3.11 FY 1995 3.04 FY 1996 3.03 FY 1997 3.02 FY 1998 3.07 FY 1999 3.07 FY 2000 3.06 FY 2001 3.07 FY 2002 3.03 FY 2003 3.04 FY 2004 2.97 FY 2005 2.96 FY 2006 3.10 FY 2007 3.01

  16. California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rouggly, energy manager at SSA's Frank Hagel Federal Building in Richmond California, reports that the facility garnered $35,000 in credits in 2011 on PG&E's Peak Day Pricing (PDP) tariff. "Frankly I was stunned! It's getting a lot of positive attention with our management," said Rouggly. "We were able to drop 400 kW by pre-cooling the building and shutting down one chiller during peak events. We also turned off 2 of our 8 elevators and reduced lighting in corridors to

  17. Ms. Chris Andres, Chief Bureau of Federal Facilities Division of Environmental Protection

    Office of Legacy Management (LM)

    Ms. Chris Andres, Chief Bureau of Federal Facilities Division of Environmental Protection 2030 E. Flamingo Road, Suite 230 Las Vegas, NV 89119-0818 June 16,2014 PATH FORWARD: 2014 SHORT-TERM DATA ACQUISITION PLAN PROJECT SHOAL AREA, SUB SURF ACE CORRECTIVE ACTION UNIT 44 7, NEVADA Dear Ms. Andres: The U.S. Departtnent of Energy (DOE) Office of Legacy Management (LM) is providing this Short- Term Data Acquisition Plan for the Shoal, Nevada, Site, Subsurface Corrective Action Unit 447, near

  18. Powering Research | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Projects ALCC 2015 Projects ESP Projects View All Projects Publications ALCF Tech Reports Industry Collaborations Featured Science 3D visualization of convective cells at the outer boundary of a solar convection simulation run, using Mira Frontiers in Planetary and Stellar Magnetism Through High-Performance Computing Jonathan Aurnou Allocation Program: INCITE Allocation Hours: 150 Breakthrough Science At the ALCF, we provide researchers from industry, academia, and government agencies with

  19. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    SciTech Connect (OSTI)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-07-15

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems.

  20. NREL's Research Support Facility: An Operations Update - December 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Research Support Facility: An Energy Performance Update Shanti Pless- Senior Research Engineer Chad Lobato - Research Engineer Joe Drexler - Chief Engineer for Site Operations and Maintenance Paul Torcellini - Group Manager Ron Judkoff - Principal Program Manager Commercial Buildings Research Group December 2011 Innovation for Our Energy Future Innovation for Our Energy Future 0 20 40 60 80 100 120 140 Old NREL/DOE Leased Office Space Typical Denver Office Building ENERGY STAR 75 Office

  1. Notice of Intent to Issue Funding Opportunity Announcement "Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) 2016"

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy (DOE) intends to issue, on behalf of the Federal Energy Management Program (FEMP), a funding opportunity announcement (FOA) titled "Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) 2016" this April or May.

  2. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  3. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT

  4. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his...

  5. Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010

    SciTech Connect (OSTI)

    Stoltenberg, B.; Partyka, E.

    2010-09-01

    This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement managers. The solar project process is outlined in a concise, easy-to-understand, step-by-step format. Information includes a brief overview of legislation and executive orders related to renewable energy and the compelling reasons for implementing a solar project on a federal site. It also includes how to assess a facility to identify the best solar installation site, project recommendations and considerations to help avoid unforeseen issues, and guidance on financing and contracting options. Case studies with descriptions of successful solar deployments across multiple agencies are presented. In addition, detailed information and sample documents for specific tasks are referenced with Web links or included in the appendixes. The guide concentrates on distributed solar generation and not large, centralized solar energy generation.

  6. Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Appendix B, September 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement managers. The solar project process is outlined in a concise, easy-to-understand, step-by-step format. Information includes a brief overview of legislation and executive orders related to renewable energy and the compelling reasons for implementing a solar project on a federal site. It also includes how to assess a facility to identify the best solar installation site, project recommendations and considerations to help avoid unforeseen issues, and guidance on financing and contracting options. Case studies with descriptions of successful solar deployments across multiple agencies are presented. In addition, detailed information and sample documents for specific tasks are referenced with Web links or included in the appendixes. The guide concentrates on distributed solar generation and not large, centralized solar energy generation.

  7. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  8. Federal Geothermal Research Program Update - Fiscal Year 2004

    SciTech Connect (OSTI)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  9. Federal Geothermal Research Program Update Fiscal Year 2004

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  10. The Sanford Underground Research Facility at Homestake (SURF)

    SciTech Connect (OSTI)

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.

  11. The Sanford Underground Research Facility at Homestake (SURF)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less

  12. NREL To Build Research Support Facility - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Build Research Support Facility April 19, 2006 Golden, Colo. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) today issued a request for proposals for design and construction of a state-of-the-art office building for the laboratory's South Table Mountain campus in Golden, Colo. NREL's vision is to design and build 210,000 square feet of research support facilities that would house approximately 780 staff who currently work in leased space at the Denver West

  13. Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

    SciTech Connect (OSTI)

    Lamb, Peter J.

    2013-06-13

    Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

  14. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, Keith

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  15. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, K.; King, M.; Takase, Y.; Oshima, Y.; Nishimura, K.; Sukegawa, A.

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  16. NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award...

  17. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  18. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  19. Three Arrested and Charged in a Scheme to Defraud Federal Research Funding

    Energy Savers [EERE]

    | Department of Energy Three Arrested and Charged in a Scheme to Defraud Federal Research Funding Three Arrested and Charged in a Scheme to Defraud Federal Research Funding PDF icon Three Arrested and Charged in a Scheme to Defraud Federal Research Funding More Documents & Publications Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011 Before the House Energy and Commerce Subcommittee on Energy and Power Funding for Energy Efficiency

  20. Geothermal research at the Puna facility. Technical progress report

    SciTech Connect (OSTI)

    Chen, B.

    1985-12-12

    Research progress is reported. A conceptual model of the reservoir was developed comprising two production zones of different characteristics: the upper zone producing liquid while the lower zone produces vapor. Preliminary studies were carried out at the HGP-A facility on the flocculation behavior of silica under various conditions. (ACR)

  1. Geothermal research at the Puna Facility. Technical report

    SciTech Connect (OSTI)

    Chen, B.

    1986-04-01

    This report consists of a summary of the experiments performed to date at the Puna Geothermal Research Facility on silica in the geothermal fluid from the HGP-A well. Also presented are some results of investigations in commercial applications of the precipitated silica. (ACR)

  2. ARM Climate Research Facility Instrumentation Status and Information April 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ARM Climate Research Facility Instrumentation Status and Information February 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ARM Climate Research Facility Instrumentation Status and Information December 2009

    SciTech Connect (OSTI)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Instrumentation Status and Information October 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Monthly Instrument Report August 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Instrumentation Status and Information January 2010

    SciTech Connect (OSTI)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ARM Climate Research Facility Instrumentation Status and Information March 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ARM Climate Research Facility Monthly Instrument Report June 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ARM Climate Research Facility Monthly Instrument Report July 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  11. ARM Climate Research Facility Monthly Instrument Report May 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  12. ARM Climate Research Facility Monthly Instrument Report September 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  13. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities - An example of a probablistic solar forecast produced with PRESCIENT. Permalink Gallery Sandia Develops Stochastic Production Cost Model Simulator for Electric Power Systems Analysis, Capabilities, Computational Modeling & Simulation, DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar

  14. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy, and cost effectiveness. These efforts partially fulfill expectations of the DOE, other federal agencies, and the State of New Mexico for waste minimization. If the improvements discussed here are implemented, an estimated 1.8 million dollars in cost savings is expected.

  15. Research Call to DOE/Federal Laboratories: Technical Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Call to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal...

  16. Research Call to DOE/Federal Laboratories: Technical Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Call to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal ...

  17. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility

  18. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    SciTech Connect (OSTI)

    Weigl, M. [Karlsruhe Institute of Technology, Projekttraeger Karlsruhe (PTKA-WTE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)

  19. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeffrey Hawk of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his work on Superior Heat Resistant Alloys through Controlled Homogenization. Heat-resistant alloys used in the energy industry contain a variety of elements that are hard to control during metal working. As a result, metal workers typically use trial and error to disperse these elements uniformly throughout the

  20. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jablonski of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his work on Superior Heat Resistant Alloys through Controlled Homogenization. Heat-resistant alloys used in the energy industry contain a variety of elements that are hard to control during metal working. As a result, metal workers typically use trial and error to disperse these elements uniformly throughout the

  1. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his work on Arc Position Sensing Technology. Vacuum arc remelting (VAR) is the primary method for melting and refining specialty metals for aerospace and other advanced applications, but defects in the ingots produced can cause catastrophic failure in their end use. Previously, deleterious operating conditions could not

  2. What is the ARM Climate Research Facility: Is Global Warming a Real Bias or a Statistical Anomaly?

    SciTech Connect (OSTI)

    Egami, Takeshi; Sisterson, Douglas L.

    2010-03-10

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research national user facility. With multi-laboratory management of distributed facilities worldwide, the ACRF does not fit the mold of a traditional user facility located at a national laboratory. The ACRF provides the world's most comprehensive 24/7 observational capabilities for obtaining atmospheric data specifically for climate change research. Serving nearly 5,000 registered users from 15 federal and state agencies, 375 universities, and 67 countries, the ACRF Data Archive collects and delivers over 5 terabytes of data per month to its users. The ACRF users provide critical information about cloud formation processes, water vapor, and aerosols, and their influence on radiative transfer in the atmosphere. This information is used to improve global climate model predictions of climate change.

  3. ARM Climate Research Facility Quarterly Ingest Status Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-092 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman October 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  4. ARM Climate Research Facility Third Quarter Ingest Report - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  5. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  6. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  7. Chiller Controls-related Energy Saving Opportunities in FederalFacilities

    SciTech Connect (OSTI)

    Webster, Tom

    2003-01-01

    Chillers are a significant component of large facility energy use. The focus of much of the development of chilled water systems in recent years has been on optimization of set point and staging controls, improvements in chiller design to increase efficiency and accommodate chlorofluorocarbon (CFC) refrigerant replacements. Other improvements have been made by upgrading controls to the latest digital technologies, improving access and monitoring via communications and sophisticated liquid crystal displays (LCD), more robust fault diagnostics and operating and maintenance information logging. Advances have also been made in how chiller plant systems are designed and operated, and in the diversity of chiller products that are available to support innovative approaches. As in many industries, these improvements have been facilitated by advances in, and lower costs for, enabling technologies, such as refrigerants, compressor design, electronics for controls and variable frequency drives (VFD). Along with the improvements in electronics one would expect that advances have also been made in the functionality of unit controls included with chillers. Originally, the primary purpose of this project was to investigate the state of practice of chiller unit controllers in terms of their energy saving capabilities. However, early in the study it was discovered that advances in this area did not include incorporation of significantly different capabilities than had existed 10-15 years ago. Thus the scope has been modified to provide an overview of some of the basic controls-related energy saving strategies that are currently available along with guideline estimates of their potential and applicability. We have minimized consideration of strategies that could be primarily implemented via design practices such as chiller selection and plant design, and those that can only be implemented by a building management system (BMS). Also, since most of the floor space of federal buildings occurs in large buildings, we have focused on water-cooled screw and centrifugal chillers of 100 ton capacity and greater. However, the role of reciprocating and gas chillers (absorption and engine driven) is discussed briefly. Understanding the demographics of chiller deployment in the federal sector, state of practice of energy savings strategies and control features availability will help federal energy managers and program implementers to make informed decisions in support of energy saving performance contracting (ESPC) and other programs.

  8. Instrumentation Overview ARM Climate Research Facility 18th Annual...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Established 2005 Voyles STM.2008 ARM Mobile Facility Established 2005 Pt. Reyes, CA - 2005 Voyles STM.2008 ARM Mobile Facility Established 2005 Pt. Reyes, CA - 2005...

  9. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    SciTech Connect (OSTI)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  10. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

  11. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    3 Energy Independence and Security Act of 2007, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Standard Relating to Solar Hot Water - Requires new Federal buildings, or Federal buildings undergoing major renovations, to meet at least 30 percent of hot water demand through the use of solar hot water heaters, if cost-effective. [Section 523] Federally-Procured Appliances with Standby Power - Requires all Federal agencies to procure appliances with standby power consumption

  12. Survey of Postdoctorates at FFRDCs: Final Report [Federally Funded Research and Development Centers

    SciTech Connect (OSTI)

    Mulrow, Jeri

    2010-06-30

    The 2009 FFRDC survey collected the total number of postdocs employed by FFRDCs in the United Statescategorized by source of support, citizenship, sex, and field of researchas of October 1, 2009. The universe for the 2009 GSS-FFRDC survey was the Master Government List of Federally Funded Research and Development Centers. The 2009 survey also contacted the NIHs Intramural Research Program because it employs the largest number of postdocs in the federal government. The FFRDC survey collected data via a web instrument. Topics included the type of support the postdocs received (federal and nonfederal), their sex, citizenship, race/ethnicity, and field of research.

  13. Federal Geothermal Research Program Update Fiscal Year 1994

    SciTech Connect (OSTI)

    1995-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. (DJE 2005)

  14. Federal Geothermal Research Program Update Fiscal Year 1995

    SciTech Connect (OSTI)

    1996-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. DJE 2005

  15. Federal Geothermal Research Program Update Fiscal Year 1997

    SciTech Connect (OSTI)

    1998-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. (DJE 2005)

  16. Federal Geothermal Research Program Update Fiscal Year 1996

    SciTech Connect (OSTI)

    1997-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. (DJE 2005)

  17. Federal Geothermal Research Program Update Fiscal Year 2000

    SciTech Connect (OSTI)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  18. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  19. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    SciTech Connect (OSTI)

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  20. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    2 Executive Order 13423, Provisions Affecting Energy Consumption in Federal Buildings Source(s): -- Requires Federal agencies to improve energy efficiency and reduce greenhouse gas emissions by either 3 percent annual reductions through FY 2015, or by 30 percent by 2015, as compared to FY 2003. -- Requires Federal agencies to obtain at least half of required renewable energy from new renewable sources. Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation

  1. Policy analysis: he who pays the piper: federal funding of research

    SciTech Connect (OSTI)

    Doig, D.

    1983-01-01

    Federal support for research has tended to inhibit speculative investment from private sources. This has led to a compartmentalization that discourages innovation and funding uncertainties that reflect bureaucratic an political fluctuations. The current debate over whether federal spending for military research and development has a positive spin-off effect on the civilian economy introduces questions of academic freedom and of open inquiry and information exchange. Whether private industry, hampered by antitrust laws in joint research efforts, can provide adequate support without federal funding is questionable, but the report concludes that only decentralization can encourage creativity and innovation. 65 references.

  2. The Role of the Federal Project Director: Lessons from the National Ignition Facility

    Broader source: Energy.gov [DOE]

    The National Ignition Facility (NIF) Facility is home of the world’s largest laser.  With 192 laser beams that can deliver more than 60 times the energy of any previous laser system, NIF represents...

  3. Capsule review of the DOE research and development and field facilities

    SciTech Connect (OSTI)

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  4. ARM Climate Research Facility | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    ARM Climate Research Facility Print Text Size: A A A FeedbackShare Page The Atmospheric Radiation Measurement (ARM) Climate Research Facility (www.arm.gov) is a multi-platform ...

  5. CO-LABS Releases Economic Impact Study of Federal Research Laboratories in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado - News Releases | NREL CO-LABS Releases Economic Impact Study of Federal Research Laboratories in Colorado March 31, 2011 Today, CO-LABS released the broader economic Impact Study of federal research laboratories in Colorado including data referenced by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in February. NREL's impact on Colorado's economy tripled in just three years boosting Colorado's annual economy $714 million, according to the study prepared

  6. GAO-06-811 Information Security: Coordination of Federal Cyber Security Research and Development

    Office of Environmental Management (EM)

    the Chairman, Committee on Government Reform, House of Representatives INFORMATION SECURITY Coordination of Federal Cyber Security Research and Development September 2006 GAO-06-811 What GAO Found United States Government Accountability Office Why GAO Did This Study Highlights Accountability Integrity Reliability September 2006 INFORMATION SECURITY Coordination of Federal Cyber Security Research and Development Highlights of GAO-06-811, a report to Chairman, Committee on Government Reform, House

  7. Central Japan Synchrotron Radiation Research Facility Project-(II)

    SciTech Connect (OSTI)

    Yamamoto, N.; Takashima, Y.; Hosaka, M.; Takami, K.; Morimoto, H.; Ito, T.; Sakurai, I.; Hara, H.; Okamoto, W.; Watanabe, N.; Takeda, Y.; Katoh, M.; Hori, Y.; Sasaki, S.

    2010-06-23

    A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV, the beam current of 300 mA, and the natural emittance of about 53 nm-rad. The configuration of the storage ring is based on four triple bend cells, and four of the twelve bending magnets are 5 T superconducting ones. The bending angle and critical energy are 12 degree and 4.8 keV, respectively. For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy. Currently, six beamlines are planned for the first phase starting from 2012.

  8. Quality Assurance of ARM Program Climate Research Facility Data

    SciTech Connect (OSTI)

    Peppler, RA; Kehoe, KE; Sonntag, KL; Bahrmann, CP; Richardson, SJ; Christensen, SW; McCord, RA; Doty, DJ; Wagener, Richard; Eagan, RC; Lijegren, JC; Orr, BW; Sisterson, DL; Halter, TD; Keck, NN; Long, CN; Macduff, MC; Mather, JH; Perez, RC; Voyles, JW; Ivey, MD; Moore, ST; Nitschke, DL; Perkins, BD; Turner, DD

    2008-03-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

  9. Desiccant contamination research: Report on the desiccant contamination test facility

    SciTech Connect (OSTI)

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  10. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

  11. ORISE: Postdoc Research Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    federal research facilities nationwide For scientists who have recently completed their Ph.D. in a science or engineering discipline, a postdoc research position can make an...

  12. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    SciTech Connect (OSTI)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)

  13. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  14. Barbara Helland, Facilities Division Director Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barbara Helland, Facilities Division Director Advanced Scientific Computing Research June 10-12, 2015 HEP Requirements Review ASCR F acili+es D ivision * Providing t he F acility - H igh---End a nd L eadership C ompu5ng - Na5onal E nergy R esearch S cien5fic C ompu5ng C enter ( NERSC) at L awrence B erkeley Na+onal L aboratory * Delivers h igh---end c apacity c ompu+ng t o e n+re D OE S C r esearch c ommunity * Over 5 000 u sers a nd 4 00 p rojects - Leadership C ompu5ng C enters a t A rgonne N

  15. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2003 Annual Report.

    SciTech Connect (OSTI)

    Martinson, Rick D.; Kamps, Jeffrey W.; Kovalchuk, Gregory M.

    2004-02-01

    The 2003 spring flows were within 7 kcfs of last year's flows, but the summer flows were significantly lower, averaging 194 kcfs compared to 278 kcfs last year. Late summer and fall flows were within 20 kcfs of last year's flows. These flow levels provided good migration conditions for juvenile salmonids, comparable to last year, except in June and July. Monthly average river flows were lower than the historical averages. The number of fish handled at John Day decreased from 257,741 last year to 166,209 this year. Part of this decline is due to reduced research effort which lowers the total number of fish needed. Descaling, compared to last year, varied by species, increasing for yearling chinook and clipped and unclipped steelhead, decreasing for coho and sockeye, and remaining about the same for subyearling chinook. Descaling was well below the average for the airlift years for all species except unclipped steelhead. This may be a function of unclipped hatchery steelhead being counted as unclipped steelhead, a category traditionally reserved for wild steelhead. Mortality continues to be low, at or below last year's levels for yearling chinook, subyearling chinook, clipped steelhead and sockeye; slightly higher than last year for unclipped steelhead and coho. With the exception of sockeye, mortality rates at the new facility are well below the average for the years of sampling with the airlift system. The spring migrants generally started migrating later and finished earlier, for a shorter overall duration. Sub-yearling chinook did just the opposite, starting earlier and ending later for a longer middle 80% duration. This was the fourth year of index level sampling at the Hamilton Island Juvenile Monitoring Facility at Bonneville. The number of fish handled declined from 85,552 last year to 80,303 this year. Descaling for all species was similar to the previous two years (within 2%) but in all cases lower than the historical average. Mortality was lower than last year for all species, and below 1% for all species except sockeye (1.9%). Passage timing and duration was similar to last year for all species. A total of 5,542 fish were handled in the first powerhouse for condition monitoring and gas bubble exams. Fish condition was good, with descaling and mortality below last year's levels for all species. Powerhouse 2 operational priority reduced operation of PH1 again this year especially in midsummer as river flow declined. This prompted a 31 July end to a season that was scheduled to go through August. After 23 June exams for gas bubble trauma symptoms were conducted in the Juvenile Monitoring Facility. A total of 3,473 fish were examined and only one fish with bubbles was observed.

  16. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Martinson, Rick D.; Kamps, Jeffrey W.; Kovalchuk, Gregory M.

    2005-02-02

    The 2004 river flows were near or below the historical average for each month of the fish passage season (Mar-Oct) at John Day and Bonneville. These flow levels provided average migration conditions for juvenile salmonids, comparable to 2003. The number of fish handled at John Day increased from 166,209 in 2003 to 412,797 in 2004. This dramatic increase is due entirely to an increased sample rate to get fish for researchers, from an average of 8.5% last year to 18.5% this year. In the spring, 83% of fish sampled were for research, and in the fall, 92% were for research. Unusually small subyearling Chinook, on average 10 millimeters shorter than last year, made meeting the 110 mm fork length or 13 gram requirement difficult. Consequently, we had to sample even more fish to get the number required by researchers. Passage timing at John Day was similar to previous years, with the 10% and 90% dates within a week of last year for all species. Descaling was lower than last year for all species except sockeye and below the historical average for all species. At 5.4%, sockeye descaling was 2% higher than any other species. Mortality, while up from last year for all species and higher than the historical average for all species except sockeye, continued to be low, below 1% for all species. The number of fish sampled at Bonneville was five and one half times the number sampled last year, from 80,687 to 444,580. Like John Day, this increase resulted from research fish collections. Passage timing at Bonneville was early for spring migrants, with record early 10%, 50%, and 90% dates for yearling Chinook, unclipped steelhead, and coho. Clipped steelhead also passed Bonneville earlier than normal, with record early 50% and 90% dates and only missing the 10% date by two days. Sockeye were the exception this year with the 10% date only a couple of days different than the 50% date for three previous years and the latest 90% date of any year, except of 2001. The middle 80% of the yearling Chinook and unclipped steelhead runs took longer to pass Bonneville than any previous year, at 44 and 45 days, respectively. For subyearling Chinook, the middle 80% of the fish passed during the last three weeks of June and the first week of July, taking 35 days to pass the project, the same as last year. Descaling for all species was slightly higher than the average of the last five years. Compared to last year, descaling varied by species, increasing for yearling Chinook, coho, and sockeye and lower for subyearling Chinook and steelhead. Since sampling began in the juvenile monitoring facility, descaling has been quite consistent, staying below 3.6% for yearling and subyearling Chinook, unclipped steelhead and coho, and above 4.7% for clipped steelhead and sockeye. Mortality was slightly higher than last year and the historical average for yearling and subyearling Chinook and steelhead. Coho and sockeye mortality was lower than last year and the historical average. Mortality for all species was below 1%. Powerhouse 2 operational priority and research results showing higher survival of fish passing through the PH1 turbines rather than through the bypass system resulted in a complete disuse of the PH1 bypass system. Consequently, we removed the historic PH1 data from this report and refer readers to any prior report for information regarding first powerhouse fish sampling.

  17. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    1 Energy Policy Act of 2005, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Energy Management Requirements - Amended reduction goals set by the National Energy Conservation Policy Act, and requires increasing percentage reductions in energy consumption through FY 2015, with a final energy consumption reduction goal of 20 percent savings in FY 2015, as compared to the baseline energy consumption of Federal buildings in FY 2003. (These goals were superseded by Section 431

  18. Federated Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Federated Wind Farm Jump to: navigation, search Name Federated Wind Farm Facility Federated Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. DOE/SC-ARM-14-024 ARM Climate Research Facility Data Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 ARM Climate Research Facility Data Management Facility Quarterly Report NN Keck July 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

  20. DOE/SC-ARM-15-007 ARM Climate Research Facility Data Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Climate Research Facility Data Management Facility Quarterly Report NN Keck January 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

  1. DOE/SC-ARM-14-031 ARM Climate Research Facility Data Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Climate Research Facility Data Management Facility Quarterly Report NN Keck September 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

  2. Notice of Intent to Revise DOE G 226.1-2, Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04

    This revision will incorporate new content devoted to Federal oversight and evaluation of effectiveness of activity-level work planning and control (WP&C) at Hazard Category 1, 2, and 3 nuclear facilities.

  3. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    DOE R&D Accomplishments [OSTI]

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  4. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.

  5. Orange County Government Solar Demonstration and Research Facility

    SciTech Connect (OSTI)

    Parker, Renee; Cunniff, Lori

    2015-05-12

    Orange County Florida completed the construction of a 20 kilowatt Solar Demonstration and Research Facility in March 2015. The system was constructed at the Orange County/University of Florida Cooperative Extension Center whose electric service address is 6021 South Conway Road, Orlando, Florida 32802. The Solar Demonstration and Research Facility is comprised of 72 polycrystalline photovoltaic modules and 3 inverters which convert direct current from the solar panels to alternating current electricity. Each module produces 270 watts of direct current power, for a total canopy production of just under 20,000 watts. The solar modules were installed with a fixed tilt of 5 degrees and face south, toward the equator to maximize the amount of sunlight captures. Each year, the electricity generated by the solar array will help eliminate 20 metric tons of carbon dioxide emissions as well as provide covered parking for staff and visitors vehicles. The solar array is expected to generate 27,000 kilowatt hours of electricity annually equating to an estimated $266 savings in the monthly electric bill, or $3,180 annually for the Orange County/University of Florida Cooperative Extension Center. In addition to reducing the electric bill for the Extension Center, Orange County’s solar array also takes advantage of a rebate incentive offered by the local utility, Orlando Utility Commission, which provided a meter that measures the amount of power produced by the solar array. The local utility company’s Solar Photovoltaic Production Incentive will pay Orange County $0.05 per kilowatt hour for the power that is produced by the solar array. This incentive is provided in addition to Net Metering benefits, which is an effort to promote the use of clean, renewable energy on the electric grid. The Photovoltaic Solar Demonstration and Research Facility also serves an educational tool to the public; the solar array is tied directly into a data logger that provides real time power generation accessible for public viewing on an interactive kiosk located in the Orange County/University of Florida Cooperative Extension Center’s lobby where visitors can review “real time” power generation, cost savings and environmental benefits of the system. Site commissioning with the software program was delayed due to Internal Security Software issues within Orange County that needed to be resolved, therefore the “real time” capture of the production data for the solar array using the software program commenced on May 1, 2015. In addition an educational flyer was developed and is available in the Orange County Education Center’s main lobby. The project completed under this grant award assisted Orange County in demonstrating leadership by installing the application of a renewable energy technology combined with energy efficiency measures; resulting in reduced energy costs for the Orange County University of Florida Cooperative Extension Center, and helping Orange County citizens and visitors move towards the goals of greater energy independence and climate protection. The addition of the new Solar Demonstration and Research Facility has advanced the Orange County/University of Florida Cooperative Extension Center’s mission of extending, educating and providing research-based information to residents and visitors of Orange County by demonstrating the application of renewable energy technology combined with energy efficiency measures; resulting in reduced energy costs, and helping Orange County move towards the goal of greater energy independence and climate protection. In 2014, the Orange County Cooperative Extension Center hosted nearly 10,800 visitors to their on-site Exploration Gardens plus 12,686 walk-in visitors to their office plant clinic and other services. The Education Center held 2,217 educational events that were attended by 46,434 adults and youth, but about half of those events occurred off-site. Based on the visitation numbers in 2014 the Orange County Cooperative Extension Center Education is a vital partner to Orange County’s continued outreach and education efforts concerning renewable energy technologies and greenhouse gas emission reduction well in the current 2015 year and future years of operation of the solar array to the future visitors of the Center which help stimulate market demand that will continue to advance the commercialization and the widespread application and use of renewable energy technologies in Orange County and the state of Florida. The project period performance date for this grant was November 1, 2009 through March 1, 2015. The Final Project costs to complete the project as reported in the FINAL SF 425 were $195,512.50 (50% recipient cost share was satisfied as required by grant terms and conditions).

  6. Federal Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events Skip navigation links Residential Commercial Industrial Federal Agriculture About five percent of BPA's total electric supply goes to power facilities around...

  7. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a shortage of critical data on the nature of offshore wind resources and the ocean environment. Current plans are for the Reference Facility for Offshore Renewable Energy (RFORE) ...

  8. Notice of Intent to Issue Funding Opportunity Announcement “Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) 2016,” DE-FOA-0001574

    Broader source: Energy.gov [DOE]

    Document announces the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy intention to issue, on behalf of the Federal Energy Management Program, a funding opportunity announcement titled "Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) 2016."

  9. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 PDF icon 000521 & 000519 07-EE01-1 Integrated Biorefinery Research Facility (IBRF I-II) Compiled Lessons Learned Aug 2011.pdf More Documents & Publications Whole Building Performance-Based Procurement Training A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community

  10. Partial Support for the Federal Committee for Meteorological Services and Supporting Research

    SciTech Connect (OSTI)

    Williamson, Samuel P

    2012-04-30

    DOE E-link Report Number DOE/ER62778 1999-2012 Please see attached Final Technical Report (size too large to post here). Annual Products Provided to DOE: Federal Plan for Meteorological Services and Supporting Research; National Hurricane Operations Plan; Interdepartmental Hurricane Conference Summary Report. All reports and publications can be found on the OFCM website, www.ofcm.noaa.gov.

  11. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  12. Implementation Plans for a Systems Microbiology and Extremophile Research Facility

    SciTech Connect (OSTI)

    Wiley, H. S.

    2009-04-20

    Introduction Biological organisms long ago solved many problems for which scientists and engineers seek solutions. Microbes in particular offer an astonishingly diverse set of capabilities that can help revolutionize our approach to solving many important DOE problems. For example, photosynthetic organisms can generate hydrogen from light while simultaneously sequestering carbon. Others can produce enzymes that break down cellulose and other biomass to produce liquid fuels. Microbes in water and soil can capture carbon and store it in the earth and ocean depths. Understanding the dynamic interaction between living organisms and the environment is critical to predicting and mitigating the impacts of energy-production-related activities on the environment and human health. Collectively, microorganisms contain most of the biochemical diversity on Earth and they comprise nearly one-half of its biomass. They primary impact the planet by acting as catalysts of biogeochemical cycles; they capture light energy and fix CO2 in the worlds oceans, they degrade plant polymers and convert them to humus in soils, they weather rocks and facilitate mineral precipitation. Although the ability of selected microorganisms to participate in these processes is known, they rarely live in monoculture but rather function within communities. In spite of this, little is known about the composition of microbial communities and how individual species function within them. We lack an understanding of the nature of the individual organisms and their genes, how they interact to perform complex functions such as energy and materials exchange, how they sense and respond to their environment and how they evolve and adapt to environmental change. Understanding these aspects of microbes and their communities would be transformational with far-reaching impacts on climate, energy and human health. This knowledge would create a foundation for predicting their behavior and, ultimately, manipulating them to solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed systems microbiology is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

  13. Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment

    Broader source: Energy.gov (indexed) [DOE]

    Hi, everyone. Good afternoon and welcome to today's webinar on the new interagency guide to federal financing programs for clean energy. We're excited to have you with us today. I'm Molly Lunn with the Department of Energy State and Local Technical Assistance Program, and I want to thank you all for joining us. Before we get started, just a few quick housekeeping notes. Everyone today is going to be on listen-only mode, so we will have a Q&A session at the end of the presentation, and you

  14. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    3 Direct Appropriations on Federal Buildings Energy Conservation Retrofits and Capital Equipment ($2010 Million) FY 1985 FY 1986 FY 1987 FY 1988 FY 1989 FY 1990 Source(s): DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table 11-B, p. 31; DOE/FEMP, Annual Report to Congress on FEMP, Nov. 2007, Table 9-B, p. 26 for 1985, 1990, 1995, 2000-2006; DOE/FEMP, Annual Report to Congress on FEMP, Sep. 2004, Table 4-B, p. 38 for 1986-1989, 1991-1994, 1996-1999; EIA, Annual Energy Review

  15. NREL: Biomass Research - Thermochemical Pilot and Users Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermochemical Pilot and Users Facility Text version View looking up through the center of a collection of circulation vessels and cabling. The Recirculating Regenerating Reactor in the TCUF regenerates reforming catalyst and is similar to units used in the gasoline industry. Photo by Dennis Schroeder, NREL 25486. NREL's state-of-the-art Thermochemical Pilot and Users Facility (TCUF) consists of several complementary unit operations that can be configured to accommodate the testing and

  16. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  17. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  18. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    1 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity 23.68 (1) 4,009 Natural Gas 9.37 1,138 Fuel Oil 15.25 419 Coal 3.62 63 Purchased Steam 24.30 318 LPG/Propane 17.06 44 Other 16.19 37 Average 17.05 Total 6,029 Note(s): Source(s): Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of

  19. A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY

    SciTech Connect (OSTI)

    Takahashi, P.; Seki, A.; Chen, B.

    1985-01-22

    The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

  20. Measurement and Control Systems of Tritium Facilities for Scientific Research

    SciTech Connect (OSTI)

    Vinogradov, Yu.I.; Kuryakin, A.V.; Yukhimchuk, A.A.

    2005-07-15

    The technical approach, equipment and software developed during the creation of measurement and control systems for two complexes are described. The first one is a complex that prepares the gas mixture and targets of the 'TRITON' facility. The 'TRITON' facility is designed for studying muon catalyzed fusion reactions in triple mixtures of H/D/T hydrogen isotopes over wide ranges of temperature and pressure. The second one is 'ACCULINNA' - the liquid tritium target designed to investigate the neutron overloaded hydrogen and helium nuclei. These neutron-overloaded nuclei are produced in reactions of tritium beams on a heavy hydrogen and tritium target.

  1. Direct sunlight facility for testing and research in HCPV

    SciTech Connect (OSTI)

    Sciortino, Luisa Agnello, Simonpietro Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa; Barbera, Marco; Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo; Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  2. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    SciTech Connect (OSTI)

    Nnanna, Agbai

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institutes research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the Universitys Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  3. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities - FacilitiesTara Camacho-Lopez2015-10-27T01:52:50+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  4. About the Neutron and Nuclear Science Research (WNR) facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Neutron and Nuclear Science (WNR) Facility The Neutron and Nuclear Science (WNR) Facility provides neutron and proton beams and detector arrays for basic, applied, industrial, and defense-related research. Neutron and Nuclear Science The Neutron and Nuclear Science (WNR) Facility consists of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center (Target-1), and a proton reaction area (Target-2).

  5. New Research Facility to Remove Hurdles to Offshore Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, 2013 - 1:59pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Virginia Beach, Virginia - A new U.S. Department of Energy (DOE) research facility could help bring the United States closer to generating power from the winds and

  6. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  7. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  8. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Martinson, Rick D.; Kovalchuk, Gregory M.; Ballinger, Dean

    2006-04-01

    2005 was an average to below average flow year at John Day and Bonneville Dams. A large increase in flow in May improved migration conditions for that peak passage month. Spill was provided April through August and averaged about 30% and 48% of river flow at John Day and Bonneville Dams, respectively. Water temperature graphs were added this year that show slightly lower than average water temperature at John Day and slightly higher than average temperatures at Bonneville. The number of fish handled at John Day decreased from 412,797 in 2004 to 195,293 this year. Of the 195,293 fish, 120,586 (61.7%) were collected for researchers. Last year, 356,237 (86.3%) of the fish sampled were for researchers. This dramatic decline is the result of (1) fewer research fish needed (2) a smaller, lighter tag which allowed for tagging of smaller fish, and (3) a larger average size for subyearling chinook. These factors combined to reduce the average sample rate to 10.8%, about half of last year's rate of 18.5%. Passage timing at John Day was similar to previous years, but the pattern was distinguished by larger than average passage peaks for spring migrants, especially sockeye. The large spike in mid May for sockeye created a very short middle 80% passage duration of just 16 days. Other spring migrants also benefited from the large increase in flow in May. Descaling was lower than last year for all species except subyearling chinook and below the historical average for all species. Conversely, the incidence of about 90% of the other condition factors increased. Mortality, while up from last year for all species and higher than the historical average for all species except sockeye, continued to be low, less than 1% for all species. On 6 April a slide gate was left closed at John Day and 718 fish were killed. A gate position indicator light was installed to prevent reoccurrences. Also added this year was a PIT tag detector on the adult return-to-river flume. For the first time this year, we successfully held Pacific lamprey ammocetes. The number of fish sampled at Bonneville Dam was also down this year to 260,742, from 444,580 last year. Reasons for the decline are the same as stated above for John Day. Passage timing at Bonneville Dam was quite similar to previous years with one notable exception, sockeye. Sockeye passage was dominated by two large spikes in late May that greatly condensed the passage pattern, with the middle 80% passing Bonneville in just 18 days. Unlike John Day, passage for the rest of the species was well disbursed from late April through early June. Fish condition was good, with reductions in descaling rates for all species except unclipped steelhead and sockeye. Sockeye mortality matched last year's rate but was considerably lower for all other species. Rare species sampled at Bonneville this year included a bull trout and a eulachon.

  9. Research at the BNL Tandem Van de Graaff Facility, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined. (GHT)

  10. NSTX Report on FES Joint Facilities Research Milestone 2010

    SciTech Connect (OSTI)

    Maingi, R.; Ahn, J- W.; Gray, T. K.; McLean, A. G.; Soukhanovskii, V. A.

    2011-03-24

    Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ?*, beta ?, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

  11. Research Support Facility - Zero Energy Building Moves Closer to Reality (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    The DOE's Research Support Facility showcases high-performance design features, passive energy strategies, and renewable energy. It is a prototype for future large-scale net-zero energy buildings.

  12. DOE/SC-ARM-12-006 ARM Climate Research Facility Radar Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 ARM Climate Research Facility Radar Operations Plan May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States...

  13. ARM - What is the ARM Climate Research Facility Doing About Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingWhat is the ARM Climate Research Facility Doing About Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the ARM Climate Research Facility Doing About Global Warming? Atmospheric Radiation Measurement (ARM) scientists are studying the effects of clouds on weather

  14. Commissioning for Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    documentation. few adjustments, spending minimal time with the operators by pointing to ... its completion with no or minimal regu- larly-assigned O&M work duties and interruptions. ...

  15. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    SciTech Connect (OSTI)

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose; Adzic, Radoslav; Bare, Simon R.; Hulbert, Steve L.; Karim, Ayman; Mullins, David R.; Overbury, Steve

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  16. Federal agencies active in chemical industry-related research and development

    SciTech Connect (OSTI)

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  17. Federal Facility Agreement for the Laboratory for Energy-Related Health Research

    Office of Environmental Management (EM)

  18. A facility for accelerator research and education at Fermilab

    SciTech Connect (OSTI)

    Church, Mike; Nagaitsev, Sergei; /Fermilab

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  19. Facilities Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations » Facilities Management Facilities Management INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. Overview

  20. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  2. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  3. ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  4. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect (OSTI)

    Sexton, L.; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  5. DOE/SC-ARM-14-033 ARM Climate Research Facility ANNUAL REPORT - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility ANNUAL REPORT - 2014 On the cover: BAECC Site Panorama The Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign is a collaboration with Finnish scientists to measure biogenic aerosols emitted from forests in order to determine their effects on clouds, precipitation, and climate. BAECC placed the second ARM Mobile Facility in a Scots pine forest in southern Finland from February through September 2014 to obtain surface-based measurements of

  6. DOE/SC-ARM-13-023 ARM Climate Research Facility ANNUAL REPORT - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-023 ARM Climate Research Facility ANNUAL REPORT - 2013 On the cover: From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship, Spirit, operated by Horizon Lines, for the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation;

  7. DOE Research Facility Receives Lab of the Year Award - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Research Facility Receives Lab of the Year Award April 14, 2008 One of the nation's most energy efficient and environmentally friendly buildings recently was recognized by editors of R&D Magazine as one of the best laboratory facilities built in the U.S. in 2007. In the 42nd Laboratory of the Year competition, the Science & Technology Facility at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) was one of only two laboratories recognized as trendsetters in

  8. Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.; Ebberts, Blaine D.; Tortorici, Cathy; Yerxa, Tracey; Leary, J.; Skalski, John R.

    2008-02-05

    The purpose ofthis document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision-making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows. 1. Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. 2. Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. 3. Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. 4. Maintain the food web to benefit salmonid performance. 5. Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. In conclusion, the estuary RME effort is designed to meet the research and monitoring needs of the estuary Program using an adaptive management process. Estuary RME's success and usefulness will depend on the actual conduct of adaptive management, as embodied in the objectives, implrementation, data, reporting, and synthesis, evaluation, and decision-making described herein.

  9. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

  10. Technology Solutions Case Study: Cold Climate Foundation Wall Hygrothermal Research Facility, Cloquet, Minnesota

    SciTech Connect (OSTI)

    2014-09-01

    This case study describes the University of Minnesotas Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.

  11. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect (OSTI)

    Langanke, K. [GSI Helmholtzzentrum fr Schwerionenforschung, Technische Universitt Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

    2014-05-09

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum fr Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  12. Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY10 Annual Report

    SciTech Connect (OSTI)

    Johnson, Gary E.

    2010-10-26

    The Estuary/Ocean Subgroup (EOS) is part of the research, monitoring, and evaluation (RME) effort that the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to obligations arising from the Endangered Species Act as applied to operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. The EOS is one of multiple work groups in the federal research, monitoring, and evaluation (RME) effort developed in response to responsibilities arising from the Endangered Species Act as a result of operation of the FCRPS. The EOS is tasked by NOAA Fisheries and the Action Agencies to design and coordinate implementation of the federal RME plan for the lower Columbia River and estuary, including the plume.

  13. Research Support Facility Data Center: An Example of Best Practices Implementation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure details the design and operations of the Research Support Facility (RSF) data center. The National Renewable Energy Laboratory (NREL) is world-renowned for its commitment to green building construction. To further this commitment to green building and leading by example, NREL included an ultra-energy-efficient data center in the laboratory's new Research Support Facility (RSF), which recently received a Leadership in Energy and Environmental Design{reg_sign} (LEED) Platinum designation from the U.S. Green Building Council.

  14. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-05-29

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  15. LBNL Computational Research & Theory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-05-29

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  16. Real Options Valuation of U.S. Federal Renewable Energy Research,Development, Demonstration, and Deployment

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2005-03-01

    Benefits analysis of US Federal government funded research, development, demonstration, and deployment (RD3) programs for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and nonrenewable fuels. The benefits estimate for a program derives from the difference between two forecasts, with and without the RD3 in place. The deficiencies of the current approach are threefold: (1) it does not consider uncertainty in the cost of non-renewable energy (NRE), and the option or insurance value of deploying RE if and when NRE costs rise; (2) it does not consider the ability of the RD3 manager to adjust the RD3 effort to suit the evolving state of the world, and the option value of this flexibility; and (3) it does not consider the underlying technical risk associated with RD3, and the impact of that risk on the programs optimal level of RD3 effort. In this paper, a rudimentary approach to determining the option value of publicly funded RE RD3 is developed. The approach seeks to tackle the first deficiency noted above by providing an estimate of the options benefit of an RE RD3 program in a future with uncertain NRE costs.While limited by severe assumptions, a computable lattice of options values reveals the economic intuition underlying the decision-making process. An illustrative example indicates how options expose both the insurance and timing values inherent in a simplified RE RD3 program that coarsely approximates the aggregation of current Federal RE RD3.This paper also discusses the severe limitations of this initial approach, and identifies needed model improvements before the approach can adequately respond to the RE RD3 analysis challenge.

  17. DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE

    SciTech Connect (OSTI)

    U. Helwig, W. Boessert

    2003-02-27

    VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

  18. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  19. Program management assessment of Federal Facility Compliance Agreement regarding CAA-40 C.F.R. Part 61, Subpart H at the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    1997-01-01

    An assessment of Los Alamos National Laboratory`s management system related to facility compliance with an element of the Clean Air Act was performed under contract by a team from Northern Arizona University. More specifically, a Federal Facilities Compliance Agreement (FFCA) was established in 1996 to bring the Laboratory into compliance with emissions standards of radionuclides, commonly referred to as Rad/NESHAP. In the fall of 1996, the four-person team of experienced environmental managers evaluated the adequacy of relevant management systems to implement the FFCA provisions. The assessment process utilized multiple procedures including document review, personnel interviews and re-interviews, and facility observations. The management system assessment was completed with a meeting among team members, Laboratory officials and others on November 1, 1996 and preparation of an assessment report.

  20. Design-Build Process for the Research Support Facility (RSF) (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

  1. Research Support Facility - A Model of Super Efficiency (RSF) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This fact sheet published by the National Renewable Energy Laboratory discusses the lab's newest building, the Research Support Facility (RSF). The RSF is a showcase for ultra-efficient workplaces. Various renewable energy and energy efficiency features have been employed so that the building achieves a Leadership in Energy and Environmental Design (LEED) Platinum rating from the U.S. Green Building Council.

  2. FACT SHEET U.S. Department of Energy ARM Aerial Facility G-1 Research Aircraft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility G-1 Research Aircraft The Gulfstream-159 (G-1) twin turboprop aircraft, owned by Battelle Memorial Institute since 1988 and operated by the Pacific Northwest National Laboratory for the U.S. Department of Energy (DOE), serves as an airborne atmospheric research laboratory for DOE and other users. The aircraft can measure a wide range of radiative, aerosol, and cloud properties, as well as collect gas-phase measurements. It is capable of taking measurements at altitudes approaching

  3. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  4. Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program.

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.

    2008-02-20

    The purpose of this document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program, hereafter called 'the Estuary Program'. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows: (1) Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. (2) Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. (3) Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. (4) Maintain the food web to benefit salmonid performance. (5) Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. The goal leads to three primary management questions pertaining to the main focus of the Estuary Program: estuary habitat conservation and restoration. (1) Are the estuary habitat actions achieving the expected biological and environmental performance targets? (2) Are the offsite habitat actions in the estuary improving juvenile salmonid performance and which actions are most effective at addressing the limiting factors preventing achievement of habitat, fish, or wildlife performance objectives? (3) What are the limiting factors or threats in the estuary/ocean preventing the achievement of desired habitat or fish performance objectives? Performance measures for the estuary are monitored indicators that reflect the status of habitat conditions and fish performance, e.g., habitat connectivity, survival, and life history diversity. Performance measures also pertain to implementation and compliance. Such measures are part of the monitoring, research, and action plans in this estuary RME document. Performance targets specific to the estuary were not included in the 2007 draft Biological Opinion.

  5. Sustainability in Existing Federal Buildings | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Buildings & Campuses Sustainability in Existing Federal Buildings Sustainability in Existing Federal Buildings The General Services Administration ...

  6. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    SciTech Connect (OSTI)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  7. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  8. The ARM Climate Research Facility: A Review of Structure and Capabilities

    SciTech Connect (OSTI)

    Mather, James H.; Voyles, Jimmy W.

    2013-03-01

    The Atmospheric Radiation Measurement (ARM) program (www.arm.gov) is a Department of Energy, Office of Science, climate research user facility that provides atmospheric observations from diverse climatic regimes around the world. Use of ARM data is free and available to anyone through the ARM data archive. ARM is approaching 20 years of operations. In recent years, the facility has grown to add two mobile facilities and an aerial facility to its network of fixed-location sites. Over the past year, ARM has enhanced its observational capabilities with a broad array of new instruments at its fixed and mobile sites and the aerial facility. Instruments include scanning millimeter- and centimeter-wavelength radars; water vapor, cloud/aerosol extinction, and Doppler lidars; a suite of aerosol instruments for measuring optical, physical, and chemical properties; instruments including eddy correlation systems to expand measurements of the surface and boundary layer; and aircraft probes for measuring cloud and aerosol properties. Taking full advantage of these instruments will involve the development of complex data products. This work is underway but will benefit from engagement with the broader scientific community. In this article we will describe the current status of the ARM program with an emphasis on developments over the past eight years since ARM was designated a DOE scientific user facility. We will also describe the new measurement capabilities and provide thoughts for how these new measurements can be used to serve the climate research community with an invitation to the community to engage in the development and use of these data products.

  9. Denver Federal Center Solar Park | Open Energy Information

    Open Energy Info (EERE)

    Federal Center Solar Park Jump to: navigation, search Name Denver Federal Center Solar Park Facility Denver Federal Center Sector Solar Facility Type Photovoltaic Owner SunEdison...

  10. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partnersthe U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI designboth for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  11. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet), Integrated Biorefinery Research Facility (IBRF)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operated by the Alliance for Sustainable Energy, LLC. Partnering with Industry to Advance the Bioeconomy Integrated Biorefinery Research Facility pretreatment and enzymatic hydrolysis steps, a key factor in reducing costs. Bioreactors from 10 L to 9,000 L and separation and concentration equipment are housed in the IBRF allowing for biomass conversion processes to be fully integrated. Access to Experts While using the IBRF, industry partners have access to NREL's world-renowned experts, process

  13. DOE/SC-ARM-10-006.2 ARM Climate Research Facility Instrumentation Status and Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Instrumentation Status and Information JW Voyles February 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  14. DOE/SC-ARM-10-006.4 ARM Climate Research Facility Instrumentation Status and Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 ARM Climate Research Facility Instrumentation Status and Information JW Voyles April 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  15. DOE/SC-ARM-13-004 Charter for the ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Charter for the ARM Climate Research Facility Science Board March 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

  16. DOE/SC-ARM-14-015 ARM Climate Research Facility DMF Quarterly Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 ARM Climate Research Facility DMF Quarterly Report NN Keck April 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

  17. Coordination of Federal Authorizations for Electric Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination of Federal Authorizations for Electric Transmission Facilities: Federal Register Notice Volume 73, No. 183 - Sep. 19, 2008 Coordination of Federal Authorizations for...

  18. Memorandum of Understanding Regarding Coordination in Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regarding Coordination in Federal Agency Review of Electric Transmission Facilities on Federal Land, October 23, 2009 Memorandum of Understanding Regarding Coordination in Federal...

  19. Laboratories and Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP locale has historically had a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning this quarter, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original and new instrumentation made available through the American Recovery and Reinvestment Act (ARRA). The central facility and 4 extended facilities will remain, but there will be up to 16 surface new characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place within the next 12 months. The AMF continues its 20-month deployment in Graciosa Island, Azores, Portugal, that started May 1, 2009. The AMF will also have additional observational capabilities within the next 12 months. Users can participate in field experiments at the sites and mobile facility, or they can participate remotely. Therefore, a variety of mechanisms are provided to users to access site information. Users who have immediate (real-time) needs for data access can request a research account on the local site data systems. This access is particularly useful to users for quick decisions in executing time-dependent activities associated with field campaigns at the fixed sites and mobile facility locations. The eight computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the AMF; and the DMF at PNNL. However, users are warned that the data provided at the time of collection have not been fully screened for quality and therefore are not considered to be official ACRF data. Hence, these accounts are considered to be part of the facility activities associated with field campaign activities, and users are tracked. In addition, users who visit sites can connect their computer or instrument to an ACRF site data system network, which requires an on-site device account. Remote (off-site) users can also have remote access to any ACRF instrument or computer system at any ACRF site, which requires an off-site device account. These accounts are also managed and tracked.

  1. AN AGE-OLD PHENOMENON; A COMPLEX CHALLENGE Sandia's Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FALL* 2000 AN AGE-OLD PHENOMENON; A COMPLEX CHALLENGE Sandia's Combustion Research Facility A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 3 ALSO: Sandia Red Team Hacks All Computer Defenses New Power Company Software Helps Keep Nation's Power On S A N D I A T E C H N O L O G Y ON THE COVER: For the cover: The combustion chemistry of a blue methane flame is studied using a molecular-beam mass spectrometer. The toothlike quartz probe provides input to the spectrometer. (Photo by

  2. TYPE OF OPERATION R Research & Development T& Facility Type

    Office of Legacy Management (LM)

    --____ R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal/Storage a Research Organization a Government 0 Other Sponsored i F[fa' tty ------__------__ I Prime 5 Subcontractor 0 Purchase Order a Other information (i.e., cost + fixed fee, unit p CgNTRACTING PERIOD: L.&G , PX& & cx LFkoL ~~~~~~~~~----------_ __ _______ OWNERSH; P: AEC/MED AEC/MED GOVT GOVT

  3. Data Quality Assessment and Control for the ARM Climate Research Facility

    SciTech Connect (OSTI)

    Peppler, R

    2012-06-26

    The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

  4. Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL

    SciTech Connect (OSTI)

    M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team

    2012-09-19

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.

  5. Better Buildings Federal Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Federal Award Winners Better Buildings Federal Award Winners New Mexico Senator Martin Heinrich (right) watches FEMP Director Tim Unruh (middle) present the 2012 Better Buildings Federal Award to Steve Holland (left) of the U.S. Department of Interior’s Brackish Groundwater National Desalination Research Facility. New Mexico Senator Martin Heinrich (right) watches FEMP Director Tim Unruh (middle) present the 2012 Better Buildings Federal Award to Steve Holland (left) of the

  6. DOE G 226.1-1 Federal Line Management Oversight of Department of Energy Nuclear Facilities NNSA CRADs

    Office of Environmental Management (EM)

    CONDUCT OF OPERATIONS (OP) OBJECTIVE OP.1: The Site Office has oversight processes and procedures in place and has ensured that an effective and fully compliant conduct of operations (COO) safety management program (SMP) has been implemented at the site. CRITERIA 1. The Site Office has developed and implemented processes and procedures to effectively oversee contractor performance in this functional area (DOE O 226.1A; NA-1 SD 226.1A). 2. For each nuclear facility, the Site Contractor has

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  9. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    SciTech Connect (OSTI)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Survey and analysis of materials research and development at selected federal laboratories

    SciTech Connect (OSTI)

    Reed, J.E.; Fink, C.R.

    1984-04-01

    This document presents the results of an effort to transfer existing, but relatively unknown, materials R and D from selected federal laboratories to industry. More specifically, recent materials-related work at seven federal laboratories potentially applicable to improving process energy efficiency and overall productiviy in six energy-intensive manufacturing industries was evaluated, catalogued, and distributed to industry representatives to gauge their reaction. Laboratories surveyed include: Air Force Wright Aeronautical Laboratories Material Laboratory (AFWAL). Pacific Northwest Laboratory (PNL), National Aeronautics and Space Administration Marshall Flight Center (NASA Marshall), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Idaho National Engineering Laboratory (INEL), and Jet Propulsion Laboratory (JPL). Industries included in the effort are: aluminum, cement, paper and allied products, petroleum, steel and textiles.

  4. Towards an Experimental Testbed Facility for Cyber-Physical Security Research

    SciTech Connect (OSTI)

    Edgar, Thomas W.; Manz, David O.; Carroll, Thomas E.

    2012-01-07

    Cyber-Physical Systems (CPSs) are under great scrutiny due to large Smart Grid investments and recent high profile security vulnerabilities and attacks. Research into improved security technologies, communication models, and emergent behavior is necessary to protect these systems from sophisticated adversaries and new risks posed by the convergence of CPSs with IT equipment. However, cyber-physical security research is limited by the lack of access to universal cyber-physical testbed facilities that permit flexible, high-fidelity experiments. This paper presents a remotely-configurable and community-accessible testbed design that integrates elements from the virtual, simulated, and physical environments. Fusing data between the three environments enables the creation of realistic and scalable environments where new functionality and ideas can be exercised. This novel design will enable the research community to analyze and evaluate the security of current environments and design future, secure, cyber-physical technologies.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) that the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1-September 30, 2010, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This fourth quarter comprises a total of 2208 possible hours for the fixed and mobile sites. The average of the fixed sites exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has historically had a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning in the second quarter of FY2010, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original instrumentation and new instrumentation made available through the American Recovery and Reinvestment Act of 2009 (ARRA). The Central Facility and 4 extended facilities will remain, but there will be up to 12 new surface characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The transition to the smaller footprint is ongoing through this quarter. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place by the end of calendar year 2011. AMF1 continues its 20-month deployment in Graciosa Island, the Azores, Portugal, that began on May 1, 2009. The AMF will also have additional observational capabilities by the end of 2011. The second ARM Mobile Facility (AMF2) was deployed this quarter to Steamboat Springs, Colorado, in support of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX). The first field deployment of the second ARM Mobile Facility will be used to validate ARM-developed algorithms that convert the remote sensing measurements to cloud properties for liquid and mixed phase clouds. Although AMF2 is being set up this quarter, the official start date of the field campaign is not until November 1, 2010. This quarterly report provides the cumulative numbers of scientific user accounts by site for the period October 1, 2009-September 30, 2010.

  6. A guide to research facilities at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The guide is divided into two parts. Topping the pages are descriptions of laboratories at NREL that provide sophisticated experimental equipment, testing capabilities, or processes that may not be available in the private sector. Scientific categories are designated at the top of the pages in blue; individual laboratory descriptions follow alphabetically, along with the names and phone numbers of the laboratory managers. In blue boxes at the bottom of the pages are articles about NREL, our technology transfer program, and our facilities, as well as guidelines for students, researchers, and industrial collaborators who wish to use them. A list of key contacts and a map of the campus follows the laboratory descriptions.

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP Central Facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF in Niger. This report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2006 - December 31, 2006. The U.S. Department of Energy requires national user facilities to report facility use by total visitor days-broken down by institution type, gender, race, citizenship, visitor role, visit purpose, and facility-for actual visitors and for active user research computer accounts. During this reporting period, the ACRF Archive did not collect data on user characteristics in this way. Work is under way to collect and report these data. Table 2 shows the summary of cumulative users for the period January 1, 2006 - December 31, 2006. For the first quarter of FY 2007, the overall number of users is up from the last reporting period. The historical data show that there is an apparent relationship between the total number of users and the 'size' of field campaigns, called Intensive Operation Periods (IOPs): larger IOPs draw more of the site facility resources, which are reflected by the number of site visits and site visit days, research accounts, and device accounts. These types of users typically collect and analyze data in near-real time for a site-specific IOP that is in progress. However, the Archive accounts represent persistent (year-to-year) ACRF data users that often mine from the entire collection of ACRF data, which mostly includes routine data from the fixed and mobile sites, as well as cumulative IOP data sets. Archive data users continue to show a steady growth, which is independent of the size of IOPs. For this quarter, the number of Archive data user accounts was 961, the highest since record-keeping began. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Although the AMF is not officially collecting data this quarter, personnel are regularly involved with teardown, packing, hipping, unpacking, setup, and maintenance activities, so they are included in the safety statistics. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period October 1 - December 31, 2006. There were no recordable or lost workdays or incidents for the first quarter of FY 2007.

  8. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  9. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  10. Ground Broken for New Job-Creating Accelerator Research Facility at DOE’s Fermi National Accelerator Laboratory in Illinois

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Today, ground was broken for a new accelerator research facility being built at the Department of Energy’s (DOE’s) Fermi National Accelerator Laboratory (Fermilab) in Batavia,...

  11. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  12. The Design-Build Process for the Research Support Facility (RSF), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design-Build Process for the Research Support Facility An in-depth look at how the U.S. Department of Energy and the National Renewable Energy Laboratory used a performance-based design-build contract process to build one of the most energy efficient office buildings in the world. Table of Contents The Design-Build Process for the Research Support Facility | 1 Table of Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  13. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities /collaboration/_assets/images/icon-collaboration.jpg User Facilities A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities.

  14. Federal Register

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    65541 Vol. 79, No. 214 Wednesday, November 5, 2014 NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2014-0238] RIN 3150-AJ48 Definition of a Utilization Facility AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule; correction. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is correcting the docket identification number and Regulation Identifier Number (RIN) for a Direct Final Rule published in the Federal Register (FR) on October 17, 2014, to amend the NRC's regulations to

  15. Federal Register

    National Nuclear Security Administration (NNSA)

    54 Federal Register / Vol. 69, No. 143 / Tuesday, July 27, 2004 / Notices accordance with the comprehensive set of DOE requirements and applicable regulatory requirements that have been established to protect public health and the environment. These requirements encompass a wide variety of areas, including radiation protection, facility design criteria, fire protection, emergency preparedness and response, and operational safety requirements. * Cylinder management activities will be conducted in

  16. Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring and Evaluation FY08 Annual Report.

    SciTech Connect (OSTI)

    Johnson, GE; Diefenderfer, HL

    2008-09-29

    The Estuary/Ocean Subgroup (EOS) is part of the research, monitoring, and evaluation (RME) effort that the Action Agencies (Bonneville Power Administration (BPA), U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to obligations arising from the Endangered Species Act as applied to operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In fiscal year 2008 (FY08), EOS project accomplishments included (1) subgroup meetings; (2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; (3) project management via BPA's project tracking system, Pisces; (4) quarterly project status reports; and (5) a major revision to the Estuary RME document and its subsequent regional release (new version January 2008). Many of the estuary RME recommendations in this document were incorporated into the Biological Opinion on FCRPS operations (May 2008). In summary, the FY08 EOS project resulted in expanded, substantive coordination with other regional RME forums, a new version of the federal Estuary RME program document, and implementation coordination. This annual report is a FY08 deliverable for the project titled Facilitation of the Estuary/Ocean Subgroup.

  17. Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY08 Annual Report

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.

    2008-09-29

    The Estuary/Ocean Subgroup (EOS) is part of the research, monitoring, and evaluation (RME) effort that the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to obligations arising from the Endangered Species Act as applied to operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In fiscal year 2008 (FY08), EOS project accomplishments included 1) subgroup meetings; 2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; 3) project management via the project tracking system, Pisces; 4) quarterly project status reports; and 5) a major revision to the Estuary RME document and its subsequent regional release (new version January 2008). Many of the estuary RME recommendations in this document were incorporated into the Biological Opinion on hydrosystem operations (May 2008). In summary, the FY08 EOS project resulted in expanded, substantive coordination with other regional RME forums, a new version of the federal Estuary RME program document, and implementation coordination. This annual report is a FY08 deliverable for the project titled Facilitation of the Estuary/Ocean Subgroup.

  18. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    SciTech Connect (OSTI)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  19. Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY09 Annual Report

    SciTech Connect (OSTI)

    Johnson, Gary E.

    2009-10-22

    This document is the annual report for fiscal year 2009 (FY09) for the project called Facilitation of the Estuary/Ocean Subgroup (EOS). The EOS is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers [Corps or USACE], U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS).

  20. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period October 1, 2007 - September 30, 2008. Table 2 shows the summary of cumulative users for the period October 1, 2007 - September 30, 2008. For the fourth quarter of FY 2008, the overall number of users is down substantially (about 30%) from last quarter. Most of this decrease resulted from a reduction in the ACRF Infrastructure users (e.g., site visits, research accounts, on-site device accounts, etc.) associated with the AMF China deployment. While users had easy access to the previous AMF deployment in Germany that resulted in all-time high user statistics, physical and remote access to on-site accounts are extremely limited for the AMF deployment in China. Furthermore, AMF data have not yet been released from China to the Data Management Facility for processing, which affects Archive user statistics. However, Archive users are only down about 10% from last quarter. Another reason for the apparent reduction in Archive users is that data from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), a major field campaign conducted on the North Slope of Alaska, are not yet available to users. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period July 1 - September 30, 2008. There were no incidents this reporting period.

  1. Status and Plans for the National Spherical Torus Experimental Research Facility

    SciTech Connect (OSTI)

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  2. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period April 1, 2007 - March 31, 2008. Table 2 shows the summary of cumulative users for the period April 1, 2007 - March 31, 2007. For the second quarter of FY 2008, the overall number of users was nearly as high as the last reporting period, in which a new record high for number of users was established. This quarter, a new record high was established for the number of user days, particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany, as well as major field campaigns at the NSA and SGP sites. This quarter, 37% of the Archive users are ARM science-funded principal investigators and 23% of all other facility users are either ARM science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period January 1 - March 31, 2008. There were no incidents this reporting period.

  3. Coordination of Federal Transmission Permitting on Federal Lands (216(h)) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Planning » Coordination of Federal Transmission Permitting on Federal Lands (216(h)) Coordination of Federal Transmission Permitting on Federal Lands (216(h)) On October 23, 2009, the Department of Energy and eight other Federal agencies entered into a Memorandum of Understanding (MOU) to improve coordination among project applicants, federal agencies, states and tribes involved in the siting and permitting process for electric transmission facilities on Federal land.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 ? 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The first quarter comprises a total of 2,208 hours. The average exceeded their goal this quarter.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  9. Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids

    SciTech Connect (OSTI)

    L. Zakharov, J. Li and Y. Wu

    2010-11-18

    The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

  10. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect (OSTI)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  11. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  12. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF, currently in Germany. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Due to the similarity of ACRF NSA data streams, and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2007 - December 31, 2007. Table 2 shows the summary of cumulative users for the period January 1, 2007 - December 31, 2007. For the first quarter of FY 2008, the overall number of users was up significantly from the last reporting period. For the fourth consecutive reporting period, a record high number of Archive users was recorded. In addition, the number of visitors and visitor days set a new record this reporting period particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany. It is interesting to note this quarter that 22% (a slight decrease from last quarter) of the Archive users are ARM Science funded principal investigators and 35% (the same as last quarter) of all other facility users are either ARM Science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period October 1 - December 31, 2007. There were no incidents this reporting period.

  13. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  14. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-10-01

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  15. New Course Teaches Best Practices for Water Management for Federal...

    Energy Savers [EERE]

    Course Teaches Best Practices for Water Management for Federal Facilities New Course Teaches Best Practices for Water Management for Federal Facilities May 8, 2014 - 11:13am ...

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2010, for the fixed sites. Because the AMFs operate episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This first quarter comprises a total of 2,208 possible hours for the fixed sites and the AMF1 and 1,464 possible hours for the AMF2. The average of the fixed sites exceeded our goal this quarter. The AMF1 has essentially completed its mission and is shutting down to pack up for its next deployment to India. Although all the raw data from the operational instruments are in the Archive for the AMF2, only the processed data are tabulated. Approximately half of the AMF2 instruments have data that was fully processed, resulting in the 46% of all possible data made available to users through the Archive for this first quarter. Typically, raw data is not made available to users unless specifically requested.

  17. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    DL Sisterson

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

  20. Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.