Powered by Deep Web Technologies
Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

California Motor Vehicle Standards and Federalism: Lessons for the European Union  

E-Print Network (OSTI)

7543(b)(1) (West 2007). See Motor Vehicle Mfrs. Ass’n v. Newp. 11 (Letter from General Motors President clarifying thatTransportation Controls to Reduce Motor Vehicle Emissions in

Carlson, Ann E.

2008-01-01T23:59:59.000Z

2

motor vehicles | OpenEI  

Open Energy Info (EERE)

motor vehicles motor vehicles Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data on rates and revenue statistics up to 1995. The data includes state motor-fuel tax receipts, 1919-1995, state motor fuel taxes and related receipts, 1950-1995, and state and federal motor fuel tax rates, 1919-1995 The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT highway motor vehicles rates revenues Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor-fuel tax receipts, 1919-1995 (xlsx, 13.8 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor fuel taxes and related receipts, 1950-1995 (xlsx, 78.5 KiB)

3

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

4

California Motor Vehicle Standards and Federalism: Lessons for the European Union  

E-Print Network (OSTI)

stringent federal air standards, have been important, indeedNational Air Quality Standards: Macro and Micro Mistakes, 22in State Environmental Standard-Setting, 8 C ORNELL J.L. & P

Carlson, Ann E.

2008-01-01T23:59:59.000Z

5

Hybrid vehicle motor alignment  

DOE Patents (OSTI)

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

6

Commercial Motor Vehicle Brake-Related Research  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

7

Commercial Motor Vehicle Brake Assessment Tools  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor #12;Overview · Commercial Motor Vehicle (CMV) Air Brake System · North American Standard Level-1

8

Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Motor Natural Gas Motor Vehicle Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Motor Vehicle Fuel Promotion An eight member Natural Gas Fuel Board (Board) was created to advise the

9

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

10

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

11

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

12

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)  

E-Print Network (OSTI)

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

13

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

the sales taxes paid on motor-vehicles, gasoline and motor-as gasoline excise taxes, road tolls, and motor-vehiclegasoline tax (e.g. , Parry and Small, 2005), the incidence of federal and state motor-

Delucchi, Mark

2007-01-01T23:59:59.000Z

14

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

general sales taxes) on motor gasoline (EIA, State Energythe sales tax paid on motor-vehicles, gasoline and motor-Motor fuels: portions of federal gasoline and diesel-fuel tax

Delucchi, Mark

2005-01-01T23:59:59.000Z

15

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT  

E-Print Network (OSTI)

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

Roy, Subrata

16

VIA Motors electric vehicle platform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform More Documents &...

17

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

the sales tax paid on motor-vehicles, gasoline and motor-as gasoline excise taxes, road tolls, and motor- vehicleMotor fuels: portions of federal gasoline and diesel-fuel tax

Delucchi, Mark

2005-01-01T23:59:59.000Z

18

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

19

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

20

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network (OSTI)

Carbonyl compounds present in motor vehicle exhaust, rangingfrom gasoline and diesel motor vehicles. Environ. Sci. Tech.composition and toxicity of motor vehicle emission samples.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

22

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

the use of Persian-Gulf oil by motor vehicles The sociallye r s i a n - G u l f Oil f o r Motor Vehicles 16. T h e C ofor motor vehicles: lost consumer surplus in other oil-

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

23

Hybrid vehicle motor alignment - Energy Innovation Portal  

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion ...

24

Federal Energy Management Program: Federal Fleet Reporting  

NLE Websites -- All DOE Office Websites (Extended Search)

legislation requires agencies to annually report information on Federal motor vehicle usage and the makeup of their motor vehicle fleets. Agencies must also report the use of...

25

Table A1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel ...  

U.S. Energy Information Administration (EIA)

Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel 2001 Household and Vehicle Expenditures ... Age of Primary Driver 16 to 17 Years ...

26

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

27

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

28

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

alcohol Unfinished oils Motor gasoline blending componentsalcohol Unfinished oils Motor gasoline blending componentsthe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

29

Vehicle Technologies Office: Federal Laboratory Consortium Excellence in  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Laboratory Federal Laboratory Consortium Excellence in Technology Transfer Awards to someone by E-mail Share Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Facebook Tweet about Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Twitter Bookmark Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Google Bookmark Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Delicious Rank Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Digg Find More places to share Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on

30

Vehicle Technologies Office: Fact #443: November 13, 2006 Motor...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: November 13, 2006 Motor Vehicle Trade between the U.S. and China to someone by E-mail Share Vehicle Technologies Office: Fact 443: November 13, 2006 Motor Vehicle Trade between...

31

Physical context management for a motor vehicle  

DOE Patents (OSTI)

Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

Dixon, Kevin R. (Albuquerque, NM); Forsythe, James C. (Sandia Park, NM); Lippitt, Carl E. (Albuquerque, NM); Lippitt, legal representative, Lois Diane (Albuquerque, NM)

2009-10-27T23:59:59.000Z

32

Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: December 14, 1: December 14, 2009 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on AddThis.com... Fact #601: December 14, 2009

33

Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

7: August 23, 7: August 23, 2010 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on AddThis.com... Fact #637: August 23, 2010 World Motor Vehicle Production

34

Electrical system for a motor vehicle  

DOE Patents (OSTI)

In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

Tamor, M.A.

1999-07-20T23:59:59.000Z

35

Electrical system for a motor vehicle  

SciTech Connect

In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

Tamor, Michael Alan (Toledo, OH)

1999-01-01T23:59:59.000Z

36

Executive Order 13031-Federal Alternative Fueled Vehicle Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the use of alternative fueled vehicles (AFVs). Executive Order 13031-Federal Alternative Fueled Vehicle Leadership More Documents & Publications NATIONAL DEFENSE...

37

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

from Transportation Fuels, Motor Vehicles, Transportationfrom alternative fuels for motor vehicles and electricity-Environmental Externalities of Motor-Vehicle Use in the U.

Delucchi, Mark

2005-01-01T23:59:59.000Z

38

Emergency Department Visits by Older Adults for Motor Vehicle Collisions: A Five-Year National Study  

E-Print Network (OSTI)

KM, Esserman DA, et al. Motor vehicle collision-relatedVisits by Older Adults for Motor Vehicle Collisions * Denvervisits by older adults for motor vehicle collisions (MVC) in

Vogel, Jody A; Ginde, Adit A.; Lowenstein, Steven R.; Betz, Marian E.

2013-01-01T23:59:59.000Z

39

Vital Signs: Emergency Department and Older Adult Motor Vehicle Collisions: Prevention is Paramount  

E-Print Network (OSTI)

Severity of Older Adult Motor Vehicle Collisions in OrangeOlder adults opinion of and motor vehicle-related crashes—32. California Department of Motor Vehicles. Senior Driver:

Lotfipour, Shahram; Cisneros, Victor; Chakravarthy, Bharath

2013-01-01T23:59:59.000Z

40

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchgroundwater pollution; motor-vehicle transportation;the environmental costs of motor vehicle transportation in

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

from Transportation Fuels, Motor Vehicles, Transportationfrom alternative fuels for motor vehicles and electricity-Environmental Externalities of Motor-Vehicle Use in the U.

Delucchi, Mark

2005-01-01T23:59:59.000Z

42

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

Organization of Motor Vehicle Manufacturers, Paris, France,Organization of Motor Vehicle Manufacturers (2003) providesOrganization of Motor Vehicle Manufacturers. Because of

Delucchi, Mark

2005-01-01T23:59:59.000Z

43

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

Organization of Motor Vehicle Manufacturers, Paris, France,Organization of Motor Vehicle Manufacturers (2003) providesOrganization of Motor Vehicle Manufacturers. Because of

Delucchi, Mark

2005-01-01T23:59:59.000Z

44

Descriptions of Motor Vehicle Collisions by Participants in Emergency Department–Based Studies: Are They Accurate?  

E-Print Network (OSTI)

reports in determining motor vehicle crash characteristics.R ESEARCH Descriptions of Motor Vehicle Collisions byThe immediate aftermath of motor vehicle collisions. In:

2012-01-01T23:59:59.000Z

45

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and on lubricating oils motor-vehicle salesmen; selectivefor example motor vehicles, oil and gas properties, housethe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark

2005-01-01T23:59:59.000Z

46

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

July (1996). Motor Vehicle Manufacturers Association of theaddition, some motor-vehicle manufacturers have been finedEPA charges motor-vehicle manufacturers to cover the cost of

Delucchi, Mark

2005-01-01T23:59:59.000Z

47

Alternative Fuels Data Center: Federal Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

48

Gas Mileage of 1986 Vehicles by Vixen Motor Company  

NLE Websites -- All DOE Office Websites (Extended Search)

Vixen Motor Company Vehicles EPA MPG MODEL City Comb Hwy 1986 Vixen Motor Company 21 TD 6 cyl, 2.4 L, Manual 5-spd, Diesel Compare 1986 Vixen Motor Company 21 TD 15 City 16...

49

Gas Mileage of 1984 Vehicles by Avanti Motor Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

84 Avanti Motor Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 Avanti Motor Corporation Avanti II 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1984 Avanti Motor...

50

VIA Motors electric vehicle platform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extended-Range Electric Trucks Extended-Range Electric Trucks The fuel economy of a Prius with the payload of a pickup VIA's E-REV powertrain is ideal for America's fleets, cutting fuel costs by up to 75%, while dramatically reducing petroleum consumption and emissions- electricity costs an average of 60 cents per equivalent gallon. Recharging daily, the average driver could expect to refill the gas tank less than 10 times a year rather than once a week. It offers all the advantages of an electric vehicle, without range limitations. Working with vehicle manufacturers, VIA plans to begin delivering E-REV trucks to government and utility fleets in 2011. The onboard generator provides a work site with 15 kW of exportable power Up to 40 miles in all-electric mode and up to 300 miles using the range extender

51

Vehicle Technologies Office: Fact #767: February 18, 2013 Federal Excise  

NLE Websites -- All DOE Office Websites (Extended Search)

7: February 18, 7: February 18, 2013 Federal Excise Tax on Gasoline, 1932 - 2012 to someone by E-mail Share Vehicle Technologies Office: Fact #767: February 18, 2013 Federal Excise Tax on Gasoline, 1932 - 2012 on Facebook Tweet about Vehicle Technologies Office: Fact #767: February 18, 2013 Federal Excise Tax on Gasoline, 1932 - 2012 on Twitter Bookmark Vehicle Technologies Office: Fact #767: February 18, 2013 Federal Excise Tax on Gasoline, 1932 - 2012 on Google Bookmark Vehicle Technologies Office: Fact #767: February 18, 2013 Federal Excise Tax on Gasoline, 1932 - 2012 on Delicious Rank Vehicle Technologies Office: Fact #767: February 18, 2013 Federal Excise Tax on Gasoline, 1932 - 2012 on Digg Find More places to share Vehicle Technologies Office: Fact #767: February 18, 2013 Federal Excise Tax on Gasoline, 1932 - 2012 on

52

Electric machine for hybrid motor vehicle  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

Hsu, John Sheungchun (Oak Ridge, TN)

2007-09-18T23:59:59.000Z

53

Alternative Fuels and Advanced Vehicles Data Center - Federal...  

Open Energy Info (EERE)

and State Incentives and Laws Database Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and...

54

Gas Mileage of 1984 Vehicles by American Motors Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 American Motors Corporation Vehicles 4 American Motors Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 20 Combined 22 Highway 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 21 Combined 23 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Automatic 3-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 15 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 16 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 5-spd, Regular Gasoline

55

Electric machine for hybrid motor vehicle - Energy Innovation ...  

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet ...

56

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial...

57

EA-1869: Supplement to General Motors Corp., Electric Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1869: Supplement to General Motors Corp., Electric VehicleBattery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE...

58

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

emissions (from petroleum refineries, vehicle manufacture,emissions from petroleum refineries. Then, I apportion theproduction of motor fuel at refineries, emissions from the

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

59

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Supplement to General Motors Corp., Electric 9: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) Overview Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 29, 2011 EA-1869: Final Environmental Assessment and Finding of No Significant

60

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

expenditures related to motor-vehicle use is a key factor insuch as highway patrol, for motor-vehicle users (Delucchi,fees speci?cally related to motor-vehicle use A2.1. Taxes

Delucchi, Mark

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8, 7-Urban density and inhalation of motor vehicle emissions JDof primary pollutants: motor vehicle emissions in the South

Marshall, J D; McKone, T E; Deakin, E; Nazaroff, William W

2005-01-01T23:59:59.000Z

62

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8,of ammonia and other motor vehicle exhaust emissions.and engine load on motor vehicle emissions. Environmental

Marshall, Julian D.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

2006-01-01T23:59:59.000Z

63

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

the Use of Persian-Gulf Oil for Motor Vehicles, Report #15the use of Persian-Gulf oil for motor vehicles. 9 While itthe use of Persian-Gulf oil by motor vehicles (Table 2). All

Delucchi, Mark

2007-01-01T23:59:59.000Z

64

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

the use of Persian Gulf oil for motor vehicles. UCD-ITS-RR-use of Persian Gulf oil for motor vehicles Mark A. Delucchiof Persian Gulf oil by motor vehicles speci?cally, both in

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

65

Summary of electric vehicle dc motor-controller tests  

DOE Green Energy (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

66

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

67

Alternative Fuel Vehicles: Real-World Perspectives from the Federal...  

NLE Websites -- All DOE Office Websites (Extended Search)

by the alternative fuel used: ethanol (E85), methanol (M85), and compressed natural gas (CNG). Because there are very few federal fleet vehicles that run on liquefied petroleum gas...

68

Vehicle Technologies Office: Fact #682: July 4, 2011 Federal...  

NLE Websites -- All DOE Office Websites (Extended Search)

and liquefied natural gas (LNG) has declined over the last few years. In 2010, electricity use grew due to a large acquisition of electric vehicles for the Federal fleet....

69

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicle Emission Simulator (MOVES) Motor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/otaq/models/moves/index.htm Cost: Free Equivalent URI: cleanenergysolutions.org/content/motor-vehicle-emission-simulator-move Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: http://www.epa.gov/otaq/models/moves/index.htm Intended to replace MOBILE6, NONROAD, and NMIM. Estimates energy consumption emissions from highway vehicles from 1999-2050 and accounts for

70

How large are tax subsidies to motor-vehicle users in the US?  

E-Print Network (OSTI)

of this deriving from motor fuels (the oil industry) ratherincome (%) Income year 1991 a Oil industries Motor vehicleindustries Oil and motor vehicle industries combined Amount

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

71

Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Addition of Electric Vehicles to Federal Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet May 24, 2011 - 6:06pm Addthis Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What does this mean for me? Estimated to save taxpayers $109,000 each year. Today, White House Council on Environmental Quality Chair Nancy Sutley and U.S. General Services Administrator Martha Johnson presented Secretary Chu with the first set of keys for one of the Federal fleet's 116 new electric cars. "This builds on efforts already underway to reduce fuel use in Federal

72

Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addition of Electric Vehicles to Federal Addition of Electric Vehicles to Federal Fleet Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet May 24, 2011 - 6:06pm Addthis Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What does this mean for me? Estimated to save taxpayers $109,000 each year. Today, White House Council on Environmental Quality Chair Nancy Sutley and U.S. General Services Administrator Martha Johnson presented Secretary Chu with the first set of keys for one of the Federal fleet's 116 new electric cars. "This builds on efforts already underway to reduce fuel use in Federal

73

Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 12, 1998 1: May 12, 1998 Growth in Motor Vehicles: 1940-1996 to someone by E-mail Share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Facebook Tweet about Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Twitter Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Google Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Delicious Rank Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Digg Find More places to share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on AddThis.com... Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996

74

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Arizona Department of Motor Vehicles, Phoenix, Arizona,Enhancement Through Increased Motor-Fuel Tax Enforcement,”Commercial and Industrialb Motor vehiclesc (AVMV USA,Yr )

Delucchi, Mark

2005-01-01T23:59:59.000Z

75

Texas Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Texas Department of Motor Vehicles Name Texas Department of Motor Vehicles Short Name TxDMV Address 4000 Jackson Ave. Place Austin, Texas Zip 78731 Phone number 1-888-368-4689 Website http://www.txdmv.gov/ Coordinates 30.3134782°, -97.7553907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3134782,"lon":-97.7553907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

The External Damage Cost of Direct Noise From Motor Vehicles  

E-Print Network (OSTI)

Effects and Social Costs of Road Transport,” Transportationreview of the social costs of transportation in the U. S.social cost MV = motor vehicle NIPA = National Income Product Accounts NOx = nitrogen oxides NPTS = Nationwide Personal Transportation

Delucchi, Mark A.; Hsu, Shi-Ling

1996-01-01T23:59:59.000Z

77

Nevada Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Nevada Department of Motor Vehicles Name Nevada Department of Motor Vehicles Address 555 Wright Way Place Carson City, Nevada Zip 89711 Phone number 702-486-4368 Website http://dmvnv.com/ Coordinates 39.1549237°, -119.7635207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1549237,"lon":-119.7635207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Gas Mileage of 1993 Vehicles by J.K. Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

3 J.K. Motors Vehicles 3 J.K. Motors Vehicles EPA MPG MODEL City Comb Hwy 1993 J.K. Motors 190E 2.3 MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 190E 2.3 MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 230E MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 230E MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 300SL 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 300SL 14 City 15 Combined 16 Highway 1993 J.K. Motors BMW535I 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW535I 12 City 14 Combined 18 Highway 1993 J.K. Motors BMW635CSI 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW635CSI 12 City 14 Combined 18

79

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

Annual Report, data on motor fuel use available online at /and diesel fuel used by motor vehicles. We recommend thatanalyses of the social cost of motor vehicle use in the US.

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

80

Fourth annual report to Congress, Federal Alternative Motor Fuels Programs  

DOE Green Energy (OSTI)

This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

NONE

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Variable-reluctance motors for electric vehicle propulsion  

SciTech Connect

This paper discusses the design, operation, and expected performance of a 60-kW variable-reluctance motor and inverter-designed for electric vehicle propulsion. To substantiate the performance of this system, experimental data obtained with a prototype 3.8-kW motor and inverter are provided.

Vallese, F.J.; Lang, J.H.

1985-01-01T23:59:59.000Z

82

MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor  

E-Print Network (OSTI)

In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

Meenen, Jordan N

2010-01-01T23:59:59.000Z

83

Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

Not Available

1993-07-01T23:59:59.000Z

84

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

motor-vehicle parts, and motor-oil are recycled. Presumably,parts, motor fuels, or motor oil. I assume a range of 4-8%.relationship between motor-vehicle use and oil imports is

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

85

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

motor-vehicle parts, and motor-oil are recycled. Presumably,parts, motor fuels, or motor oil. I assume a range of 4-8%.relationship between motor-vehicle use and oil imports is

Delucchi, Mark

2005-01-01T23:59:59.000Z

86

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and on lubricating oils motor-vehicle salesmen; selectivefor example motor vehicles, oil and gas properties, housethe Use of Persian-Gulf Oil for Motor Vehicles, Report #15

Delucchi, Mark

2005-01-01T23:59:59.000Z

87

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

July (1996). Motor Vehicle Manufacturers Association of theaddition, some motor-vehicle manufacturers have been finedEPA charges motor-vehicle manufacturers to cover the cost of

Delucchi, Mark

2005-01-01T23:59:59.000Z

88

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

89

Alternative Fuels and Advanced Vehicles Data Center - Federal and State  

Open Energy Info (EERE)

Federal and State Federal and State Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and Laws Database Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Website: www.afdc.energy.gov/afdc/laws/ This database provides U.S. federal and state laws and incentives related to alternative fuels and vehicles, air quality, fuel efficiency, and other transportation-related topics. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

90

Motor Vehicle Crash Fatalities and Injuries: An Analysis of the Relationship of Roadway, Driver, Vehicle Characteristics in Oregon  

E-Print Network (OSTI)

Motor Vehicle Crash Fatalities and Injuries: An Analysis of the Relationship of Roadway, Driver, Vehicle Characteristics in Oregon Motor Vehicle Crash Fatalities and Injuries: An Analysis,000 population among Oregon counties from 2000-2005 ranged from 6.64-211.17. In the event of a severe motor

Bertini, Robert L.

91

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M for electric/hybrid electric vehicles where each phase of a three-phase cascaded multilevel converter can vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid

Tolbert, Leon M.

92

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

DOE Green Energy (OSTI)

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

93

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

MOtor Vehicle Emission Simulator (MOVES) MOtor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary Name: MOtor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: U.S. Environmental Protection Agency Focus Area: GHG Inventory Development Topics: Analysis Tools Website: www.epa.gov/otaq/models/moves/index.htm This emission modeling system estimates emissions from mobile sources, including cars, trucks, and motorcycles. The modeling tool covers a broad range of pollutants and allows multiple scale analysis. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

94

Vehicle Technologies Office: Fact #683: July 11, 2011 Federal Tax Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

3: July 11, 2011 3: July 11, 2011 Federal Tax Credits for the Purchase of Advanced Technology Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #683: July 11, 2011 Federal Tax Credits for the Purchase of Advanced Technology Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #683: July 11, 2011 Federal Tax Credits for the Purchase of Advanced Technology Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #683: July 11, 2011 Federal Tax Credits for the Purchase of Advanced Technology Vehicles on Google Bookmark Vehicle Technologies Office: Fact #683: July 11, 2011 Federal Tax Credits for the Purchase of Advanced Technology Vehicles on Delicious Rank Vehicle Technologies Office: Fact #683: July 11, 2011 Federal Tax Credits for the Purchase of Advanced Technology Vehicles on Digg

95

How large are tax subsidies to motor-vehicle users in the US?  

E-Print Network (OSTI)

gasoline tax and with total user payments for government-provided motor-motor-vehicle use. In most states, gasoline is not subject to a general sales tax (

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

96

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Blincoe, The Economic Cost of Motor Vehicle Crashes, 1994,M. Faigin, The Economic Cost of Motor Vehicle Crashes, 1990,Q. Wang, and D. L. Greene, Motor Vehicle Fuel Economy, The

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

97

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Blincoe, The Economic Cost of Motor Vehicle Crashes, 1994,M. Faigin, The Economic Cost of Motor Vehicle Crashes, 1990,Q. Wang, and D. L. Greene, Motor Vehicle Fuel Economy, The

Delucchi, Mark

2005-01-01T23:59:59.000Z

98

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

defending: the use of oil by motor vehicles in the U. S. (THE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES Report #15 inthe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

99

Fatality and Injury Severity of Older Adult Motor Vehicle Collisions in Orange County, California, 1998-2007  

E-Print Network (OSTI)

Report of Fatal and Injury Motor Vehicle Traffic Collisions.of state regulations on motor vehicle fatalities for youngerXIV, NO . 1 : February 2013 motor vehicle traffic crashes.

2013-01-01T23:59:59.000Z

100

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES  

E-Print Network (OSTI)

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES (INF 254) Section necessary driver and motor vehicle record data to support this status check. X (Employee Signature) (Date

de Lijser, Peter

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

102

Motor vehicle fuel economy, the forgotten HC control stragegy?  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

103

Fuel-Based On-Road Motor Vehicle Emissions Inventory  

E-Print Network (OSTI)

Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S sales from tax department -quite precise Inventory -uncertainty can be estimated Travel Based Model FuelGasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel7859Gasohol (LTK, PAS) g per kg

Denver, University of

104

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation  

E-Print Network (OSTI)

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation of the nanoparticles in motor vehicle exhaust. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols [2001] found that total number of NPs formed in motor vehicle exhaust is very sensitive to CI

Yu, Fangqun

105

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

106

Design of Electric Vehicles DC Traction Motor Drive System Based on Optimal Control  

Science Conference Proceedings (OSTI)

The traditional electric vehicle DC motor drive system can not automatically weaken magnetic field. This paper designs DC motor drive system which control optimally the motor to meet the requirement. The study results show that: the drive system can ... Keywords: electric vehicles, DC motor, controller, optimal control

Yan Jun

2012-12-01T23:59:59.000Z

107

THE ALLOCATION OF THE SOCIAL COSTS OF MOTOR-VEHICLE USE TO SIX CLASSES OF MOTOR VEHICLES  

E-Print Network (OSTI)

-3), on the assumption that consumption of oil and lubricating greases is proportional to fuel consumption. SIC 3011 diameter PMT = person-miles of travel RECS = Residential Energy Consumption Survey SIC = standard Lubricating oils and grease Tires and inner tubes Primary metals Automotive stampings ** Motor vehicles

Delucchi, Mark

108

Correlation of I/M240 and FTP emissions for Alternative Motor Fuels Act test vehicles  

SciTech Connect

The National Remewable Energy Laboratory (NREL) is managing a series of light duty vehicle chasis dynamometer chasis tests on alternative fuel vehicles for the US Department of Energy (DOE). This testing program is part of a larger demonstration of alternative fuel vehicles that was mandated by the Alternative Motor Fuels Act of 1988 (AMFA). In Phase I of the AMFA emissions test program (AMFA I) 18 vehicles were tested by three laboratories. All the vehicles tested were 1991 model year. In Phase II of the program (AMFA II), the number of vehicles was increased to nearly 300, including M85 Dodge Spirits, E85 Chevrolet Luminas, and compressed natural gas Dodge passenger vans. Phase II testing includes a Federal Test Procedure (FTP) test, followed by two of the EPA`s Inspection/Maintenance (I/M240) tests. It is concluded that the I/M240 test is not an appropriate comparison to the FTP. Further the I/M 240 test is not as reliable as the FTP in estimating the `real world` emissions of these relatively low emission vehicles. 7 refs., 10 figs., 8 tabs.

Kelly, K.J.

1994-10-01T23:59:59.000Z

109

Federal Tax Credit for Electric Vehicles Purchased in or after 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Purchased in or after 2010 Federal Tax Credits for Electric Vehicles Purchased in or after 2010 Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in or after 2010 may be eligible for a federal income tax credit of up to $7,500. The credit amount will vary based on the capacity of the battery used to fuel the vehicle. This credit replaces an earlier credit for EVs purchased in 2009. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% AMP Electric Vehicles Jan. 1, 2010, to Present TBD TBD TBD GCE Electric Vehicle 2012 GCE Electric Vehicle $7,500 -- -- -- MLE Electric Vehicle 2012 MLE Electric Vehicle $7,500 -- -- -- BMW Jan. 1, 2010, to Present TBD TBD TBD

110

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2010: Year: Light-Duty Vehicles, Short Wheelbase 1: Light-Duty Vehicles, Long Wheelbase 2:

111

Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11  

DOE Green Energy (OSTI)

This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

Not Available

1992-08-01T23:59:59.000Z

112

Method for controlling a motor vehicle powertrain  

DOE Patents (OSTI)

A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

Burba, Joseph C. (Ypsilanti, MI); Landman, Ronald G. (Ypsilanti, MI); Patil, Prabhakar B. (Detroit, MI); Reitz, Graydon A. (Farmington Hills, MI)

1990-01-01T23:59:59.000Z

113

Method for controlling a motor vehicle powertrain  

DOE Patents (OSTI)

A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

1990-05-22T23:59:59.000Z

114

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

Environmental externalities of motor-vehicle use in the US.Gasoline Cd Co Cr Cu Fe Mn Ni Motor Oil & Grease Antifreezecan often be traced to motor vehicle sources. According to

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

115

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions-related emissions. In the U.S., for example, emissions of carbon dioxide (CO2) from the production and use of motor

Kammen, Daniel M.

116

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

US military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi 2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses of the full social cost of motor vehicle use in the US often estimate an ``oil import premium'' that includes

Murphy, James J.

117

A design for improved performance of interior permanent magnet synchronous motor for hybrid electric vehicle  

Science Conference Proceedings (OSTI)

This paper investigates the layout of a magnet shape on the performance of an interior permanent magnet (IPM) synchronous motor. The motor is used in a hybrid electric vehicle. The IPM motor is a pancake shaped motor that has permanent magnets inside the rotor. The motor acts as a rotational electrodynamic machine between the engine and transmission. The main purpose of redesigning the shape of the magnet is to improve the motor performance

Seong Yeop Lim

2006-01-01T23:59:59.000Z

118

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

171 Emissions related to the use of lubricating oil by motoruse of lubricating oil by motor vehicles The LEM estimatesoil refining to gasoline), the efficiency of fuel use by motor

Delucchi, Mark

2005-01-01T23:59:59.000Z

119

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

171 Emissions related to the use of lubricating oil by motoruse of lubricating oil by motor vehicles The LEM estimatesoil refining to gasoline), the efficiency of fuel use by motor

Delucchi, Mark

2005-01-01T23:59:59.000Z

120

Gas Mileage of 1984 Vehicles by Bill Dovell Motor Car Company  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Bill Dovell Motor Car Company Vehicles EPA MPG MODEL City Comb Hwy 1984 Bill Dovell Motor Car Company Dovell 230CE 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1984...

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gas Mileage of 1985 Vehicles by Bill Dovell Motor Car Company  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Bill Dovell Motor Car Company Vehicles EPA MPG MODEL City Comb Hwy 1985 Bill Dovell Motor Car Company Dovell 230CE 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1985...

122

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon)  

U.S. Energy Information Administration (EIA)

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon) U.S. Energy Information Administration / Monthly Energy Review August 2013 17

123

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2010:

124

Vehicle Yaw Control Utilizing Hybrid Electric Drivetrains with Multiple Electric Motors.  

E-Print Network (OSTI)

??Vehicles with multiple electric motors coupled to individual wheels have excitingopportunities for safety control systems. An investigation is conducted to determine whatdynamic benefits can be… (more)

D'Iorio, James

2008-01-01T23:59:59.000Z

125

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of Motor Vehicles, Albany, New York, personal communication,the Justice Court Fund, Albany, New York, data transmittal,of Accounting Operations, Albany, New York (1992). D. M.

Delucchi, Mark

2005-01-01T23:59:59.000Z

126

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Enhancement Through Increased Motor-Fuel Tax Enforcement,”1976). L. R. Moran, “Motor Vehicles, Model Year 1991,”Commercial and Industrialb Motor vehiclesc (AVMV USA,Yr )

Delucchi, Mark

2005-01-01T23:59:59.000Z

127

The Annualized Social Cost of Motor-Vehicle Use in the U.S., 1990-1991: Summary of Theory, Data, Methods, and Results  

E-Print Network (OSTI)

the Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchirunoff polluted by oil from motor vehicles, and pollutionuse of Persian-Gulf oil by motor vehicles B, D Annualized

Delucchi, Mark A.

1997-01-01T23:59:59.000Z

128

U.S. Military Expenditures to Protect the Use of Persian-Gulf Oil For Motor Vehicles  

E-Print Network (OSTI)

THE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES Report #15 inTO PROTECT THE USE OF PERSIAN-GULF OIL FOR MOTORTHE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES 15.1 UNITED

Delucchi, Mark A.; Murphy, James

1996-01-01T23:59:59.000Z

129

Fifth annual report to congress. Federal alternative motor fuels programs  

DOE Green Energy (OSTI)

This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

NONE

1996-09-01T23:59:59.000Z

130

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2  

E-Print Network (OSTI)

= Vehicle base speed; Vcr = Vehicle cruising speed; = Grade angle; Pv = Vehicle driving power; Fw = Road for the most appropriate electric propulsion system. In this case, key features are efficiency, reliability manuscript, published in "International Review on Modelling and Simulations 6, 1 (2013) 29-32" #12;motor type

Brest, Université de

131

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Future Electric Vehicle FMVSS . Federal Motor Vehicle SafetySafety and Systems Management), 1992. "The Impact Electric Vehiclesas pure electric-powered vehicles. 2.3. Safety, Comfort, and

Scott, Allen J.

1993-01-01T23:59:59.000Z

132

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

war (which Ravenal estimates cost $1050 billion in 1991of motor vehicle estimate total costs), and because one mustand deaths), and estimate the economic cost of the Iraq War

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

133

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

by producing region. Imports of natural gas by producinghave to import between 9% and 43% of its gas demand. Data ongas losses end use consumption). Motor-vehicle flows Imports

Delucchi, Mark

2005-01-01T23:59:59.000Z

134

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

by producing region. Imports of natural gas by producinghave to import between 9% and 43% of its gas demand. Data ongas losses end use consumption). Motor-vehicle flows Imports

Delucchi, Mark

2005-01-01T23:59:59.000Z

135

The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile  

E-Print Network (OSTI)

This paper examines the relationships between the built environment—both ‘neighborhood’ design characteristics and relative location—and motor vehicle ownership and use in a rapidly motorising, developing city context, ...

Zegras, P. Christopher

136

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

Residual Oil Distillate Oil Motor Gasoline Other Petroleumthe use of lubricating oil by motor vehicles is based on theuse of lubricating oil related to motor- vehicle use (g/mi).

Delucchi, Mark

2003-01-01T23:59:59.000Z

137

Profile of motor-vehicle fleets in Atlanta 1994. Assessing the market for alternative-fuel vehicles  

Science Conference Proceedings (OSTI)

This document reports the results of the EIA survey of motorvehicle fleets, both private and municipal, in Atlanta. These data should be useful to those whose goal is to assist or participate in the early development of alternative-fuel vehicle markets. The data also should be useful to persons implementing motor-vehicle-related clean air programs or analyzing transportation energy use. Persons in the petroleum industry will find useful information regarding conventional fuels and the fuel-purchasing behavior of fleets.

NONE

1995-11-06T23:59:59.000Z

138

Analysis of a PM DC motor model for application in feedback design for electric-powered mobility vehicles  

Science Conference Proceedings (OSTI)

Accurate modelling of Permanent Magnet (PM) DC motors is a prerequisite for expedient feedback design of electric-powered mobility vehicles. This paper identifies the parameters in the ideal equations for PM DC motors and considers the methods ... Keywords: electric-powered mobility vehicles, feedback design, frictional torque, model accuracy, modelling, permanent magnet DC motors models

Patrick Wolm; XiaoQi Chen; J. Geoffrey Chase; Warren Pettigrew; Christopher E. Hann

2010-08-01T23:59:59.000Z

139

Hybrid Electric Vehicle with Permanent Magnet Traction Motor: A Simulation Model  

E-Print Network (OSTI)

A simulation model for a hybrid electric vehicle is developed. Permanent magnet synchronous motor is considered for the drive part of the hybrid electric vehicle which comprises three energy sources: (i) a fuel cell, (ii) a battery bank, and (iii) a super capacitor. Rotor-oriented speed controller is designed, and also verified by simulation results, to achieve trajectory tracking requirements of the hybrid electric vehicle within the inverter voltage and current limits.

Levent U. Gökdere; Khalid Benlyazid; Enrico; Enrico Santi; Charles W. Brice; Roger A. Dougal

1999-01-01T23:59:59.000Z

140

Federal Fleet Use of Electric Vehicles, November 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220...

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

motor gasoline was $0.957/gallon in 1987, and $1.196 in 1991, including taxes (tax price of gasoline sold by service stations owned by refining companies with the sales- weighted average retail of all motor

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

142

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

143

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents (OSTI)

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

144

The lived experience of post-traumatic stress disorder as described by motor vehicle accident victims in Jordan.  

E-Print Network (OSTI)

??Aim: To explore the lived experience of post-traumatic stress disorder (PTSD) as described by individuals who have been involved in a motor vehicle accident (MVA)… (more)

Al-Kofahy, Lilibeth

2011-01-01T23:59:59.000Z

145

Electric Energy Industry Workforce: Trends in Motor Vehicle Crashes  

Science Conference Proceedings (OSTI)

EPRI has established an ongoing injury/illness research programthe Occupational Health and Safety Database (OHSD) Programto provide information about the occurrence of workplace injury and illness among the electric energy industry workforce. Vehicles operated by electric utility workers typically include bucket trucks, digger/derrick trucks, washer trucks, pole and material trucks and trailers, and other vehicles used in line construction and maintenance. These vehicles are generally operated over low m...

2007-04-26T23:59:59.000Z

146

Stability Control of Electric Vehicles with In-wheel Motors.  

E-Print Network (OSTI)

??Recently, mostly due to global warming concerns and high oil prices, electric vehicles have attracted a great deal of interest as an elegant solution to… (more)

Jalali, Kiumars

2010-01-01T23:59:59.000Z

147

Evaluation of half wave induction motor drive for use in passenger vehicles. Final report  

SciTech Connect

This report describes research performed to devise and design a lower cost inverter-induction motor drive for electrical propulsion of passenger vehicles. A two-phase inverter-motor system is recommended. It is predicted to provide comparable vehicle performance, improved reliability and nearly a 10% cost advantage for a high production vehicle because of the reduction in total parts count, decreased total rating of the power semiconductor switches and somewhat simpler control hardware compared to the conventional three-phase bridge inverter-motor drive system. The major disadvantages of the two-phase inverter-motor drive are that the tow-phase motor is larger and more expensive than a three-phase machine, the design of snubbers for the power switches is difficult because motor lead and bifilar winding leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency. An actuall model of the two-phase system must be constructed and evaluated. The most challenging engineering design task will be to design the inverter, motor and snubber circuits to minimize transient voltages with high system efficiency.

Hoft, R.G.; Kawamura, A.; Goodarzi, A.; Yang, G.Q.; Erickson, C.L.

1985-05-01T23:59:59.000Z

148

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

Science Conference Proceedings (OSTI)

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

149

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

Science Conference Proceedings (OSTI)

Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

150

Direct Lamination Cooling of Motors For Electric Vehicles  

DOE Green Energy (OSTI)

Current designs for electric motors use a housing that acts as both a structural support and as a method of cooling the stator and rotor. This approach to cooling is not as effective as possible because heat must flow from the rotor and stator through the housing to the cooling media. Because the housing must contain the coolant, it is also larger, heavier, and more expensive than necessary. This project develops a motor that uses a direct lamination cooling (DLC) system, passing coolant directly through the stator and eliminating the need for bulky housing, thereby improving heat transfer. Motor size could be reduced by up to 30-40%, mass by up to 20-30%, and cost by up to 30%. Phase I demonstrated that reliable lamination-to-lamination seals and reliable stack-to-manifold seals can be achieved using the methods identified. The addition of the selected sealants adds only slightly to the thermal resistance and pressure drop compared with unsealed counterparts. Phase II builds electric motors and inductors using the DLC method, obtain comparative performance data on the effectiveness of the method, and then obtain operational use data on these components through long term testing in a representative environment. The long-term testing will ensure that real world aspects of motor and inductor operation (including vibration, temperature cycling, and the presence of electrical and magnetic fields) do not degrade the seals such that leaking occurs or that the thermal performance degrades.

Rippel, Wally; Kobayashi, Drayll

2003-07-30T23:59:59.000Z

151

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

higher the amount of foreign oil embodied, and consequentlyof domestic and foreign crude oil used to make motor fuels10-13b). Mass of foreign crude oil (including unfinished

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

152

Development of a Vehicle Stability Control Strategy for a Hybrid Electric Vehicle Equipped With Axle Motors.  

E-Print Network (OSTI)

??Hybrid-electric vehicles have been available to consumers for over a decade, and plug-in hybrid and pure electric vehicles are rapidly becoming mainstream products with the… (more)

Bayar, Kerem

2011-01-01T23:59:59.000Z

153

Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems in California  

E-Print Network (OSTI)

); and · Similarly, use of PEM fuel cell waste heat for hot water heating would require careful integration with hot consider cogeneration of hot water to be a potential competitive advantage of stationary fuel cellsPWP-092 Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems

Kammen, Daniel M.

154

Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

155

State of California BOARD OF EQUALIZATION MOTOR VEHICLE FUEL TAX REGULATIONS Regulation 1111.  

E-Print Network (OSTI)

A highway includes a way or place, of whatever nature, within the exterior boundaries of the State including a way or place within a Federal area, publicly maintained and open to the use of the public for purposes of vehicular travel, notwithstanding private participation in the maintenance of the way or place. A way or place within a national or State forest which is entirely privately maintained, or a road over which forest products are transported in a national or State forest privately constructed or maintained pursuant to an existing agreement with the public authority having jurisdiction thereof will not be considered a highway notwithstanding the fact that it may be declared by the public authority to be a part of its road system. A way or place under the jurisdiction of the United States Department of Agriculture within a national forest including private property within or adjacent thereto, which way or place is open to public use, is a highway but the tax is refundable on the fuel used in the operation of a motor vehicle thereon by any person who for the use of such highway pays, or contributes to, the cost of construction or maintenance of the way or place pursuant to an agreement with, or permission of, the United States Department of Agriculture. (See Section 8101.1, Revenue and Taxation Code.) A way or place is not a highway within the meaning of Section 7319 of the Revenue and Taxation Code, during such times as it is closed by the governmental authority to the use of the public regardless of the

unknown authors

1958-01-01T23:59:59.000Z

156

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

157

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

158

A guide to surveys of motor vehicle fleets  

DOE Green Energy (OSTI)

In response to directives in Section 407 of the Energy Policy Act of 1992 (EPACT), the Energy Information Administration (EIA) developed a data collection program designed to provide information useful to persons interested in the alternative fuels market. The target audience includes those seeking to manufacture, convert, sell, own, or operate alternative-fuel vehicles (AFVs) or alternative fueling facilities. Among the various projects EIA conducted as part of this data collection program were two fleet surveys conducted in Department of Energy-designated Clean Cities. The Clean Cities program is a locally-based government/industry partnership coordinated by the Department of Energy to expand the use of alternative transportation fuels. These surveys were designed to collect a broad range of information regarding the fleets and fleet vehicles in operation in the Atlanta, Georgia and Denver, Colorado areas. One of the objectives of these surveys was to attempt to identify and describe the market for AFVs. Due to inherent limitations associated with AFVs and limited alternative-fuel infrastructure, it`s believed that the first practical applications for AFVs will be within private and government fleets. Another objective in conducting the Clean Cities Fleet surveys was to develop a useful methodology for accessing and surveying private and municipal fleets that would aid other interested parties in conducting similar surveys. This report is intended to provide a description of how EIA gathered information on private and municipal fleets, but the basic survey design could be used to design surveys of other difficult-to-access populations. There are 3 basic steps to any survey: define the target population, constructing the survey frame, and implementing the survey. The procedures outlined in this report are, for the most part, the procedures used for the fleet survey conducted in Denver. The major changes between the two surveys are described in Appendix A.

NONE

1996-11-01T23:59:59.000Z

159

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark

2005-01-01T23:59:59.000Z

160

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. Motor Vehicle Output and Other GDP, 1968-2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Output and Other GDP, 1968-2007 Motor Vehicle Output and Other GDP, 1968-2007 Danilo J. Santini, Ph. D. Senior Economist Center for Transportation Research Argonne National Laboratory 9700 South Cass Avenue Phone: 630 252 3758 Fax: 630 252 3443 E-mail: dsantini@anl.gov David A Poyer, Ph.D. Associate Professor of Economics Morehouse College 830 Westview Dr. SW Atlanta, GA 30314 Phone: 404 681 2800, ext. 2553 E-mail: dpoyer@morehouse.edu THE 66th INTERNATIONAL ATLANTIC ECONOMIC CONFERENCE Montreal, Canada 9-12 October 2008 BUSINESS FLUCTUATIONS AND CYCLES 12 October 2008 Sunday 11:15 AM - 1:15 PM The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. . The U.S. Government

162

Spatial Analysis of Motor Vehicle Accidents in Johnson City, Tennessee, as Reported to Washington County Emergency Communications District (911).  

E-Print Network (OSTI)

??This study spatially analyzes emergency 911 call-for-service records from January 1, 2000 through December 31, 2009 for motor vehicle accidents inside the corporate limits of… (more)

Bennett, Katharine D

2010-01-01T23:59:59.000Z

163

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of Motor Vehicles, Albany, New York, personal communication,the Justice Court Fund, Albany, New York, data transmittal,of Accounting Operations, Albany, New York (1992). D. M.

Delucchi, Mark

2005-01-01T23:59:59.000Z

164

A decision support system of vehicle routing and refueling for motor carriers with time-sensitive demands  

Science Conference Proceedings (OSTI)

Given the recent trend of raising fuel cost and the increased time-sensitiveness of shippers, an extensive pressure is placed on the motor-carrier industry to meet the time-constrained customer demands at minimum fuel cost. We propose a decision support ... Keywords: Decision support system, Fuel cost, Motor carriers, Optimization, Vehicle routing

Yoshinori Suzuki

2012-12-01T23:59:59.000Z

165

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Test Procedure Emissions Test Results from Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc. (Telephone: 412.776.4970; E-mail: publications@sae.org)

166

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

Science Conference Proceedings (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

167

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

168

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

Science Conference Proceedings (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

169

Propulsion system for a motor vehicle using a bidirectional energy converter  

DOE Patents (OSTI)

A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

1999-01-01T23:59:59.000Z

170

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

provide the world’s uranium enrichment services. With theseenergy efficiency of uranium enrichment, in mWh-enrichment-gas Motor-vehicle flows Uranium enrichment Agriculture Fuel

Delucchi, Mark

2003-01-01T23:59:59.000Z

171

State of California BOARD OF EQUALIZATION MOTOR VEHICLE FUEL TAX REGULATIONS Regulation 1178.  

E-Print Network (OSTI)

(a) GENERAL. A taxpayer shall maintain and make available for examination on request by the board or its authorized representatives, records in the manner set forth at California Code of Regulations, Title 18, Section 4901 (b) SPECIFIC APPLICATIONS. In addition to the record keeping requirements set forth in subdivision (a), suppliers shall comply with the following requirements. A supplier shall maintain complete records of all rack removals, sales, imports and exempt dispositions including exemption certificates, self-consumed fuel, inventories, purchases, receipts, and tank gaugings or meter readings, of motor vehicle and any other fuel that is required to be accounted for on the supplier’s return or report. Such records include but are not limited to: (1) Refinery Reports related to the production of motor vehicle fuel. (2) Inventory reconciliation by location. (3) Storage inventory reports. (4) List of storage locations. (5) Tax returns from other states to support export claims. (6) Cardlock statements. (7) Calculations or formulas to support off-highway exempt usage.

unknown authors

2002-01-01T23:59:59.000Z

172

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

173

The Impact of Motor Vehicle Operation on Water Quality: A Premilinary Assessment  

E-Print Network (OSTI)

Institute), 1997. Used Motor Oil Collection and Recycling. Amillion gallons of used motor oil are improperly dischargedLike crude oil slicks, used motor oil can destroy aquatic

Nixon, Hillary; Saphores, Jean-Daniel

2003-01-01T23:59:59.000Z

174

The Numbers Game: The Politics of the Federal Surface Transportation Program  

E-Print Network (OSTI)

Motor vehicle user tax revenues, including proceeds from gasoline, tire, and heavy vehicle taxes,in gasoline consumption, and hence in motor fuels taxmotor fuels tax. Revenue conflicts have Serious proposals to repeal or suspend portions of the federal gasoline tax

Brown, Jeffrey Richard

2003-01-01T23:59:59.000Z

175

Impact of New Federal Efficiency Performance Standards on the Industrial Motor Marketplace  

E-Print Network (OSTI)

The Energy Independence and Security Act of 2007 enacted new motor efficiency standards that will go into effect in December 2010. Previous motor efficiency standards, which were implemented as part of EPAct in 1992, caused some confusion within the motor marketplace. In part, this confusion lead to the development of NEMA’s Premium® label, which has since helped guide motor purchasers to buy efficient motors. As a companion activity, the awareness program Motor Decisions Matter was established to encourage the replacement of motors with more efficient technology rather than the repair of old, inefficient motors. The motor marketplace now faces similar confusion as the new standards will soon be implemented. It is therefore incumbent upon industrial motor users to begin planning for these standards now, both by developing new motor management plans and by updating repair/replace decision criteria to reflect changes in efficiency and price for motor replacement options. At the same time, it is incumbent upon motor efficiency programs and policymakers to address the anticipated negative market behavior trends that will likely result from the new standards’ implementation in the next few years.

Elliott, R. N.

2009-05-01T23:59:59.000Z

176

Executive Fleet Vehicles DOE HQ 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motor Vehicle Management Report Motor Vehicle Management Report U.S. Department of Energy - HQ Pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50) November 14, 2011 Background: On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Within 180 days of the date of the Presidential Memorandum, any executive fleet vehicles that are larger than a midsize sedan or do not comply with alternative fueled

177

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

178

Texas AgriLife Research Procedure 24.01.01.A1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 24.01.01.A1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas Revised: November 13, 2010 Next Scheduled Review: November 13, 2012 PROCEDURE STATEMENT The Texas A vehicle operators in the event of a vehicle accident involving a Texas AgriLife Research (Agri

179

New Energy Tax Credit for Electric Vehicles Purchased in 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Federal Tax Credits for Electric Vehicles Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in 2009 may be eligible for a federal income tax credit of up to $7,500. The amount will vary based on the capacity of the battery used to power the vehicle. This credit was replaced with a similar credit for EVs purchased after 2009. The maximum amount of this credit is the same, but the the requirements and credit phase-out criteria are slightly different. For more information on the credit for EVs purchased after 2009, click here. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Tesla Motors Jan. 1, 2010, to Present TBD TBD TBD Tesla Roadster 2008-10 Tesla Roadster $7,500 -- -- -- Qualified Plug-In Electric Drive Motor Vehicles (IRC 30D)

180

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

and recycling. API used motor oil FAQs. Available from:improperly discharged used motor oil pollute streams, lakes,refined products such as motor oil and gasoline are more

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Impacts of Motor Vehicle Operation on Water Quality: A Preliminary Assessment  

E-Print Network (OSTI)

million gallons of used motor oil are improperly discharged3 Like crude oil slicks, used motor oil can destroy aquaticrefined products such as motor oil and gasoline are more

Nixon, Hilary; Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

182

The Cost of Crop Damage Caused by Ozone Air Pollution From Motor Vehicles  

E-Print Network (OSTI)

transportation fuels, oil-production ?elds, motor-vehiclethe production of crude oil used to make motor fuel, thethe production of crude oil used to make motor fuel, the

Murphy, James; Delucchi, Mark; McCubbin, Donald; Kim, H.J.

1999-01-01T23:59:59.000Z

183

The Cost of Crop Damage Caused by Ozone Air Pollution From Motor Vehicles  

E-Print Network (OSTI)

transportation fuels, oil-production fields, motor-vehiclethe production of crude oil used to make motor fuel, thethe production of crude oil used to make motor fuel, the

Delucchi, Mark A.; Murphy, James; Kim, Jin; McCubbin, Donald R.

1996-01-01T23:59:59.000Z

184

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

DOE Green Energy (OSTI)

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

185

Section 5.7 Electric Motors and Drives: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

have had sufficient run-time and are replaced with energy-efficient models. References Energy-Efficient Electric Motor Handbook, Revision 3, U.S. Department of Energy,...

186

California Motor Vehicle Standards and Federalism: Lessons for the European Union  

E-Print Network (OSTI)

gases and a 15 percent reduction of NOx, using 1987 modelsstandards for NOx, requiring a 90 percent reduction forNOx and provided stringent guidelines for the agency to meet. These guidelines included mandating the reduction

Carlson, Ann E.

2008-01-01T23:59:59.000Z

187

The Contribution of Motor Vehicles and Other Sources to Ambient Air Pollution  

E-Print Network (OSTI)

industries Petrol evaporation Gasoline vehicle exhaustb Solvents and storage Fuel combustion by electric

Delucchi, Mark A.; McCubbin, Donald R.

1996-01-01T23:59:59.000Z

188

Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development and deployment of alternative fuels for environmental and national security reasons, NREL has managed a series of light-duty vehicle emissions tests on alternative fuel vehicles (AFVs). The purpose of this report is to give a detailed evaluation of the final emissions test results on vehicles tested on methanol, ethanol, and compressed natural gas.

Kelly, K.; Eudy, L.; Coburn, T.

1999-12-13T23:59:59.000Z

189

The Annualized Social Cost of Motor-Vehicle Use in the U.S., 1990-1991: Summary of Theory, Data, Methods, and Results  

E-Print Network (OSTI)

of gasoline excludes retail sales taxes and the motor-fuelmotor gasoline, and add to it the refineriesŐ actual private cost (exclusive of taxes)motor vehicles, and certainly not to forward any particular position about what, for example, gasoline taxes

Delucchi, Mark A.

1997-01-01T23:59:59.000Z

190

Global Methodology to Integrate Innovative Models for Electric Motors in Complete Vehicle Simulators  

E-Print Network (OSTI)

. 66 (2011), No. 5878 ABBREVIATIONS EM Electric Motor FE Finite Element FEA Finite Element Analysis FEM: the Interior Magnet Synchronous Motor with V-shape mag- net, (V-IPMSM), technology used in the Toyota Prius II, the electro- magnetic parameters of the Toyota Prius II Electric Motor are estimated thanks to the presented

Paris-Sud XI, Université de

191

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

DOE Green Energy (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

192

Texas AgriLife Extension Service Procedure 24.01.01.X1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 24.01.01.X1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Extension Service Procedures 24.01.01.X1.02 MOTOR VEHICLE ACCIDENT REPORTS Approved The Texas A&M University System covers system vehicles under a system-wide self insurance plan. Employees

193

Federal Alternative Motor Fuels Programs Fifth Annual Report to Congress - 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Abstract Abstract This annual report to Congress presents the current status of the U.S. Department of Energy's alterna- tive fuel vehicle demonstration and performance tracking programs being conducted across the country in accordance with the Energy Policy and Conservation Act (42 U.S.C. 6374, et seq.). These programs, which comprise the most compre- hensive data collection effort ever undertaken on alternative transporta- tion fuels and alternative fuel vehi- cles, are beginning their sixth year. This report summarizes tests and results from the fifth year. Even though present interest in electric vehicles is quite high, they are not currently included in these vehicle demonstration and performance tracking programs, and the annual report does not include information on them.

194

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

195

Intelligent GPS-based predictive engine control for a motor vehicle  

Science Conference Proceedings (OSTI)

An intelligent Global Positioning System (GPS) based control system utilises information about the current vehicle position and upcoming terrain in order to reduce vehicle fuel consumption as well as improve road safety and comfort. The development of ...

S. H. Lee; S. M. Begg; S. D. Walters; R. J. Howlett

2010-08-01T23:59:59.000Z

196

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

wood, grass, or corn. It considers fuel-cell electric vehicles (FCVs) as well as internal- combustion

Delucchi, Mark

2005-01-01T23:59:59.000Z

197

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

wood, grass, or corn. It considers fuel-cell electric vehicles (FCVs) as well as internal- combustion

Delucchi, Mark

2005-01-01T23:59:59.000Z

198

A Study of the Discrepancy Between Federal and State Measurements of On-Highway Motor Fuel Consumption  

NLE Websites -- All DOE Office Websites (Extended Search)

TM TM -2003/171 A Study of the Discrepancy Between Federal and State Measurements of On-Highway Motor Fuel Consumption July 2003 Ho-Ling Hwang Lorena F. Truett Stacy C. Davis DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the followi ng source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.fedworld.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

199

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

200

Design and analysis of wheel hub to provide in-hub electric motor for HMMWV vehicle.  

E-Print Network (OSTI)

??This thesis describes the design of the wheel hub of hybrid HMMWV so as to introduce an electric in-hub motor inside the hub. Chapter I… (more)

Thakur, Sandeep Singh

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles  

Science Conference Proceedings (OSTI)

The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator

Wei Hua; Zhongze Wu; Ming Cheng; Baoan Wang; Jianzhong Zhang; Shigui Zhou

2012-01-01T23:59:59.000Z

202

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

203

Federal Energy Management Program: Sustainable Federal Fleets  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Fleets Federal Fleets The Federal Fleet Program Overview outlines FEMP services and assistance available to Federal fleet managers to increase the use of alternative fuels and advanced vehicles. FEMP's Sustainable Federal Fleets website provides guidance and assistance to help implement Federal legislative and regulatory requirements mandating reduced petroleum consumption and increased alternative fuel use. FEMP's efforts include assisting agencies with implementing and managing energy-efficient and alternative fuel vehicles and facilitating a coordinated effort to reduce petroleum consumption and increase alternative fuel use annually. Content on Sustainable Federal Fleets spans Federal requirements and reporting compliance, alternative fuels and advanced vehicles, fleet performance data, analysis services, information resources, and FEMP contacts.

204

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

205

Speed-sensorless torque control of induction motors for hybrid electric vehicles.  

E-Print Network (OSTI)

??Hybrid Electric Vehicles (HEVs) are exciting new additions to the car markets since they combine the best features of conventional and electric cars to improve… (more)

Fu, Tianjun

2005-01-01T23:59:59.000Z

206

Experimental analysis of disc thickness variation development in motor vehicle brakes.  

E-Print Network (OSTI)

??Over the past decade vehicle judder caused by Disc Thickness Variation (DTV) has become of major concern to automobile manufacturers worldwide. Judder is usually perceived… (more)

Rodriguez, C

2006-01-01T23:59:59.000Z

207

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to… (more)

Serrano Guillén, Isabel

2013-01-01T23:59:59.000Z

208

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

assistance related to oil, and the cost of defending oil21 April 2008 Keywords: Oil importing cost Motor fuel socialexample, if the oil defense cost per gallon is proportional

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

209

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

210

Executive Fleet Vehicles Report | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Fleet Vehicles Report Executive Fleet Vehicles Report Executive Fleet Vehicles Report On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Executive fleet vehicles that are larger than midsize sedans or are not AFVs must be disclosed on the website of the agency operating the vehicles within 180 days of the date of the memorandum (on or before November 17,

211

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

212

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Electric Vehicles International - 260-hp AC permanent magnet motor with...

213

Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report  

SciTech Connect

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31T23:59:59.000Z

214

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

improperly discharged used motor oil pollute streams, lakes,refined products such as motor oil and gasoline are moreeasily. Third, used motor oil often contains contaminants,

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

215

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

216

Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Inefficient Fuel Inefficient Vehicle Fee to someone by E-mail Share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Facebook Tweet about Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Twitter Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Google Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Delicious Rank Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Digg Find More places to share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Inefficient Vehicle Fee New passenger vehicles meeting one of the following criteria are subject to an additional fee payable to the New Jersey Motor Vehicle Commission:

217

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maine has adopted the California motor vehicle emissions standards

218

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards New Jersey has adopted California motor vehicle emissions standards as set

219

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Washington adopted the California motor vehicle emission standards in Title

220

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maryland has adopted the California motor vehicle emission standards in

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Planning. UCLA. Motor Vehicles Manufacturers’ Association (Authority MVMA Motor Vehicle Manufacturer’s AssoemUon NaSneedsof electric vehicle manufacturers. Thesesectors include

Scott, Allen J.

1993-01-01T23:59:59.000Z

222

Quantifying the Heat-Related Hazard for Children in Motor Vehicles  

Science Conference Proceedings (OSTI)

Thirty-seven children on average die each year in the United States from vehicle-related hyperthermia. In many cases, the parent or care-giver intentionally left the child unattended in the car, unaware of how quickly temperatures may reach ...

Andrew Grundstein; John Dowd; Vernon Meentemeyer

2010-09-01T23:59:59.000Z

223

Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area  

SciTech Connect

Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

2004-06-14T23:59:59.000Z

224

Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use  

SciTech Connect

Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

Armstrong, R.

1980-01-01T23:59:59.000Z

225

In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)  

E-Print Network (OSTI)

# · Rates require that the vehicle be returned with a full tank of gas. · Unlimited mileage on all rentals Insurance. Large Truck 51 281 1,020 · Weekly rates are calculated at 5.5 times the Daily rate. Cargo Van/Truck 51 281 1,020 · Monthly rates will be calculated at 20 times the Daily rate. Van - 15 Passenger 90 495

Harms, Kyle E.

226

Aurica Motors | Open Energy Information  

Open Energy Info (EERE)

Product California-based Aurica Motors is planning to develop and manufacture an electric vehicle at a former Toyota plant in the state. References Aurica Motors1...

227

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

228

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

229

Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking  

E-Print Network (OSTI)

, thermal circuit, heat processes, pulse-width-modulated 1. INTRODUCTION Permanent magnet (PM) motors components in the system. Thermal studies on electric motors often approach the subject using FEA. Although to a cylinder. Reference [Hsu et al., 2005] shows that the thermal conductivity of Toyota Prius traction motor

Mi, Chunting "Chris"

230

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle, other than

231

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a self-propelled motor vehicle that

232

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle, other than

233

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle with an

234

Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle  

E-Print Network (OSTI)

The automobile industry is moving fast towards Electric Vehicles (EV); however this paradigm shift is currently making its smooth transition through the phase of Hybrid Electric Vehicles. There is an ever-growing need for integration of hybrid energy sources especially for vehicular applications. Different energy sources such as batteries, ultra-capacitors, fuel cells etc. are available. Usage of these varied energy sources alone or together in different combinations in automobiles requires advanced power electronic circuits and control methodologies. An exhaustive literature survey has been carried out to study the power electronic converter, switching modulation strategy to be employed and the particular machine to be used in an EV. Adequate amount of effort has been put into designing the vehicle specifications. Owing to stronger demand for higher performance and torque response in an EV, the Permanent Magnet Synchronous Machine has been favored over the traditional Induction Machine. The aim of this thesis is to demonstrate the use of a multi level inverter fed Brush Less Direct Current (BLDC) motor in a field oriented control fashion in an EV and make it follow a given drive cycle. The switching operation and control of a multi level inverter for specific power level and desired performance characteristics is investigated. The EV has been designed from scratch taking into consideration the various factors such as mass, coefficients of aerodynamic drag and air friction, tire radius etc. The design parameters are meant to meet the requirements of a commercial car. The various advantages of a multi level inverter fed PMSM have been demonstrated and an exhaustive performance evaluation has been done. The investigation is done by testing the designed system on a standard drive cycle, New York urban driving cycle. This highly transient driving cycle is particularly used because it provides rapidly changing acceleration and deceleration curves. Furthermore, the evaluation of the system under fault conditions is also done. It is demonstrated that the system is stable and has a ride-through capability under different fault conditions. The simulations have been carried out in MATLAB and Simulink, while some preliminary studies involving switching losses of the converter were done in PSIM.

Emani, Sriram S.

2010-05-01T23:59:59.000Z

235

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Decals to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Decals An individual may place alternative fuel into the fuel tank of a motor

236

AGNI Motors | Open Energy Information  

Open Energy Info (EERE)

Place India Zip 370 230 Sector Vehicles Product UK-based manufacturer of DC Motors and Battery Management Systems for Electric Vehicles References AGNI Motors1 LinkedIn...

237

Conventional and fuzzy PI control of voltage-source inverter-fed induction motor drive for electric vehicle  

Science Conference Proceedings (OSTI)

Keywords: adaptive control, control algorithm, electric vehicle, fuzzy control, inverter drive system

Tadeusz Stefanski

1995-12-01T23:59:59.000Z

238

Federal Tax Credits for Plug-in Hybrids Purchased in or after 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Plug-in Hybrids Federal Tax Credits for Plug-in Hybrids Photo of cash and keys Federal Tax Credit Up To $7,500! Plug-in hybrid-electric vehicles (PHEVs) purchased in or after 2010 may be eligible for a federal income tax credit of up to $7,500. The credit amount will vary based on the capacity of the battery used to fuel the vehicle. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2010, to Present TBD TBD TBD 2014 BMW i3 Sedan w/ Range Extender 2014 i3 Sedan w/ Range Extender $7,500 -- -- -- Fisker Jan. 1, 2010, to Present TBD TBD TBD Fisker Karma 2012 Fisker Karma Sedan $7,500 -- -- -- Ford Motor Co. Jan. 1, 2010, to Present TBD TBD TBD

239

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

240

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

242

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

243

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

244

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

245

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

246

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

247

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

E-Print Network (OSTI)

for Federal Fuel Economy Regulation Final Report preparedand have higher fuel economy, and safer than conventionaland have higher fuel economy, without sacrificing safety. 1.

Wenzel, Thomas P.

2010-01-01T23:59:59.000Z

248

Heavy and Overweight Vehicle Defects Interim Report  

SciTech Connect

The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL

2012-12-01T23:59:59.000Z

249

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

250

Frequently Asked Questions: About Federal Fleet Management (Brochure)  

SciTech Connect

Answers to frequently asked questions about Federal fleet management, Federal requirements, reporting, advanced vehicles, and alternative fuels.

Not Available

2009-10-01T23:59:59.000Z

251

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Decal to someone by E-mail Decal to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Decal The $0.17 per gallon state motor fuel tax does not apply to passenger

252

Preliminary Assessment of Overweight Mainline Vehicles  

DOE Green Energy (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

253

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

SciTech Connect

This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

Wenzel, Thomas P.

2010-03-02T23:59:59.000Z

254

Electric vehicle drive train with rollback detection and ...  

The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement.

255

Motor vehicle fuel analyzer  

DOE Patents (OSTI)

A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

Hoffheins, B.S.; Lauf, R.J.

1997-08-05T23:59:59.000Z

256

Federal Energy Management Program: Minimum Efficiency Standards for  

NLE Websites -- All DOE Office Websites (Extended Search)

Minimum Efficiency Minimum Efficiency Standards for Electric Motors to someone by E-mail Share Federal Energy Management Program: Minimum Efficiency Standards for Electric Motors on Facebook Tweet about Federal Energy Management Program: Minimum Efficiency Standards for Electric Motors on Twitter Bookmark Federal Energy Management Program: Minimum Efficiency Standards for Electric Motors on Google Bookmark Federal Energy Management Program: Minimum Efficiency Standards for Electric Motors on Delicious Rank Federal Energy Management Program: Minimum Efficiency Standards for Electric Motors on Digg Find More places to share Federal Energy Management Program: Minimum Efficiency Standards for Electric Motors on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

257

Motor vehicles in the 1990s: Emerging environmental constraints on current fuels, and emissions and energy trade-offs related to nonpetroleum alternatives  

DOE Green Energy (OSTI)

Manufacturers of motor vehicles and engines may face substantial compliance challenges because of existing or proposed environmental regulations. Among the challenges due to existing regulations is the need for improved control of evaporative emissions from gasoline vehicles and emissions of particulate matter from heavy-duty diesel trucks. Potential future challenges could arise from the need to control refueling emissions and from more stringent emission standards for hydrocarbons and oxides of nitrogen. Virtually all of these regulations require technological changes to vehicles and engines, assuming that gasoline and diesel fuel remain as the operating fuels. However, recent speculation has centered on the possibility of meeting some or all of these regulatory challenges with alternative fuels such as natural gas or methanol. This study addresses that possibility by examining current and potential standards, characterizing vehicles that use alternative fuels, and assessing -- via an informal canvass of manufacturers -- the likelihood of meeting the regulations with both conventional and alternative fuels. A selective literature review compares emissions, energy use, and costs associated with both types of fuels. Finally, a plausible scenario of introducing methanol- fueled autos and light trucks by the early 1990s is defined as the basis for examining changes in emission levels nationally. While the overall reduction -- from all transportation sources -- of reactive hydrocarbons and oxides of nitrogen due to these vehicles is less than 1% by 1997, the potential remains for greater levels of reduction within urbanized areas, especially if tax-based incentives and other measures are used to encourage the use of vehicles powered by alternative fuels. 68 refs., 2 figs., 23 tabs.

Singh, M.K.; Saricks, C.L.; LaBelle, S.J.

1988-01-01T23:59:59.000Z

258

A Review of the Literature on the Social Cost of Motor Vehicle Use in the United States  

E-Print Network (OSTI)

accidents, air pollution, noise, land use, and “dissociationpollution Total societal costs Unquantified costs Wetlands lost Agricultural landland use Vehicle ownership and operation Vibration damage to buildings Water pollution

Murphy, James; Delucchi, Mark

1998-01-01T23:59:59.000Z

259

Trexa Motor Corporation TMC | Open Energy Information  

Open Energy Info (EERE)

Trexa Motor Corporation TMC Jump to: navigation, search Name Trexa Motor Corporation (TMC) Place Los Angeles, California Sector Vehicles Product Los Angeles - based subsidiary of...

260

Safety Criteria for Isolated Direct Current Systems in Electric Vehicles: Traction Motor and Control Circuitry Under Charging and Driving Conditions  

Science Conference Proceedings (OSTI)

This report explains some of the background of the requirements for isolated DC systems covered by the standard for personnel protection devices for electric vehicle charging circuits (UL2231). The report provides insight that is intended to help achieve better designs of electric vehicles and chargers.

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tesla Motors Inc | Open Energy Information  

Open Energy Info (EERE)

Carlos, California Zip 94070 Sector Vehicles Product California-based producer of luxury electric vehicles, such as sports cars. References Tesla Motors Inc1 LinkedIn...

262

Improving Costs and Efficiency of PEM Fuel Cell Vehicles by ...  

Fuel cell vehicles have the potential to reduce our dependence on foreign oil and lower emissions. Running the vehicle’s motor on hydrogen rather than gasoline ...

263

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fee to someone by E-mail and Fee to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax and Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Tax and Fee Compressed natural gas (CNG) used in motor vehicles is subject to a state

264

The design and construction of electronic motor control and network interface hardware for advance concept urban mobility vehicles  

E-Print Network (OSTI)

Over the past several years, the Smart Cities Group at MIT's Media Lab has engaged in research to develop several advanced concepts for vehicles to improve urban mobility. This research has focused on developing a modular ...

Morrissey, Bryan L. (Bryan Lawrence)

2008-01-01T23:59:59.000Z

265

Vehicle Technologies Office: Program Plans, Implementation, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Motors Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and...

266

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Vision Motor Corp. - Tyrano Eaton - Hybrid Drive System Fuel Type: Hybrid - Diesel Electric...

267

Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Motor Company to someone by E-mail Ford Motor Company to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

268

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

of safety standards for electric and natural gas vehicles.electric in motor vehicles associated and equipment, consumer education programs, safety

Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

269

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

of safety standards for electric and natural gas vehicles.electric in motor vehicles associated and equipment, consumer education programs, safety

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

270

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

271

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Use of Persian-Gulf Oil for Motor Vehicles, Energy Policythe Use of Persian Gulf Oil for Motor Vehicles, UCD-ITS-RR-per gallon of motor fuel, Defense of oil on average; thus,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

272

Alternative fuel information: Alternative fuel vehicle outlook  

DOE Green Energy (OSTI)

Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

Not Available

1994-06-01T23:59:59.000Z

273

Federal Energy Management Program: News  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

buildings, boost efficiency standards for appliances and federal buildings, and develop fuel economy standards for heavy-duty vehicles. More July 3, 2013 EPA Strengthens Energy...

274

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

275

Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

19 INL Alternative Fuel Fleet (318 vehicles) * 79 B20 motor coach buses * 7 Dedicated LNG motor coach buses * 154 Bi-fuel light-duty CNG vehicles * 52 Bi-fuel E85 (85% ethanol)...

276

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

Pollution from motor vehicles Crude oil, gasoline, andMOTOR VEHICLES .. 2 T HE OILmotor fuels, and the road system unfortunately pollute our air, soil and water, depend on limited oil

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

277

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

Science Conference Proceedings (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

278

The experimental implementation and comparison of active, semiactive, and passive vehicle suspensions utilizing a linear electric motor  

E-Print Network (OSTI)

The primary objective of this research is the investigation of the experimental implementation of an active automobile suspension, three types of semiactive suspensions, and a passive suspension. These suspensions are realized via computer control of a linear electric motor. The details of the suspensions are explained in full assuming no prior knowledge by the reader. A theoretical quarter car model is developed and used to provide baseline performance criteria. Details of the design and development of the experimental test rig are given. The experimental results are compared to the theoretical results to study the effectiveness of the motor at realizing the control strategies. This gives an indication of the feasibility of electric motors for implementation of active and semiactive suspension control strategies. Furthermore, the control algorithms are compared to each other to rate each for performance versus complexity. Also, the experimental results are compared to previous experimental results for a resistance controlled semiactive suspension using dual dampers. The experimental test rig and theoretical simulation results agreed fairly well for all suspension performance criteria. The relative comparisons of each suspension when implemented on the test rig were almost identical to the rankings resulting from theory. The performance criteria showed that an active suspension is substantially better than a passive one. Also, only minimal differences exist between the active suspension and the three semiactive suspensions. This indicates that an active suspension is not needed for excellent suspension performance.

Williams, Monte Glen

1994-01-01T23:59:59.000Z

279

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

280

Deployment of EVs in the Federal Fleet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles 101 Electric Vehicles 101 eere.energy.gov The Parker Ranch installation in Hawaii Deployment of EVs in the Federal Fleet FUPWG Rapid City, South Dakota October 20 th , 2010 Amanda Sahl Federal Energy Management Program 2 | Electric Vehicles 101 eere.energy.gov FEMP facilitates the Federal Government"s implementation of sound, cost-effective energy management and investment practices to enhance the nation"s energy security and environmental stewardship. 3 | Electric Vehicles 101 eere.energy.gov Agenda * Overview of the Federal Fleet * Infrastructure Requirements * Current implementation and activity * Ongoing barriers and questions 4 | Electric Vehicles 101 eere.energy.gov Federal Fleet Inventory

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

282

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

283

Vision Industries dba Vision Motor Corp | Open Energy Information  

Open Energy Info (EERE)

Vision Motor Corp) Place Santa Monica, California Zip 90405 Product Santa Monica-based electric vehicle manufacturer. References Vision Industries (dba Vision Motor Corp)1...

284

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

the motor. In addition, hybrid vehicles will require ACDC converters to interconnect the high-voltage bus and the low-voltage bus for vehicle auxiliary loads. Technical issues to...

285

Safety and Regulatory Structure for CNG/Hydrogen Vehicles and Fuels in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG/H2 Vehicles and Fuels in the CNG/H2 Vehicles and Fuels in the United States Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for Safe Deployment of Vehicles Workshop December 2009 2 Overview DOT/NHTSA Mission Federal Motor Vehicle Safety Standards (FMVSS) FMVSS covering alternative fuel vehicles Research supporting new/improved FMVSS for alternative fuel vehicles International Harmonization - Global Technical Regulations 3 Mission Statements DOT Mission Statement Serve the United States by ensuring a safe transportation system that furthers our vital national interests and enhances the quality of life of the American people * Safety - Promote the public health and safety by working toward the elimination of transportation-related deaths and injuries NHTSA Mission Statement To reduce deaths, injuries and economic losses resulting from

286

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

ZEV program, the vehicle manufacturers did not believe thatof fuel-cell vehicles: manufacturers would produce theirHonda Motor Vehicle Manufacturers Association Mercedes Benz

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

287

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001: 2001 Household and Vehicle Characteristics

288

Sustainable Federal Fleets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Fleets Federal Fleets Sustainable Federal Fleets October 8, 2013 - 10:16am Addthis FEMP's Sustainable Federal Fleets website provides guidance and assistance to help implement Federal legislative and regulatory requirements mandating reduced petroleum consumption and increased alternative fuel use. FEMP's efforts include assisting agencies with implementing and managing energy-efficient and alternative fuel vehicles and facilitating a coordinated effort to reduce petroleum consumption and increase alternative fuel use annually. Content on Sustainable Federal Fleets spans Federal requirements and reporting compliance, alternative fuels and advanced vehicles, fleet performance data, analysis services, information resources, and FEMP contacts. Graphic of a button that reads Visit FEMP's Sustainable Federal Fleets Website.

289

Federal Energy Management Program: Minimum Efficiency Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Minimum Efficiency Standards for Electric Motors Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for...

290

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

local gasoline taxes ($/gal) This is equal to total motorgasoline tax in cents/mi) Vehicle efficiency parameters: input data 0.89 0.89 Once-through efficiency of electric motor,

Delucchi, Mark

1992-01-01T23:59:59.000Z

291

Advanced Motors  

SciTech Connect

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ���������������¢��������������������������������Motors and Generators for the 21st Century���������������¢�������������������������������. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

292

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery… (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

293

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Application: Vocational truck Fuel Type: Electricity Power Source(s): Electric Vehicles International - 260-hp AC permanent magnet motor...

294

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Application: Van Fuel Type: Electricity Power Source(s): Boulder Electric Vehicle - AC brushless induction motor with lithium-ion...

295

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Boulder Electric Vehicle - AC brushless induction motor with lithium-ion batteries Fuel Type: Electricity...

296

Electrical Motor Drive Apparatus and Method - Energy Innovation Portal  

Vehicles and Fuels Industrial Technologies Electrical ... Auto manufacturers ; Industrial motor drive manufacturers; Patents and Patent Applications. ID Number.

297

Parametric electric motor study  

DOE Green Energy (OSTI)

Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

1995-04-30T23:59:59.000Z

298

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

299

Department of Electrical Engineering Fall 2009 Electridyne Motor  

E-Print Network (OSTI)

PENNSTATE Department of Electrical Engineering Fall 2009 Electridyne Motor Overview Our sponsored project was to design an elecrtic motor for an urban transportation vehicle, the challenges involved included research into motor design, consideration of the materials, and the electromagnetic parameters

Demirel, Melik C.

300

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Vehicle Testing Activity Hybrids, Hydrogen and other...  

NLE Websites -- All DOE Office Websites (Extended Search)

avoided 318 INL Alternative Fuel Vehicles * 79 B20 motor coach buses * 7 Dedicated LNG motor coach buses * 154 Bi-fuel light-duty CNG vehicles * 52 Bi-fuel E85 (85% ethanol)...

302

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state  

E-Print Network (OSTI)

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 and equipment costing $3,000 or more for the Institute's vehicle fleet program. The mission of the Motor Pool form when bringing their vehicles, LSVs, golf carts or equipment to the Motor Pool for service (see

Li, Mo

303

EERE: Federal Energy Management Program Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of postal trucks. Federal Fleet Management Manage Energy-Efficient and Alternative-Fuel Vehicle Fleets Image of an Energy Champions poster. Education & Awareness Motivate,...

304

Federal Energy Management Program: Greenhouse Gas Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Mobile Equipment to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Mitigation Planning for Vehicles and Mobile Equipment on Facebook Tweet...

305

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Trans Tech - ETrans Smith Electric Vehicles - 120kW induction motor with lithium-ion batteries Fuel Type: Electricity...

306

Light-Duty Vehicle Program Emissions Results (Interim Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedure (FTP) emissions testing of flexible- fuel methanol, ethanol, and dedicated CNG vehicles from the U. S. Federal Fleet was completed in 1995. The vehicles tested in the...

307

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

308

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

maximum, and restricts regenerative energy to be less thanthe extra energy made available by regenerative braking. Theregenerative braking (for fuel-cell vehicles without electro-chemical energy

Delucchi, Mark

2003-01-01T23:59:59.000Z

309

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

electrochemical energy storage Electric propulsion systems (e.g., power electronics, electric motors) Fuel cell power systems Lightweight materials Vehicle systems and...

310

DOE Hydrogen Analysis Repository: Hydrogen Vehicle Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas. ProductsDeliverables Description: Report Publication Title:...

311

Hybrid electric vehicles take to the streets  

Science Conference Proceedings (OSTI)

In this paper, the authors describe how, equipped with a gasoline engine and an electric motor, hybrid electric vehicles can now bridge the gap between vehicle range and environmental concerns

D. Hermance; S. Sasaki

1998-11-01T23:59:59.000Z

312

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

to approximately 40 kW. The hybrid vehicles are of interestat $0.84/therm). The hybrid vehicles in motor-generator modegas reformer, and the hybrid vehicle. However, the simple

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

313

Vehicle Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Reports Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review 2012 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Fuel & Lubricant Technologies Lightweight Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2011 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Lightweighting Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2010 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors

314

Page 1 of 9 Vehicle Buyers' Guide  

E-Print Network (OSTI)

vehicle. Hybrid þ Gasoline only: · A small battery and electric motor assist the engine to give help be refueled at any gasoline station. Plug-in hybrid and electric vehicles can operate using electricity fromPage 1 of 9 Vehicle Buyers' Guide An introduction to vehicle technologies Thank you in advance

315

motor | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279950 Varnish cache server motor Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel gallonage taxes 1950-1995, motor-fuel use 1919-1995, private and commercial highway use of special fuels, by state 1949-1995, highway use of gasoline, by state 1949-1995, gasohol sales by state, 1980-1992, and estimated use of gasohol, 1993-1995. The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT Fuel highway motor vehicle Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Motor-fuel gallonage taxes 1950-1995 (xlsx, 37.3 KiB)

316

Optimization of a CNG series hybrid concept vehicle  

DOE Green Energy (OSTI)

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

317

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

change to “Ethanol, E85 corn, C0/NG50/B50”, where the “B50”on five fuels: RFG, M85, E85, LPG, and CNG. The vehicle wasPM E85 CNG LPG “Off-cycle” emissions,

Delucchi, Mark

2003-01-01T23:59:59.000Z

318

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

fuel or power generation (coal, natural gas, fuel oil,generation mix for power used to compress fossil natural gas.power (% of electricity generation [EVs, hydrogen vehicles]) NGL = natural gas

Delucchi, Mark

2003-01-01T23:59:59.000Z

319

Federal Fleet Files, FEMP, Vol. 2, No. 9 - July 2010 (Fact Sheet)  

SciTech Connect

July 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

2010-07-01T23:59:59.000Z

320

Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)  

SciTech Connect

June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Federal Fleet Files, FEMP, Vol. 2, No. 10 - September 2010 (Fact Sheet)  

SciTech Connect

September 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

2010-09-01T23:59:59.000Z

322

Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)  

SciTech Connect

November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

2010-11-01T23:59:59.000Z

323

Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)  

DOE Green Energy (OSTI)

October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-10-01T23:59:59.000Z

324

Federal Fleet Files, FEMP, Vol. 1, No. 1 - May 2009 (Fact Sheet)  

DOE Green Energy (OSTI)

Monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-05-01T23:59:59.000Z

325

Federal Fleet Files, FEMP, Vol. 2, No. 1 - October 2009 (Fact Sheet)  

Science Conference Proceedings (OSTI)

October 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-10-01T23:59:59.000Z

326

Federal Fleet Files, FEMP, Vol. 1, No. 4 - September 2009 (Fact Sheet)  

Science Conference Proceedings (OSTI)

September 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-09-01T23:59:59.000Z

327

Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)  

Science Conference Proceedings (OSTI)

May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-05-01T23:59:59.000Z

328

Federal Fleet Files, FEMP, Vol. 1, No. 3 - July 2009 (Fact Sheet)  

Science Conference Proceedings (OSTI)

July 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-07-01T23:59:59.000Z

329

Federal Fleet Files, FEMP, Vol. 2, No. 13 - December 2010 (Fact Sheet)  

Science Conference Proceedings (OSTI)

December 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to federal agencies.

Not Available

2010-12-01T23:59:59.000Z

330

Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010 (Fact Sheet)  

Science Conference Proceedings (OSTI)

March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-03-01T23:59:59.000Z

331

Federal Fleet Files, FEMP, Vol. 2, No. 2 - November 2009 (Fact Sheet)  

Science Conference Proceedings (OSTI)

November 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-11-01T23:59:59.000Z

332

Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010 (Fact Sheet)  

DOE Green Energy (OSTI)

January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-01-01T23:59:59.000Z

333

Federal Fleet Files, FEMP, Vol. 2, No. 3 - December 2009 (Fact Sheet)  

SciTech Connect

December 2009 update of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

2009-12-01T23:59:59.000Z

334

Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on AddThis.com...

335

Optimized control studies of a parallel hybrid electric vehicle  

E-Print Network (OSTI)

This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine and an electric motor, both of them applying torque directly to the drive shaft for propelling the vehicle. Each component of the parallel hybrid vehicle is modeled, and throttle angle, motor current and brake torque command chosen as the control inputs. A performance index describing the total fuel and battery charge used, as well as pollutants emitted over the federal drive cycle, is defined. The problem is to find the optimal control inputs, as a function of time, that minimize the performance index under the chosen drive cycle while satisfying lower and upper bounds on the controls as well as the torque command constraint, derived from the drive cycle speed that the vehicle must follow. The problem is formulated so that optimal control theory can be used by defining the Hamiltonian of the system and deriving the Euler-Lagrange equations. Four special cases for the control bounds which are of practical importance are considered. But, because of the complicated analytical derivatives, solving the general analytical problem is not tractable. The alternate approach that is chosen is a numerical optimization method that solves the constrained optimization problem using the Recursive Quadratic Programming Method.'To evaluate various control schemes, a set of selected performance measures are studied: only SOC performance, and balanced fuel and SOC performance. Simulations under the federal drive cycle show that we achieve the design objectives while getting better results than with a simple logic controller. The optimum control results suggest that the throttle should always be kept wide open for the SOC to be maximized. This should be accomplished with Buntin's logic controller and would allow us to keep his easy control implementation while improving his performance.

Bougler, Benedicte Bernadette

1995-01-01T23:59:59.000Z

336

Federal Energy Management Program: Federal Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Requirements to someone by E-mail Share Federal Energy Management Program: Federal Requirements on Facebook Tweet about Federal Energy Management Program: Federal...

337

Describing current and potential markets for alternative-fuel vehicles  

Science Conference Proceedings (OSTI)

Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

NONE

1996-03-26T23:59:59.000Z

338

Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model  

Reports and Publications (EIA)

The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

Tancred Lidderdale

2011-11-30T23:59:59.000Z

339

Wireless Charging System for Electric Vehicles  

OEM Electric Vehicles OEM EV Manufacturers Plug-in; internal technology development Street / highway in-motion charging systems Federal / State / Local

340

EERE: Vehicle Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Week Quick Links Find an Efficient Vehicle University Activities Learn About Fuel Cells Fleet Manager Tools Hybrid Evaluation Fact Sheets and Reports Federal Tax Credits...

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

federal agency  

Science Conference Proceedings (OSTI)

Federal Agency Information. ... Information on Biometric Standards. Analysis Model for Selection of Concensus Standards.

2013-07-25T23:59:59.000Z

342

Federal Tax Credit for Diesels  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesels Diesels Diesel Vehicle Federal tax credit up to $3,400! Some diesels purchased or placed into service after December 31, 2005 may be eligible for a federal income tax credit of up to $3,400. (No eligible vehicles were manufactured for sale until 2008.) Credit amounts begin to phase out for a given manufacturer once it has sold over 60,000 eligible hybrid and diesel vehicles. Vehicles purchased after December 31, 2010 are not eligible for this credit. The information below is provided for those filing amended tax returns for previous years. Audi BMW Mercedes-Benz Volkswagen All Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Audi Jan. 1, 2006 July 1 - Dec. 31, 2010 Not Applicable Jan. 1, 2011 Audi A3 TDI 2010-11 Audi A3 2.0L TDI $1,300 $650 -- $0

343

System Modeling and Energy Management Strategy Development for Series Hybrid Vehicles .  

E-Print Network (OSTI)

??A series hybrid electric vehicle is a vehicle that is powered by both an engine and a battery pack. An electric motor provides all of… (more)

Cross, Patrick Wilson

2008-01-01T23:59:59.000Z

344

Alternative Fuels Data Center: Key Federal Legislation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Key Federal Key Federal Legislation to someone by E-mail Share Alternative Fuels Data Center: Key Federal Legislation on Facebook Tweet about Alternative Fuels Data Center: Key Federal Legislation on Twitter Bookmark Alternative Fuels Data Center: Key Federal Legislation on Google Bookmark Alternative Fuels Data Center: Key Federal Legislation on Delicious Rank Alternative Fuels Data Center: Key Federal Legislation on Digg Find More places to share Alternative Fuels Data Center: Key Federal Legislation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Key Federal Legislation The information below includes a brief chronology and summaries of key federal legislation related to alternative fuels and vehicles, air quality,

345

Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of  

NLE Websites -- All DOE Office Websites (Extended Search)

4: June 17, 2013 4: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State to someone by E-mail Share Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Facebook Tweet about Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Twitter Bookmark Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Google Bookmark Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Delicious Rank Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Digg

346

Vehicle Technologies Office: 2009 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

347

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

348

Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Loans - Communication Federal Credit Union (CFCU) to someone by E-mail Loans - Communication Federal Credit Union (CFCU) to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) on AddThis.com...

349

Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Fleets to someone by E-mail Federal Fleets to someone by E-mail Share Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Facebook Tweet about Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Twitter Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Google Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Delicious Rank Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Digg Find More places to share Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on AddThis.com... More in this section...

350

Federal loan guaranty programs management report, Task III, Item 005. Tab I. Electric and hybrid vehicle research, development, and demonstration project. Tab II. Geothermal loan guaranty program  

DOE Green Energy (OSTI)

The guaranty program on electric and hybrid vehicle research, development, and demonstration considers two aspects of loan guaranties: (1) how is the loan guaranty, as an incentive device, best integrated into an overall project strategy, and (2) to what extent can cost-effectiveness measurements be introduced to the loan guaranty review and approval process. The report on the geothermal loan guaranty program is an overview of a large number of existing program elements which, in the opinion of the financial community or the historical record of predecessor loan guaranty programs, can be seen to be (or have potential to become) troublesome. Included are relevant administrative, regulatory, and managerial guidelines, commentary, and ideas. (MCW)

Not Available

1977-04-01T23:59:59.000Z

351

The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation  

E-Print Network (OSTI)

Cir. 1972). Motor Vehicle Manufacturers Association of theon the vehicle model and manufacturer. [31] An additionalgreatly across manufacturers and vehicle segments leading to

Abeles, Ethan

2004-01-01T23:59:59.000Z

352

Vehicle for carrying an object of interest  

SciTech Connect

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

Zollinger, W. Thor (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH)

1998-01-01T23:59:59.000Z

353

Vehicle for carrying an object of interest  

DOE Patents (OSTI)

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

Zollinger, W.T.; Ferrante, T.A.

1998-10-13T23:59:59.000Z

354

Vehicle Demand Responses of Green Vehicle Taxation Policies and Increased Gasoline Prices.  

E-Print Network (OSTI)

??The U.S. Federal Highway Trust Fund has experienced significant shortfalls in revenue. This thesis develops three green transportation financing polices based on the fixed vehicle… (more)

Methipara, Jasmy

2010-01-01T23:59:59.000Z

355

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

a sidebar to a longer article on electric vehicles. ) Cogan,R. Electric vehicles: Powerplay on the auto circuit. MotorA Critical Review of Electric Vehicle Market Studies",

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

356

Federal Energy Management Program: Federal Energy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Management Program Contacts to someone by E-mail Share Federal Energy Management Program: Federal Energy Management Program Contacts on Facebook Tweet about Federal...

357

Federal Tax Credits for Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrids Hybrids Hybrid Vehicle Photo Federal tax credit up to $3,400! Hybrids purchased or placed into service after December 31, 2005 may be eligible for a federal income tax credit of up to $3,400. Credit amounts begin to phase out for a given manufacturer once it has sold over 60,000 eligible vehicles. Vehicles purchased after December 31, 2010 are not eligible for this credit. The information below is provided for those filing amended tax returns for previous years. BMW Chrysler/Dodge Ford Brands GM Brands Honda Mazda Mercedes Nissan Porsche Toyota/Lexus 2011 Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2006 TBD TBD Jan. 1, 2011 BMW ActiveHybrid 750i 2011 BMW ActiveHybrid 750i $900 -- -- $0 BMW ActiveHybrid 750Li 2011 BMW ActiveHybrid 750Li $900 -- -- $0

358

Federal Fleet Files, FEMP, Vol. 1, No. 2 - June 2009 (Fact Sheet)  

DOE Green Energy (OSTI)

June 2009 issue of the FEMP Federal Fleet Files monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-06-01T23:59:59.000Z

359

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

360

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

362

Alternative Fuel Vehicles  

DOE Green Energy (OSTI)

This Federal Technology Alert on alternative fuel vehicles (AFVs), prepared for the U.S. Department of Energy's Federal Energy Management Program (FEMP), is intended for fleet managers in government agencies and other government officials who need to use more alternative fuels and AFVs in their fleets of cars and trucks. This publication describes the government's plans and progress in meeting goals for the use of AFVs, which are stated in the Energy Policy Act and various Executive Orders. It describes the types of AFVs available, lists actual and potential federal uses, makes some general recommendations, and presents field experiences to date.

Not Available

2003-09-01T23:59:59.000Z

363

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

364

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network (OSTI)

FCV: fuel cell vehicle FEA: finite element analysis GA: Genetic Algorithms GCM: Global Circulation of a power-split architecture with two modes (or configurations) introduced by General Motors Corporation.2 General Motors Designs

Victoria, University of

365

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

366

Myers Motors | Open Energy Information  

Open Energy Info (EERE)

Myers Motors Myers Motors Jump to: navigation, search Name Myers Motors Place Tallmadge, Ohio Zip 44278 Sector Vehicles Product Myers Motors produces three wheeled electric vehicles. Coordinates 41.10294°, -81.440864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.10294,"lon":-81.440864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Tesla Motors | Open Energy Information  

Open Energy Info (EERE)

Tesla Motors Tesla Motors Jump to: navigation, search Logo: Tesla Motors Name Tesla Motors Address 1050 Bing Street Place San Carlos, California Zip 94070 Sector Vehicles Product Produces electric vehicles Website http://www.teslamotors.com/ Coordinates 37.496737°, -122.245323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.496737,"lon":-122.245323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

369

Environmental Knowledge, Environmental Attitudes, and Vehicle Ownership and Use  

E-Print Network (OSTI)

1996) and the social costs of transportation (Delucchi 2000,Social Cost of Motor Vehicle Use in the United States. Journal of Transportation and

Flamm, Bradley John

2006-01-01T23:59:59.000Z

370

Electric vehicle drive train with direct coupling transmission ...  

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode ...

371

Hybrid Control System for Reversing a Multibody Vehicle.  

E-Print Network (OSTI)

?? This thesis deals with the problem of prototyping a vehicle, made up by a motorized body and two passive trailers using LOGO Mindstorms, and… (more)

Bromand, Homan

2004-01-01T23:59:59.000Z

372

Analysis Tool Generates Custom Vehicle Drive Cycles Based on...  

NLE Websites -- All DOE Office Websites (Extended Search)

usage, supplying information needed to perform vital development tasks, such as sizing electric motors in a hybrid vehicle configuration or optimizing battery storage in an...

373

Energy control strategy for a hybrid electric vehicle - Energy ...  

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10 ...

374

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: 9 8-volt gel batteries Engine: 7.0 hp motor Dealer: Locate a dealer Description: The...

375

Federal Energy Management Program: Sustainable Federal Fleets  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Sustainable Federal Fleets to someone by E-mail Share Federal Energy Management Program: Sustainable Federal Fleets on Facebook Tweet about Federal Energy Management Program: Sustainable Federal Fleets on Twitter Bookmark Federal Energy Management Program: Sustainable Federal Fleets on Google Bookmark Federal Energy Management Program: Sustainable Federal Fleets on Delicious Rank Federal Energy Management Program: Sustainable Federal Fleets on Digg Find More places to share Federal Energy Management Program: Sustainable Federal Fleets on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Industrial Facilities Sustainable Federal Fleets Laboratories for the 21st Century Institutional Change

376

Federal Energy Management Program: Federal Correctional Institution -  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Federal Correctional Institution - Phoenix, Arizona to someone by E-mail Share Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Facebook Tweet about Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Twitter Bookmark Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Google Bookmark Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Delicious Rank Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Digg Find More places to share Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on AddThis.com... Energy-Efficient Products Technology Deployment

377

Acronyms and Abbreviations for Advanced Technology Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project LDV Light-duty vehicle LEV Low emission vehicle LF Low-floor Li Lithium LNG Liquid natural gas LPG Liquid petroleum gas LSR Low storage requirement MCI Motor Coach...

378

Vehicle Technologies Office: Fact #747: October 1, 2012 Behind...  

NLE Websites -- All DOE Office Websites (Extended Search)

more on transportation in a year than on food. Vehicle purchases, along with gasoline and motor oil, make up a large part of vehicle expenditures, but insurance, finance charges,...

379

Advanced Vehicle Testing Activity: American Recovery and Reinvestment...  

NLE Websites -- All DOE Office Websites (Extended Search)

deployment of 5,700 battery electric vehicle (BEV) Nissan Leafs and 2,600 extended range electric vehicle (EREV) General Motors Volts, that will be recharged in private residence,...

380

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Isolated Multiple Flux Path (IMFP) Reluctance Motors  

2 Managed by UT-Battelle for the U.S. Department of Energy Overview • IMFP reluctance electric motor developed for passenger vehicle propulsion (i.e. small trucks ...

382

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

383

Propulsion and stabilization system for magnetically levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

Coffey, Howard T. (Darien, IL)

1993-06-29T23:59:59.000Z

384

Propulsion and stabilization system for magnetically levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

Coffey, H.T.

1992-12-31T23:59:59.000Z

385

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

386

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 09 Federal Register / Vol. 62, No. 99 / Thursday, May 22, 1997 / Notices collection on the respondents, including through the use of information technology. Dated: May 16, 1997. Gloria Parker, Director, Information Resources Management Group. Office of Management Type of Review: New. Title: Department of Education Federal Cash Award Certification Statement and Department of Education Federal Cash Quarterly Confirmation Statement. Frequency: Annually. Affected Public: Business or other for- profit; Not for Profit institutions; Federal Government; State, Local or Tribal Government, SEAs or LEAs. Annual Reporting and Recordkeeping Hour Burden: Responses: 12,000. Burden Hours: 38,160. Abstract: The collection of the Federal Cash Award Statement is necessary for the Agency to monitor cash advanced to

387

Federal Register  

NLE Websites -- All DOE Office Websites (Extended Search)

151 151 Rules and Regulations Federal Register Vol. 60, No. 203 Friday, October 20, 1995 This section of the FEDERAL REGISTER contains regulatory documents having general applicability and legal effect, most of which are keyed to and codified in the Code of Federal IRegulations, which is published under 50 titles pursuant to 44 U.S.C. 1610. The Code of Federal Regulations is sold by the Superintendent of Documents. Prices of new books are listed in the first FEDERAL REGISTER issue of each week. DEPARTMENT OF ENERGY Western Area Power Administration 10 CFR Part 905 Energy Planning and Management Program AGENCY: Western Area Power Administration, DOE. A cmoN: Final rule. summARv: The Western Area Power Administration is publishing this final rule to adopt an Energy Planning and

388

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

389

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

Konrad, C.E.

1994-12-27T23:59:59.000Z

390

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) and Propane Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

391

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

392

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

Slicker, J.M.; Sereshteh, A.

1988-08-30T23:59:59.000Z

393

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

394

Federal Energy Management Program: Federal Interagency Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings to someone by E-mail Share Federal Energy Management Program: Federal Interagency Energy Management Task Force Meetings on Facebook Tweet about Federal Energy Management...

395

Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Insurance Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Insurance Regulation

396

Alternative Fuels Data Center: State Vehicle Purchasing Guidance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Purchasing Guidance to someone by E-mail Share Alternative Fuels Data Center: State Vehicle Purchasing Guidance on Facebook Tweet about Alternative Fuels Data Center: State Vehicle Purchasing Guidance on Twitter Bookmark Alternative Fuels Data Center: State Vehicle Purchasing Guidance on Google Bookmark Alternative Fuels Data Center: State Vehicle Purchasing Guidance on Delicious Rank Alternative Fuels Data Center: State Vehicle Purchasing Guidance on Digg Find More places to share Alternative Fuels Data Center: State Vehicle Purchasing Guidance on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Vehicle Purchasing Guidance The Washington Department of Enterprise Services must develop guidelines

397

Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Greenhouse Gas Vehicle Greenhouse Gas Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Greenhouse Gas Labeling Requirement

398

Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Voluntary Vehicle Voluntary Vehicle Retirement Incentives to someone by E-mail Share Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Facebook Tweet about Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Twitter Bookmark Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Google Bookmark Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Delicious Rank Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Digg Find More places to share Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Voluntary Vehicle Retirement Incentives Through the California Bureau of Automotive Repair's Consumer Assistance

399

Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Passenger Vehicle Passenger Vehicle Procurement Requirements to someone by E-mail Share Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Facebook Tweet about Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Twitter Bookmark Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Google Bookmark Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Delicious Rank Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Digg Find More places to share Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Passenger Vehicle Procurement Requirements

400

Alternative Fuels Data Center: Commercial Vehicle Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Vehicle Commercial Vehicle Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Commercial Vehicle Idle Reduction Requirement

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

VIN# JTNBB46K773007129 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

K773007129 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,109 lbs Features: Four-wheel disk brakes ABS w...

402

VIN# JHMFA36216S019329 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

16S019329 Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 15 kW Battery: NiMH Seatbelt Positions: Five Payload: 968 lbs Features: Front disk brakes wEBD brake...

403

VIN# JTNBB46K673006330 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

K673006330 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,109 lbs Features: Four-wheel disk brakes ABS w...

404

VIN# JHMFA36246S018725 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

46S018725 Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 15 kW Battery: NiMH Seatbelt Positions: Five Payload: 968 lbs Features: Front disk brakes wEBD brake...

405

VIN# JTDKB20U740012721 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius VIN JTDKB20U740012721 Vehicle Specifications Engine: 1.5 L 4-cylinder Electric Motor: 50 kW Battery: NiMH Seatbelt Positions: Five Payload: 905 lbs Features: CVT...

406

Energy 101: Electric Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

your style. These vehicles rely primarily on an electric motor, but switch over to a gasoline-fueled engine to supplement power when the battery is low. The costs of today's EVs...

407

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

408

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

409

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

410

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

411

Alternative Fuels Data Center: Propane Vehicle Training  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Training to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Training on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Training on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Training on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Training on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Vehicle Training The Railroad Commission of Texas Alternative Energy Division offers free safety and maintenance training on propane vehicles, buses, and forklifts.

412

Modelling of Components for Conventional Car and Hybrid Electric Vehicle in Modelica; Modellering av komponenter för vanlig bil och hybridbil i Modelica.  

E-Print Network (OSTI)

?? Hybrid electric vehicles have two power sources - an internal combustion engine and an electric motor. These vehicles are of great interest because they… (more)

Wallén, Johanna

2004-01-01T23:59:59.000Z

413

VIRTUAL E-MOTOR AS A TOOL FOR THE DEVELOPMENT  

E-Print Network (OSTI)

VIRTUAL E-MOTOR AS A TOOL FOR THE DEVELOPMENT OF POWERTRAIN CONTROLLERS The introduction of electric motors in powertrains provides many possibilities to influence the vehicle driveability using the inverter. The high dynamic response of electric motors can be put to use for the compensation of powertrain

Noé, Reinhold

414

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

415

NREL: Learning - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

416

Vehicle security apparatus and method  

DOE Patents (OSTI)

A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

Veligdan, James T. (Manorville, NY)

1996-02-13T23:59:59.000Z

417

Vehicle security apparatus and method  

DOE Patents (OSTI)

A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

Veligdan, J.T.

1996-02-13T23:59:59.000Z

418

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

419

Aptera Motors | Open Energy Information  

Open Energy Info (EERE)

Aptera Motors Aptera Motors Jump to: navigation, search Name Aptera Motors Address 2778 Loker Avenue West Place Carlsbad, California Zip 92008 Sector Vehicles Product Aims to to make an aerodynamic two-seater hybrid electric vehicle Website http://www.aptera.com/ Coordinates 33.1412124°, -117.3205123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1412124,"lon":-117.3205123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Federal Tax Credits for Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

of the following alternative fuels: Compressed natural gas (CNG) Liquefied natural gas (LNG) Liquefied petroleum gas (LPG) Hydrogen Any liquid at least 85% methanol by volume...

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Powertrain system for a hybrid electric vehicle  

DOE Patents (OSTI)

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

1999-08-31T23:59:59.000Z

422

Powertrain system for a hybrid electric vehicle  

DOE Patents (OSTI)

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

1999-08-31T23:59:59.000Z

423

Vehicle Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

424

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

425

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

426

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

427

Alternative Fuels Data Center: Federal Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Laws and Federal Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives Listed below are summaries of all current federal laws, incentives, regulations, and programs related to alternative fuels and vehicles,

428

Vehicle Technologies Office: 2011 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Archive 1 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011 #702 Consumer Preferences on Electric Vehicle Charging November 21, 2011 #701 How Much More Would You Pay for an Electric Vehicle? November 14, 2011 #700 Biodiesel Consumption is on the Rise for 2011 November 7, 2011 #699 Transportation Energy Use by Mode and Fuel Type, 2009 October 31, 2011 #698 Changes in the Federal Highway Administration Vehicle Travel Data October 24, 2011 #697 Comparison of Vehicles per Thousand People in Selected Countries/Regions October 17, 2011

429

Vehicle and Fuel Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle and Fuel Use Vehicle and Fuel Use Vehicle and Fuel Use Mission The team evaluates and incorporates, as deemed appropriate for LM operations, the requirements for vehicle and fuel use as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The Vehicle and Fuel Use Team advocates natural resource sustainability by evaluating vehicle and fuel use. Scope The team evaluates the vehicle and fuel use goals included in Executive Orders 13423 and 13514, establishes metrics, and develops and implements a plan of action to meet these goals. These goals may include increasing

430

Strengthening Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jan. 24 Jan. 24 / Administration of George W. Bush, 2007 Executive Order 13423- Strengthening Federal Environmental, Energy, and Transportation Management January 24, 2007 By the authority vested in me as President by the Constitution and the laws of the United States of America, and to strengthen the environmental, energy, and transpor- tation management of Federal agencies, it is hereby ordered as follows: Section 1. Policy. It is the policy of the United States that Federal agencies conduct their environmental, transportation, and en- ergy-related activities under the law in sup- port of their respective missions in an envi- ronmentally, economically and fiscally sound, integrated, continuously improving, efficient, and sustainable manner. Sec. 2. Goals for Agencies. In imple-

431

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

44 44 Federal Register / Vol. 61, No. 114 / Wednesday, June 12, 1996 / Notices will be issued this fall in accordance with the reallocation procedures contained in the Higher Education Act of 1965, as amended (HEA). Under section 442(e) of the HEA, unexpended FWS funds returned to the Secretary must be reallocated to eligible institutions that used at least 10 percent of the total FWS Federal funds granted to the institution to compensate students employed in community services. Because reallocated FWS funds will be distributed on the basis of fair share shortfall criteria, institutions must also have a fair share shortfall to receive these funds. Institutions must use all the reallocated FWS Federal funds to compensate students employed in community services. To ensure

432

Minimum Efficiency Standards for Electric Motors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Efficiency Standards for Electric Motors Minimum Efficiency Standards for Electric Motors Minimum Efficiency Standards for Electric Motors October 7, 2013 - 11:28am Addthis Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors. As a result of this increase in mandatory minimum standards and combined with the lack of significant availability of motors exceeding these standards, FEMP is suspending the purchasing specification for electric motors. Federal buyers may select for purchase any motor that meets design requirements.

433

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Displacement: 1.5 L Fuel Tank Capacity: 13.2 US gal Fuel Type: Regular Unleaded Motor Type: Permanent magnet Max. PowerTorque: 17 kW144 Nm Max. Motor Speed: 9500 rpm...

434

Alternative Fuels Data Center: Experimental Vehicle Definition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Experimental Vehicle Experimental Vehicle Definition and Requirements to someone by E-mail Share Alternative Fuels Data Center: Experimental Vehicle Definition and Requirements on Facebook Tweet about Alternative Fuels Data Center: Experimental Vehicle Definition and Requirements on Twitter Bookmark Alternative Fuels Data Center: Experimental Vehicle Definition and Requirements on Google Bookmark Alternative Fuels Data Center: Experimental Vehicle Definition and Requirements on Delicious Rank Alternative Fuels Data Center: Experimental Vehicle Definition and Requirements on Digg Find More places to share Alternative Fuels Data Center: Experimental Vehicle Definition and Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

435

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) Inspection Requirements to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

436

Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Replacement Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Replacement Grants

437

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

438

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

439

Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Labeling Requirement

440

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle Natural Gas Vehicle (NGV) and Infrastructure Initiative to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on AddThis.com... More in this section... Federal

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle (EV) Vehicle (EV) Infrastructure Definitions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

442

Alternative Fuels Data Center: Vehicle Emissions Reduction Grants -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Emissions Vehicle Emissions Reduction Grants - Sacramento to someone by E-mail Share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Facebook Tweet about Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Twitter Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Google Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Delicious Rank Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Digg Find More places to share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

443

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

444

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on AddThis.com... More in this section... Federal

445

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas Vehicle Gas Vehicle (NGV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

446

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Registration

447

Methanol fuel vehicle demonstration: Exhaust emission testing. Final report  

DOE Green Energy (OSTI)

Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

1993-07-01T23:59:59.000Z

448

Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Vehicle Tax Fuel Cell Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Vehicle Tax Credit South Carolina residents that claim the federal fuel cell vehicle tax credit are eligible for a state income tax credit equal to 20% of the

449

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

450

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

451

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

452

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

453

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

454

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

455

Federal Tax Credits for Plug-in Hybrids Purchased in or after...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrids Photo of cash and keys Federal Tax Credit Up To 7,500 Plug-in hybrid-electric vehicles (PHEVs) purchased in or after 2010 may be eligible for a federal income tax...

456

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book (EERE)

1 FY 2007 Federal Primary Energy Consumption (Quadrillion Btu) Buildings and Facilities 0.88 VehiclesEquipment 0.69 (mostly jet fuel and diesel) Total Federal Government...

457

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66 66 Federal Register / Vol. 63, No. 142 / Friday, July 24, 1998 / Notices Dated: July 16, 1998. Richard D. Wilson, Acting Assistant Administrator. [FR Doc. 98-19832 Filed 7-23-98; 8:45 am] BILLING CODE 6560-50-P ENVIRONMENTAL PROTECTION AGENCY [ER-FRL-5494-1] Environmental Impact Statements and Regulations; Availability of EPA Comments Availability of EPA comments prepared July 6, 1998 Through July 10, 1998 pursuant to the Environmental Review Process (ERP), under Section 309 of the Clean Air Act and Section 102(2)(c) of the National Environmental Policy Act as amended. Requests for copies of EPA comments can be directed to the Office of Federal Activities AT (202) 564-5076. An explanation of the ratings assigned to draft environmental impact statements (EISs) was published

458

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 09 Federal Register / Vol. 64, No. 93 / Friday, May 14, 1999 / Notices technological collection techniques or other forms of information technology, e.g., permitting electronic submission of responses. Burden Statement: The annual public reporting and recordkeeping burden for this collection of information is estimated to average 3.03 hours per response. It is estimated that any individual may respond to synopses or market research questions 5 times per year. EPA anticipates publicizing approximately 260 contract actions per year, and conducting 3790 market research inquiries. Burden means the total time, effort, or financial resources expended by persons to generate, maintain, retain, or disclose or provide information to or for a Federal agency. This includes the time needed to review

459

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

901 901 Federal Register / Vol. 69, No. 230 / Wednesday, December 1, 2004 / Notices As a result of this dispute, the SLA requested the Secretary of Education to convene a Federal arbitration panel to hear this complaint. A panel was convened, and a hearing on this matter was held on May 13, 2002. Arbitration Panel Decision The arbitration panel heard the following issue: whether the Army's alleged failure to negotiate with the SLA in good faith for the full food services and dining facility attendant services contract at Ft. Campbell, Kentucky, constituted a violation of the Act (20 U.S.C. 107 et seq.) and the implementing regulations in 34 CFR part 395. After considering the evidence presented, the majority of the panel ruled that the Act clearly covers all

460

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

32 32 Federal Register / Vol. 64, No. 114 / Tuesday, June 15, 1999 / Notices that the original selection list would remain in effect. The complainant requested review of the SLA's stipulated decision by a Federal arbitration panel. The panel was convened on April 17, 1998. Arbitration Panel Decision The issue before the arbitration panel was whether the SLA's stipulated decision to make a determination concerning the continuation of the special assignment process at the time a military base became available was inconsistent with the ALJ's determination. The arbitration panel ruled that, at the time a military base contract became available, there may be a compelling reason that would benefit both the program and the complainant that would justify not assigning complainant

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25 25 Federal Register / Vol. 62, No. 224 / Thursday, November 20, 1997 / Notices implementation from 8:30 a.m. to 10:00 a.m. For the rest of the day, the Council will meet with representatives from the State School-to-Work Implementation Grantees in small groups to discuss and determine strategies for addressing State sustainability issues. The meeting will close with a summary of the day's meeting and a discussion of future actions. Public Participation: The meeting on Tuesday, December 2, 1997, from 8:30 a.m. to 4:30 p.m. at the Renaissance Mayflower Hotel, will be open to the public. Seats will be reserved for the media. Individuals with disabilities in need of special accommodations should contact the Designated Federal Official (DFO), listed below, at least seven (7)

462

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Federal Register / Vol. 61, No. 47 / Friday, March 8, 1996 / Notices Comment date: March 18, 1996, in accordance with Standard Paragraph E at the end of this notice. 13. Benjamin F. Montoya [Docket No. ID-2945-000] Take notice that on February 23, 1996, Benjamin F. Montoya (Applicant) tendered for filing an application under Section 305(b) of the Federal Power Act to hold the following positions: President, Chief Executive Officer and Director, Public Service Company of New Mexico, a New Mexico corporation Director, Northwest Corporation Comment date: March 15, 1996, in accordance with Standard Paragraph E at the end of this notice. 14. Montana Power Company [Docket No. TX96-6-000] Take notice that on February 26, 1996, Montana Power Company (MPC) tendered for filing an application

463

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

464

On-Road Motor Vehicle Emissions Measurements  

E-Print Network (OSTI)

and maintenance are both important. Propane and CNG are NOT "cleaner burning". RSD is a very good tool but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department inventories · Only need one week of work and fuel sales to get fuel based emissions inventories · RSD

Denver, University of

465

Perspective: Power Lines and Motor Vehicle Electronics  

Science Conference Proceedings (OSTI)

Recent news reports have suggested that the operation of automotive electronic systems (including sudden acceleration) could be affected by the electric and magnetic fields associated with power transmission lines. Based on electromagnetic fundamentals and knowledge of the levels of electric fields, magnetic fields and RF fields from transmission lines, one can evaluate the possibility of an interaction between these exposures and the electronic systems within automobiles, both electric and conventional.

2010-06-06T23:59:59.000Z

466

Vehicles Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Blog Vehicles Blog Vehicles Blog RSS November 22, 2013 As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency The 21st Century Truck Partnership aims to improve the fuel efficiency of heavy duty-freight vehicles in existing and future fleets throughout the country. The partnership includes 15 heavy-duty engine, truck, and bus manufacturers, four federal agencies and 12 national laboratories. September 19, 2013 A Clean Energy Revolution -- Now Critics often say America's clean energy future will "always be five years away." For four key clean energy technologies, that clean energy

467

2012 Vehicle Technologies Market Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2013-03-01T23:59:59.000Z

468

Federal Energy Management Program: Federal Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Efficiency Acquisition Guidance and Requirements for Residential Electric Resistance Water Heaters to someone by E-mail Share Federal Energy Management Program:...

469

Federal Energy Management Program: Federal Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance and Requirements for Fluorescent Tube Lamps to someone by E-mail Share Federal Energy Management Program: Federal Energy Efficiency Acquisition Guidance and Requirements...

470

Federal Energy Management Program: Federal Interagency Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Federal Interagency Energy Management Task Force to someone by...

471

Development of a particle number and particle mass vehicle emissions inventory for an urban fleet  

Science Conference Proceedings (OSTI)

Motor vehicles are major emitters of gaseous and particulate matter pollution in urban areas, and exposure to particulate matter pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle ... Keywords: Emission factors, Motor vehicle inventory, PM 1, PM 10, PM 2.5, Particle emissions, Particle mass, Particle number, South-East Queensland, Traffic modelling, Transport modelling, Ultrafine particles

Diane U. Keogh; Luis Ferreira; Lidia Morawska

2009-11-01T23:59:59.000Z

472

Federal Register Notices Archive  

Science Conference Proceedings (OSTI)

... Federal Register Notice of TIP 2009 Competition ...more. White Papers: Federal Register Notice Proposed Information Collection; Comment Request ...

2011-04-12T23:59:59.000Z

473

Federal Register Notices  

Science Conference Proceedings (OSTI)

... Federal Register Notice of 2010 TIP Competition ...more. White Papers: Federal Register Notice Proposed Information Collection; Comment Request ...

2011-04-25T23:59:59.000Z

474

Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

893 893 Federal Register / Vol. 68, No. 158 / Friday, August 15, 2003 / Notices Title: Comprehensive Program Annual Performance Report. Frequency: One time. Affected Public: Not-for-profit institutions. Reporting and Recordkeeping Hour Burden: Responses: 140. Burden Hours: 2,800. Abstract: The Comprehensive Program is a discretionary grant program that makes competitive awards to support reform and innovations through projects that improve educational practice at the postsecondary level. Grantees annually submit a performance report to demonstrate that substantial progress is being made toward meeting the objectives of their projects. Reporting requirements are currently based on broad criteria from the Education Department General Administrative Regulations (EDGAR). This request is to

475

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

Coffey, Howard T. (Darien, IL)

1993-01-01T23:59:59.000Z

476

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

Coffey, H.T.

1993-10-19T23:59:59.000Z

477

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

Coffey, H.T.

1992-12-31T23:59:59.000Z

478

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network (OSTI)

done before the linkage between rural motorization and cropconcern in China, due to huge rural population, diminishingcity roads are filled with rural vehicles! Many many 3-w

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

479

New-vehicle fuel economy continues to increase - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Other qualified vehicles are non-hybrid natural gas and electric vehicles, for which the NHTSA fuel economy values are 6.667 times the EPA motor gasoline-based values.

480

Just build it! : a fully functional concept vehicle using robotic wheels  

E-Print Network (OSTI)

Interest in electric vehicle drive units is resurging with the proliferation of hybrid and electric vehicles. Currently emerging key-technologies are: in-wheel motors, electric braking, integrated steering activators and ...

Schmitt, Peter, S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "federal motor vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

482

Obama Administration Takes Major Step toward Advanced Vehicles with New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes Major Step toward Advanced Vehicles with Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot Obama Administration Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot May 24, 2011 - 12:00am Addthis WASHINGTON, DC - Today, Secretary of Energy Steven Chu, General Services Administrator Martha Johnson, and White House Council on Environmental Quality Chair Nancy Sutley announced a major step in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption, while also cutting costs associated with fuel consumption. Furthering the Administration's goals to cut oil imports by one-third by 2025 and to put one million advanced vehicles on the road by 2015,

483

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

484

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Procurement Preference to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on AddThis.com... More in this section... Federal State Advanced Search

485

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

486

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search

487

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

488

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

489

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

490

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal

491

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

492

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

493

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal

494

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal

495

Alternative Fuels Data Center: Aftermarket Alternative Fuel Vehicle (AFV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Aftermarket Alternative Fuel Vehicle (AFV) Conversions to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Alternative Fuel Vehicle (AFV) Conversions on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Alternative Fuel Vehicle (AFV) Conversions on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Alternative Fuel Vehicle (AFV) Conversions on Google Bookmark Alternative Fuels Data Center: Aftermarket Alternative Fuel Vehicle (AFV) Conversions on Delicious Rank Alternative Fuels Data Center: Aftermarket Alternative Fuel Vehicle (AFV) Conversions on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Alternative Fuel Vehicle (AFV) Conversions on AddThis.com... More in this section... Federal State

496

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

497

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on AddThis.com... More in this section... Federal State

498

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

499

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

500

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State