Powered by Deep Web Technologies
Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Motor Vehicle Record Procedure Objective  

E-Print Network [OSTI]

Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

Kirschner, Denise

2

Hybrid vehicle motor alignment  

DOE Patents [OSTI]

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

3

Stabilizer for motor vehicle  

SciTech Connect (OSTI)

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

4

48669Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Proposed Rules Type of motor vehicle  

E-Print Network [OSTI]

vehicle Service Brake Systems Emergency brake sys- tems: applica- tion and brak- ing distance in feet from initial speed of 20 mph Braking force as a percent- age of gross vehicle or combination weight mph B. Property-carrying vehicles: (1) Single unit vehicles having a manufacturer's GVWR of 10

5

Thermoelectric generator for motor vehicle  

DOE Patents [OSTI]

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

6

Thermoelectric generator for motor vehicle  

SciTech Connect (OSTI)

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

7

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

8

Commercial Motor Vehicle Brake Assessment Tools  

E-Print Network [OSTI]

Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ­ Passing score: BE43.5 · Enforcement tool for only 3 years. · Based solely on brake Brake Research · CMVRTC research built on these enforcement tools ­ Correlation Study ­ Level-1 / PBBT

9

MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS  

E-Print Network [OSTI]

MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS Observe Speed Limits and Traffic Laws Allow - Employees who drive Institute or privately owned vehicles on Institute business must possess and carry person. Insurance - Employees who operate their privately owned vehicles on Institute business shall

10

Physical context management for a motor vehicle  

DOE Patents [OSTI]

Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

Dixon, Kevin R. (Albuquerque, NM); Forsythe, James C. (Sandia Park, NM); Lippitt, Carl E. (Albuquerque, NM); Lippitt, legal representative, Lois Diane (Albuquerque, NM)

2009-10-27T23:59:59.000Z

11

Electrical system for a motor vehicle  

DOE Patents [OSTI]

In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

Tamor, M.A.

1999-07-20T23:59:59.000Z

12

Electrical system for a motor vehicle  

DOE Patents [OSTI]

In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

Tamor, Michael Alan (Toledo, OH)

1999-01-01T23:59:59.000Z

13

Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates  

E-Print Network [OSTI]

California reformulated gasoline on motor vehicle emissions.Impact of California Reformulated Gasoline OIl Motor Vehicleprogress, increased vehicle Gasoline Motor on Vehicle travel

Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

1999-01-01T23:59:59.000Z

14

Toxicological and performance aspects of oxygenated motor vehicle fuels  

SciTech Connect (OSTI)

At the request of the Environmental Protection Agency, the committee reviewed a draft of a federal report that assesses the effects of oxygenated fuels on public health, air quality, fuel economy, engine performance, and water quality. The committee determined that much of the federal report adequately represents what is known about the effects of methyl tertiary-butyl ether (MTBE) -- the most commonly used additive in the federal oxygenated-fuels program -- on health, the environment, and motor vehicles. MTBE, a chemical added to gasoline to reduce carbon monoxide pollution, appears not to pose a substantial human health risk, but more-definitive data are needed to assess short-term health effects and to determine whether this additive is effective in reducing carbon monoxide pollution in cold environments.

NONE

1996-12-31T23:59:59.000Z

15

Electric machine for hybrid motor vehicle  

DOE Patents [OSTI]

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

Hsu, John Sheungchun (Oak Ridge, TN)

2007-09-18T23:59:59.000Z

16

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

17

Motor Vehicle Administration 6601 Ritchie Highway, N.E.  

E-Print Network [OSTI]

Motor Vehicle Administration 6601 Ritchie Highway, N.E. Glen Burnie, Maryland 21062 For more-Owner's Signature Vehicle Information Year Make Sticker No. Title No. Tag No. Vehicle Identification Number Car Multi-purpose vehicle Truck 1 ton or less Motorcycle Fees: Non Logo Organizational Tags: $15

Miami, University of

18

Summary of electric vehicle dc motor-controller tests  

SciTech Connect (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

19

Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity  

E-Print Network [OSTI]

California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

Kirchstetter, Thomas; Singer, Brett; Harley, Robert

1999-01-01T23:59:59.000Z

20

Vehicle Rental Procedure Outline the procedure for renting motor pool vehicles at University of Michigan (U-M).  

E-Print Network [OSTI]

Vehicle Rental Procedure Objective Outline the procedure for renting motor pool vehicles at University of Michigan (U-M). Procedure 1. All policies pertaining to U-M vehicles also pertain to motor pool rental vehicles. 2. Motor pool vehicles can be reserved for a period of a few hours up to one year. 3

Kirschner, Denise

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels and Advanced Vehicles Data Center - Federal...  

Open Energy Info (EERE)

Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and...

22

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2  

E-Print Network [OSTI]

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances motor, power presizing, driving cycle. Nomenclature EV = Electric Vehicle; V = Vehicle speed; Vb

Paris-Sud XI, Université de

23

MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor  

E-Print Network [OSTI]

In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

Meenen, Jordan N

2010-01-01T23:59:59.000Z

24

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles  

E-Print Network [OSTI]

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional

Cohen, Ronald C.

25

Fuel-Based On-Road Motor Vehicle Emissions Inventory  

E-Print Network [OSTI]

Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S of Denver 2101 E. Wesley Ave. Denver, CO 80208 #12;Mobile Source Emissions Inventory Methods MOBILE emission factors -g/mile uncertain Vehicle miles traveled -very uncertain Speed correction factors Inventory

Denver, University of

26

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network [OSTI]

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid cascaded H-bridge multilevel converter, DC voltage balance control, multilevel motor drive, electric

Tolbert, Leon M.

27

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

28

EcoCAR Vehicles Get Put to the Test at General Motors' Proving...  

Broader source: Energy.gov (indexed) [DOE]

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia...

29

REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE FORM Issued By: Risk & Safety 20 Oct 2009 REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE  

E-Print Network [OSTI]

REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE FORM Issued By: Risk & Safety 20 Oct 2009 REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE INSTRUCTIONS: Complete form, attach a photocopy of your drivers University Vehicle License Plate# ____________currently under the control of the Department

Bolch, Tobias

30

MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) Fleet Services to conduct a motor vehicle record check to  

E-Print Network [OSTI]

MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) Fleet Services to conduct a motor vehicle record check to verify eligibility to operate University of Michigan (U-M) vehicles. Form Instructions: Complete each section of the form Print and fax

Kirschner, Denise

31

On-Road Motor Vehicle Emissions Measurements  

E-Print Network [OSTI]

. Pokharel, Gary A. Bishop and Donald H. Stedman Department of Chemistry and Biochemistry University 1990 1991 1992 1993 1994 1995 1996 1997 1998 Model Year FailureRate(%) Gasoline Vehicles Natural Gas Bi/day382252Diesel trucks Tons/day2730220Gasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel

Denver, University of

32

Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization  

E-Print Network [OSTI]

Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization Farid Khoucha1 a sensorless DSVM-DTC of an induction motor that propels an electrical vehicle or a hybrid one. The drive uses, as demonstrated in experimental results. Keywords: Electric vehicle (EV), induction motor, Discrete Space Vector

Paris-Sud XI, Universit de

33

Control of a Fuel-Cell Powered DC Electric Vehicle Motor  

E-Print Network [OSTI]

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models and Control Strategies Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models

Skogestad, Sigurd

34

Design and Control of the Induction Motor Propulsion of an Electric Vehicle  

E-Print Network [OSTI]

Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

Brest, Université de

35

In Nevada, during 2008, about 16,000 motor vehicles were stolen.  

E-Print Network [OSTI]

-propelled vehicle that runs on land surfaces and not on rails (FBI, 2008). Nationally, nearly 1 million motor vehicles were stolen in 2008, totaling over $6 billion in losses (FBI, 2008). Efforts to control motor 1994, the national rate of motor vehicle theft has remained relatively stable (see Figure 1) (FBI, 2008

Hemmers, Oliver

36

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network [OSTI]

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

37

Alternate Fuel Vehicle Recommendations -New and Used Vehicles The University of Central Florida is now required to meet federal regulations  

E-Print Network [OSTI]

Alternate Fuel Vehicle Recommendations - New and Used Vehicles The University of Central Florida is now required to meet federal regulations concerning alternate fuel vehicle purchases is known as a flex fuel vehicle, or a vehicle that is capable of burning ethanol or regular unleaded

Wu, Shin-Tson

38

Method for controlling a motor vehicle powertrain  

DOE Patents [OSTI]

A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

Burba, Joseph C. (Ypsilanti, MI); Landman, Ronald G. (Ypsilanti, MI); Patil, Prabhakar B. (Detroit, MI); Reitz, Graydon A. (Farmington Hills, MI)

1990-01-01T23:59:59.000Z

39

Method for controlling a motor vehicle powertrain  

DOE Patents [OSTI]

A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

1990-05-22T23:59:59.000Z

40

Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems in California  

E-Print Network [OSTI]

PWP-092 Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems emissions, and petroleum use from motor vehicles, fuel cell vehicles (FCVs) could also act as distributed Fuel Cell Systems in California January 31, 2002 Dr. Timothy E. Lipman Ms. Jennifer L. Edwards Prof

Kammen, Daniel M.

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PWM Inverter-Fed Induction Motor-Based Electrical Vehicles Fault-Tolerant Control  

E-Print Network [OSTI]

PWM Inverter-Fed Induction Motor-Based Electrical Vehicles Fault-Tolerant Control Bekhera Tabbache proposes a fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles and simulations on an electric vehicle are carried-out using a European urban driving cycle to assess the FTC

Paris-Sud XI, Universit de

42

SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2  

E-Print Network [OSTI]

SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2 , A. Kheloui2 , M torque control of an induction motor based electric vehicle. In this case, stator flux and rotational for an electric vehicle control. Keywords: Sensorless Direct Torque Control (SDTC), Extented Kalman Filter (EKF

Paris-Sud XI, Universit de

43

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles  

E-Print Network [OSTI]

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles B. NOMENCLATURE EV = Electric vehicle; IM = Induction motor; IFOC = Indirect field oriented control; PWM= Pulse force; Fcr = Climbing and downgrade resistance force; Pv = Vehicle driving power; J = Total inertia

Boyer, Edmond

44

Motor Vehicle Rental Exemption Certificate THIS EXEMPTION CERTIFICATE IS NOT VALID FOR TAX-FREE REGISTRATION.  

E-Print Network [OSTI]

Motor Vehicle Rental Exemption Certificate THIS EXEMPTION CERTIFICATE IS NOT VALID FOR TAX-FREE REGISTRATION. THIS EXEMPTION CERTIFICATE MUST BE ATTACHED TO THE RENTAL CONTRACT. Make of Vehicle Motor or Vehicle Identification Number Year Model Body Style License Number The undersigned claims exemption from

Behmer, Spencer T.

45

Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles  

E-Print Network [OSTI]

magnet synchronous machines (PMSM) are provided with advantages of small size, light weight, and high power density, therefore PMSM are primary choice as traction motors in hybrid vehicles. In addition hybrid vehicles use PMSM [Kassakian , 2000]. However, interior permanent magnet synchronous motor (IPMSM

Mi, Chunting "Chris"

46

Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

Narumanchi, S.

2014-09-01T23:59:59.000Z

47

Shock absorber mount assembly for motor vehicle suspension  

SciTech Connect (OSTI)

A mount assembly is described for mounting a shock absorber/coil assembly in a motor vehicle suspension, the shock absorber/coil assembly including a fluid cylinder, a piston rod movable into and out of the cylinder, a vibration isolator mounted on an end of the piston rod, and a coil spring disposed around the fluid cylinder and the piston rod. The mount assembly consists of: a retainer adapted to be mounted on the vibration isolator and having an attachment portion adapted for attachment to a motor vehicle frame; a spring seat adapted to engage an end of the coil spring; and a thrust bearing interposed between the attachment portion of the retainer and the spring seat and adapted to extend around the vibration isolator, the thrust bearing including a pair of first and second races and a plurality of balls rotatably disposed between the first and second races, the first race engaging the retainer and the second race engaging the spring seat.

Kubo, K.

1987-09-01T23:59:59.000Z

48

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2  

E-Print Network [OSTI]

1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A DATE * mjkleeman@ucdavis.edu, (530)-752-8386 ABSTRACT Carbonyls from gasoline powered light

49

Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1,2  

E-Print Network [OSTI]

Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1://www.lbms.fr Keywords Electric Vehicle (EV), Induction motor, Sensor fault, Fault-tolerant control (FTC), Direct torque a reconfigurable direct torque control of an induction motor-based electric vehicle. The proposed strategy concerns

Paris-Sud XI, Universit de

50

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

matter from on-road gasoline and diesel vehicles.D.H. , Chase, R.E. , 1999b. Gasoline vehicle particle sizeFactors for On-Road Gasoline and Diesel Motor Vehicles

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

51

Analyzing spatial-temporal patterns of motor vehicle crashes using GIS: a case study in Dallas  

E-Print Network [OSTI]

This paper uses GIS to analyze the characteristics of temporal and spatial distributions of motor vehicle crashes. These characteristics include that traffic accidents are most likely to occur in the afternoon "rush hour" (4:00 - 6:00PM...

Lu, Bing

2003-01-01T23:59:59.000Z

52

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect (OSTI)

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

53

Fifth annual report to congress. Federal alternative motor fuels programs  

SciTech Connect (OSTI)

This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

NONE

1996-09-01T23:59:59.000Z

54

An Exploration of Bicycle-Motor Vehicle Crash Types and Causes in Portland-Metro, Oregon  

E-Print Network [OSTI]

An Exploration of Bicycle-Motor Vehicle Crash Types and Causes in Portland-Metro, Oregon by Kouros. This research project investigates ways to improve traffic safety, focusing specifically on bicycle- motor of BMV crashes resulted in fatal injury and 127 of resulted in incapacitating injury. Each bicycle crash

Bertini, Robert L.

55

Data Needs for Evolving Motor Vehicle Emission Modeling Approaches  

E-Print Network [OSTI]

model was originally developed by the TransportationSystems Center of the USDepartment Transportationto support vehicle of energy

Guensler, Randall

1993-01-01T23:59:59.000Z

56

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect (OSTI)

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

57

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents [OSTI]

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

58

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

SciTech Connect (OSTI)

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todays large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldors motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

59

Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking  

E-Print Network [OSTI]

mounted PM synchronous motor (SPMSM) is developed in this paper. Due to the high conductivity of the rare of PM Motors in Hybrid Vehicle Applications Taking into Account Eddy Current Loss in Magnets Xiaofeng, University of Michigan-Dearborn, mi@ieee.org Abstract Permanent Magnet (PM) Motors are popular choices

Mi, Chunting "Chris"

60

MOTOR VEHICLE (Pursuant to RSA 260:14)  

E-Print Network [OSTI]

permitted pursuant to RSA 260:14, V (a ), other than for bulk distribution for surveys, marketing/I.D. #: _________________________________ Vehicle Identification #: _________________________________ Last Known Address/Town _______________________________ Other Identification Information: ________________________ ***Reverse Side Must Be Completed Before

New Hampshire, University of

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith  

E-Print Network [OSTI]

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Introduction Research in fuel cells receives currently a lot of interest. Fuel cells can be used, in different. However, the dynamics of fuel cells has received comparatively less attention. Control of fuel cells

Skogestad, Sigurd

62

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network [OSTI]

in order to bring the price of oil closer to its marginal social cost. There is in fact a long historyUS military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi l e i n f o Article history: Received 7 May 2007 Accepted 3 March 2008 Available online 21 April

Murphy, James J.

63

Final report for measurement of primary particulate matter emissions from light-duty motor vehicles  

SciTech Connect (OSTI)

This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

1998-12-31T23:59:59.000Z

64

Impact of New Federal Efficiency Performance Standards on the Industrial Motor Marketplace  

E-Print Network [OSTI]

Impact of New Federal Efficiency Performance Standards on the Industrial Motor Marketplace R. Neal Elliott, Ph.D., P.E. Associate Director for Research American Council for an Energy-Efficient Economy Washington, DC ABSTRACT.... As noted above, beginning in the 1980's, the National Electrical Manufacturers' Association (NEMA) began including energy efficiency labeling requirements in its major stand MG-1. The efficiencies were based upon the Institute of Electrical...

Elliott, R. N.

65

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

SciTech Connect (OSTI)

Per Executive Order 13031, Federal Alternative Fueled Vehicle Leadership, the U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

66

Vehicle Technologies Office: Federal Laboratory Consortium Excellence in  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReport |MotorsReportReadinessTechnology

67

Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet  

SciTech Connect (OSTI)

Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

2014-05-01T23:59:59.000Z

68

Texas A&M AgriLife Research Procedures 24.01.01.A0.02 Motor Vehicle Accident Reports  

E-Print Network [OSTI]

Texas A&M AgriLife Research Procedures 24.01.01.A0.02 Motor Vehicle Accident Reports Approved Texas A&M AgriLife Research Procedures 24.01.01.A0.02 Motor Vehicle Accident Reports Page 1 of 1­insurance plan. Employees are responsible for reporting vehicle accidents within 24 hours. REASON FOR PROCEDURE

69

Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.02 Motor Vehicle Accident Reports  

E-Print Network [OSTI]

Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.02 Motor Vehicle Accident Reports 25, 2014 Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.02 Motor Vehicle Accident under a system­wide self­insurance plan. Employees are responsible for reporting vehicle accidents

70

Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey????????????????????????????  

E-Print Network [OSTI]

49: Motorized Two-wheeler / Motorcycle Use vs. Motorized98 Table 50: Motorized Two-wheeler / Motorcycle Use vs.Motorcycle Ownership 98 Table 51: Motorized Two-

Ni, Jason

2008-01-01T23:59:59.000Z

71

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

72

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

73

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

74

Propulsion system for a motor vehicle using a bidirectional energy converter  

DOE Patents [OSTI]

A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

1999-01-01T23:59:59.000Z

75

A permit is required for ALL motorized vehicles parking on the Vanderbilt University Campus. Motorcycles, motorized bicycles, motor scooters and mopeds are  

E-Print Network [OSTI]

. Motorcycles, motorized bicycles, motor scooters and mopeds are required to display "U" permits. The cost. Motorcycle, motorized bicycle, motor scooter and moped parking areas can be found on the parking map (http://www.vanderbilt.edu/parking and click on "Maps") as designated by the motorcycle symbols. Parking is authorized only in spaces marked

Simaan, Nabil

76

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop  

E-Print Network [OSTI]

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop@du.edu ABSTRACT In 1993, on-road emissions in Continental Europe showed a pronounced South/North declining gradient for CO, HC and NO fuel specific emissions (gm/kg). Emissions in Hamburg and Rotterdam were

Denver, University of

77

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect (OSTI)

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

78

PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

Staunton, R.H.

2004-10-11T23:59:59.000Z

79

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

80

EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan  

Broader source: Energy.gov [DOE]

DOEs Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States consumption of petroleum. This Proposed Action will also meaningfully assist in the nations economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wildfire Suppression Equipment Engines CSFS has placed 140 federal excess property vehicles located throughout the state. Our  

E-Print Network [OSTI]

Wildfire Suppression Equipment Engines ­ CSFS has placed 140 federal excess property vehicles fire engines and provides all major maintenance. The all-wheel drive (4x4 and 6x6) engines are equipped equipment such as hose, nozzles, and hand tools. These engines are inspected annually and updated

82

Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

the pump from the sale of motor fuels. Because electric vehicles (EVs) do not refuel at pumps that collect state and Federal highway taxes, they do not contribute to the upkeep of...

83

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)  

Broader source: Energy.gov [DOE]

Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

84

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

SciTech Connect (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

85

Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

86

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape08elrefaie...

87

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape013elrefaie2010o...

88

Motors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy, OfficeMotors Sign In

89

Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,  

E-Print Network [OSTI]

Motor Vehicle Fleet Emissions by OP-FTIR K I M B E R L Y S . B R A D L E Y , K E V I N B . B R O O concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing

Denver, University of

90

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

91

Vehicle Technologies Office Merit Review 2014: Scalable Non-Rare Earth Motor Development  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scalable non...

92

Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air  

E-Print Network [OSTI]

, Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety system. The Smart Sign used a combination of words, colors, and graphics to connect with its audience

Denver, University of

93

Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

94

Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models  

E-Print Network [OSTI]

vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners...

Schultz, Grant George

2004-09-30T23:59:59.000Z

95

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Energy Savers [EERE]

DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salasoo.pdf More Documents & Publications Scalable, Low-Cost, High...

96

Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area  

SciTech Connect (OSTI)

Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

2004-06-14T23:59:59.000Z

97

Department of Mechanical Engineering Spring 2011 General Motors 2 Variable Height Vehicle Air Dam  

E-Print Network [OSTI]

economy and aerodynamic drag requirements. Therefore we are required to use our creativity and figure out to increase the fuel economy of a particular vehicle at highway speeds. The dam must successfully divert air existing products and patents · Brainstorming, concept generation, refinement and selection · NO SITE VISIT

Demirel, Melik C.

98

A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment  

SciTech Connect (OSTI)

An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

Ayers, Curtis William [ORNL; Hsu, John S [ORNL; Lowe, Kirk T [ORNL; Conklin, Jim [ORNL

2007-01-01T23:59:59.000Z

99

Electric Motors  

Broader source: Energy.gov [DOE]

Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

100

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

102

At the new General Motors, we are passionate about designing, building and selling the world's best vehicles. This vision unites us as a team each and every day and is the hallmark  

E-Print Network [OSTI]

electrification with advancements in batteries, electric motors and power controls. The GM team is also working vehicles. This vision unites us as a team each and every day and is the hallmark of our customer-driven culture. Making the world's best vehicles can only happen with the world's greatest employees. We take

Ghosh, Joydeep

103

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network [OSTI]

should combine economic incentives, information campaigns,vehicle transportation; economic incentives. 1. Introductionby implementing economic incentives (Nixon and Saphores

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

104

Heavy and Overweight Vehicle Defects Interim Report  

SciTech Connect (OSTI)

The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL

2012-12-01T23:59:59.000Z

105

Vehicle Technologies Office Merit Review 2014: Unique Lanthide...  

Energy Savers [EERE]

Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction...

106

Preliminary Assessment of Overweight Mainline Vehicles  

SciTech Connect (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

107

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

108

Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials  

Broader source: Energy.gov [DOE]

Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

109

Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

110

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

SciTech Connect (OSTI)

Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

2009-04-10T23:59:59.000Z

111

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

E-Print Network [OSTI]

for Federal Fuel Economy Regulation Final Report preparedand have higher fuel economy, and safer than conventionaland have higher fuel economy, without sacrificing safety. 1.

Wenzel, Thomas P.

2010-01-01T23:59:59.000Z

112

Vehicle Technologies Office: 2010 Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The...

113

Frequently Asked Questions: About Federal Fleet Management (Brochure)  

SciTech Connect (OSTI)

Answers to frequently asked questions about Federal fleet management, Federal requirements, reporting, advanced vehicles, and alternative fuels.

Not Available

2009-10-01T23:59:59.000Z

114

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman, Gary Bishop, Allison Peddle, University of Denver Department of Chemistry and Biochemistry Denver CO 80208. www.feat.biochem.du.edu  

E-Print Network [OSTI]

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman Nitrogen dioxide: Less than 5% of the NOx BUT with an outstanding peak for the 2007 MY in Fresno 0. Nitrogen dioxide: less than 5% of NOx except the Fresno fleet containing the 2007 Sprinter ambulances. #12;

Denver, University of

115

Please note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking facilities  

E-Print Network [OSTI]

/scooter parking areas Annual -- $154.00 ($6.42/pay period) Semester -- $51.33 2014-15 Faculty and Staff DecalPlease note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking

Mazzotti, Frank

116

Please note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking facilities  

E-Print Network [OSTI]

/scooter parking areas Annual -- $154.00 ($6.42/pay period) Semester -- $51.33 2013-14 Faculty and Staff DecalPlease note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking

Roy, Subrata

117

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

SciTech Connect (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

118

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

119

Federal Government Energy Management Conservation Programs Reports...  

Broader source: Energy.gov (indexed) [DOE]

Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal...

120

Federal Fleet Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet overview of FEMP services and assistance available to Federal fleet managers to implement alternative fuel and advanced vehicle strategies in compliance with Federal goals and requirements.

Not Available

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling  

SciTech Connect (OSTI)

In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

1996-07-01T23:59:59.000Z

122

Advanced Motors  

SciTech Connect (OSTI)

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ???????????????¢????????????????????????????????Motors and Generators for the 21st Century???????????????¢???????????????????????????????. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

123

Analytical Target Cascading Optimization of an Electric Vehicle Powertrain System  

E-Print Network [OSTI]

curves and motor power loss maps produced by an electric vehicle (EV) powertrain system. Three, since the motor performance information (torque curves and power loss map) significantly impacts

Papalambros, Panos

124

DOE Vehicle Technologies Program 2009 Merit Review Report - Power...  

Energy Savers [EERE]

Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf More Documents &...

125

Department of Electrical Engineering Fall 2009 Electridyne Motor  

E-Print Network [OSTI]

PENNSTATE Department of Electrical Engineering Fall 2009 Electridyne Motor Overview Our sponsored project was to design an elecrtic motor for an urban transportation vehicle, the challenges involved included research into motor design, consideration of the materials, and the electromagnetic parameters

Demirel, Melik C.

126

automatic guided vehicle: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 of 9 Vehicle Buyers' Guide Multidisciplinary Databases and Resources Websites Summary: vehicle. Hybrid Gasoline only: A small battery and electric motor assist the...

127

automatic guided vehicles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 of 9 Vehicle Buyers' Guide Multidisciplinary Databases and Resources Websites Summary: vehicle. Hybrid Gasoline only: A small battery and electric motor assist the...

128

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

hybrids with high power electric motors for which it may beusing only a 6 kW electric motor. Vehicle projects inhybrids with high power electric motors for which it may be

Burke, Andy

2009-01-01T23:59:59.000Z

129

Vehicle Technologies Office: Alternative Fuels Research and Deployment...  

Office of Environmental Management (EM)

(mainly state and utility fleets) under the Energy Policy Act of 1992, while the Federal Energy Management Program works with federal fleets. Test alternative fuel vehicles: VTO...

130

PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010  

E-Print Network [OSTI]

PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010 Purpose: The University State University Toyota Electric Vehicle Program under which Toyota Motor Sales, U.S.A., Inc. (Toyota Agreement PSU Toyota Electric Vehicle Program Procedures Manual for Individual Users Duration

Bertini, Robert L.

131

Codes and Standards Support Vehicle Electrification  

Broader source: Energy.gov (indexed) [DOE]

chair) Scope: Test method and conditions for rating performance of electric propulsion motors as used in hybrid electric and battery electric vehicles. Rationale: Promote...

132

NREL: Vehicles and Fuels Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Vehicles and Fuels Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

133

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

is not trueremember the diesel electric locomotive. One bigrunning on gasoline or diesel with electric motors that usediesel vehicles, as well as encouraging improvements in electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

134

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers [EERE]

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

135

Vehicle Technologies Office: Electric Drive Technologies  

Broader source: Energy.gov [DOE]

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

136

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network [OSTI]

to approximately 40 kW. The hybrid vehicles are of interestat $0.84/therm). The hybrid vehicles in motor-generator modegas reformer, and the hybrid vehicle. However, the simple

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

137

UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propulsion systems for electric, hybrid electric, plug-in hybrid electric and fuel cell electric vehicles recently patented a new design for electric vehicle motors that use...

138

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

139

Optimization of a CNG series hybrid concept vehicle  

SciTech Connect (OSTI)

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

140

Wind motor applications for transportation  

SciTech Connect (OSTI)

Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The LatestThe LatestThe LatestThe Latest,,,, Quick Motor EvaluationQuick Motor EvaluationQuick Motor EvaluationQuick Motor Evaluation Myway Plus Development of Specialized Equipment  

E-Print Network [OSTI]

is different from the mainstream PM motor, the rotor does not use neodymium but electrically magnetized body. The simple structure and half price of PM motor equipment is highly anticipated in hybrid electric vehicleThe LatestThe LatestThe LatestThe Latest,,,, Quick Motor EvaluationQuick Motor Evaluation

Kambhampati, Patanjali

142

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state  

E-Print Network [OSTI]

value of $3,000 or more. · Perform preventive maintenance (PM) on vehicles, LSVs, golf cartsMotor Pool Department The Motor Pool Department is responsible for the maintenance of over 550

143

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network [OSTI]

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

144

Integration of Novel Flux Coupling Motor and Current Source Inverter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

145

Vehicle for carrying an object of interest  

DOE Patents [OSTI]

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

Zollinger, W.T.; Ferrante, T.A.

1998-10-13T23:59:59.000Z

146

Vehicle for carrying an object of interest  

DOE Patents [OSTI]

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

Zollinger, W. Thor (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH)

1998-01-01T23:59:59.000Z

147

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

148

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

149

Environmental Federalism when Numbers Matter More than Size  

E-Print Network [OSTI]

regulation of motor vehicles and electric utilities appropriately targets interstate sources of air pollution, it unavoidably bounds the scope of cooperative

Adelman, David E.

2014-01-01T23:59:59.000Z

150

Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)  

SciTech Connect (OSTI)

June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-06-01T23:59:59.000Z

151

Federal Fleet Files, FEMP, Vol. 2, No. 13 - December 2010 (Fact Sheet)  

SciTech Connect (OSTI)

December 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to federal agencies.

Not Available

2010-12-01T23:59:59.000Z

152

Federal Fleet Files, FEMP, Vol. 1, No. 4 - September 2009 (Fact Sheet)  

SciTech Connect (OSTI)

September 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-09-01T23:59:59.000Z

153

Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010 (Fact Sheet)  

SciTech Connect (OSTI)

March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-03-01T23:59:59.000Z

154

Federal Fleet Files, FEMP, Vol. 1, No. 3 - July 2009 (Fact Sheet)  

SciTech Connect (OSTI)

July 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-07-01T23:59:59.000Z

155

Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)  

SciTech Connect (OSTI)

October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-10-01T23:59:59.000Z

156

Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)  

SciTech Connect (OSTI)

November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-11-01T23:59:59.000Z

157

Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)  

SciTech Connect (OSTI)

May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-05-01T23:59:59.000Z

158

Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010 (Fact Sheet)  

SciTech Connect (OSTI)

January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-01-01T23:59:59.000Z

159

Federal Fleet Files, FEMP, Vol. 1, No. 1 - May 2009 (Fact Sheet)  

SciTech Connect (OSTI)

Monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-05-01T23:59:59.000Z

160

Federal Fleet Files, FEMP, Vol. 2, No. 2 - November 2009 (Fact Sheet)  

SciTech Connect (OSTI)

November 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Fuzzy-Based Strategy to Improve Control Reconfiguration Performance of a Sensor Fault-Tolerant Induction Motor Propulsion  

E-Print Network [OSTI]

recovery in the Electric (EV) or Hybrid Electric Vehicle (HEV) induction motor drive. To achieve this goal-ref · Fault Tolerant Controller HybridHybrid ElectricElectric VehicleVehicle Induction Motor Sensorless Fuzzy) and the minimization of the size and the weight of the motor and the drive. All these aspect call for an efficiency

Paris-Sud XI, Université de

162

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

163

Electric Vehicle (EV) Carsharing in A Senior Adult Community  

E-Print Network [OSTI]

Electric Vehicle (EV) Carsharing in A Senior Adult Community Susan with Nissan Motor Co. to study feasibility of EV carsharing program in senior adult

Kammen, Daniel M.

164

Vehicle Technologies Office: Data and Analysis for Transportation...  

Energy Savers [EERE]

and Air Quality Information on protecting health and the environment by regulating air pollution from motor vehicles, engines, and the fuels used to operate them, and by...

165

Vehicle Technologies Office Merit Review 2014: Next Generation Inverter  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

166

Power-Factor and Torque Calculation with Consideration of Cross Saturation of the Interior Permanent Magnet Synchronous Motor with  

E-Print Network [OSTI]

motor of a hybrid electric vehicle. I. INTRODUCTION The interior permanent magnet synchronous motor for application in a hybrid electric vehicle. The BFE structure enables the motor to control the magnitude Permanent Magnet Synchronous Motor with Brushless Field Excitation Seong Taek Lee1,2 , Timothy A. Burress1

Tolbert, Leon M.

167

Making the case for direct hydrogen storage in fuel cell vehicles  

SciTech Connect (OSTI)

Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

168

Oscillation control system for electric motor drive  

DOE Patents [OSTI]

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

169

Oscillation control system for electric motor drive  

DOE Patents [OSTI]

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

Slicker, J.M.; Sereshteh, A.

1988-08-30T23:59:59.000Z

170

Predictive energy management for hybrid electric vehicles -Prediction horizon and  

E-Print Network [OSTI]

Predictive energy management for hybrid electric vehicles - Prediction horizon and battery capacity of a combined hybrid electric vehicle. Keywords: Hybrid vehicles, Energy Management, Predictive control, Optimal vehicle studied uses a complex transmission composed of planetary gear sets and two electric motors

Paris-Sud XI, Universit de

171

Comparative Analysis of Control Techniques for Efficiency Improvement in Electric Vehicles  

E-Print Network [OSTI]

-SVM scheme is the best candidate. Keywords--Electric vehicle, induction motor, efficiency, field oriented. In fact, the motor drive, comprising of the electric motor, power converter, and electronic controller by the driver. Many researches [2-3] have demonstrated the induction motor is one of the right electric motor

172

Vehicle Operator Policy Outline the requirements for vehicle operators at the University of Michigan (U-M).  

E-Print Network [OSTI]

Vehicle Operator Policy Objective Outline the requirements for vehicle operators at the University be authorized by the using department and adhere to the vehicle use and licensing policies. 4. Operators must have a valid driver license with no more than 6 points on their motor vehicle record (MVR). A valid

Kirschner, Denise

173

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

a PHEV has both an electric motor and a heat engineusuallythe vehicle only by an electric motor using electricity fromand forth with the electric motor to maximize efficiency.

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

174

Designing Alternatives to State Motor Fuel Taxes  

E-Print Network [OSTI]

Designing Alternatives to State Motor Fuel Taxes All states rely on gasoline taxes as one source efficiency and alternative fuel vehicles reduce both the equity of the revenue source and its growth over, leading to higher fuel efficiency, wide variations in fuel efficiency, and alternative- fuel vehicles

Bertini, Robert L.

175

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

176

Electric vehicle drive train with rollback detection and compensation  

DOE Patents [OSTI]

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

177

Electric vehicle drive train with rollback detection and compensation  

DOE Patents [OSTI]

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

Konrad, C.E.

1994-12-27T23:59:59.000Z

178

A Loss-Minimization DTC Scheme for EV Induction Motors A. Haddoun1  

E-Print Network [OSTI]

of an induction motor propelling and Electric Vehicle (EV). The proposed control strategy, based on a Direct Flux, among EV's motor electric propulsion features; the energy efficiency is a basic characteristic and the performance of the proposed control approach. Index Terms--Electric vehicle, induction motor, DTC, loss

Paris-Sud XI, Université de

179

Federal Gov Monthly state fuel tax examples  

E-Print Network [OSTI]

NewYork Washington Florida Georgia Wyoming Arkansas Louisiana Texas NewMexico Oklahoma Alaska Freeway Texas New Mexico Oklahoma CentsperGallon How does Texas compare to other states? State Fuel Tax Rates.75 Texas Registration Fee Motor Fuel Lubricants Tax $43,275,000 Motor Vehicle Certificates of Title Fees

180

Powertrain system for a hybrid electric vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

1999-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Powertrain system for a hybrid electric vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

1999-08-31T23:59:59.000Z

182

Vehicle security apparatus and method  

DOE Patents [OSTI]

A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

Veligdan, James T. (Manorville, NY)

1996-02-13T23:59:59.000Z

183

Vehicle security apparatus and method  

DOE Patents [OSTI]

A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

Veligdan, J.T.

1996-02-13T23:59:59.000Z

184

Federal Biomass Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass...

185

Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power fundamentals: Calculating capacity  

E-Print Network [OSTI]

; Vehicle-to-grid power; Ancillary services; V2G 1. Introduction The electric power grid and light vehicle-drive vehicles (EDVs), that is, vehicles with an electric-drive motor powered by batteries, a fuel cellJournal of Power Sources xxx (2005) xxx­xxx Vehicle-to-grid power fundamentals: Calculating

Firestone, Jeremy

186

Obama Administration Takes Major Step toward Advanced Vehicles...  

Office of Environmental Management (EM)

step in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption, while also cutting costs associated with fuel consumption. Furthering...

187

Alternative High-Performance Motors with Non-Rare Earth Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

188

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

Vehicle (BEV) with an electric motor capable of supplyingmode operation uses the electric motor to run during low-PHEV x can be run on the electric motor only for the first x

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

189

Winter Motor-Vehicle EMISSIONS in  

E-Print Network [OSTI]

in November 2000 via an environmental impact study decision that only allowed snowcoach use (4, 5 (1). Yellowstone National Park in the U.S. has a long history of balancing tourist access OF DENVER JOHN D. RAY NATIONAL PARK SERVICE APRIL 15, 2006 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 2505 #12

Denver, University of

190

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

191

A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles  

E-Print Network [OSTI]

A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles Farid Khoucha, Khoudir an Electric Vehicle (EV). The proposed scheme uses an adaptive flux and speed observer that is based on a full is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive

Paris-Sud XI, Universit de

192

Enhancing Location Privacy for Electric Vehicles (at the right time)  

E-Print Network [OSTI]

An electric vehicle (also known as EV) is powered by an electric motor instead of a gasoline engine sudden demands for power). In future development, it has been proposed that such use of electric vehiclesEnhancing Location Privacy for Electric Vehicles (at the right time) Joseph K. Liu1 , Man Ho Au2

193

An Online Mechanism for Multi-Speed Electric Vehicle Charging  

E-Print Network [OSTI]

range of such vehicles, and EVs are expected to represent close to 10% of all vehicle sales by 2020 in electric vehicles (EVs). New hybrid de- signs, equipped with both an electric motor and an internal- nisms to schedule the charging of EVs, such that the local constraints of the distribution network

Southampton, University of

194

California's Zero Emission Vehicle Program Cleaner air needed  

E-Print Network [OSTI]

that are powered by a combination of electric motors and internal combustion engines, and fuel cell vehicles and other alternative fueled vehicles, super-clean gasoline vehicles, fuel-efficient hybrids powered by electricity created from pollution-free hydrogen. ARB is not suggesting that every Californian

Gille, Sarah T.

195

Fact #698: October 24, 2011 Changes in the Federal Highway Administrat...  

Broader source: Energy.gov (indexed) [DOE]

Category and Vehicle Type December 2009 Table VM-1 SUBTOTALS YEAR ITEM PASSENGER CARS MOTOR- CYCLES BUSES OTHER 2-AXLE 4-TIRE VEHICLES 3 SINGLE-UNIT 2-AXLE 6-TIRE OR MORE TRUCKS...

196

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

197

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

198

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents [OSTI]

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

Coffey, H.T.

1993-10-19T23:59:59.000Z

199

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

200

Animal-Vehicle Collision Data Collection Throughout the United States and Canada  

E-Print Network [OSTI]

involving motor vehicles and large animals in Canada: Finalreport, Transport Canada RoadSafety Directorate, Canada. Williams, A.F. & J.K. Wells.

Huijser, Marcel P.; Wagner, Meredith E.; Hardy, Amanda; Clevenger, Anthony P.; Fuller, Julie A.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Canadas Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter  

E-Print Network [OSTI]

goals. Science 301, 506508. General Motors Canada (GM Canada), 2005. Vehicle emissions & fuels. Canada, 2006. Canadas clean

Lutsey, Nicholas P.; Sperling, Dan

2007-01-01T23:59:59.000Z

202

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

203

Just build it! : a fully functional concept vehicle using robotic wheels  

E-Print Network [OSTI]

Interest in electric vehicle drive units is resurging with the proliferation of hybrid and electric vehicles. Currently emerging key-technologies are: in-wheel motors, electric braking, integrated steering activators and ...

Schmitt, Peter, S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

204

Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook (Book)  

SciTech Connect (OSTI)

A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.

Daley, R.; Ahdieh, N.; Bentley, J.

2014-01-01T23:59:59.000Z

205

Premium Efficient Motors  

E-Print Network [OSTI]

Premium efficient motors are available which convert electrical energy into mechanical energy with fewer losses than the more standard motors. The fewer losses in these motors are due to changes in the motor design and improved manufacturing methods...

Moser, P. R.

1984-01-01T23:59:59.000Z

206

Vehicle Technologies Office: Federal Laboratory Consortium Excellence...  

Broader source: Energy.gov (indexed) [DOE]

On the production lines at Delphi Automotive Systems, workers fitted protective boots over automotive rack-and-pinion steering assemblies by forcing the boots into place by...

207

2012 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2013-03-01T23:59:59.000Z

208

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV  

E-Print Network [OSTI]

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive--Comparison, electric propulsion, hybrid electric vehicle (HEV). I. INTRODUCTION SELECTION of traction motors for hybrid of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor

209

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents [OSTI]

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

Cikanek, Susan R. (Wixom, MI)

1995-01-01T23:59:59.000Z

210

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents [OSTI]

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

Cikanek, S.R.

1995-09-12T23:59:59.000Z

211

American Institute of Aeronautics and Astronautics Exploring Mass Trade-Offs In Preliminary Vehicle Design  

E-Print Network [OSTI]

, as this both lowers development cost and reduces time to market. Thus vehicle manufacturers have invested Vehicle Design Using Pareto Sets Joseph Donndelinger1 General Motors Research & Development Center, Warren of balanced and compatible sets of vehicle specifications in the early stages of vehicle development

Lewis, Kemper E.

212

Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle  

E-Print Network [OSTI]

Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle without Differential Terms--Electric vehicle, electric motor, speed estimation, neural networks, traction control. I. INTRODUCTION Recently, Electric Vehicles (EVs) including fuel-cell and hybrid vehicles have been developed very

Paris-Sud XI, Universit de

213

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon  

E-Print Network [OSTI]

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon Department of Electrical vehicles has been implemented and tested successfully. The system can work with different primary power the vehicle with minimum help of the primary power source. The vehicle uses a brushless dc motor

Catholic University of Chile (Universidad Católica de Chile)

214

School of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research Team  

E-Print Network [OSTI]

elsewhere as "electric" vehicles). A plug-in electric vehicle is powered by plugging into a specializedSchool of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research together with the electric motor. A Nissan Leaf is an example of a plug-in electric vehicle. A plug

Craft, Christopher B.

215

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network [OSTI]

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

Mi, Chunting "Chris"

216

Performance Analysis and Comparison of Three IPMSM with High Homopolar Inductance for Electric Vehicle Applications  

E-Print Network [OSTI]

Synchronous Motor, Zero-Sequence Inductance, Electric Vehicle, Ripple Torque, Fast evaluation, Harmonics three topologies of PMSM according to the specifications of an electric vehicle (EV) with severe and especially for hybrid electric vehicle (HEV) and electric vehicle (EV). Moreover, interior permanent magnet

Boyer, Edmond

217

National Federal Fleet Loaner Program, Interim Status Report  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Loaner Program is to increase the awareness, deployment, and use of electric vehicles (EVs) in Federal fleets. The Loaner Program accomplishes this by providing free EVs to Federal fleets on a loaner basis, generally for 1 or 2 months. The Program partners DOE with six electric utilities, with DOE providing financial support and some leads on Federal fleets interested in obtaining EVs. The utilities obtain the vehicles, identify candidate loaner fleets, loan the vehicles, provide temporary charging infrastructure, provide overall support to participating Federal fleets, and support fleets with their leasing decisions. While the utilities have not had the success initially envisioned by themselves, DOE, the Edison Electric Institute, and the Electric Vehicle Association of the Americas, the utilities can not be faulted for their efforts, as they are not the entity that makes the ultimate lease or no-lease decision. Some external groups have suggested to DOE that they direct other federal agencies to change their processes to make loaning vehicles easier; this is simply not within the power of DOE. By law, a certain percentage of all new vehicle acquisitions are supposed to be alternative fuel vehicles (AFV); however, with no enforcement, the federal agencies are not compelled to lease AFVs such as electric vehicles.

Francfort, James Edward

2000-10-01T23:59:59.000Z

218

UoS Motor Accident Report Form COMPANY DETAILS  

E-Print Network [OSTI]

UNIV01FL02 UoS Motor Accident Report Form COMPANY DETAILS INSURED: University of Sussex ADDRESS: LOCATION: DESCRIPTION OF HOW ACCIDENT HAPPENED: PLEASE DRAW A SKETCH OF THE ACCIDENT: #12;DRIVER DETAILS: PREVIOUS ACCIDENTS: ADDRESS: VEHICLE DETAILS DATE VEHICLE PURCHASED: MAKE/MODEL: REGISTRATION: MILEAGE

Sussex, University of

219

Brake blending strategy for a hybrid vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

Boberg, Evan S. (Hazel Park, MI)

2000-12-05T23:59:59.000Z

220

IEA Implementing Agreement on Advanced Motor Fuels Ethanol as a Fuel for  

E-Print Network [OSTI]

EFP06 IEA Implementing Agreement on Advanced Motor Fuels Ethanol as a Fuel for Road Transportation -- Advanced Motor Fuels Agreement. The report is a contribution to Annex XXXV: "Ethanol as a Motor Fuel -- Subtask 1: Ethanol as a Fuel in Road Vehicles." The work has been carried out by The Technical

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

222

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

223

Fact #745: September 17, 2012 Vehicles per Thousand People: U...  

Broader source: Energy.gov (indexed) [DOE]

The graphs below show the number of motor vehicles per thousand people for various countries. The data for the United States are displayed in the line which goes from 1900 to 2010....

224

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

225

Commercial Vehicle Classification using Vehicle Signature Data  

E-Print Network [OSTI]

Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

2008-01-01T23:59:59.000Z

226

An Analysis of Bicycle-Vehicle Interactions at Signalized Intersections with Bicycle Boxes  

E-Print Network [OSTI]

An Analysis of Bicycle-Vehicle Interactions at Signalized Intersections with Bicycle Boxes. To develop the conflict data, a log was created of each motor vehicle and bicycle passing through,849 bicycles. A total of 19 conflicts were observed during the after period. Total exposure was 42,381 motor

Bertini, Robert L.

227

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

228

Clean Transportation Program | 919-515-3480 | www.ncsc.ncsu.edu How to tell if your vehicle is E85 compatible...  

E-Print Network [OSTI]

FUEL VEHICLES FORD MOTOR COMPANY CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Character Mercury Sable, 3.0L 2002-2004 2 Mercury Grand Marquis (2-valve), 4.6L 2007-2011 V GENERAL MOTORS *2008 & 2009 VEHICLES GENERAL MOTORS CONTINUED *2008 & 2009 FFV models have yellow fuel caps to identify them as E85

229

Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report  

SciTech Connect (OSTI)

The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and was used to develop an algorithm to normalize stopping data for weight and initial speed.

Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

2013-10-01T23:59:59.000Z

230

Department of Mechanical Engineering Spring 2013 Active Vehicle Grille  

E-Print Network [OSTI]

was tasked by General Motors (GM) to design and build active shutters that are mounted directly to the main Motors engineers and developed five possible concepts Reviewed existing patents and current activePENNSTATE Department of Mechanical Engineering Spring 2013 Active Vehicle Grille Overview Active

Demirel, Melik C.

231

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

SciTech Connect (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

232

Electric Vehicle Site Operator Program  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

Not Available

1992-01-01T23:59:59.000Z

233

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

SciTech Connect (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

234

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

235

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

236

GENETIC ALGORITHMS FOR A SINGLE-TRACK VEHICLE AUTONOMOUS PILOT  

E-Print Network [OSTI]

GENETIC ALGORITHMS FOR A SINGLE-TRACK VEHICLE AUTONOMOUS PILOT Dana Vrajitoru Intelligent Systems algorithms to an autonomous pilot designed for motorized single-track vehicles (motorcycles). The pilot contribute efficiently to configuring the autonomous pilot. Key Words Genetic algorithms, multi

Vrajitoru, Dana

237

Control system and method for a hybrid electric vehicle  

DOE Patents [OSTI]

Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

Tamor, Michael Alan (Toledo, OH)

2001-03-06T23:59:59.000Z

238

Electric vehicles move closer to market  

SciTech Connect (OSTI)

This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

O`Connor, L.

1995-03-01T23:59:59.000Z

239

Microsoft Word - Requirements_list.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1. Federal Motor Carrier Registration 49 CFR 390.19; 390.21 Motor carriers that conduct commercial motor vehicle operations in interstate commerce. 2. Hazardous Materials...

240

Multilevel Inverters for Electric Vehicle Applications  

SciTech Connect (OSTI)

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Autonomous vehicles  

SciTech Connect (OSTI)

There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

1996-08-01T23:59:59.000Z

242

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

243

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

244

Implementing Motor Decision Plans  

E-Print Network [OSTI]

Implementing Motor Decision Plans R. Neal Elliott, Ph.D., P.E., Senior Associate American Council for an Energy-Efficient Economy (ACEEE), Washington, DC Abstract The first step to reducing energy costs and increasing reliability in motors... when a motor fails and must either be replaced or repaired. This is represented visually in Figure 1. When purchasing a motor for a new application, time is usually available to consider various options. However, once a motor has failed...

Elliott, R. N.

245

Electric vehicle drive train with direct coupling transmission  

DOE Patents [OSTI]

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

1995-04-04T23:59:59.000Z

246

Electric vehicle drive train with direct coupling transmission  

DOE Patents [OSTI]

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

247

State-of-Health Aware Optimal Control of Plug-in Electric Vehicles  

E-Print Network [OSTI]

), which utilize electric motors for propulsion, differ from fossil fuel powered vehiclesState-of-Health Aware Optimal Control of Plug-in Electric Vehicles Yanzhi Wang, Siyu Yue, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy

Pedram, Massoud

248

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles Hui Zhang1 , Leon M -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain

Tolbert, Leon M.

249

DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains  

E-Print Network [OSTI]

DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains Bekheïra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

Brest, Université de

250

Date of Accident: _____/_____/________ Day of Week: __________________ Hour: _____:______ AM / PM TIME VEHICLE ACCIDENT REPORT  

E-Print Network [OSTI]

Page 1/2 Date of Accident: _____/_____/________ Day of Week: __________________ Hour: _____:______ AM / PM TIME VEHICLE ACCIDENT REPORT TO BE USED BY ALL STATE AGENCIES to make immediate report of all motor vehicle accidents involving State employees, vehicles, equipment or where highways could result

Farritor, Shane

251

192 Int. J. Vehicle Systems Modelling and Testing, Vol. 1, Nos. 1/2/3, 2005 Copyright 2005 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Development Research Lab, General Motors Research and Development Center, Warren, MI USA E-mail: joe in the Vehicle Development Research Laboratory at the General Motors Research and Development Center in Warren, Michigan. His ten years of experience with General Motors and the Ford Motor Company have broadly spanned

Lewis, Kemper E.

252

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

253

46900 Federal Register / Vol. 63, No. 171 / Thursday, September 3, 1998 / Rules and Regulations 2 ``Clinical Review of NASS Fire Case Reports,''  

E-Print Network [OSTI]

``Motor Vehicle Construction and Use Regulations'' specify tests for the bottom of fuel tanks. Moreover, the crash investigation report stated that the vehicle went out of control and ``went off the left side

Taylor, Steven J.

254

Federal Register  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy FederalFLASH 2004-12 April 5, 2004

255

Federal Register  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy FederalFLASH 2004-12 April 5, 200465541 Vol. 79,

256

Federal Register  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME |Supplement5869Google10 Federal

257

Federal Register  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME |Supplement5869Google10 Federal2985

258

Federal Register  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME |Supplement5869Google102479 Federal

259

Federal Register  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME |Supplement5869Google102479 Federal989

260

Federal Register  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME |Supplement5869Google10247954 Federal

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Federated search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWS ROCKYGas FedEx®|default SignFederated

262

Halbach array DC motor/generator  

DOE Patents [OSTI]

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

263

Halbach array DC motor/generator  

DOE Patents [OSTI]

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

1998-01-06T23:59:59.000Z

264

Modular PM Motor Drives for Automotive Traction Applications  

SciTech Connect (OSTI)

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

265

Vehicle Technologies Office: AVTA - Electric Vehicle Community...  

Broader source: Energy.gov (indexed) [DOE]

Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

266

Vehicle Technologies Office: Advanced Vehicle Testing Activity...  

Energy Savers [EERE]

initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

267

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

268

Implementing Motor Management  

E-Print Network [OSTI]

Electric motors account for sixty five percent of industrial energy consumed today. There are many opportunities to conserve electricity by using more energy efficient motors and drives. Proven technologies and practices can reduce energy...

Colip, R. L.

269

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain  

E-Print Network [OSTI]

of a hybrid electric vehicle (HEV) powertrain test cell is proposed. The test cell consists of a motor combustion engine (ICE) and an electric motor/generator (EM) in series or parallel configurations. The ICE charges the battery or by- passes the battery to propel the wheels via an electric motor. This electric

Mi, Chunting "Chris"

270

Fuzzy logic electric vehicle regenerative antiskid braking and traction control system  

DOE Patents [OSTI]

An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

Cikanek, S.R.

1994-10-25T23:59:59.000Z

271

Fuzzy logic electric vehicle regenerative antiskid braking and traction control system  

DOE Patents [OSTI]

An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

Cikanek, Susan R. (Wixom, MI)

1994-01-01T23:59:59.000Z

272

Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

273

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

274

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

275

AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

276

FEDERAL INFORMATION PROCESSING STANDARD  

E-Print Network [OSTI]

March 2004 FEDERAL INFORMATION PROCESSING STANDARD (FIPS) 199, STANDARDS FOR SECURITY Information Technology Laboratory National Institute of Standards and Technology A new Federal Information Processing Standard (FIPS), recently approved by the Secretary of Commerce, will help federal agencies

277

Optimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required by  

E-Print Network [OSTI]

's Alternative Fuels and Advanced Vehicles Data Center: http://www.afdc.energy.gov/afdc/locator/stations/ which by Presidential Memorandum ­ Federal Fleet Performance, 24 May 2011 Alternative Fuel Vehicles (AFV): A) USACE has to AFV fueling stations during vehicle acquisitions beyond 31 DEC 2015; the Transportation Division

US Army Corps of Engineers

278

Design of a High Performance Ferrite Magnet-Assisted Synchronous Reluctance Motor for an  

E-Print Network [OSTI]

Design of a High Performance Ferrite Magnet- Assisted Synchronous Reluctance Motor for an Electric) ferrite-based permanent magnet-assisted synchronous reluctance motor has been designed for an electric vehicle application. The design steps are outlined. Ferrite magnets have been chosen over conventional Nd

Paderborn, Universität

279

A self-reconfigurable and fault-tolerant induction motor control architecture  

E-Print Network [OSTI]

. Index Terms-- Fault tolerant, induction motor drive, hy- brid electric vehicule, observers. I the major requirements of automotive electric traction [1]. Several failures afflict electrical motor drives electric vehicles M. Hilairet, D. Diallo and M.E.H. Benbouzid Abstract-- This paper describes an adaptive

Paris-Sud XI, Université de

280

Federal Railroad Administration  

Broader source: Energy.gov (indexed) [DOE]

Transportation Federal Railroad Administration Overview of Proposed Rail Safety & Security Rulemakings Kevin R. Blackwell FRA Hazmat Division Washington, DC Federal Authority DOT...

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Federal Railroad Administration  

Broader source: Energy.gov (indexed) [DOE]

Manager Federal Railroad Administration Federal Railroad Administration Dedicated Train Study- Report to Congress FRA' s Research & Development Office (as lead on the study)...

282

NOVA-NREL Optimal Vehicle Acquisition Analysis (Brochure)  

SciTech Connect (OSTI)

Federal fleet managers face unique challenges in accomplishing their mission - meeting agency transportation needs while complying with Federal goals and mandates. Included in these challenges are a variety of statutory requirements, executive orders, and internal goals and objectives that typically focus on petroleum consumption and greenhouse gas (GHG) emissions reductions, alternative fuel vehicle (AFV) acquisitions, and alternative fuel use increases. Given the large number of mandates affecting Federal fleets and the challenges faced by all fleet managers in executing day-to-day operations, a primary challenge for agencies and other organizations is ensuring that they are as efficient as possible in using constrained fleet budgets. An NREL Optimal Vehicle Acquisition (NOVA) analysis makes use of a mathematical model with a variety of fleet-related data to create an optimal vehicle acquisition strategy for a given goal, such as petroleum or GHG reduction. The analysis can helps fleets develop a vehicle acquisition strategy that maximizes petroleum and greenhouse gas reductions.

Blakley, H.

2011-03-01T23:59:59.000Z

283

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

284

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

285

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

286

Replacing Motors Counting Savings: Results from a 100 Motor Study  

E-Print Network [OSTI]

REPLACING MOTORS, COUNTING SAVINGS: RESULTS FROM A 100 MOTOR STUDY Nicole M. Kaufman Motor Systems Engineer Advanced Energy Raleigh, NC ABSTRACT Software tools such as MotorMaster+ aid facility personnel in conducting payback... analyses for replacing motors. These tools make assumptions on the motors operational efficiency in their calculations. By observing 100 pre-EPCA (Energy Policy & Conservation Act) motors in operation, removing them from service and conducting IEEE...

Kaufman, N. M.

2006-01-01T23:59:59.000Z

287

MOTOR FLEET MANAGEMENT REGULATIONS  

E-Print Network [OSTI]

............................................................12 D. PREVENTIVE MAINTENANCE...........................................12 E. REPAIRS AND MAINTENANCE......................................10 D. TRANSPORTATION TO AND FROM MFM FACILITIES.11 VI. MAINTENANCE AND CARE OF VEHICLES. ROUTINE MAINTENANCE..................................................12 C. VEHICLE WASHING

Howitt, Ivan

288

Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103)...

289

Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...  

Broader source: Energy.gov (indexed) [DOE]

DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II...

290

Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Sport Utility Vehicle Meeting Tier 2 Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) Diesel Engine Emission...

291

Valuing innovative technology R&D as a real option : application to fuel cell vehicles  

E-Print Network [OSTI]

This thesis aims to elucidate real option thinking and real option valuation techniques for innovative technology investment. Treating the fuel cell R&D investment as a real option for General Motor's light passenger vehicle ...

Tsui, Maggie

2005-01-01T23:59:59.000Z

292

Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

293

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 7, JULY 2006 2019 Monocular Precrash Vehicle Detection  

E-Print Network [OSTI]

Detection: Features and Classifiers Zehang Sun, George Bebis, and Ronald Miller Abstract's gross domestic product [1]. Each year in the United States, motor vehicle crashes account for about 40

Bebis, George

294

A Vehicle Manufacturers Perspective on Higher-Octane Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturers Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

295

Fact #841: October 6, 2014 Vehicles per Thousand People: U.S...  

Broader source: Energy.gov (indexed) [DOE]

The graphs below show the number of motor vehicles per thousand people for select countries and regions. The data for the United States are displayed in the line which goes from...

296

Vehicle Technologies Office Merit Review 2014: Fuel Properties to Enable Lifted Flame Combustion  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel properties to enable...

297

ORNL Lightweighting Research Featured on MotorWeek  

ScienceCinema (OSTI)

PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

None

2014-06-03T23:59:59.000Z

298

ORNL Lightweighting Research Featured on MotorWeek  

SciTech Connect (OSTI)

PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

None

2014-04-15T23:59:59.000Z

299

2011 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

2012-02-01T23:59:59.000Z

300

Electric Motor Thermal Management  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

302

Federal Aviation Administration  

E-Print Network [OSTI]

transportation systems FAA's RDT&E Organization: Federal Laboratory for R&D of aviation systems IndependentFederal Aviation Administration Federal Aviation AdministrationNextGen: Primer, Challenges. Wilson N. Felder Director, FAA William J. Hughes Technical Center Date: 6 February 2012 #12;2Federal

303

Federal Resume Guide  

Broader source: Energy.gov [DOE]

This Learning Module will offer helpful tips and suggestions on the development of a federal resume.

304

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

305

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

306

Clean Transportation Program | 919-515-3480 | www.ncsc.ncsu.edu How to tell if your vehicle is E85 compatible...  

E-Print Network [OSTI]

.cleantransportation.org #12;E85 CAPABLE FLEX FUEL VEHICLES General Motors CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Marquis (2-valve), 4.6L 2007-2011 V GENERAL MOTORS *2008 & 2009 FFV models have yellow fuel caps compatible... Check to see if your vehicle is listed below. Be certain to check the ENGINE SIZE

307

Federal Compensation to Idaho for Public Domain Federal Lands, 1988-99 FederalCompensationtoIdaho  

E-Print Network [OSTI]

........................................................................................................ 9 Figure 7. Bingham County Federal Payments........................................................................................................ 12 Figure 15. Canyon County Federal Payments

O'Laughlin, Jay

308

Safer Vehicles for People and the Planet  

SciTech Connect (OSTI)

Motor vehicles contribute to climate change and petroleum dependence. Improving their fuel economy by making them lighter need not compromise safety. The cars and trucks plying America's roads and highways generate roughly 20 percent of the nation's total emissions of carbon dioxide, a pollutant that is, of course, of increasing concern because of its influence on climate. Motor vehicles also account for most of our country's dependence on imported petroleum, the price of which has recently skyrocketed to near-record levels. So policymakers would welcome the many benefits that would accrue from lessening the amount of fuel consumed in this way. Yet lawmakers have not significantly tightened new vehicle fuel-economy standards since they were first enacted three decades ago. Since then, manufacturers have, for the most part, used advances in automotive technology, ones that could have diminished fuel consumption, to boost performance and increase vehicle weight. In addition, the growth in popularity of pickups, sport utility vehicles (SUVs) and minivans--and the large amounts of gas they typically guzzle--has resulted in the average vehicle using the same amount of fuel per mile as it did 20 years ago. One of the historical impediments to imposing tougher fuel-economy standards has been the long-standing worry that reducing the mass of a car or truck to help meet these requirements would make it more dangerous to its occupants in a crash. People often justify this concern in terms of 'simple physics', noting, for example, that, all else being equal, in a head-on collision, the lighter vehicle is the more strongly decelerated, an argument that continues to sway regulators, legislators and many in the general public. We have spent the past several years examining the research underlying this position--and some recent work challenging it. We have also conducted our own analyses and come to the conclusion that the claim that lighter vehicles are inherently dangerous to those riding in them is flawed. For starters, all else is never equal; other aspects of vehicle design appear to control what really happens in a crash, as reflected in the safety record of different kinds of vehicles. What's more, the use of high-strength steel, light-weight metals such as aluminum and magnesium, and fiber-reinforced plastics now offers automotive engineers the means to fashion vehicles that are simultaneously safer and less massive than their predecessors, and such designs would, of course, enjoy the better fuel economy that shedding pounds brings.

Wenzel, Thomas P; Wenzel, Thomas P; Ross, Marc

2008-03-01T23:59:59.000Z

309

Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

310

Electric vehicle drive train with contactor protection  

DOE Patents [OSTI]

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

Konrad, C.E.; Benson, R.A.

1994-11-29T23:59:59.000Z

311

Electric vehicle drive train with contactor protection  

DOE Patents [OSTI]

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

312

he prospect of millions of vehicles plugging into the nation's electric grid in the coming decades  

E-Print Network [OSTI]

: Tesla Motors recently intro- duced an all-electric vehicle. See sidebar, p. 34.) Two startup firms plan of Tesla Motors The all-electric Tesla Roadster can go from 0 to 60 in about 4 sec- onds (see p. 34 ). 28

Firestone, Jeremy

313

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

314

Contribution of vehicle emissions to ambient carbonaceous particulate matter: A review and synthesis of the available data in the South Coast Air Basin. Final report  

SciTech Connect (OSTI)

Table of Contents: Executive Summary; Introduction; Ambient Carbonaceous Particulate Matter in the South Coast Air Basin; Measurements of Emissions from In-Use Motor Vehicles in the South Coast Air Basin; Integration of Emissions Measurements into Comprehensive Emissions Inventories; Relating Emissions fom Motor Vehicles to Particulate Air Quality; Synthesis: The Combined Effect of All Vehicle-Related Source Contributions Acting Together; Trends in More Recent Years; Opportunities for Further Research; References; Appendix A: Detailed Mass Emissions Rates for Organic Compounds from Motor Vehicle Exhaust; and Appendix B: Organic Compounds Emitted from Tire Dust, Paved Road Dust, and Brake Lining Wear Dust.

Cass, G.R.

1997-02-01T23:59:59.000Z

315

Ontario Hydro Motor Efficiency Study  

E-Print Network [OSTI]

Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

Dautovich, D. R.

1980-01-01T23:59:59.000Z

316

Clean Transportation Program | 919-515-3480 | www.ncsc.ncsu.edu How to tell if your vehicle is E85 compatible...  

E-Print Network [OSTI]

FUEL VEHICLES FORD MOTOR COMPANY CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Character Lincoln.6L 2007-2011 V GENERAL MOTORS *2008 & 2009 FFV models have yellow fuel caps to identify them as E85 Motors CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Character Chevy Malibu 2.4L 2.4L fleet

317

Matching Federal Government EnergyMatching Federal Government Energy Needs with Energy Efficient Fuel CellsNeeds with Energy Efficient Fuel Cells  

E-Print Network [OSTI]

1 Matching Federal Government EnergyMatching Federal Government Energy Needs with Energy Efficient Fuel CellsNeeds with Energy Efficient Fuel Cells Keith A SpitznagelKeith A Spitznagel Senior VP Buildings & Facilities · 5 Kilowatts to Megawatts Speciality vehicles & Material handling · 1 to 50

318

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

319

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

320

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 Provide Clean Air Grow the Clean Energy Economy Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles Established the Northeast Electric Vehicle Network through

California at Davis, University of

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

2013-01-01T23:59:59.000Z

322

Modeling Reluctance-Assisted PM Motors  

SciTech Connect (OSTI)

This report contains a derivation of the fundamental equations used to calculate the base speed, torque delivery, and power output of a reluctance-assisted PM motor which has a saliency ratio greater than 1 as a function of its terminal voltage, current, voltage-phase angle, and current-phase angle. The equations are applied to model Motor X using symbolically-oriented methods with the computer tool Mathematica to determine: (1) the values of current-phase angle and voltage-phase angle that are uniquely determined once a base speed has been selected; (2) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and current-phase angle; (3) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and voltage-phase angle; (4) the maximum-power output in the voltage-limited region above base speed as a function of speed; (5) the optimal voltage-phase angle in the voltage-limited region above base speed required to obtain maximum-power output; (6) the maximum-power speed curve which was linear from rest to base speed in the current limited region below base speed; (7) the current angle as a function of saliency ratio in the current-limited region below base speed; and (8) the torque as a function of saliency ratio which is almost linear in the current-limited region below base speed. The equations were applied to model Motor X using numerically-oriented methods with the computer tool LabVIEW. The equations were solved iteratively to find optimal current and voltage angles that yield maximum power and maximum efficiency from rest through the current-limited region to base speed and then through the voltage-limited region to high-rotational speeds. Currents, voltages, and reluctance factors were all calculated and external loops were employed to perform additional optimization with respect to PM pitch angle (magnet fraction) and with respect to magnet strength. The conclusion was that the optimal-magnet fraction for Motor X is 0.72 which corresponds to a PM pitch angle of 130{sup o}, a value close to the maximum-saliency ratio in a plot of saliency ratio versus PM pitch angle. Further, the strength of Motor X magnets may be lowered to 80% of full strength without significantly impacting motor performance for PM pitch angles between the peak saliency (130{sup o}) and peak-characteristic current (160{sup o}). It is recommended that future research involve maximizing a driving-cycle-weighted efficiency based on the Federal Urban Driving Cycle and the Federal Highway Driving Cycle as criteria for selecting the final optimal-PM fraction and magnet strength for this inset PM motor. Results of this study indicate that the reduction in PM torque due to reduced-magnet fraction will be more than compensated by the reluctance torque resulting from the higher saliency ratio. It seems likely that the best overall performance will require saliency; consequently, we think the best motor will be a reluctance-assisted PM motor. This should be explored for use with other types of PM motors, such as fractional-slot motors with concentrated windings.

Otaduy, P.J.

2006-01-13T23:59:59.000Z

323

Federal Agency NEPA Procedures  

Broader source: Energy.gov [DOE]

Each Federal agency is required to develop NEPA procedures that supplement the CEQ Regulations. Developed in consultation with CEQ, Federal agency NEPA procedures must meet the standards in the CEQ...

324

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

325

43679Federal Register / Vol. 79, No. 144 / Monday, July 28, 2014 / Rules and Regulations PART 579--REPORTING OF  

E-Print Network [OSTI]

in a motor vehicle, as follows: compressed natural gas (CNG); compression ignition fuel (CIF); electric: CNG (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel

326

Determining Price Reasonableness in Federal ESPCs  

SciTech Connect (OSTI)

This document reports the findings and implementation recommendations of the Price Reasonableness Working Group to the Federal ESPC Steering Committee. The working group was formed to address concerns of agencies and oversight organizations related to pricing and fair and reasonable price determination in federal energy savings performance contracts (ESPCs). This report comprises the working group's recommendations and is the proposed draft of a training curriculum on fair and reasonable price determination for users of federal ESPCs. The report includes: (1) A review of federal regulations applicable to determining price reasonableness of federal ESPCs (section 2), (2) Brief descriptions of the techniques described in Federal Acquisition Regulations (FAR) 15.404-1 and their applicability to ESPCs (section 3), and (3) Recommended strategies and procedures for cost-effectively completing price reasonableness determinations (sections 4). Agencies have struggled with fair and reasonable price determinations in their ESPCs primarily because this alternative financing vehicle is relatively new and relatively rare in the federal sector. The methods of determining price reasonableness most familiar to federal contracting officers (price competition based on the government's design and specifications, in particular) are generally not applicable to ESPCs. The regulatory requirements for determining price reasonableness in federal ESPCs have also been misunderstood, as federal procurement professionals who are inexperienced with ESPCs are further confused by multiple directives, including Executive Order 13123, which stresses life-cycle cost-effectiveness. Uncertainty about applicable regulations and inconsistent practice and documentation among agencies have fueled claims that price reasonableness determinations have not been sufficiently rigorous in federal ESPCs or that the prices paid in ESPCs are generally higher than the prices paid for similar goods and services obtained through conventional procurements. While claims of excessive prices are largely unsubstantiated and based on anecdotal evidence, the perception that there is a problem is shared by many in the ESPC community and has been noted by auditors and oversight organizations. The Price Reasonableness Working Group determined that a more formal emphasis on FAR 15.404-1 in the ESPC process could remove much of the doubt about price reasonableness determinations. The working group's recommended consensus policy on price reasonableness stresses the price analysis techniques described in the FAR that are applicable to ESPCs and includes guidance for agencies use of these techniques in determining price reasonableness for their ESPC delivery orders. The recommended policy and guidance, if communicated to federal ESPC stakeholders, can ensure that agencies will comply with the FAR in awarding ESPCs, obtain fair and reasonable prices and best value for the government, and follow procedures that provide auditable documentation of due diligence in price reasonableness determinations.

Shonder, J.A.

2005-03-08T23:59:59.000Z

327

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT POWER MARKETS The Federal Energy Regulatory Commission today ordered its staff to conduct investigators will find out if any technical or operational factors, federal or state regulatory prohibitions

Laughlin, Robert B.

328

Federal Employee Training Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 360.1B, FEDERAL EMPLOYEE TRAINING. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Cancels DOE M 360.1A-1. Canceled by DOE O 360.1C.

2001-10-11T23:59:59.000Z

329

Federal Employee Training Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 360.1A, Federal Employee Training, dated 9-21-99. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Canceled by DOE M 360.1-1B.

1999-09-21T23:59:59.000Z

330

Federal Government Presence in  

E-Print Network [OSTI]

% since 1993 Source: Statistics Canada, Public Sector Employment, Table 183-0002. Figure 4 Federal of Federal Employment Source: Statistics Canada, Public Sector Employment, Table 183-0002. Figure 6 Federal #12;Employment Shares Across Provinces Source: Statistics Canada, Population, Table 51-0001 and Public

deYoung, Brad

331

AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-  

E-Print Network [OSTI]

-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

Miller, Jeffrey A.

332

System and method for motor parameter estimation  

DOE Patents [OSTI]

A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

Luhrs, Bin; Yan, Ting

2014-03-18T23:59:59.000Z

333

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

334

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Energy Savers [EERE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

335

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

336

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

337

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy.

338

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions  

SciTech Connect (OSTI)

Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

2010-06-01T23:59:59.000Z

339

Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now  

E-Print Network [OSTI]

and conventional vehicles is the Chevrolet Volt, which can be powered by an electric motor for 40 mi and has-offs associated with distinct vehicle technologies (conventional fossil fuel, hybrid, and electric) using current gas (GHG) taxes and fiscal incentives for purchasing electric vehicles (EVs). This research also

Bertini, Robert L.

340

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

342

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

343

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

344

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

345

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

346

Justification for Energy Efficient Motors  

E-Print Network [OSTI]

This paper presents the results of a study of Energy Efficient (or EE) motors in NEMA frame sizes, (1-200 HP). It examines the economics of using EE motors for new motor requirements, as replacements for motors - instead of rewinding...

Buschart, R. J.

1981-01-01T23:59:59.000Z

347

Energy Efficient Motors  

E-Print Network [OSTI]

Efficiency is only one aspect of motor performance. This paper discusses how efficiency is influenced by such factors as horsepower rating, poles, actual load, and starting requirements. It discusses some of the variables affecting efficiency...

Hoffmeyer, W.

1982-01-01T23:59:59.000Z

348

MotorWeek  

ScienceCinema (OSTI)

In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

None

2013-04-19T23:59:59.000Z

349

Markov Process of Muscle Motors  

E-Print Network [OSTI]

We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

Yu. Kondratiev; E. Pechersky; S. Pirogov

2007-06-20T23:59:59.000Z

350

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

351

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging, US20130154561A1,Chynoweth, Intelligent Electric Vehicle Charging System,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

352

Coordinating Automated Vehicles via Communication  

E-Print Network [OSTI]

1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

Bana, Soheila Vahdati

2001-01-01T23:59:59.000Z

353

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

354

An Improved Fault-Tolerant Control Scheme for PWM Inverter-Fed Induction Motor-Based EVs  

E-Print Network [OSTI]

and simulations on an electric vehicle are carried-out using a European urban driving cycle to show for such systems. In particular, voltage source inverters are a key component of these electric motor drive systems of an electric vehicle on the variable-speed ac drives and particularly on the power inverter is rapidly

Paris-Sud XI, Université de

355

Useful ContactsCommon Road Signs Motor vehicles prohibited  

E-Print Network [OSTI]

. It produces virtually no atmospheric or noise pollution! 1 Brock 2 College House 3 Contemporary Arts Building.mmu.ac.uk/students/travel All the sustainable travel information you need to travel to MMU Cheshire www choosing two wheels? With rising fuel prices and continued investment in sustainable travel options its

356

Addressing the Driver's Role in Motor Vehicle Crashes  

E-Print Network [OSTI]

Center for Transportation Studies Seminar University of Minnesota #12;Preview: This will be reflections/ Institutional Structures Market Mechanisms · minimum drinking age · hours of sale · no service to intoxicated · disposable income Economic Availability · quantity accessible · geographic density of outlets · proximity

Minnesota, University of

357

HEI Report 133 Characterization of Metals Emitted from Motor Vehicles  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACMEFUTURE MOBILITY INPROCEEDINGS, R e s e

358

Nevada Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServicesNeuCo Inc JumpWater RightNevada

359

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill <MN Office of

360

The External Damage Cost of Direct Noise From Motor Vehicles  

E-Print Network [OSTI]

is not an external or unaccounted-for cost of highways ifland, then there is an unaccounted- for cost of highway use;

Delucchi, Mark A.; Hsu, Shi-Ling

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawk MunicipalMontvale,GTZVehicle Emission

362

Texas Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to:TetraSun Jump to: navigation, search

363

Analysis of Factors Affecting Motorcycle-Motor Vehicle Crash Characteristics.  

E-Print Network [OSTI]

??As everybody knows, there are many traffic crashes happening every day. Traffic crashes may result in injury, death, and property damage. A number of factors (more)

Zhu, Di

2014-01-01T23:59:59.000Z

364

A Guide to United States MotorVehicle Parts  

E-Print Network [OSTI]

......................................................................3 Guidance on Best Importer Practices ..................................................................................................6 Environmental Protection Agency (EPA

365

DyKnow Federations: Distributing and Merging Information Among UAVs  

E-Print Network [OSTI]

DyKnow Federations: Distributing and Merging Information Among UAVs Fredrik Heintz and Patrick, patdo}@ida.liu.se Abstract--As unmanned aerial vehicle (UAV) applications be- come more complex and versatile there is an increasing need to allow multiple UAVs to cooperate to solve problems which are beyond

Doherty, Patrick

366

First interim report of the Federal Fleet Conversion Task Force  

SciTech Connect (OSTI)

The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

Not Available

1993-08-01T23:59:59.000Z

367

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect (OSTI)

On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

None

2005-12-15T23:59:59.000Z

368

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

Yang, Zong-Liang

369

Intelligent pothole repair vehicle  

E-Print Network [OSTI]

This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling potholes on road surfaces...

Minocher Homji, Ruzbeh Adi

2006-10-30T23:59:59.000Z

370

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

371

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

372

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

373

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Includes Federal and State taxes while excluding county and local taxes. 8 Compressed natural gas used as a vehicle fuel. Includes estimated motor vehicle fuel taxes and...

374

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

Includes Federal and State taxes while excluding county and local taxes. 8 Compressed natural gas used as a vehicle fuel. Includes estimated motor vehicle fuel taxes and...

375

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

376

Counterrotating brushless dc permanent magnet motor  

SciTech Connect (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-12-31T23:59:59.000Z

377

Counterrotating brushless dc permanent magnet motor  

SciTech Connect (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-01-01T23:59:59.000Z

378

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections  

E-Print Network [OSTI]

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

Del Vecchio, Domitilla

379

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network [OSTI]

gasoline; 137,800 BTU/gallon for diesel fuel) 3412 = BTU/kWhcontent of diesel fuel per gallon (137,800 BTU/gallon HHVBTU/gallon HHV), and 15% due to the higher compression ratio of diesel

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

380

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network [OSTI]

Prices and Taxes, Fourth Quarter 1993, International Energy Agency, Organization for Economic Cooperation and Development,

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network [OSTI]

gasoline sales, this factor -- the ratio of the pre-tax retail priceretail price at company-owned outlets -- is 1.08 (calculated by comparing the pre-tax price of gasoline

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

382

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

383

Washington State Electric Vehicle  

E-Print Network [OSTI]

Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

California at Davis, University of

384

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

385

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

386

Executive Fleet Vehicles Report  

Broader source: Energy.gov [DOE]

On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management...

387

MotorMaster+ International | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the capabilities and features of MotorMaster+. However, users can evaluate repairreplacement options on a broader range of motors, including 60 hertz (Hz) motors tested under...

388

Federal Railroad Administration  

Broader source: Energy.gov (indexed) [DOE]

very similar to this bill in regard to the core provisions Core provisions: Review and reform the Federal hours of service requirements Establish a new risk reduction program...

389

Federal Employee Health Services  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements and responsibilities for occupational medical, employee assistance, and workers' compensation programs for Federal employees. Cancels DOE O 341.1.

2007-10-18T23:59:59.000Z

390

From Federal Computer Week:  

National Nuclear Security Administration (NNSA)

Federal Computer Week: Energy agency launches performance-based pay system By Richard W. Walker Published on March 27, 2008 The Energy Department's National Nuclear Security...

391

Federal NEPA Contacts  

Broader source: Energy.gov [DOE]

CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law attorney, or member of agency leadership, these...

392

Federal Railroad Administration  

Broader source: Energy.gov (indexed) [DOE]

- HQ Hazmat Division, Washington, DC. Federal Railroad Administration Dedicated Train Study - Report to Congress November 2003 - FRA' s Ofc. Of Research & Development...

393

Disc rotors with permanent magnets for brushless dc motor  

SciTech Connect (OSTI)

This patent describes a brushless dc permanent magnet motor for driving an autonomous underwater vehicle. It comprises first and second substantially flat, generally cylindrical stators disposed in side by side relation; a first substantially flat, generally cylindrical rotor; a first shaft connected to the first rotor and a second, concentric shaft connected to the second rotor; and means for providing rotation of the first and second shafts in opposite directions.

Hawsey, R.A.; Bailery, J.M.

1992-05-26T23:59:59.000Z

394

High reduction transaxle for electric vehicle  

DOE Patents [OSTI]

A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

Kalns, Ilmars (Plymouth, MI)

1987-01-01T23:59:59.000Z

395

Executive Order 13031-Federal Alternative Fueled Vehicle Leadership |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCity of Los Angeles -The

396

NNSS Alternative Fuel Vehicle Management Program receives federal award |  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National NuclearAdministrator| NEWS

397

Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services2014Need for a

398

Alternative Fuels and Advanced Vehicles Data Center - Federal and State  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom,Inc Place:Incentives and Laws

399

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Single-shaft ac powertrain. c Integrated permanent-magnet acshafts, and connecting cables and wiring). Motor: The 52-kW ac permanent-magnet

Delucchi, Mark

1992-01-01T23:59:59.000Z

400

Bent shaft motor  

DOE Patents [OSTI]

A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

Benavides, G.L.

1998-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Bent shaft motor  

DOE Patents [OSTI]

A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

Benavides, Gilbert L. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

402

Motor current signature analysis method for diagnosing motor operated devices  

DOE Patents [OSTI]

A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

Haynes, Howard D. (Kingston, TN); Eissenberg, David M. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

403

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

404

Design and prototyping methods for brushless motors and motor control  

E-Print Network [OSTI]

In this report, simple, low-cost design and prototyping methods for custom brushless permanent magnet synchronous motors are explored. Three case-study motors are used to develop, illustrate and validate the methods. Two ...

Colton, Shane W. (Shane William)

2010-01-01T23:59:59.000Z

405

Vehicle Standards in a Climate Policy Framework WORKING PAPER  

E-Print Network [OSTI]

action to raise Corporate Average Fuel Economy (CAFE) standards and issue vehicle greenhouse gas (GHG) emissions standards both in California and federally. At the same time, U.S. policy makers are moving toward a national program to limit GHG emissions economy wide. The most robust strategy entails capping emissions

Edwards, Paul N.

406

Efficient, Inexpensive Motors: A New Trend in The Motors Market  

E-Print Network [OSTI]

EFFICIENT, INEXPENSIVE MOTORS: A NEW TREND IN THE MOTORS MARKET Ronald G. Wroblewski, P.E. Trainer and Consultant ABSTRACT The Consortiwn for Energy Efficiency (CEE) has established criteria for premium-efficiency motors above the EPACf... standard. CEE has set a wrifonn efficiency benchmark that all market players (manufacturers, utilities, and end-users) can use. Some end-users however, have been reluctant to specify these motors because they think they are too expensive...

Wroblewksi, R. G.

407

An Analysis of the Impact of Sport Utility Vehicles in the United States  

SciTech Connect (OSTI)

It may be labeled sport utility vehicle, SUV, sport-ute, suburban assault vehicle, or a friend of OPEC (Organization for Petroleum Exporting Countries). It has been the subject of comics, the object of high-finance marketing ploys, and the theme of Dateline. Whatever the label or the occasion, this vehicle is in great demand. The popularity of sport utility vehicles (SUVs) has increased dramatically since the late 1970s, and SUVs are currently the fastest growing segment of the motor vehicle industry. Hoping to gain market share due to the popularity of the expanding SUV market, more and more manufacturers are adding SUVs to their vehicle lineup. One purpose of this study is to analyze the world of the SUV to determine why this vehicle has seen such a rapid increase in popularity. Another purpose is to examine the impact of SUVs on energy consumption, emissions, and highway safety.

Davis, S.C.; Truett, L.F.

2000-08-01T23:59:59.000Z

408

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies  

E-Print Network [OSTI]

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

Swaddle, John

409

Federal Technical Capability Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

2000-06-05T23:59:59.000Z

410

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

2009-11-19T23:59:59.000Z

411

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT AND FERC STAFF The Federal Energy Regulatory Commission today accepted a settlement, valued at nearly $500 stemming from the 2000-2001 energy crisis in California and other Western states. The global settlement

Laughlin, Robert B.

412

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT SETTLEMENT BETWEEN DUKE AND COMMISSION STAFF The Federal Energy Regulatory Commission today accepted a settlement between the Commission's enforcement staff and Houston-based units of Duke Energy that resolves

Laughlin, Robert B.

413

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT POWER EXCHANGE MARKET The Federal Energy Regulatory Commission today approved a staff settlement calling-2-001 COMMISSION APPROVES $13.8 MILLION SETTLEMENT WITH RELIANT ENERGY OVER PHYSICAL WITHHOLDING IN CALIFORNIA

Laughlin, Robert B.

414

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT The Federal Energy Regulatory Commission today accepted an agreement between Nevada Power and Sierra Pacific. AGREEMENT ACCEPTED BETWEEN ENRON AND NEVADA COMPANIES SETTLING MATTERS STEMMING FROM WESTERN ENERGY CRISIS

Laughlin, Robert B.

415

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT FERC APPROVES SETTLEMENT WITH RELIANT IN CALIFORNIA CASES; PROCEEDS COULD TOTAL $50 MILLION The Federal Energy Regulatory Commission today approved a settlement between the Commission's enforcement staff

Laughlin, Robert B.

416

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT CRISIS The Federal Energy Regulatory Commission today approved a comprehensive settlement among APX Inc. Coral Power LLC, Puget Sound Energy Inc. and Avista are Supporting Parties. R-07-14 (30) #12;

Laughlin, Robert B.

417

FEDERAL ENERGY REGULATORY COMMISSION  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT-95-191 COMMISSION APPROVES TWO WESTERN POWER SETTLEMENTS The Federal Energy Regulatory Commission today approved two markets during the Western energy crisis of 2000-2001. The first case involves a settlement agreement

Laughlin, Robert B.

418

Method for assessing motor insulation on operating motors  

DOE Patents [OSTI]

A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

419

Method for assessing motor insulation on operating motors  

DOE Patents [OSTI]

A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

Kueck, J.D.; Otaduy, P.J.

1997-03-18T23:59:59.000Z

420

Vehicle Technologies Office: AVTA - Electric Vehicle Charging...  

Energy Savers [EERE]

the Alternative Fuel Data Center's page on plug-in electric vehicle infrastructure. For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator....

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electric motor model repair specifications  

SciTech Connect (OSTI)

These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

NONE

1995-08-01T23:59:59.000Z

422

Evaluating High Efficiency Motor Retrofit  

E-Print Network [OSTI]

In the petrochemical and refining Industries, and most manufacturing plants, the reliable operation of AC motors always has been crucial to the continuous operation of the process. Now, the cost of operating these motors has also become a...

Evans, T. A.

1984-01-01T23:59:59.000Z

423

Electricity Advisory Committee - Federal Register Notices | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Register Notices Electricity Advisory Committee - Federal Register Notices Electricity Advisory Committee - Federal Register Notices September 3, 2014 Electricity Advisory...

424

Magazine R729 Motor prediction  

E-Print Network [OSTI]

Magazine R729 Primer Motor prediction Daniel M. Wolpert* and J. Randall Flanagan The concept of motor prediction was first considered by Helmholtz when trying to understand how we localise visual position of the eye, predicted the gaze position based on a copy of the motor command acting on the eye

Flanagan, Randy

425

RMP Colloquia Modeling molecular motors  

E-Print Network [OSTI]

The authors present general considerations and simple models for the operation of isothermal motors at small structural differences from the usual Carnot engines. Turning to more explicit models for a single motorRMP Colloquia Modeling molecular motors Frank Julicher,* Armand Ajdari, and Jacques Prost

Jlicher, Frank

426

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

427

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications  

E-Print Network [OSTI]

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

Gilbes, Fernando

428

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION  

E-Print Network [OSTI]

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

Watson, Craig A.

429

Federal Activities in the Bioeconomy  

Broader source: Energy.gov [DOE]

Plenary V: Federal Activities in the Bioeconomy Federal Activities in the Bioeconomy Zia Haq, Senior Analyst, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

430

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

431

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

432

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

433

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

434

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

435

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.2 9,758.63,846.302.8Effective

436

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota6,979. Light Usage Energy

437

Georgia Tech Vehicle Acquisition and  

E-Print Network [OSTI]

1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

438

Electric-Drive Vehicle Basics (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

439

Vehicle Technologies Office: AVTA - Evaluating Military Bases...  

Energy Savers [EERE]

Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

440

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles . Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Federal Water Use Indices  

Broader source: Energy.gov [DOE]

FEMP provides water use indices as a guide for Federal agencies. Note that each is a rough estimate of water usage at different types of sites. Your site may vary considerably.

442

Federal Employee Health Services  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and responsibilities for occupational medical, employee assistance, and workers' compensation programs for Federal employees. Cancels DOE 3790.1B. Canceled by DOE O 341.1A.

2003-12-01T23:59:59.000Z

443

Federal Protective Force  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

2009-07-15T23:59:59.000Z

444

Control system and method for a hybrid electric vehicle  

DOE Patents [OSTI]

A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2001-01-01T23:59:59.000Z

445

Vehicle Technologies Office Merit Review 2014: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and...

446

Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of modified...

447

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

Thornhill, D. A.

448

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

449

Laboratory to change vehicle traffic-screening regimen at vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

450

U.S.U.S. Federal Agency Purchasing ManagersFederal Agency Purchasing Managers Fuel Cell Systems for Portable, Backup and UPSFuel Cell Systems for Portable, Backup and UPS  

E-Print Network [OSTI]

U.S.U.S. Federal Agency Purchasing ManagersFederal Agency Purchasing Managers Fuel Cell Systems, remote, aux. power Buildings & Facilities · 100 Kilowatts to · Primary power, critica Speciality vehicles applications world-wide. Central Oregon business, 68 Employees World class energy technology company focused

451

Natural Gas Vehicle Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report 2014Vehicles » Natural

452

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

453

Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

454

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

455

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Broader source: Energy.gov (indexed) [DOE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

456

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

457

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

458

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

2006-01-01T23:59:59.000Z

459

Housing assembly for electric vehicle transaxle  

DOE Patents [OSTI]

Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

Kalns, Ilmars (Northville, MI)

1981-01-01T23:59:59.000Z

460

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electric Motor R&D  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

462

Energy control strategy for a hybrid electric vehicle  

DOE Patents [OSTI]

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2002-01-01T23:59:59.000Z

463

Energy control strategy for a hybrid electric vehicle  

DOE Patents [OSTI]

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2002-08-27T23:59:59.000Z

464

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

gasoline or diesel with electric motors that use electricityadditional power from an electric motor. Future designs maypower plant and larger electric motor. Hybrid technology is

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

465

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

466

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

467

Estimating Use of Non-Motorized Infrastructure: Models of Bicycle and  

E-Print Network [OSTI]

Estimating Use of Non-Motorized Infrastructure: Models of Bicycle and Pedestrian Traffic · Transportation managers lack data about use of bicycle and pedestrian facilities. · Federal, state, & local of Day Bicycle: Loop Detector Bicycle: Manual Count Pedestrian: Manual Count #12;Scaling factors

Minnesota, University of

468

Method of converting an existing vehicle powertrain to a hybrid powertrain system  

DOE Patents [OSTI]

A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

2001-12-25T23:59:59.000Z

469

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program  

E-Print Network [OSTI]

and Renewable Fuel and Vehicle Technology Program Questions and Answers 4/27/09 to 5/1/09 Two questions (How far's solicitation "seek and obtain an award" through a federal ARRA solicitation. 3) May a project producing bio and Renewable Fuel and Vehicle Technology Program. The Energy Commission recommends that you submit a pre

470

Impact of increased electric vehicle use on battery recycling infrastructure  

SciTech Connect (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

471

How to Build a Motor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motor Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates Expand...

472

Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles  

SciTech Connect (OSTI)

The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

2011-04-30T23:59:59.000Z

473

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

474

A Verified Hybrid Controller For Automated Vehicles  

E-Print Network [OSTI]

con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

Lygeros, J.; Godbole, D. N.; Sastry, S.

1997-01-01T23:59:59.000Z

475

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

476

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

477

Motor Repair Tech Brief  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutesDepartmentCharacteristics | Motor Repair

478

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

- 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

Brennan, Sean

479

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

Brennan, Sean

480

Federal Register Notice  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 Total System12Federal Long Tern810 Federal Register

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

482

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energys Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activitys Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

Stephen Schey; Jim Francfort; Ian Nienhueser

2014-06-01T23:59:59.000Z

483

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

Delucchi, Mark

1992-01-01T23:59:59.000Z

484

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

SciTech Connect (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

485

Developing a Motor Management Policy at BASF  

E-Print Network [OSTI]

In early 1998 Thomas R. Theising, BASF Corporate Engineering initiated the formation of a motor management team. The goal of the team was to develop a Motor Management Guideline to better manage the purchase and repair of motors used throughout...

Zickefoose, B.; Theising, T. R.

486

Industrial motor repair in the United States  

SciTech Connect (OSTI)

This report characterizes the motor repair industry in the United States; summarizes current motor repair and testing practice; and identifies barriers to energy motor repair practice and recommends strategies for overcoming those barriers.

Schueler, V.; Leistner, P.; Douglass, J.

1994-09-01T23:59:59.000Z

487

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

488

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

489

632 Appendix Federal Infonnation  

E-Print Network [OSTI]

632 Appendix Federal Infonnation Processing Standards Publication 46 1977 JanuW)' 15 ANNOUNCING. d.,~ !oh)' II. 1973). and P." 6 of Tit\\rCt·Rl. Name (If Standard with a key. The key is generated in such a way that each of the 56 bits used directly by the algori~hrn an' r

Holden, Joshua Brandon

490

da Reitoria UNIVERSIDADE FEDERAL  

E-Print Network [OSTI]

Aperfeiçoamento Institucional. A PRESIDENTE DO CONSELHO UNIVERSITÁRIO da Universidade Federal de Santa Catarina, mudando o nome da Secretaria Especial de Aperfeiçoamento Institucional para "Secretaria de Aperfeiçoamento) Secretaria de Relações Internacionais; c) Secretaria de Gestão de Pessoas; d) Secretaria de Aperfeiçoamento

Floeter, Sergio Ricardo

491

Federal Employee Training  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To plan and establish requirements and assign responsibilities for Department of Energy (DOE) Federal employee training, education, and development (hereafter referred to as "training") under the Government Employees Training Act of 1958. Cancels DOE O 360.1A. Canceled by DOE O 360.1C.

2001-10-11T23:59:59.000Z

492

Federal Employee Training  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To plan and establish requirements and assign responsibilities for Department of Energy (DOE) Federal employee training, education, and development under the Government Employees Training Act of 1958, as amended. Cancels DOE O 360.1. Canceled by DOE O 360.1B.

1999-09-21T23:59:59.000Z

493

Federal Employee Training  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements and responsibilities for DOE Federal employee training in accordance with Chapter 41 of Title 5, United States Code (U.S.C.). Cancels DOE O 360.1B and DOE M 360.1-1B.

2011-07-06T23:59:59.000Z

494

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg. 1 dated 9-20-11 Cancels DOE O 426.1. Cancels DOE P 426.1.

2009-11-19T23:59:59.000Z

495

Federal Agency Hazardous Waste Compliance Docket (docket). Revision 1  

SciTech Connect (OSTI)

The Federal Facilities Hazardous Waste Compliance Docket (``docket``) identifies Federal facilities that may be contaminated with hazardous substances and that must be evaluated to determine if they pose a risk to public health or the environment The docket, required by Section 120(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), also provides a vehicle for making information about potentially contaminated facilities available to the public. Facilities listed on the docket must complete site assessments that provide the Environmental Protection Agency (EPA) with information needed to determine whether or not the facility should be included on he National Priorities List (NPL). This Information Brief, which revises the previous Federal Agency Hazardous Waste Compiliance Docket Information Brief, provides updated information on the docket listing process, the implications of listing, and facility status after listing.

Not Available

1994-01-01T23:59:59.000Z

496

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

497

Verification of Motor Repair Quality  

E-Print Network [OSTI]

Motor testing at Advanced Energy has shown that a motor that has not suffered irreparable damage as a result of failure can be repaired to perform as well as before the failure. But the only way to achieve the performance level of an energy...

Butler, K.

498

Federal Memorandum of Understanding for Hydropower/Federal Inland...  

Open Energy Info (EERE)

of Energy Environmental Protection Agency Federal Energy Regulatory Commission Fish and Wildlife Service Forest Service National Oceanic and Atmospheric Administration...

499

Baseline and verification tests of the electric vehicle associates' current fare station wagon. Final test report, March 27, 1980-November 6, 1981  

SciTech Connect (OSTI)

The EVA Current Fare Wagon was manufactured by Electric Vehicle Associates, Incorporated (EVA) of Cleveland, Ohio. It is now available from Lectra Motors Corp. of Las Vegas, Nevada. The vehicle was tested under the direction of MERADCOM from 27 March 1980 to 6 November 1981. The tests are part of a Department of Energy project to assess advances in electric vehicle design. This report presents the performance test results on the EVA Current Fare Wagon. The EVA Current Fare Wagon is a 1980 Ford Fairmont station wagon which has been converted to an electric vehicle. The propulsion system is made up of a Cableform controller, a series-wound 30-hp Reliance Electric Motor, and 22 6-V lead-acid batteries. The Current Fare Wagon is also equipped with regenerative braking. Further details of the vehicle are given in the Vehicle Summary Data Sheet, Appendix A. The results of this testing are given in Table 1.

Dowgiallo, E.J. Jr.; Chapman, R.D.

1983-01-01T23:59:59.000Z

500

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z