Sample records for federal clean air

  1. In pursuit of clean air: a data book of problems and strategies at the state level. Volume 2. Federal Regions I, II, and III

    SciTech Connect (OSTI)

    Garvey, D.B.; Streets, D.G.

    1980-02-01T23:59:59.000Z

    The Clean Air Act Amendments of 1977 and EPA regulations set up stringent requirements for the control of emissions in areas where the National Ambient Air Quality Standards were being exceeded. Implementation plans have been devised by the various states for the attainment of those standards. This second volume of the five-volume series presents outlines of the plans in Federal Regions I, II, and III and maps of the nonattainment status of counties and subcounty areas in each state. Federal Region I consists of the following states: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region II is made up of New Jersey and New York; Federal Region III is composed of Delaware, Maryland, Pennsylvania, Virginia, and West Virginia. (JGB)

  2. Clean Air Interstate Rule (CAIR) Budget Permits (Michigan)

    Broader source: Energy.gov [DOE]

    Michigan implements the federal requirements of the Clean Air Interstate Rule (CAIR) through state regulations. Michigan's Rule 821 requires subject sources to obtain and operate in compliance with...

  3. In pursuit of clean air: a data book of problems and strategies at the state level. Volume 3: Federal Regions IV and VI

    SciTech Connect (OSTI)

    Garvey, D.B.; Streets, D.G.

    1980-02-01T23:59:59.000Z

    This is the third volume of a five-volume report, designed to provide useful information for policy analysis in the Department of Energy, especially for the examination of possible areas of conflict between the implementation of a national energy policy calling for the increased use of coal and the pursuit of clean air. Information is presented for each state in Federal Regions IV and VI under the following section headings: state title page (includes a summary of air quality data); revised state implementation plan outline; maps of nonattainment areas, as designated; Storage and Retrieval of Aerometric Data (SAROAD); SAROAD data maps; power plant data; power plant maps; and county maps. States in Federal Region IV include: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee. Those in Federal Region VI include: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. (JGB)

  4. Clean Air Act Amendments of 1990

    E-Print Network [OSTI]

    Hanneschlager, R. E.

    Congress is currently debating amendments to the Clean Air Act which would strengthen and enhance the current Clean Air Act. The bill would guarantee a reduction of 10 million tons of sulfur dioxide from 1980 levels; would sharply reduce pollutants...

  5. Federal Fuel Cell Tax Incentives: An Investment in Clean and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by...

  6. Clean Air Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-02-15T23:59:59.000Z

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  7. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...

    Open Energy Info (EERE)

    | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

  8. Clean Air Act, Section 309

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. Policy review (a)

  9. Clean Air Act of Montana (Montana)

    Broader source: Energy.gov [DOE]

    The purpose of the Clean Air Act of Montana is to achieve and maintain levels of air quality to "protect human health and safety and, to the greatest degree practicable, prevent injury to plant and...

  10. Clean Air Act Requirements: Uranium Mill Tailings

    E-Print Network [OSTI]

    EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

  11. Guide to Federal Financing for Energy Efficiency and Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide, Second Edition (updated Oct. 1, 2014) More Documents & Publications Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment...

  12. Clean Air Act General Conformity Requirements and the National...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Air Act General Conformity Requirements and the National Environmental Policy Act Process Clean Air Act General Conformity Requirements and the National Environmental Policy...

  13. Geothermal Power Plants Meeting Clean Air Standards

    Broader source: Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  14. Texas Clean Air Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act is designed to safeguard the state's air resources from pollution by requiring the control and abatement of air pollution and emissions of air contaminants, consistent with the protection...

  15. CATEE: Clean Air Through Energy Efficiency Conference

    E-Print Network [OSTI]

    Tillman, S.

    2014-01-01T23:59:59.000Z

    and musts often resort to drugs to alleviate symptoms. Research shows that people spend over 50% of their time at home indoors. Consumer awareness of IAQ is growing Why IAQ Matters 2014 CirrusAir Technologies, Inc Sources: EPA, State of the Air... Household cleaners 2014 CirrusAir Technologies, Inc ESL-KT-14-11-27 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Current Filtration Systems 2014 CirrusAir Technologies, Inc The increased need for indoor air quality...

  16. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    Air Act, and Industrial Pollution Professor Alice Kaswan* I.a. Existing Air Pollution. . b. Do Climate Policieson Cli- mate Change, Pollution, and the Clean Air Act." I

  17. Oklahoma Clean Air Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This legislation establishes the authority for the Oklahoma Department of Environmental Quality to administer programs to maintain and monitor air quality across Oklahoma. The Department monitors...

  18. The Clean Air Act and bonus allowances

    SciTech Connect (OSTI)

    Markey, E.J.; Moorhead, C.J.

    1991-05-15T23:59:59.000Z

    This article discusses how utility companies can benefit in the form of bonus sulfur dioxide allowances from the Environmental Protection Agency by investing in renewable energy sources such as wind and promoting conservation. Topics discussed include the Clean Air Act Amendments, acid rain, energy conservation, renewable energy sources, and the procedure for gaining bonus allowances.

  19. In pursuit of clean air: a data book of problems and strategies at the state level. Volume 5. Federal Regions VIII, IX, and X

    SciTech Connect (OSTI)

    Garvey, D.B.; Streets, D.G.

    1980-02-01T23:59:59.000Z

    The following material is provided for each state in Federal Regions VIII, IX, and X: state title page (lists nonattainment areas for each pollutant, the number of monitors with valid readings for a particular averaging time for a pollutant, and the number of monitors that recorded a violation of the standard); revised State Implementation Plan (SIP) outline (covers sources of the problems, the proposed strategies for achieving attainment, and new state review procedures); maps of nonattainment areas, as designated; SAROAD (Storage and Retrieval of Aerometric Data) data; SAROAD data maps; power plant data; power plant maps; and county maps. States in Federal Region VIII are Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. Federal Region IX includes Arizona, California, and Nevada. Federal Region X includes Idaho, Oregon, and Washington. (JGB)

  20. In pursuit of clean air: a data book of problems and strategies at the state level. Volume 4. Federal Regions V and VII

    SciTech Connect (OSTI)

    Garvey, D.B.; Streets, D.G.

    1980-02-01T23:59:59.000Z

    The following material is provided for each state in Federal Regions V and VII: state title page lists nonattainment areas for each pollutant, the number of monitors with valid readings for a particular averaging time for a pollutant, and the number of monitors that recorded a violation of the standard); revised State Implementation Plan (SIP) outline (covers sources of the problems, the proposed strategies for achieving attainment, and new state review procedures); maps of nonattainment areas, as designated; SAROAD (Storage and Retrieval of Aerometric Data) data; SAROAD data maps; power plant data; power plant maps; and county maps. States in Federal Region V are Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Federal Region VII includes Iowa, Kansas, Missouri, and Nebraska. (JGB)

  1. air cleaning filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    positioning of portable air cleaning devices in multizone residential buildings Energy Storage, Conversion and Utilization Websites Summary: including ion generators,...

  2. ``How clean is clean`` in the United States federal and Washington State cleanup regulations

    SciTech Connect (OSTI)

    Landau, H.G. [Landau Associates, Inc., Edmonds, WA (United States)

    1993-12-31T23:59:59.000Z

    The enactment of legislation and promulgation of implementing regulations generally involves the resolution of conflicting goals. Defining ``How Clean is Clean?`` in federal and state cleanup laws, regulations, and policies is no exception. Answering the ``How Clean is Clean?`` question has resulted in the identification of some important and sometimes conflicting goals. Continuing resolution of the following conflicting goals is the key to effect cleanup of hazardous waste sites: Expediency vs. Fairness; Flexibility vs. Consistency; Risk Reduction vs. Risk Causation; and Permanence vs. Cost Effectiveness.

  3. Clean Air Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClay Electric Cooperative,North Carolina:Clean Air

  4. We're in the Global Clean Energy Race to Win: Federal Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We're in the Global Clean Energy Race to Win: Federal Investment in California Solar Energy Plant We're in the Global Clean Energy Race to Win: Federal Investment in California...

  5. Air bubbles clean produced water for reinjection

    SciTech Connect (OSTI)

    Michnick, M.J. [Univ. of Kansas, Lawrence, KS (United States)

    1995-12-31T23:59:59.000Z

    The reuse of produced water in a waterflood may be hazardous to the health and wealth of the reservoir. Disposal of produced water and finding a new source of water for a waterflood can double your costs. Air flotation is being tested to rehabilitate produced water on a lease in eastern Kansas. The use of air flotation in the oil field is at least forty years old. However, many operators are reluctant to spend the capital for surface equipment to assure a supply of good quality water for their waterflood operation. Before the installation of the air flotation unit only the produced water was filtered through a 75-micron bag and the filter water was then added to the make-up water. Seventy-five micron cartridge filters were used at the wellhead. Both the plant and wellhead filters required frequent replacement. Injection wells averaged more than one cleaning and acidization per year. Since installation of the air flotation unit, the combined produced and makeup water is passed through either a 25-or 10-micron bag filter in the plant and a 10-micron cartridge at the wellhead. The results of the test being conducted by an independent oil operator show a reduction in the cost for the water injection system. This study is part of the Department of Energy Class I PONS with independent oil operators.

  6. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    Climate Change, the Clean Air Act, and Industrial PollutionCONSIDERATIONS IN CLIMATE POLICY . A.pollutant Considerations into Climate Policy 1.

  7. Federal Air Emissions Regulations (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    In 2005, the Environmental Protection Agency (EPA) finalized two regulations, the Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule CAMR, that would reduce emissions from coal-fired power plants in the United States. Both CAIR and CAMR are included in the Annual Energy Outlook 2006 reference case. The EPA has received 11 petitions for reconsideration of CAIR and has provided an opportunity for public comment on reconsidering certain aspects of CAIR. Public comments were accepted until January 13, 2006. The EPA has also received 14 petitions for reconsideration of CAMR and is willing to reconsider certain aspects of the rule. Public comments were accepted for 45 days after publication of the reconsideration notice in the Federal Register. Several states and organizations have filed lawsuits against CAMR. The ultimate decision of the courts will have a significant impact on the implementation of CAMR.

  8. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    SciTech Connect (OSTI)

    First, M.W. (ed.)

    1983-02-01T23:59:59.000Z

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

  9. NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency

    E-Print Network [OSTI]

    Clark,L.

    2014-01-01T23:59:59.000Z

    Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...Shot Initiative Rooftop Solar Challenge 2 ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy (DOE) SunShot Initiative The U.S. Department of Energy SunShot Initiative is a collaborative national...

  10. NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency

    E-Print Network [OSTI]

    Clark,L.

    2014-01-01T23:59:59.000Z

    for connecting solar power to the electric grid, and increasing access to financing, teams will clear a path for rapid expansion of solar energy and serve as models for other communities across the nation. 4 ESL-KT-14-11-12 CATEE 2014: Clean Air Through...Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...

  11. Air quality, infant mortality, and the Clean Air Act of 1970

    E-Print Network [OSTI]

    Chay, Kenneth Y.

    2003-01-01T23:59:59.000Z

    We examine the effects of total suspended particulates (TSPs) air pollution on infant health using the air quality improvements induced by the 1970 Clean Air Act Amendments (CAAA). This legislation imposed strict regulations ...

  12. Applying Section 404(r) of the Clean Water Act to Federal Projects...

    Energy Savers [EERE]

    projects that may be subject to Section 404(r) of the Clean Water Act (Federal Water Pollution Control Act, as amended). Guidance on Applying Section 404(r) of the Clean Water Act...

  13. WORLD CLEAN AIR & ENVIRONMENTAL PROTECTION IUAPPA'S 13TH

    E-Print Network [OSTI]

    Hunt, Julian

    WORLD CLEAN AIR & ENVIRONMENTAL PROTECTION IUAPPA'S 13TH CONGRESS & EXHIBITION aspects of science and technology, but also in the wider domains of regulation, public #12;engagement (from local environment to global environment), market/financial mechanisms, and even philosophy. Here

  14. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27T23:59:59.000Z

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  15. Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

  16. Electric utility response to the Clean Air Act Amendments

    SciTech Connect (OSTI)

    Torrens, I.M.; Platt, J.B. [Electric Power Research Inst., Palo Alto, CA (United States)

    1994-01-01T23:59:59.000Z

    This article describes the actions and planning by electric utilities to meet regulations on nitrogen oxide and sulfur dioxide emissions. The topics of the article include sulfur dioxide response and options, the fuel, technology and allowance interplay, nitrogen oxides control, continuous emission monitors, air toxics, clean air response tool kit, and the economics of compliance.

  17. Clean Air Trade Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity ofInformationClaridgeClassicClay JumpClean

  18. Clean Air Mercury Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    On February 8, 2008, a three-judge panel on the D.C. Circuit of the U.S. Court of Appeals issued a decision to vacate the Clean Air Mercury Rule (CAMR). In its ruling, the panel cited the history of hazardous air pollutant regulation under Section 112 of the Clean Air Act (CAA). Section 112, as written by Congress, listed emitted mercury as a hazardous air pollutant that must be subject to regulation unless it can be proved harmless to public welfare and the environment. In 2000, the Environmental Protection Agency ruled that mercury was indeed hazardous and must be regulated under Section 112 and, therefore, subjected to the best available control technology for mitigation.

  19. Clean Air Act Amendments of 1990

    E-Print Network [OSTI]

    Hanneschlager, R. E.

    1990-01-01T23:59:59.000Z

    that contribute to urban ozone; and would establish a set schedule for regulation of toxic air emissions. The bill would also establish a system of marketable permits to allow acid rain reductions to be achieved in the least costly manner and it would stiffen...

  20. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect (OSTI)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01T23:59:59.000Z

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  1. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  2. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

    1991-01-01T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  3. Approach clean air issues cost effectively

    SciTech Connect (OSTI)

    Sharr, S.L. [Star Enterprise, Houston, TX (United States)

    1996-09-01T23:59:59.000Z

    Star Enterprise is a 50/50 joint venture partnership formed in 1989 between Texaco and Saudi Aramco subsidiaries. Star is the sixth largest refiner and marketer in the U.S. and operates three refineries located in Port Arthur, Texas; Convent, La; and Delaware City, Del. These three plants have a combined crude processing capacity of 600,000 b/d. Star Enterprise markets more than 5 billion gal/year of gasoline and 1.8 billion gal/year of diesel fuel through 9,000 Texaco-branded wholesale and retail outlets in 26 states in the eastern and Gulf coast regions of the U.S. Not long after Star was formed, we began making large capital investments in our refineries and in our marketing system to comply with federally mandated fuel requirements. First there was the 1993 diesel fuel specifications for on-road diesels. Then there was the roll out of reformulated gasoline (RFG) in December 1994. As marketers in the East and Gulf Coast regions, a significant portion of the marketing arena is in mandatory and optional RFG areas.

  4. CSEM WP 118 The Impact of the Clean Air Act Amendments of 1990

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 118 The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market at Davis, crknittel@ucdavis.edu. #12;2 The Impact of the Clean Air Act Amendments of 1990 on Electric

  5. Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies

    E-Print Network [OSTI]

    Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies Table 1 equipment and people from particles. Criteria for Air Cleaning Reducing ventilation rates to save energy, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates

  6. Clean Air Interstate Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

  7. Analysis of Energy Saving in a Clean Room Air-conditioning System

    E-Print Network [OSTI]

    Liu, S.; Liu, J.; Pei, J.; Wang, M.

    2006-01-01T23:59:59.000Z

    temperature field, small supply air temperature difference, large airflow, but no reheater. As the design airflow rate of air conditioning system for cleaning mainly considered to meet the need of the cleanliness class, its air exchange rate was much... above, we had chosen a representative air-handling unit for the testing renovation of 2nd return air system. Cleaning area for this AHU was a capsule clean room with a hundred thousand cleanliness classes. Indoor controlled dry-bulb temperature...

  8. Methods for air cleaning system design and accident analysis

    SciTech Connect (OSTI)

    Gregory, W.S.; Nichols, B.D.

    1986-01-01T23:59:59.000Z

    This paper describes methods, in the form of a handbook and five computer codes, that can be used for air cleaning system design and accident analysis. Four of the codes were developed primarily at the Los Alamos National Laboratory, and one was developed in France. Tools such as these are used to design ventilation systems in the mining industry but do not seem to be commonly used in the nuclear industry. For example, the Nuclear Air Cleaning Handbook is an excellent design reference, but it fails to include information on computer codes that can be used to aid in the design process. These computer codes allow the analyst to use the handbook information to form all the elements of a complete system design. Because these analysis methods are in the form of computer codes, they allow the analyst to investigate many alternative designs. In addition, the effects of many accident scenarios on the operation of the air cleaning system can be evaluated. These tools originally were intended for accident analysis, but they have been used mostly as design tools by several architect-engineering firms. The Cray, VAX, and personal computer versions of the codes, an accident analysis handbook, and the codes' availability will be discussed. The application of these codes to several design operations of nuclear facilities will be illustrated, and their use to analyze the effect of several accident scenarios also will be described.

  9. An institutional assessment of the implementation and enforcement of the Clean Air Act: Puget Sound case study

    SciTech Connect (OSTI)

    Farrell, S.O.; Jensen, M.S.

    1980-11-26T23:59:59.000Z

    This report examines and evaluates the capabilities and effectiveness of the institutions charged with enforcing the Clean Air Act requirements in the Puget Sound region of the State of Washington. Among the sections of the Act addressed by the study are those concerning Federal grants, designation and planning, enforcement issues, and citizen suits. The requirements for nonattainment areas specified in Title I, Part D of the Act are reviewed extensively.

  10. Pollution on the Federal Lands I: Air Pollution Law

    E-Print Network [OSTI]

    Glicksman, Robert L.

    1993-01-01T23:59:59.000Z

    supra note 57, at 818-19. FEDERAL LANDS AIR POLLUTION I.Interstate Pollution Before 1990, the CAA required eachof the CAA's interstate pollution provi- sions before the

  11. Hawaii Department of Health Clean Air Branch Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville,NewOpenInformation Clean Air Branch

  12. Chapter Four Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    E-Print Network [OSTI]

    unknown authors

    Many states and localities are exploring or implementing clean energy policies to achieve greenhouse gas (GHG) and criteria air pollutant1 emission reductions. Document map Chapter one

  13. Clean Energy Manufacturing Federal Resource Guide | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0Yellowstone-Teton CleanEnergy

  14. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    SciTech Connect (OSTI)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01T23:59:59.000Z

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  15. Effectiveness of the Clean Air Act on SO? emissions from U.S. electric utilities : a detailed analysis of the influence of attainment status and unit-level characteristics on the reduction of SO? emissions from 1976 to 2002

    E-Print Network [OSTI]

    Dubroeucq, Florence

    2004-01-01T23:59:59.000Z

    The continuing degradation of air quality in the U.S. during the 1950s and 1960s has led to increasing federal regulations to control air pollution. The Clean Air Act Amendments of 1970 and 1977 were major pieces of ...

  16. Federal Task Force Sends Recommendations to President on Fostering Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal Technology | Department

  17. Federal Task Force Sends Recommendations to President on Fostering Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal Technology |

  18. Did the Clean Air Act cause the remarkable decline in sulfur dioxide concentrations?

    E-Print Network [OSTI]

    Greenstone, Michael

    2003-01-01T23:59:59.000Z

    Over the last three decades, ambient concentrations of sulfur dioxide (SO2) air pollution have declined by approximately 80%. This paper tests whether the 1970 Clean Air Act and its subsequent amendments caused this decline. ...

  19. Saving energy and improving IAQ through application of advanced air cleaning technologies

    SciTech Connect (OSTI)

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01T23:59:59.000Z

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  20. Analysis of Energy Saving in a Clean Room Air-conditioning System

    E-Print Network [OSTI]

    Liu, S.; Liu, J.; Pei, J.; Wang, M.

    2006-01-01T23:59:59.000Z

    above, we had chosen a representative air-handling unit for the testing renovation of 2nd return air system. Cleaning area for this AHU was a capsule clean room with a hundred thousand cleanliness classes. Indoor controlled dry-bulb temperature...

  1. Optimizing electric utility air toxics compliance with other titles of the Clean Air Act

    SciTech Connect (OSTI)

    Loeb, A.P.; South, D.W.

    1993-12-31T23:59:59.000Z

    This paper provides an overview of regulatory issues under Title III of the Clean Air Act Amendments that could affect electric utilities. Title III contains provisions relating to hazardous air pollutants (HAPs) and provides special treatment for electric utilities. Generally, this discussion documents that if utility toxic emissions are regulated, one of the chief difficulties confronting utilities will be the lack of coordination between Title III and other titles of the Act. The paper concludes that if the US Environmental Protection Agency (EPA) determines that regulation of utility HAPs is warranted under Title III, savings can be realized from flexible compliance treatment.

  2. Development of a Clean Air Act Title V permit application for Argonne National Laboratory

    SciTech Connect (OSTI)

    Barrett, G.L.

    1994-06-01T23:59:59.000Z

    The Clean Air Act Amendments (CAAA) of 1990 instituted major changes in the way that air emission sources are regulated and permitted. Along with being a major research and development laboratory owned by the US Department of Energy, Argonne National Laboratory (ANL) is also classified as a major source of oxides of nitrogen (NO{sub x}) in the Chicago metropolitan area which has been designated by the US Environmental Protection Agency (USEPA) as severe (17) for ozone. As a major source ANL is therefore required under Title V of CAAA to apply for a federally enforceable permit for all sources of air emissions at the facility. While the ANL Boiler House represents the most significant emission source at the Laboratory, there are, nevertheless, a large number of other emission sources, some of which are currently permitted by the State of Illinois and others of which are exempt from state permitting requirements. A large number of R & D related sources are of relatively small magnitude. The ability to identify, inventory, characterize and classify all sources under the various titles of CAAA constitutes a major challenge for R & D laboratories of this size.

  3. Air Emissions Operating Permit Regulations for the Purposes of...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Regulations Provider Department of Environmental Quality The Air Emissions Operating Permit Regulations for the Purpose of Title V of the Federal Clean Air Act...

  4. MTBE still in poor health, despite the Clean Air Act

    SciTech Connect (OSTI)

    Wood, A.

    1994-05-25T23:59:59.000Z

    After the second winter oxygenated fuels program of the 1990 Clean Air Act, producers of methyl tert-butyl ether (MTBE) are still feeling the chill of poor profitability. Despite the strong demand growth for MTBE to meet oxygen requirements in reformulated gasoline (RFG), oversupply still dogs the market. That, combined with a run-up in feedstock prices, has seen margins for MTBE markers all but evaporate. And it seems matters are likely to get worse before they get better. This week, Belvieu Environmental Fuels (BEF; Houston) expects to startup its 15,000-bbl/day MTBE plant at Mont Belvieu, TX. In late July, Texaco will start up its 15,000-bbl/day MTBE/propylene oxide (PO) plant at Port Neches, TX. In addition, a rash of refinery-based MTBE and tert-amyl methyl ether projects are nearing completion. {open_quotes}Profitability in MTBE has been extremely poor,{close_quotes} says Marvin O. Schlanger, president of Arco Chemical Americas, the largest MTBE producer. There has, however, been some recent recovery on the spot market, with MTBE moving from less than 60 cts/gal to near cash-cost levels of 70 cts/gal. But contract prices remain depressed, and strength in butane and methanol pricing have all buy wiped out any gains in MTBE.

  5. Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, Randy [ORNL; Mays, Gary T [ORNL; Omitaomu, Olufemi A [ORNL; Poore III, Willis P [ORNL

    2013-12-01T23:59:59.000Z

    This analysis identifies candidate locations, in a broad sense, where there are high concentrations of federal government agency use of electricity, which are also suitable areas for near-term SMRs. Near-term SMRs are based on light-water reactor (LWR) technology with compact design features that are expected to offer a host of safety, siting, construction, and economic benefits. These smaller plants are ideally suited for small electric grids and for locations that cannot support large reactors, thus providing utilities or governement entities with the flexibility to scale power production as demand changes by adding additional power by deploying more modules or reactors in phases. This research project is aimed at providing methodologies, information, and insights to assist the federal government in meeting federal clean energy goals.

  6. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31T23:59:59.000Z

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  7. air cleaning conference: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

  8. air cleaning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

  9. air cleaning issues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

  10. The Clean Air Act's Impact on Environmental Regulation and Electric Power Conservation and Production

    E-Print Network [OSTI]

    Ashley, H.

    stringent environmental regulations force utilities to reconsider how best to meet the power demand. The new Clean Air Act permits utilities to use a market driven system of allowances to comply with sulfur dioxide emission limits. This paper discusses some...

  11. A Summary of Utilities' Positions Regarding the Clean Air Act Amendments of 1990

    E-Print Network [OSTI]

    Nalepa, K. J.

    This paper summarizes information from the electric utilities in Texas concerning their preliminary plans for compliance with the 1990 Amendments to the Clean Air Act. Enactment of the amendments resulted in a new two phase, market-based allowance...

  12. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01T23:59:59.000Z

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  13. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01T23:59:59.000Z

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  14. EPA Clean Energy-Environment Guide to Action 3.3 Determining the Air Quality Benefits of Clean Energy Policy Description and Objective Summary

    E-Print Network [OSTI]

    unknown authors

    Meeting energy demand through clean energy sources can reduce emissions from fossil-fueled generators and provide many environmental and economic benefits. Some states are estimating emission reductions from their clean energy programs and incorporating those reductions into documentation for air quality planning efforts, energy planning, and clean energy program results. States are demonstrating a number of methods to quantify the emission reductions from clean energy policies. Approaches most useful to policymakers are cost-effective, rigorous, and address relevant emission market issues. Quantifying the precise environmental impact of a particular clean energy project can be challenging. To

  15. Twenty-third DOE/NRC nuclear air cleaning and treatment conference

    SciTech Connect (OSTI)

    Bellamy, R.R.; Hayes, J.J.; First, M.W.

    1995-01-01T23:59:59.000Z

    The Twenty-Third Department of Energy/Nuclear Regulatory Commission (DOE/NRC) nuclear Air-Cleaning and Treatment Conference was held July 25-28, 1994, in Buffalo, New York. The conference was also sponsored by the Harvard Air-Cleaning Laboratory and the Internation Society of Nuclear Air Treatment Technologies, a nonprofit organization founded to promote technology transfer in the nuclear air-cleaning and treatment area. A total of 192 air-cleaning specialists attended the conference. The United States and 11 foreign countries were represented. The specialists are affiliated with all aspects of the nuclear industry, including government agencies, educational institutions, utilities, architect-engineers, equipment suppliers, and consultants. The high level of international interests is evident from the 40% of papers sponsored by foreign interests. More than 20% of the attendees as well as several members of the Program Committee were from outside the United States. Major topics discussed at this conference included nuclear air-cleaning codes and standards, waste disposal, particulate filter developments (including testing and performance under stress and after aging), sampling and monitoring of process and effluent streams, off-gasses from fuel reprocessing, adsorbents and adsorption, accident control and analysis, and revised source terms for power-plant accidents. A highlight of the conference concerned operations a at the DOE facility at West Valley, New York, where construction is under way to solidify radioactive waste. A recurrent theme throughout the sessions was that, in spite of the large number of guidance documents available in the form of regulations, codes, standards, and directives, multiple difficulties arise when all are invoked simultaneously. Gas processing needs, rather than controls for civilian power plants, will provide the principal challenge during the next decade for the air-cleaning specialists of the world. 15 refs.

  16. Twenty-first DOE/NRC nuclear air-cleaning conference

    SciTech Connect (OSTI)

    Bellamy, R.R. [Nuclear Regulatory Commission, Washington, DC (United States); Moeller, D.W.; First, M.W. [Harvard Univ., Cambridge, MA (United States)

    1991-01-01T23:59:59.000Z

    The Twenty-First Department of Energy/Nuclear Regulatory Commission Nuclear Air-Cleaning Conference was held August 12-16, 1990, in San Diego, California. A total of 232 air-cleaning specialists attended the conference. The United States and 14 foreign countries were represented, and the specialists were affiliated with government agencies, educational institutions, and the nuclear industry. Several major topics were discussed during the conference, including development and use of industry codes and standards; chemical processing off-gas cleaning; particulate filter developments, including filter testing and filter response to physical stress; development of adsorbents, including laboratory testing and in-place testing; incineration and vitrification; containment venting; reactor operations, including design and modeling; and measurement systems capable of verifying safe operation. The conference continued to provide a forum for direct and efficient interchange of technical and philosophical information among the participants. The high level of foreign participation and interest continues, as evidenced by over one half of the papers being sponsored by foreign interests, and one quarter of the attendees being from outside the United States. Further evidence of international interest was seen in a plenary session devoted to nuclear air-cleaning programs in nine different countries. A common concern throughout many of the sessions was the development of meaningful standards, their implementation for existing air-cleaning system, and the use of these standards by regulatory agencies. 13 refs., 2 tabs.

  17. Energy Efficiency & Environmental News: Duct Cleaning and Indoor Air Quality 1 Florida Energy Extension Service and Gary Cook 2 DUCT CLEANING AND INDOOR AIR QUALITY

    E-Print Network [OSTI]

    unknown authors

    1994-01-01T23:59:59.000Z

    With concern about secondary smoke, dust mites, formaldehyde emissions and bioaerosols, the public has become more aware of indoor air quality problems. Heating, air conditioning and ventilation units as well as associated ductwork can be the sources of mold, fungi and other microbial pollutants as well as particulates of dust, secondary smoke and pieces of dead dust mites. Along with the publics concern has been the development of businesses directly associated with indoor air quality. Some of these businesses are reputable and supply effective indoor air quality services; others, on the other hand, offer little more than technical jargon and will take advantage of the unwary consumer. Duct cleaning has been an area that has been attracted by both reputable and unscrupulous businesses.

  18. air cleaning handbook: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy (DOE) SunShot Initiative The U.S. Department of Energy SunShot Initiative is a collaborative...

  19. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.

    2007-08-01T23:59:59.000Z

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  20. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    SciTech Connect (OSTI)

    Fisk, William J.

    2006-05-01T23:59:59.000Z

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  1. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  2. Asbestos, polarized light microscopy, PLM, The Clean Air Act mandates a specific analytical

    E-Print Network [OSTI]

    Ahmad, Sajjad

    75 KEY WORDS Asbestos, polarized light microscopy, PLM, NESHAP ABSTRACT The Clean Air Act of the polarized light microscopy (PLM) test method that re moved the compositing of layers and effectively sought within the sample. In 1994 and again in 1995, the EPA recommended that the 1993 PLM method be used

  3. An analysis of SO sub 2 emission compliance under the 1990 Clean Air Act Amendments

    SciTech Connect (OSTI)

    Hanson, D.A.; Cilek, C.M.; Pandola, G.; Taxon, T.

    1992-01-01T23:59:59.000Z

    The effectiveness of SO{sub 2} emission allowance trading under Title 4 of the 1990 Amendments to the Clean Air Act (CAA) is of great interest due to the innovative nature of this market incentive approach. However, it may be a mistake to frame the compliance problem for a utility as a decision to trade or not. Trading of allowances should be the consequence, not the decision. The two meaningful decision variables for a utility are the control approaches chosen for its units and the amount of allowances to hold in its portfolio of assets for the future. The number allowances to be bought or sold (i.e. traded) is determined by the emission reduction and banking decisions. Our preferred approach is to think of the problem in terms of ABC's of the 1990 CAA Amendments: abatement strategy, banking, and cost competitiveness. The implications of the general principles presented in this paper on least cost emission reductions and emissions banking to hedge against risk are being simulated with version 2 of the ARGUS model representing the electric utility sector and regional coal supplies and transportation rates. A rational expectations forecast for allowances prices is being computed. The computed allowance price path has the property that demand for allowances by electric utilities for current use or for banking must equal the supply of allowances issued by the federal government or provided as forward market contracts in private market transactions involving non-utility speculators. From this rational expectations equilibrium forecast, uncertainties are being explored using sensitivity tests. Some of the key issues are the amount of scrubbing and when it is economical to install it, the amount of coal switching and how much low sulfur coal premiums will be bid up; and the amount of emission trading within utilities and among different utilities.

  4. An analysis of SO{sub 2} emission compliance under the 1990 Clean Air Act Amendments

    SciTech Connect (OSTI)

    Hanson, D.A.; Cilek, C.M.; Pandola, G.; Taxon, T.

    1992-07-01T23:59:59.000Z

    The effectiveness of SO{sub 2} emission allowance trading under Title 4 of the 1990 Amendments to the Clean Air Act (CAA) is of great interest due to the innovative nature of this market incentive approach. However, it may be a mistake to frame the compliance problem for a utility as a decision to trade or not. Trading of allowances should be the consequence, not the decision. The two meaningful decision variables for a utility are the control approaches chosen for its units and the amount of allowances to hold in its portfolio of assets for the future. The number allowances to be bought or sold (i.e. traded) is determined by the emission reduction and banking decisions. Our preferred approach is to think of the problem in terms of ABC`s of the 1990 CAA Amendments: abatement strategy, banking, and cost competitiveness. The implications of the general principles presented in this paper on least cost emission reductions and emissions banking to hedge against risk are being simulated with version 2 of the ARGUS model representing the electric utility sector and regional coal supplies and transportation rates. A rational expectations forecast for allowances prices is being computed. The computed allowance price path has the property that demand for allowances by electric utilities for current use or for banking must equal the supply of allowances issued by the federal government or provided as forward market contracts in private market transactions involving non-utility speculators. From this rational expectations equilibrium forecast, uncertainties are being explored using sensitivity tests. Some of the key issues are the amount of scrubbing and when it is economical to install it, the amount of coal switching and how much low sulfur coal premiums will be bid up; and the amount of emission trading within utilities and among different utilities.

  5. Clean Air and Environmental Quality Volume 40 No.2. May 2006 43 POTENTIAL IMPACTS OF AIR POLLUTION AEROSOLS ON PRECIPITATION IN AUSTRALIA

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Clean Air and Environmental Quality Volume 40 No.2. May 2006 43 POTENTIAL IMPACTS OF AIR POLLUTION AEROSOLS ON PRECIPITATION IN AUSTRALIA Potential impacts of air pollution aerosols on precipitation that anthropogenic air pollution downwind of urban and industrial developments affects clouds microphysics

  6. Clean Air Interstate Rule: Changes and Modeling in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    On December 23, 2008, the D.C. Circuit Court remanded but did not vacate the Clean Air Interstate Rule (CAIR), overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in Annual Energy Outlook 2010 (AEO) , allows CAIR to remain in effect, providing time for the Environmental Protection Agency to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the Clean Air Mercury Rule (CAMR), which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70%, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.

  7. The economics of pollution permit banking in the context of Title IV of the 1990 Clean Air Act amendments

    E-Print Network [OSTI]

    Schennach, Susanne M.

    1998-01-01T23:59:59.000Z

    Tradable pollution permits are the basis of a new market-based approach to environmental control. The Acid Rain Program, established under Title IV of the Clean Air Act Amendments of 1990, and aimed at drastically reducing ...

  8. Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar

    Broader source: Energy.gov [DOE]

    This U.S. Environmental Protection Agency (EPA) presentation for state and tribal officials will provide an overview of Clean Air Act provisions for regulating carbon pollution from existing power...

  9. Proceedings of the 21st DOE/NRC nuclear air cleaning conference; Volume 2, Sessions 9--16

    SciTech Connect (OSTI)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01T23:59:59.000Z

    The 21st meeting of the Department of Energy/Nuclear Regulatory Commission (DOE/NRC) Nuclear Air Cleaning Conference was held in San Diego, CA on August 13--16, 1990. The proceedings have been published as a two volume set. Volume 2 contains sessions covering adsorbents, nuclear codes and standards, modelling, filters, safety, containment venting and a review of nuclear air cleaning programs around the world. Also included is the list of attendees and an index of authors and speakers. (MHB)

  10. Interaction between Titles 2 and 3 of the Clean Air Act as amended, 1990

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1996-02-01T23:59:59.000Z

    This report examines Some issues that would I affect the refining industry if the requirements for hazardous air pollutants set out in Title III of the Clean Air Act Amendments were to impede the market entrance of oxygenated fuels, as me; required by Title II. It describes the mandate for reformulated gasoline; considers gasoline characteristics in light of component shifts in refining; examines the supply of, demand for, and cost of various feedstocks and blendstocks; and identifies the emissions and atmospheric impacts that might result from the production and use of reformulated gasoline. Attention is focused on methanol and MTBE, two potential blendstocks that are also hazardous air pollutants, and on maximum achievable control technology standards, which might be applied to the stationary sources that produce them.

  11. Affect of Title III of the 1990 Clean Air Act Amendments on military facilities

    SciTech Connect (OSTI)

    Trembly, L.A. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States)

    1997-12-31T23:59:59.000Z

    EPA has promulgated a number of NESHAPs in accordance with Title III of the Clean Air Act Amendments of 1990 (CAAA90) that have affected military installations. This paper provides a survey of NESHAP applicability on military installations and where feasible outlines compliance efforts and quantifies the emission reductions achieved. This paper focuses on NESHAPs promulgated since CAAA90. Specific NESHAPs that will be discussed include Halogenated Solvent Cleaners, Perchloroethylene Dry Cleaners, Chromium Electroplating and Anodizing Tanks, Ship Building and Repair Operations and Aerospace Manufacturing and Rework Operations. Other NESHAPs affecting military installations may be addressed if data are available.

  12. Minimum cost air pollution control for cotton gins

    E-Print Network [OSTI]

    Flannigan, Steven Shawnacy

    1997-01-01T23:59:59.000Z

    With the implementation of the 1990 Federal Clean Air Act Amendments (CAAA), State Air Pollution Regulatory Agencies (SAPRA's) are regulating agricultural operations across the U.S. more vigorously. Some of these agricultural operations experiencing...

  13. Effect of Clean Air Act Amendments of 1990 on use of Midwestern coal

    SciTech Connect (OSTI)

    Davis, P.N. (Univ. of Missouri, Columbia, MO (United States). School of Law)

    1993-03-01T23:59:59.000Z

    The acid rain provisions of the Clean Air Act Amendments of 1990 (42 U.S.C. [section][section] 7,651--7651o) and implementing regulations of October 1992 will substantially modify use of high-sulfur coal by utilities during the next decade. The Act adopts a market-based approach, allowing utilities to meet those emission levels by (1) installing scrubbers, low-emission boilers, or coal-cleaning technology, (2) switching to lower-sulfur coal, or (3) purchasing emission allowances to cover excess emissions. Those allowances will be sold by utilities which have reduced emissions below required levels. Initial allowances are distributed according to a statutory formula to existing plants based on 1985 outputs and to new plants beginning operation before 2000. Small utility plants and nonutility or industrial plants can opt into the allowance program. New plants beginning operation after 2000 must purchase allowances from then existing plants. Beginning in 1995, each plant can (1) operate at the level of its allowance, (2) reduce its emissions below the level of its allowance, either selling the balance or saving it for future expansion, (3) emit at a higher level than its allowance and purchasing extra allowances. Although the cost of scrubbers is declining, many utilities will elect to switch from high to low-sulfur coal. That will cause a closing of many high-sulfur coal mines in Missouri and throughout the midwest. Low-sulfur coal mines in the West will expand substantially. But reductions in scrubber costs, development of boiler and coal-cleaning technologies, and changes in transportation charges will affect comparative costs, and may enable continued use of some high-sulfur coal.

  14. Preliminary assessment of future refining impacts of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Hadder, G.R.

    1991-09-01T23:59:59.000Z

    A preliminary assessment of the future refining impacts of the Clean Air Act Amendments of 1990 has been performed with the Navy Mobility Fuels Forecasting Systems. The assessment suggests that gasoline reformulation costs in domestic coastal and near-coastal refining regions in the year 2000 could be 3.5 to 5.6 cents per gallon (in terms of 1989 currency). For heating value equivalent to one gallon of conventional gasoline, the regional total added costs (including reformulation costs) for reformulated gasoline could be 5.9 to 8.0 cents. In blending reformulated gasolines, the reduction of butane for lower Reid vapor pressure and the reduction of reformate for lower aromatics are generally compensated by increased percentages of alkylate and/or straight run naphthas. Relatively larger refinery process capacity additions are required for butane isomerization, alkylation, aromatics recovery, and distillate hydrotreating. 21 refs., 3 figs., 18 tabs.

  15. Trials and tribulations implementing the Clean Air Act Title V in fourteen air districts

    SciTech Connect (OSTI)

    Moore, C. [Environmental Affairs Santa Fe Pacific Pipeline Partners, Orange, CA (United States)

    1998-12-31T23:59:59.000Z

    Santa Fe pacific Pipeline Partners, L.P. (SFPP) is a refined petroleum pipeline operating in six states in the western United States. Sixteen terminals are subject to the Title V permit to operate requirements. There are many obstacles to overcome, not only when preparing applications for Title V operating permits, but in the implementation phase of the project as well. Each Air District has its own set of rules and regulations that must be adhered to in preparing the application. For example, some districts required the insignificant sources to be documented and included in compliance plans and some do not. The format required for the application varies from stringent forms that must be completed to no forms at all. In preparing the Title V application for SFPP, the author quickly realized if this confusion was transferred to the implementation phase, compliance would be a failure. Therefore, early on the environmental manager instituted a training program. Beginning with a pilot program in one district the author began training managers and supervisors. This program quickly was expanded to include senior vice presidents and technicians. This training session was a one hour of general overview to visually describe how the Title V process would affect the facilities. As a result of this training, virtually every employee became familiar with how the Title V program was affecting the facilities. Engineering and Customer Service is instructed to notify the manager of any and every new project so it could undergo a review to determine if it affected a Title V facility. The field acts as a check of the system. Any change or modification at any facility is immediately under scrutiny for Title V implications. Another obstacle to overcome is to help the facility deal with something that is new and basically a different way of operating.

  16. The Federal Aviation Administration (FAA) estimates that 70% of air traffic

    E-Print Network [OSTI]

    Reuter, Martin

    The Federal Aviation Administration (FAA) estimates that 70% of air traffic delays result from by the Port Authority of New York and New Jersey, and the FAA in 2007 established a program to field on by thunderstorms. The FAA estimates that one-third of all commercial airline flights daily pass through the New

  17. In pursuit of clean air: a data book of problems and strategies at the state level. Supplement

    SciTech Connect (OSTI)

    Garvey, D.B.; Moser, S.B.; Streets, D.G.

    1980-08-01T23:59:59.000Z

    The Clean Air Act Amendments of 1977 and EPA regulations set stringent requirements for the control of emissions in areas where the National Ambient Air Quality Standards were being exceeded. This supplement updates a previous five-volume summary of nonattainment area designations and attainment strategies of the states as of July 1, 1980. It also contains maps of PSD Class I areas and additional information on coal production, coal reserves, and coal quality.

  18. Importance of the Return Air Opening to Degree of Turbulence in a I-Grade Clean Operating Room

    E-Print Network [OSTI]

    Cheng, S.

    2006-01-01T23:59:59.000Z

    room in conditions that insure a degree of cleanliness and supply velocity. The size of the return air opening has been analyzed by comparing the results of the numerical simulation and experiment. The results will help the design of the I-grade clean...

  19. Air, Health, Clean Energy, and Related Economic Impacts: Assessing the Many Benefits of State and Local Clean Energy Initiatives Multiple Benefits of Clean Energy Initiatives

    E-Print Network [OSTI]

    unknown authors

    Reducing energy demand and/or increasing renewable energy generation from state and local clean energy initiativessuch as goals, standards, codes, funds, and programscan generate many benefits, including: Security, diversity, and overall reliability improvements for the electric system. Improved environmental quality, human health, and quality of life. Positive economic gains through energy costs saved, avoided medical costs, higher disposable incomes, increased labor productivity, and more jobs. This brief is part of a series and focuses on environmental and human health benefits. State and local governments can analyze their clean energy initiatives using methods and tools described in EPAs Assessing the

  20. Effects of the 1990 Clean Air Act amendments on distributions of visual impairment

    SciTech Connect (OSTI)

    Shannon, J.D.; Camp, J. [Argonne National Lab., IL (United States); Trexler, E.C. Jr. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

    1996-02-01T23:59:59.000Z

    The Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments (1990 CAAA) focus on emission policies designed to reduce the amount of deposition of acidifying pollutants, particularly in the Northeast. The primary strategy is a significant reduction in SO{sub 2} emissions, with lesser reductions scheduled for NO{sub {times}} emissions. However, lessening of acid deposition is not the only important benefit of the emission control strategy. Decreasing SO{sup {minus}} and NO {sup {minus}} emissions will decrease atmospheric concentrations of sulfate and nitrate particles, which account for much of the visibility reduction associated with regional haze. Although one can get a qualitative sense of how visibility might improve by examining historical large-scale trends in regional emission totals and regional visibility, quantification of the expected improvement requires model simulations. One must model the spatial and temporal patterns of emissions reductions; the relevant pollutant transport, transformation, and removal processes in the atmosphere; and the changes in particulate loading. For this initial examination of the visibility improvement at Shenandoah National Park associated the the Phase I and Phase II SO{sub 2} emission reductions, we have linked emission trend projections taken from ongoing analysis of the 1990 CAAA at Argonne National Laboratory, regional transport modeling with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model and visual impairment modeling with the Visibility Assessment Scoping Model (VASM).

  1. Assessing the potential visibility benefits of Clean Air Act Title IV emission reductions

    SciTech Connect (OSTI)

    Trexler, E.C. Jr. [USDOE, Washington, DC (United States); Shannon, J.D. [Argonne National Lab., IL (United States)

    1995-06-01T23:59:59.000Z

    Assessments are made of the benefits of the 1990 Clean Air Act Title IV (COVE), Phase 2, SO2 and NOX reduction provisions, to the visibility in typical eastern and western Class 1 areas. Probable bands of visibility impairment distribution curves are developed for Shenandoah National Park, Smoky Mountain National Park and the Grand Canyon National Park, based on the existing emissions, ``Base Case``, and for the COVE emission reductions, ``CAAA Case``. Emission projections for 2010 are developed with improved versions of the National Acid Precipitation Assessment Program emission projection models. Source-receptor transfer matrices created with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model are used with existing emission inventories and with the emission projections to calculate atmospheric concentrations of sulfate and nitrate at the receptors of interest for existing and projected emission scenarios. The Visibility Assessment Scoping Model (VASM) is then used to develop distributions of visibility impairment. VASM combines statistics of observed concentrations of particulate species and relative humidity with ASTRAP calculations of the relative changes in atmospheric sulfate and nitrate particulate concentrations in a Monte Carlo approach to produce expected distributions of hourly particulate concentrations and RH. Light extinction relationships developed in theoretical and field studies are then used to calculate the resulting distribution of visibility impairment. Successive Monte Carlo studies are carried out to develop sets of visibility impairment distributions with and without the COVE emission reductions to gain insight into the detectability of expected visibility improvements.

  2. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergyEnergyDepartment of Energy Energy Federal

  3. Panel discussion: The Clean Air Act: It`s impact on the coal testing industry The act itself: A summary and overview

    SciTech Connect (OSTI)

    King, R.

    1995-08-01T23:59:59.000Z

    The Clean Air Act was first enacted in 1970. It was re-enacted in both 1977 and 1991. The original act covered air quality standards (NAAQS) for SO{sub 2}, NO{sub x}, CO and O{sub 3}. Pb was added in 1978 by court order and particulate matter (TSP) was added in 1987. A discussion of the impact of the Clean Air Act on the coal industry is presented.

  4. Compliance with the Clean Air Act Title VI Stratospheric Ozone Protection Program requirements at U.S. DOE Oak Ridge Reservation Facilities

    SciTech Connect (OSTI)

    Humphreys, M.P.; Atkins, E.M.

    1999-07-01T23:59:59.000Z

    The Title VI Stratospheric Ozone Protection Program of the Clean Air Act (CAA) requires promulgation of regulations to reduce and prevent damage to the earth's protective ozone layer. Regulations pursuant to Title VI of the CAA are promulgated in the Code of Federal Regulations (CFR) at Title 40 CFR, Part 822. The regulations include ambitious production phaseout schedules for ozone depleting substances (ODS) including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, carbon tetrachloride, and methyl chloroform under 40 CFR 82, Subpart A. The regulations also include requirements for recycling and emissions reduction during the servicing of refrigeration equipment and technician certification requirements under Subpart F; provisions for servicing of motor vehicle air conditioners under Subpart B; a ban on nonessential products containing Class 1 ODS under Subpart C; restrictions on Federal procurement of ODS under Subpart D; labeling of products using ODS under Subpart E; and the Significant New Alternatives Policy Program under Subpart G. This paper will provide details of initiatives undertaken at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title VI Stratospheric Ozone Protection Program. The Stratospheric Ozone Protection Plans include internal DOE requirements for: (1) maintenance of ODS inventories; (2) ODS procurement practices; (3) servicing of refrigeration and air conditioning equipment; (4) required equipment modifications or replacement; (5) technician certification training; (6) labeling of products containing ODS; (7) substitution of chlorinated solvents; and (8) replacement of halon fire protection systems. The plans also require establishment of administrative control systems which assure that compliance is achieved and maintained as the regulations continue to develop and become effective.

  5. The 1990 Clean Air Act Amendments and the Great Lakes economy: Challenges and opportunities

    SciTech Connect (OSTI)

    Hanson, D.; Molburg, J.; Pandola, G.; Taxon, T.; Lurie, G.; Fisher, R.; Boyd, G. (Argonne National Lab., IL (United States)); Fox, J. (Solar Energy Research Inst., Golden, CO (United States))

    1991-01-01T23:59:59.000Z

    This paper deals with the market for SO{sub 2} emission allowances over time and electric utility compliance choices. For currently high emitting plants ( > 2.5 lb SO{sub 2}/MMBtu), the 1990 Clean Air Act Amendments (CAAA) provide for about twice as many SO{sub 2} allowances to be issued per year in Phase 1 (1995--1999) than in Phase 2. Also, considering the scrubber incentives in Phase 1, there is likely to be substantial emission banking for use in Phase 2. Allowance prices are expected to increase over time at a rate less than the return on alternative investments, so utilities which are risk neutral or other potential speculators in the allowance market are not expected to bank allowances. The allowances will be banked by risk averse utilities or the utilities may buy forward contracts for SO{sub 2} allowances. However, speculators may play an important role by selling forward contracts for SO{sub 2} allowances to the risk averse utilities. The Argonne Utility Simulation Model (ARGUS) is being revised to incorporate the provisions of the CAAA acid rain title and to simulate SO{sub 2} allowance prices, compliance choices, capacity expansion, system dispatch, fuel use, and emissions. The revised model (ARGUS2) incorporates unit-level performance data and can incorporate unit-specific compliance decisions when these are known. The model has been designed for convenience in analyzing alternatives scenarios (demand growth rates, technology mix, economic parameters, etc). 1 ref., 5 figs.

  6. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    SciTech Connect (OSTI)

    Roberson, P.W. [Duke Power Company, Huntersville, NC (United States)

    1997-08-01T23:59:59.000Z

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  7. Final Report on the Clean Energy/Air Quality Integration Initiative Pilot Project of the U.S. Department of Energy's Mid-Atlantic Regional Office

    SciTech Connect (OSTI)

    Jacobson, D.; O'Connor, P.; High, C.; Brown, J.

    2006-08-01T23:59:59.000Z

    The MARO pilot project represents the first effort in the country to seek to obtain credit under a Clean Air Act (CAA) State Implementation Plan (SIP) for nitrogen oxide (NOx) emission reductions.

  8. Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry

    SciTech Connect (OSTI)

    Child, C.J.

    1995-12-31T23:59:59.000Z

    The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

  9. Small Business Air Quality Compliance Assistance Act (Minnesota)

    Broader source: Energy.gov [DOE]

    A small business stationary source that is owned or operated by a person that employs 100 or fewer individuals, is not a major stationary source (as defined by the federal Clean Air Act), does not...

  10. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

  11. Winter Heating or Clean Air? Unintended Impacts of China's Huai River Policy

    E-Print Network [OSTI]

    Almond, Douglas

    Air quality in China is notoriously poor. Ambient concentrations of Total Suspended Particulates (TSP) 1981-1993 were more than double Chinas National Annual Mean Ambient Air Quality Standard of 200 mg/m-3 (Xiaohui Bi et ...

  12. What Does E85 Have to Do with Clean Air? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    care about E85? Simple: exhaust emissions from vehicles are the single largest source of air pollution in Minnesota, and our organization's mission is focused on providing...

  13. Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters Meera A. Sidheswaran a

    E-Print Network [OSTI]

    to reduce the energy required for heating and cooling of ventilation air by 35% to almost 50%. 2011 Keywords: Activated carbon fiberVolatile organic compoundIndoor pollutantEnergy efficient ventilation a b allow reduced rates and energy consumption for outdoor air ventilation. We evaluated the use of ACF

  14. Biodiesel Clears the Air in Underground Mines, Clean Cities, Fact Sheet, June 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01T23:59:59.000Z

    Mining companies are using biodiesel in their equipment to help clear the air of diesel particulate matter (DPM). This action improves air quality and protects miners' lungs. Though using biodiesel has some challenges in cold weather, tax incentives, and health benefits make it a viable option.

  15. {open_quotes}Methods for the determination of the Clean Air Act Title III metallic HAPS in coal

    SciTech Connect (OSTI)

    Snider, J. [Standard Laboratories, Inc., Evansville, IN (United States)

    1995-08-01T23:59:59.000Z

    The Clean Air Act was amended in 1990 and additional requirements were added to Title III {open_quotes}Air Toxics.{close_quotes} Title III identified one hundred eighty-nine hazardous air pollutants (HAPS) and Congress directed the EPA to study the effects of emissions of these HAPS on public health and the environment. EPA is to report to Congress in the fall of 1995 concerning their findings and make recommendations regarding fossil fuel fired combustion units. The outcome of the EPA recommendations will be of great interest to coal producers and users. Of the one hundred eighty-nine listed HAPS, eleven are trace metals found in coal. The producers and users may be required to analyze coal for these HAPS, to determine if selective mining and/or beneficiation can lower their occurrence, to determine their fate in the combustion process, etc. Indeed many coal companies have begun to study their reserves to aid the EPA investigation. Currently there are no EPA promulgated test methodologies for these elements in coal. Moreover, the American Society for Testing Materials (ASTM) does not provide standards for the analyses of all of the eleven HAPS either. In view of this lack of standardized analytical protocols the commercial laboratory is left with finding the best methods for meeting these analytical needs. This paper describes how Standard Laboratories, Inc. as a whole and particularly its Environmental Laboratory Division has met this need.

  16. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    SciTech Connect (OSTI)

    Busse, M.R.; Keohane, N.O. [University of California Berkeley, Berkeley, CA (United States)

    2007-01-01T23:59:59.000Z

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  17. 42 U.S.C. 7401 et seq. - Clean Air Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopmentOperating et seq. - Clean

  18. EPA's Section 309 Review: The Clean Air Act and NEPA | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpact StatementDepartmentFrontCallChairWHITEDepartment ofofThe Clean

  19. An evaluation of the United Kingdom Clean Coal Power Generation Group`s air-blown gasification cycle

    SciTech Connect (OSTI)

    Wheeldon, J.M.; Brown, R.A. [Electric Power Research Inst., Palo Alto, CA (United States); McKinsey, R.R. [Bechtel Group, Inc., San Francisco, CA (United States); Dawes, S.G. [British Coal Corp., Cheltenham (United Kingdom)

    1996-12-31T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is conducting an engineering and economic study of various pressurized fluidized-bed combustor (PFBC) designs. Studies have been completed on bubbling and circulating PFBC technologies and on an advanced PFBC power plant technology, in which the feed coal is partially gasified and the residual char burned in a PFBC. The United Kingdom Clean Coal Power Generation Group`s (CCPGG) air-blown gasification cycle (ABGC), known formerly as the British Coal Topping Cycle, also partially gasifies the feed coal, but uses a circulating atmospheric fluidized-bed combustor (AFBC) to burn the residual char. Although not a PFBC plant, the study was completed to effect a comparison with the advanced PFBC cycle.

  20. The effects of Title IV of the Clean Air Act amendments of 1990 on electric utilities: An update

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents data and analyses related to Phase I implementation of the Clean Air Act Amendment by electric utilities. It describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on sulfur dioxide emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. The first year of Phase I demonstrated that the market-based sulfur dioxide emissions control system could achieve significant reductions in emissions at lower than expected costs. Some utilities reduced aggregate emissions below legal requirements due to economic incentives; other utilities purchased additional allowances to avoid noncompliance. More than half of the utilities switched to or blended with lower sulfur coal, due to price reductions in the coal market which were partially due to the allowance trading program. 21 figs., 20 tabs.

  1. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  2. Kids 4 Clean Air | Pollution | Climate | Recycling What can you do

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    to help reduce air pollution and global warming. Use buses and trains instead of cars, as they can carry and less carbon dioxide. Energy is produced to generate electricity and to keep us warm. Most energy, Ozone Hole, Global Warming). In their plans they hope to reduce the amount of emissions of greenhouse

  3. Federal Finance Facilities Available for Energy Efficiency Upgrades...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy...

  4. Mobile Source Air Toxics (MSATs) from High Efficiency Clean Combustion: Catalytic Exhaust Treatment Effects

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL; Barone, Teresa L [ORNL; Prikhodko, Vitaly Y [ORNL

    2008-01-01T23:59:59.000Z

    High Efficiency Clean Combustion (HECC) strategies such as homogenous charge compression ignition (HCCI) and pre-mixed charge compression ignition (PCCI) offer much promise for the reduction of NOx and PM from diesel engines. While delivering low PM and low NOx, these combustion modes often produce much higher levels of CO and HC than conventional diesel combustion modes. In addition, partially oxygenated species such as formaldehyde (an MSAT) and other aldehydes increase with HECC modes. The higher levels of CO and HCs have the potential to compromise the performance of the catalytic aftertreatment, specifically at low load operating points. As HECC strategies become incorporated into vehicle calibrations, manufacturers need to avoid producing MSATs in higher quantities than found in conventional combustion modes. This paper describes research on two different HECC strategies, HCCI and PCCI. Engine-out data for several MSAT species (formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, xylenes, naphthalene, PAHs, diesel PM) as well as other HC species are presented and compared when possible with conventional operation. In addition, catalyst-out values were measured to assess the destruction of individual MSATs over the catalyst. At low engine loads, MSATs were higher and catalyst performance was poorer. Particle sizing results identify large differences between PM from conventional and HECC operation.

  5. Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications

    SciTech Connect (OSTI)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-10-31T23:59:59.000Z

    An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.

  6. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling

    SciTech Connect (OSTI)

    Petrie, T.W.; Childs, P.W.

    1998-06-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

  7. Human health benefits of ambient sulfate aerosol reductions under Title IV of the 1990 Clean Air Act amendments

    SciTech Connect (OSTI)

    Chestnut, L.G. [Hagler Bailly Consulting, Inc., Boulder, CO (United States); Watkins, A.M. [Environmental Protection Agency, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    The Acid Rain Provisions (Title IV) of the Clean Air Act Amendments of 1990 call for about a 10 million ton reduction in annual SO{sub 2} emissions in the United States by the year 2010. Although the provisions apply nationwide, most of the reduction will take place in the eastern half of the United States, where use of high sulfur coal for electricity generation is most common. One potentially large benefit of Title IV is the expected reduction in adverse human health effects associated with exposure to ambient sulfate aerosols, a secondary pollutant formed in the atmosphere when SO{sub 2} is present. Sulfate aerosols are a significant constituent of fine particulate (PM{sub 2.5}). This paper combines available epidemiologic evidence of health effects associated with sulfate aerosols and economic estimates of willingness to pay for reductions in risks or incidence of health effects with available estimates of the difference between expected ambient sulfate concentrations in the eastern United States and southeastern Canada with and without Title IV to estimate the expected health benefits of Title IV. The results suggest a mean annual benefit in the eastern United States of $10.6 billion (in 1994 dollars) in 1997 and $40.0 billion in 2010, with an additional $1 billion benefit each year in Ontario and Quebec provinces.

  8. CHAPTER 5: AIR QUALITY 1998 SITE ENVIRONMENTAL REPORT5-1

    E-Print Network [OSTI]

    facility operations and ensure compliance with the federal Clean Air Act, Brookhaven National Laboratory (BNL) performs continu- ous air emission sampling at several facilities. In addition to facility emis radiological and regulated, nonradiological air releases for 1998 are tabulated in this chapter. Ambient

  9. The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market

    E-Print Network [OSTI]

    Kahn, Shulamit; Knittel, Christopher R.

    2003-01-01T23:59:59.000Z

    administration would back clean-coal technology developmentwould pursue clean-coal technology rather than emissions

  10. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect (OSTI)

    Hibbard, C.S.

    1999-07-01T23:59:59.000Z

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  11. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990?

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States); McDermott, K.A. [Argonne National Lab., IL (United States)]|[Illinois State Univ., Normal, IL (United States)

    1991-12-31T23:59:59.000Z

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  12. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. (Argonne National Lab., IL (United States)); McDermott, K.A. (Argonne National Lab., IL (United States) Illinois State Univ., Normal, IL (United States))

    1991-01-01T23:59:59.000Z

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  13. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  14. Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base

    SciTech Connect (OSTI)

    Kaba, R.L.; Petrie, T.W.

    1999-03-16T23:59:59.000Z

    The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed cost and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.

  15. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  16. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  17. Federal Finance Facilities Available for Energy Efficiency Upgrades...

    Broader source: Energy.gov (indexed) [DOE]

    September 24, 2013 Clean Energy Finance: A Guide to Federal Financing Programs Available for Energy Efficiency Upgrades and Clean Energy Deployment 2 Agenda * Welcome - Molly Lunn,...

  18. Federal Task Force Sends Recommendations to President on Fostering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12,...

  19. Clean Energy-Environment State

    E-Print Network [OSTI]

    unknown authors

    As states pursue their clean energy policies and programs, they can obtain assistance from a variety of federal programs, as described below. Cross-Cutting Programs Cross-cutting federal programs support planning, program development, and initiatives for both energy efficiency and clean energy supply measures. The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) offer a variety of crosscutting programs, described below.

  20. Applying for and using CMAQ funds: Putting the pieces together. A Clean Cities guide

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This guide provides the basic concepts to aid in an alternative fuel vehicle market development program developing an application for Congestion Mitigation and Air Quality Improvement Program funding. The US Department of Energy`s Clean Cities Program is an aggressive, forward-thinking alternative fuel vehicle (AFV) market development program. The stakeholders in any Clean Cities Program subscribe to the common philosophy that, through participation in a team-oriented coalition, steady progress can be made toward achieving the critical mass necessary to propel the AFV market into the next century. An important component in the successful implementation of Clean Cities Program objectives is obtaining and directing funding to the capital-intensive AFV market development outside of the resources currently offered by the Department of Energy. Several state and local funding sources have been used over the past decade, including Petroleum Violation Escrow funds, vehicle registration fees, and state bond programs. However, federal funding is available and can be tapped to implement AFV market development programs across the nation. Historically, opportunities to use federal funding for AFV projects have been limited; however, the one remaining federal program that must be tapped into by Clean Cities Programs is the Congestion Mitigation and Air Quality (CMAQ) Improvement Program. CMAQ is a 6-year, $6 billion federal program formed by the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA).

  1. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2006-07-15T23:59:59.000Z

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  2. Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

    1998-12-31T23:59:59.000Z

    Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

  3. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31T23:59:59.000Z

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  4. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  5. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01T23:59:59.000Z

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  6. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect (OSTI)

    Santini, D.J.; Saricks, C.L.

    1998-08-04T23:59:59.000Z

    Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

  7. accelerator clean room: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the return air of the air... Feng, J.; Lian, Z.; Hou, Z. 2006-01-01 4 Southern California Clean Energy Technology Acceleration Program Educational Webinars Geosciences Websites...

  8. EIS-0146: Programmatic for Clean Coal Technology Demonstration Program

    Broader source: Energy.gov [DOE]

    This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

  9. Examination of utility Phase 1 compliance choices and state reactions to Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; Elliott, T.J.; Carlson, L.J.; South, D.W.

    1993-11-01T23:59:59.000Z

    Title IV (acid rain) of the Clean Air Act Amendments of 1990 is imposing new limitations on the emission of sulfur dioxide (SO{sub 2}) and nitrogen oxides (N{sub x}) from electric power plants. The act requires utilities to develop compliance plans to reduce these emissions, and indications are that these plans will dramatically alter traditional operating procedures. A key provision of the SO{sub 2} control program deaned in Title IV is the creation of a system of emission allowances, with utilities having the option of complying by adjusting system emissions and allowance holdings. A compilation of SO{sub 2} compliance activities by the 110 utility plants affected by Phase I is summarized in this report. These compliance plans are presented in a tabular form, correlated with age, capacity, and power pool data. A large number of the Phase I units (46%) have chosen to blend or switch to lower sulfur coals. This choice primarily is in response to (1) prices of low-sulfur coal and (2) the need to maintain SO{sub 2} control flexibility because of uncertain future environmental regulations (e.g., air toxics, carbon dioxide) and compliance prices. The report also discusses the responses of state legislatures and public utility commissions to the compliance requirements in Title IV. Most states have taken negligible action regarding the regulatory treatment of allowances and compliance activities. To protect mine employment, states producing high-sulfur coal have enacted regulations encouraging continued use of that coal, but for the most part, this response has had little effect on utility compliance choices.

  10. Emission projections for the U.S. Environmental Protection Agency Section 812 Second Prospective Clean Air Act cost/benefit analysis

    SciTech Connect (OSTI)

    James H. Wilson, Jr.; Maureen A. Mullen; Andrew D. Bollman (and others) [E.H. Pechan & Associates, Inc., Springfield, VA (United States)

    2008-05-15T23:59:59.000Z

    This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NOx) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO{sub 2}) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO{sub 2} emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020. 16 refs., 6 figs., 13 tabs.

  11. Synergies and conflicts in multimedia pollution control related to utility compliance with Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; Loeb, A.P.; Formento, J.W.; South, D.W.

    1994-01-01T23:59:59.000Z

    Most analyses of utility strategies for meeting Title IV requirements in the Clean Air Act Amendments of 1990 have focused on factors relating directly to utilities` sulfur dioxide control costs; however, there are a number of additional environmental requirements that utilities must meet at the same time they comply with the acid rain program. To illuminate the potential synergies and conflicts that these other regulatory mandates may have in connection with the acid rain program, it is necessary to conduct a thorough, simultaneous examination of the various programs. This report (1) reviews the environmental mandates that utilities must plant to meet in the next decade concurrently with those of the acid rain program, (2) evaluates the technologies that utilities may select to meet these requirements, (3) reviews the impacts of public utility regulation on the acid rain program, and (4) analyzes the interactions among the various programs for potential synergies and conflicts. Generally, this report finds that the lack of coordination among current and future regulatory programs may result in higher compliance costs than necessary. Failure to take advantage of cost-effective synergies and incremental compliance planning will increase control costs and reduce environmental benefits.

  12. EIA's role in the analysis of the Clean Air Act Amendments of 1990 and the development of the National Allowance Database

    SciTech Connect (OSTI)

    Beamon, J.A.; Linders, M.J. (Energy Information Administration, Washington, DC (United States))

    1993-01-01T23:59:59.000Z

    Throughout 1990 the Energy Information Administration (EIA) provided continuous data and analytic support to Congress during its deliberations on Title IV of the Clean Air Act Amendments of 1990 (CAA). Congress requested the Energy Information Administration (EIA) to review and analyze the sections that would affect electric utilities, specifically those relating to acid deposition (Title IV). By providing knowledgeable and impartial analysis, EIA clarified the likely effects of the various legislative proposals and helped Congress finalize the amendments. Even though the CAA is now law, EIA's efforts have not ended. During the analysis of the various proposals, EIA and EPA created a National Allowance Database (NAD). Now, under an agreement with the Environmental Protection Agency (EPA), a new version of the NAD is being developed to facilitate the implementation of the acid deposition provisions of the CAA. This article describes the analyses undertaken, points out where EIA's efforts led to improved understanding of the likely impacts of the CAA, and outlines EIA's continued efforts to assist EPA in the implementation of the amendments. 6 tabs.

  13. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButylCERTELENERGY

  14. air pollutants volume: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Clean Air and Environmental Quality Volume 40 No.2. May 2006 43 POTENTIAL IMPACTS OF AIR POLLUTION AEROSOLS ON PRECIPITATION IN AUSTRALIA Geosciences Websites Summary: Clean...

  15. Title III List of Lists: Consolidated list of chemicals subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act, as amended. Title III of the Superfund Amendments and Reauthorization Act of 1986, and Title III of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    This consolidated chemical list includes chemicals subject to reporting requirements under Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA), also known as the Emergency Planning and Community Right-to-Know Act (EPCRA) and chemicals listed under Section 112(r) of Title III of the Clean Air Act (CAA) Amendments of 1990. This consolidated list has been prepared to help firms handling chemicals determine whether they need to submit reports under sections 302, 304, or 314 or SARA Title III (EPCRA) and, for a specific chemical, what reports may need to be submitted. It also will also help firms determine whether they will be subject to accident prevention regulations under CAA section 112(r).

  16. Clean Cities

    Broader source: Energy.gov [DOE]

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  17. Cleaning a semipermeable membrane in a papermaking machine

    DOE Patents [OSTI]

    Beck, David A.

    2004-01-06T23:59:59.000Z

    A method of cleaning a semipermeable membrane, the semipermeable membrane being configured for carrying a fiber web, includes the steps of providing a cleaning fluid and applying the cleaning fluid on the semipermeable membrane. Further, an air press configured for carrying the semipermeable membrane therethrough is provided, and the air press has pressurized air therein. The semipermeable membrane is conveyed through the air press and is subjected to the pressurized air within the air press. The pressurized air thereby flushes the cleaning fluid through the semipermeable membrane.

  18. Environmental change: Federal courts and the EPA

    SciTech Connect (OSTI)

    O'Leary, R.

    1993-01-01T23:59:59.000Z

    This book presents the findings of a four-year study of the impact of federal court decisions on the policies and administration of the US Environmental Protection Agency (EPA) in all seven of its major statutory areas: clean air, clean water, hazardous waste cleanup, controlled pesticide use, resource conservation and recovery, safe drinking water, and control of toxic substances. The author use the Lexis and Westlaw legal data bases to generate a list of all cases in which the EPA was either a plaintiff or a defendant in each of the agency's seven major statutory areas. The author verified these data and at times supplemented them with EPA records and with environmental reporters published by the Bureau of National Affairs and the Environmental Law Institute. She derived settlement agreements from the EPA, the Department of Justice, and the courts.

  19. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results

    SciTech Connect (OSTI)

    Petrie, T.W.; Childs, P.W.

    1997-02-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

  20. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    none,

    2002-11-30T23:59:59.000Z

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  1. Massachusetts Clean Air Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The Act contains regulations to prevent the pollution and contamination of the atmosphere. The Act establishes a contiguous metropolitan pollution control district, comprised of towns in the...

  2. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 224 Altus Air Force Base Solar Technologies

    SciTech Connect (OSTI)

    Russo, Bryan J.

    2010-09-30T23:59:59.000Z

    The principal goal of this project was to evaluate altus Air Force Base for building integrated silicon or thin film module photovoltaic opportunities. This report documents PNNL's efforts and documents study conclusions.

  3. Appliance Standards and Rulemaking Federal Advisory Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open...

  4. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California: predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    E-Print Network [OSTI]

    Apte, Michael G.

    2013-01-01T23:59:59.000Z

    Air cleaning and local ventilation near strong sources bothair cleaning, and local ventilation may be needed at reducedremoval, air cleaning, and local ventilation may be the best

  5. Appendix A: Handling of Federal

    Gasoline and Diesel Fuel Update (EIA)

    air conditioners to meet the standard. Federal Register Notice of Final Rulemaking. c. Water heaters Sets standards for water heaters in 2015. Require new purchases of water...

  6. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universittsstr. 25, Bielefeld 33615 (Germany)

    2014-04-14T23:59:59.000Z

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  7. DOMESTIC SERVICES FEDERAL EXPRESS UPS US POSTAL SERVICE OTHER

    E-Print Network [OSTI]

    Holliday, Vance T.

    SERVICES FEDERAL EXPRESS UPS US POSTAL SERVICE OTHER ___ First Overnight ___ Air ___ Regular Post _____________________________________ ___ Express Saver ___ Ground FEDERAL EXPRESS UPS US POSTAL SERVICE OTHER ___ Int. First ___ Air ___ Air Mail. Economy _____________________________________ Fill in complete mailing address. FedEx and UPS

  8. Clean Cities Internships

    Broader source: Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  9. Adverse Health Effects of Air Pollution

    E-Print Network [OSTI]

    Haley, R. W.

    2011-01-01T23:59:59.000Z

    on clean air: ? 2007: Encouraging energy efficiencies, no more coal plants ? 2009: Retrofitting old coal plants and old diesel engines ? 2011: Disclosure of ?fracking? fluids injected below ground ? Alliance with Texas Business for Clean Air ? Financed...

  10. Federal Finance Facilities Available for Energy Efficiency Upgrades...

    Broader source: Energy.gov (indexed) [DOE]

    Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment resource guide lists the various federal financing programs for which energy efficiency and...

  11. Nanoscale Thin Film Electrolytes for Clean Energy Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrolytes to develop solid oxide fuel cells for clean energy production and to prevent air pollution by developing efficient, reliable oxygen sensors. In this study, we have...

  12. Case study: The development of a rule action to implement the federal emission guidelines for existing municipal solid waste landfills by the Ventura County Air Pollution Control District

    SciTech Connect (OSTI)

    Moralez, D.A. [Ventura Country Air Pollution Control District, CA (United States)

    1998-12-31T23:59:59.000Z

    This paper will highlight the key revisions to existing District Rule 74.17, Solid Waste Disposal Sites and the key requirements of new District Rule 74.17.1, Municipal Solid Waste Landfills to meet new federal requirements. The rule action is necessary to incorporate and implement the requirements of a New Source Performance Standard (NSPS) in Title 40 CFR, Part 60, Subpart Cc -- Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills. The Ventura County Air Pollution Control District (District) is one of only three other districts in California that had previously adopted a landfill gas control rule before the federal EG requirements were adopted by the US Environmental Protection Agency (EPA) in March of 1996. Also, because existing District Rule 74.17 requirements were adopted into the State Implementation Plan (SIP) by the EPA in 1994, several key requirements are carried forward into new District Rule 74.17.1 to prevent a relaxation of the requirements that existing MSW landfills already fulfill. The goal of the rule action was to develop revisions to existing District Rule 74.17 and develop requirements for new District Rule 74.17.1 that at a minimum would incorporate and implement the requirements specified by the EG without causing a relaxation of the existing rule requirements. Because existing District Rule 74.17 and the EG have different non-methane organic compound (NMOC) emission limits, staff gave considerable evaluation to this difference and concluded that, in general, the emission limits are equivalent. Also, based on all of the information reviewed, it is District staff`s opinion that the amount of NMOC emissions controlled from the requirements in new District Rule 74.17.1 are, in general, equivalent to the amount of NMOC emissions control from the requirements in existing Rule 74.17.

  13. BioGas Project Applications for Federal Agencies and Utilities

    Broader source: Energy.gov (indexed) [DOE]

    Alternate Energy Systems, Inc. Natural Gas Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership...

  14. Assessing the environmental impact of energy generating clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D.; McMillen, M. [Energetics, Inc., Columbia, MD (United States); Pell, J. [Department of Energy, Washington, DC (United States)

    1995-12-01T23:59:59.000Z

    The Clean Coal Technology (CCT) Program of the U.S. Department of Energy (DOE) is a partnership between government and industry designed for cleaner and more efficient use of coal, both for electric power generation and industrial applications. Approximately seven billion dollars have been committed to the CCT program (two and half-billion dollars from DOE and the rest by industry). The potential environmental effects of CCT projects are subject to review because a proposal by DOE to cost-share a CCT project constitutes a {open_quotes}major federal action{close_quotes} under section 102(2)(c) of NEPA. Consequently, by virtue of numerous NEPA impact evaluations of CCT projects, a great deal has been learned about environmental impact analyses for coal combustion sources. In the course of NEPA review of CCT projects, air quality is often a significant environmental issue. This paper focuses on CCT air quality issues from a NEPA perspective, including Prevention of Significant Deterioration, New Source Review, atmospheric visibility, global climate change, and acidic deposition. The analyses of the impacts of the proposed action, alternative actions, and cumulative effects will be examined. (It is a {open_quotes}given{close_quotes} that any action must comply with Federal and State requirements and the provision of the Clean Air Act and other regulatory statues.) NEPA is not a permitting process, but rather it is a process to provide decision makers with the information they require make an informed decision about the potential environmental consequences of undertaking an action. The NEPA review of environmental effects has been instrumental in effectuating beneficial changes in some past CCT projects-changes that have mitigated potentially adverse environmental impacts. Accordingly, NEPA has served as a constructive analytical tool, with similar implications for other actions related to the electric power generation industry that are subject to environmental review.

  15. Study on Energy Saving of the Interlayer Ventilation Walla Used in Clean Operation Rooms

    E-Print Network [OSTI]

    Feng, J.; Lian, Z.; Hou, Z.

    2006-01-01T23:59:59.000Z

    Recovery energy of the exhaust in air conditioning is very important to clean operating rooms. In disinfected operating rooms, we often use completely fresh air conditioning system in order to maintain cleanliness. All the return air of the air...

  16. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27T23:59:59.000Z

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  17. State perspectives on clean coal technology deployment

    SciTech Connect (OSTI)

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  18. Healy clean coal project

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO[sub 2], NO[sub x], and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  19. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Energy Savers [EERE]

    Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

  20. Air Pollution Control (Indiana)

    Broader source: Energy.gov [DOE]

    The mission of the Indiana Department of Environmental Management's Office of Air Quality implements federal and state regulations to protect human health and the environment while allowing the...

  1. 1. Report No. SWUTC/03/712413-1

    E-Print Network [OSTI]

    , Alternative Fuels, Clean Fuels, Federal Clean Air Act, Compressed Natural Gas (CNG), Conversion Process, Fuel

  2. CHEAP CLEAN-UP PROTOCOL To clean BigDye reactions

    E-Print Network [OSTI]

    Russell, Amy L.

    CHEAP CLEAN-UP PROTOCOL To clean BigDye reactions: 1. Combine and mix MgCl2/ethanol cocktail. 2. Air dry on a Kimwipe or pulse spin upside down. MgCl2/ethanol 1 µL 0.5M MgCl2 1000 µL 70% ethanol

  3. 2013 Federal Energy and Water Management Award Winner David Morin

    Broader source: Energy.gov [DOE]

    Poster features 2013 Federal Energy and Water Management Award winner David Morin of the U.S. Air Force's Laughlin Air Force Base in Texas.

  4. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    SciTech Connect (OSTI)

    Busche, S.

    2010-12-01T23:59:59.000Z

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  5. 2014-08-19 Issuance Appliance Standards and Rulemaking Federal...

    Energy Savers [EERE]

    Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open...

  6. Clean Cities Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

  7. CT Clean Energy Communities

    Broader source: Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  8. CT Clean Energy Communities

    Broader source: Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance and Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  9. The foul side of 'clean coal'

    SciTech Connect (OSTI)

    Johnson, J.

    2009-02-15T23:59:59.000Z

    As power plants face new air pollution control, ash piles and their environmental threats are poised to grow. Recent studies have shown that carcinogens and other contaminants in piles of waste ash from coal-fired power plants can leach into water supplies at concentrations exceeding drinking water standards. Last year an ash dam broke at the 55-year old power plant in Kingston, TN, destroying homes and rising doubts about clean coal. Despite the huge amounts of ash generated in the USA (131 mtons per year) no federal regulations control the fate of ash from coal-fired plants. 56% of this is not used in products such as concrete. The EPA has found proof of water contamination from many operating ash sites which are wet impoundments, ponds or reservoirs of some sort. Several member of Congress have show support for new ash-handling requirements and an inventory of waste sites. Meanwhile, the Kingston disaster may well drive utilities to consider dry handling. 3 photos.

  10. Hanford Site air operating permit application

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  11. Air Force Renewable Energy Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air Force Renewable Energy Programs Air Force Renewable Energy Programs Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility...

  12. Federal Environmental Permitting Handbook. Environmental Guidance

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The handbook consists of eight chapters addressing permitting and licensing requirements under the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986 (CERCLA/SARA), the Atomic Energy Act (AEA), the Clean Air Act (CAA), the Clean Water Act (CWA), the Federal Insectide, Fungicide, and Rodenticide Act (FIFRA), the Safe Drinking Water Act (SDWA), and the Toxic Substances Control Act (TSCA). Each chapter consists of: (1) an introduction to the statute and permitting requirements; (2) a diagram illustrating the relationship between permitting requirements under the statute being discussed and permitting requirements from other environmental statutes which may have to be addressed when applying for a particular permit (e.g., when applying for a RCRA permit, permits and permit applications under the CWA, CAA, SDWA, etc. would have to be listed in the RCRA permit application); and, (3) a compilation of the permitting requirements for the regulatory program resulting from the statute. In addition, the Handbook contains a permitting keyword index and a listing of hotline telephone numbers for each of the statutes.

  13. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioners Covered Product Category: Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential...

  14. air hepa filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    positioning of portable air cleaning devices in multizone residential buildings Energy Storage, Conversion and Utilization Websites Summary: including ion generators,...

  15. potential energy Impacts of clean energy

    E-Print Network [OSTI]

    unknown authors

    Amidst rising concerns about energy prices, the availability of reliable energy resources, air quality, and climate change, many states across the country are using clean energy policies to help meet their expanding electricity demand in a clean, low-cost, reliable manner. ??Nearly 40 states are using planning and incentive structures to promote clean energy within their own operations; ??More than 30 states have adopted a number of regulatory and market-based energy efficiency actions that increase investment in cost-effective energy efficiency by consumers, businesses, utilities, and public agencies; and ??More than 40 states have taken energy supply actions to support and encourage continued growth

  16. FAA Air Traffic Organization Safety Management

    Broader source: Energy.gov [DOE]

    Presenter: Mark DeNicuolo, Manager Performance and Analyses Air Traffic Organization Safety and Technical Training Federal Aviation Administration

  17. U.S. Environmental Protection Agency Clean Air Act notice of construction for spent nuclear fuel project - hot conditioning system annex, project W-484

    SciTech Connect (OSTI)

    Baker, S.K., Westinghouse Hanford

    1996-12-10T23:59:59.000Z

    This notice of construction (NOC) provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Hot Conditioning System (HCS) Annex. The construction of the HCS Annex is scheduled to conunence on or about December 1996, and will be completed when the process equipment begins operations. This document serves as a NOC pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the HCS Annex. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allows release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2, 1 00 MT (2,300 tons) of uranium, as part of 1133 N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCS Annex will be constructed as an annex to the Canister Storage Building (CSB) and will contain the hot conditioning equipment. The hot conditioning system (HCS) will release chemically-bound water and will condition (process of using a controlled amount of oxygen to destroy uranium hydride) the exposed uranium surfaces associated with the SNF through oxidation. The HCS Annex will house seven hot conditioning process stations, six operational and one auxiliary, which could be used as a welding area for final closure of the vessel containing the SNF. The auxiliary pit is being evaluated at this time for its usefulness to support other operations that may be needed to ensure proper conditioning of the SNF and proper storage of the vessel containing the SNF. Figures I and 2 contain map locations of the Hanford Site and the HCS Annex.

  18. Air Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 SLAC's air emissions are regulated through a federally mandated site-wide permit as well

  19. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31T23:59:59.000Z

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  20. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  1. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Officeand theClean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  2. Clean Energy Portfolio Goal

    Broader source: Energy.gov [DOE]

    In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied...

  3. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-04-01T23:59:59.000Z

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  4. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  5. Combustion turbine emissions issues for air permit applications

    SciTech Connect (OSTI)

    Macak, J.J. III; Schott, G.A. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Projects Division

    1994-12-31T23:59:59.000Z

    Power generation from combustion turbines continues to be a significant new energy source. These power projects may be either simple-cycle peaking units or combined-cycle applications in which exhaust heat is recovered to generate steam for export (cogeneration facility) and power generation (steam turbine generator). While combustion turbines represent one of the cleanest forms of power generation, regulatory agencies have identified them as significant sources of air pollution. Both new sources and existing combustion turbine installations are receiving increasing attention at federal, state, and local levels. Before construction can begin on a new combustion turbine facility, an air permit authorizing construction must first be obtained. The air permitting process is generally the ``critical path`` permit, often taking in excess of two years to receive the final approval. The Clean Air Act Amendments of 1990 also impact existing units due to the non-attainment provisions of the Act and the Title 5 nationwide operating permit program. Careful consideration of combustion turbine operational characteristics and air pollutant emissions will expedite air permitting. This paper addresses specific issues related to combustion turbine emissions and the air permitting process. Guidelines for addressing many considerations are provided in order to secure an air permit that allows maximum flexibility in plant operation.

  6. Sensors & Measurement | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Electronics Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors &...

  7. LEARN MORE @ CENTRALINA CLEAN FUELS COALITION

    E-Print Network [OSTI]

    LEARN MORE @ ETHANOL E85 CENTRALINA CLEAN FUELS COALITION www.4cleanfuels.com GROWTH ENERGY www fuel made by fermenting plant-based sugars. Corn is the primary feedstock for ethanol in the U blend of ethanol and gasoline. A fuel sensor regulates the air/fuel ratio to optimize performance

  8. Air-Cooled Electric Chillers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Energy efficiency purchasing specifications for federal procurements of air-cooled electric chillers.

  9. Commercial Central Air Conditioners, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Energy efficiency purchasing specifications for federal procurements of commercial central air conditioners.

  10. Clean Air Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartmentDepartment ofCity and 25Clay Sell Sworn

  11. Keystone Clean Air | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas FarmssourceGEFCommunity

  12. Clean Air Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity ofInformationClaridgeClassicClay Jump

  13. Clean Air Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy CoopValleyPower Jump

  14. A first French assessment of population exposure to tetrachloroethylene from small dry cleaning facilities

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    such as the dry cleaning machine technology (fitted or unfitted with a carbon adsorber) and the ventilation (air that only a few percent of these machines are equipped with a carbon adsorber, CA, to capture PCE vapours buildings housing a dry cleaning facility. These studies involved dry cleaning machines fitted with a Carbon

  15. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01T23:59:59.000Z

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  16. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2006-07-01T23:59:59.000Z

    Clean Cities fact sheet describe this DOE program, which deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  17. Cleaning on a Shoestring.

    E-Print Network [OSTI]

    Anonymous,

    1980-01-01T23:59:59.000Z

    clean well. Chromium should be rinsed well and dried with a soft cloth. For stubborn spots, rub with a paste of whiting and household ammonia. Rinse and polish with a soft cloth. ~ J 7 References "Low-Cost Cleaning Products Recipes for Home Use...DOC , TA24S.7 873 0.1293 CLEANING ON A SHOESTRING Extension Home Management Specialists The Texas A&M University System Cleaning on a shoestring can be approached two ways - from the standpoint of time or money. It is possible to create your...

  18. Clean Cities Overview

    Broader source: Energy.gov (indexed) [DOE]

    were funded to increase availability and awareness of alternative fuels and advanced technology vehicles. Clean Cities 11 * Tucson Coalition - moves Christmas tree across US...

  19. Federal PV guidebook

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFORTechnicalFINAL REPORT Plant

  20. What is Clean Cities? October 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  1. Clean Cities: Chicago Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast CleanChicago Area Clean

  2. Clean Cities: Clean Cities-Georgia coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast CleanChicago AreaClean

  3. Clean Cities: Clean Fuels Ohio coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast CleanChicagoCleanFuels

  4. Clean Cities: Iowa Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonolulu CleanIowa Clean

  5. Clean Cities Coordinator Awards (Fact sheet)

    SciTech Connect (OSTI)

    Not Available

    2004-06-01T23:59:59.000Z

    A Clean Cities publication regarding the Clean Cities Coordinator Award winners announced at the 2004 Clean Cities Conference.

  6. Dealing with the Clean Water Act pending reauthorization

    SciTech Connect (OSTI)

    Mathews, S.

    1994-09-01T23:59:59.000Z

    This report addresses probable changes in the Clean Water Act that may affect federal facilities such as those under the DOE. These changes will be included in a reauthorization of the act. The author draws upon the 1992 National Water Quality Inventory Report to Congress as a source to identify changes in the focus of the reauthorized act on non-point source issues, watershed management, new enforcement mechanisms and an assortment of smaller issues that will have indirect effects on federal facilities.

  7. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Broader source: Energy.gov [DOE]

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  8. ISSUANCE 2015-06-30: Appliance Standards and Rulemaking Federal...

    Energy Savers [EERE]

    Standards and Rulemaking Federal Advisory Committee: Notice of Intent to Establish the Central Air Conditioners and Heat Pumps Working Group ISSUANCE 2015-06-30: Appliance...

  9. Final Flue Gas Cleaning (FFGC)

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    .F., Blythe, OG.M., Carey, T.R., Radian International & Rhudy, R.G., EPRI & Brown, T.D., Federal Energy Technology Center-DOE, Enhanced Control of Mercury by Wet FGD Systems, 1999 f Gramite. Evan J. and Pennline, Henry W., Photochemical Removal of Mercury... from the Texas Commission on Environmental Quality (TCEQ). The pilot plant (FFGC-PP) will be used to test and evaluate removal of air pollution constituents from the flue gas of a power plant to determine the optimum emission reduction system...

  10. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold

    2011-04-11T23:59:59.000Z

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  11. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Provides basic concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds. Author: U. S. Department of Energy Chapter 5: Basic Concepts for Clean Energy Unsecured...

  12. Sandia National Laboratories: Clean Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

  13. Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General PublicConsumer Industrial InstallerContractor Institutional Investor-Owned...

  14. Sandia National Laboratories: Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy ECIS and i-GATE: Innovation Hub Connects Clean Tech Small Business with Labs and State On February 20, 2013, in Partnership Getting connected with government...

  15. Precision Cleaning Titanium Components

    SciTech Connect (OSTI)

    Hand, T.E.; Bohnert, G.W.

    2000-02-02T23:59:59.000Z

    Clean bond surfaces are critical to the operation of diffusion bonded titanium engine components. These components can be contaminated with machining coolant, shop dirt, and fingerprints during normal processing and handling. These contaminants must be removed to achieve acceptable bond quality. As environmental concerns become more important in manufacturing, elimination of the use of hazardous materials is desired. For this reason, another process (not using nitric-hydrofluoric acid solution) to clean titanium parts before bonding was sought. Initial cleaning trials were conducted at Honeywell to screen potential cleaning techniques and chemistries. During the initial cleaning process screening phase, Pratt and Whitney provided Honeywell with machined 3 inch x 3 inch x 1 inch titanium test blocks. These test blocks were machined with a water-based machining coolant and exposed to a normal shop environment and handling. (Honeywell sectioned one of these blocks into smaller samples to be used for additional cleanliness verification analyses.) The sample test blocks were ultrasonically cleaned in alkaline solutions and AUGER analysis was used by Honeywell FM and T to validate their cleanliness. This information enabled selection of final cleaning techniques and solutions to be used for the bonding trials. To validate Honeywell's AUGER data and to verify the cleaning processes in actual situations, additional sample blocks were cleaned (using the chosen processes) and then bonded. The bond quality of the test blocks was analyzed according to Pratt and Whitney's requirements. The Charpy impact testing was performed according to ASTM procedure {number_sign}E-23. Bond quality was determined by examining metallographic samples of the bonded test blocks for porosity along the bondline.

  16. OpenEI Community - CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHome All0 en How

  17. Heat pumps in industrial cleaning applications

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    kW Clean water 23 kW Soapy water 17 kW No heaters 8 kW Drying air 6 kW #12;n App. 150 washing plants Heaters are on/off-regulated actual power consumption ? n Installed power in specific drum at project participant n Estimated 3.000 plants in Denmark n Water temperature typical 55 ­ 65° C n Annual

  18. Clean Energy Works (Oregon)

    Broader source: Energy.gov [DOE]

    Clean Energy Works began in 2009 as a pilot program run by the City of Portland. In 2010, the US department of Energy awarded $20 million to create a statewide nonprofit to expand the program...

  19. Clean Energy Procurement

    Broader source: Energy.gov [DOE]

    Subsequently, in 2009, the state embarked upon an initiative with the University System of Maryland, termed "Clean Energy Horizons," to contract for renewable energy through long-term power...

  20. Mississippi Clean Energy Initiative

    Broader source: Energy.gov [DOE]

    In April 2010, the Mississippi Legislature enacted [http://billstatus.ls.state.ms.us/documents/2010/pdf/HB/1700-1799/HB1701S... HB 1701], establishing the Mississippi Clean Energy Initiative. This...

  1. Clean Coal Research

    Broader source: Energy.gov [DOE]

    DOE's clean coal R&D isfocused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  2. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  3. Clean Transportation Internship Description

    E-Print Network [OSTI]

    Clean Transportation Internship Description The NC Solar Center at North Carolina State University to other ongoing projects by focusing on time-sensitive tasks. While the main thrust of this internship

  4. Gasification: redefining clean energy

    SciTech Connect (OSTI)

    NONE

    2008-05-15T23:59:59.000Z

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  5. #CleanTechNow

    ScienceCinema (OSTI)

    Moniz, Ernest

    2014-01-10T23:59:59.000Z

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  6. #CleanTechNow

    SciTech Connect (OSTI)

    Moniz, Ernest

    2013-09-17T23:59:59.000Z

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  7. Cleaning without chlorinated solvents

    SciTech Connect (OSTI)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31T23:59:59.000Z

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  8. What is Clean Cities? (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  9. Clean Energy Jobs Plan Introduction

    E-Print Network [OSTI]

    times as many jobs per dollar as gas, oil or coal. And dollars invested in clean energy tend to stay. Investment in clean technology is also growing. Clean tech investment in California reached $3.3 billionClean Energy Jobs Plan Introduction When I was governor, California was the world leader

  10. CLEAN ENERGY WORKFORCE TRAINING PROGRAM

    E-Print Network [OSTI]

    #12;CLEAN ENERGY WORKFORCE TRAINING PROGRAM $90 million Multi-agency initiative to: Identify clean energy workforce needs Build regional capacity in clean energy sector development Deliver industry relevant training for displaced workers and new workforce entrants #12;CLEAN ENERGY WORKFORCE TRAINING

  11. Ellsworth Air Force Base Advanced Metering Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Ellsworth Air Force Base Advanced Metering project and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  12. Memorandum of Agreement Between the Federal Aviation Administration,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Memorandum of Agreement Between the Federal Aviation Administration, the U.S. Air Force, the U struck a flock of Canada geese during takeoff, killing all 24 people aboard. The Federal Aviation Administration (FAA) and the United States Air Force (USAF) databases contain information on more than 54

  13. Economy: Clean Energy and the Assessing the Many Benefits of State and Local Clean Energy Initiatives Multiple Benefits of Clean Energy Initiatives

    E-Print Network [OSTI]

    unknown authors

    Reducing energy demand and increasing renewable energy generation from state and local clean energy initiativessuch as goals, standards, codes, funds, and programsgenerate many benefits including: Security, diversity, and overall reliability improvements for the electric system. Improved environmental quality, human health, and quality of life. Increased economic prosperity. This brochure is part of a series and focuses on economic benefits. What are the economic benefits of clean energy? Clean energy initiatives, including those that advance energy efficiency, renewable energy and clean distributed generation can: ?Lower ? energy costs. ?Increase ? personal disposable income. ?Increase ? revenue for businesses. ?Increase ? income, employment, and output. ?Reduce ? fuel costs and new electric power plant construction costs. ?Reduce ? health care costs as a result of better air quality and public health. How do clean energy initiatives benefit the economy? ?Direct ? Economic Benefits: Companies that provide the equipment, technologies, and services needed to implement an initiative benefit from increased demand, which increases their revenue and their ability to hire more people. In the case of energy efficiency, consumers and companies both benefit by spending less money on electricity. ?Indirect ? Economic Benefits: Suppliers to clean energy equipment and service providers benefit as demand for their inputs and revenues increase. With higher demand, these suppliers may also hire more workers. ?Induced ? Economic Benefits: Income generated from the direct and indirect effects is spent in the regional economy, such as when employees use their paychecks to buy groceries, eat out, and entertain themselves, all of which support jobs in those sectors. Whats Inside: Why assess the economic benefits of clean energy? How can policy makers estimate the macroeconomic benefits of clean energy? A Benefits Flash with quantitative examples of how clean energy initiatives result in economic, air quality, and public health benefits. Where to go for more information. Direct economic benefits of a wind initiative could increase: Sales of wind turbines. Revenue of local turbine manufacturers.

  14. Federal Aviation Administration: High Altitude Pollution Program, third biennial report prepared in accordance with the Stratospheric Ozone Protection Provision, section 153(g), of the Clean Air Act amendments of 1977. Report for Jan 80-Dec 81

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    The impact of high altitude aviation on stratospheric ozone is now believed to be a decrease in total columnar ozone for flights above 15 km (about 49,000 feet). The model calculations also show that the current subsonic fleet (and the fleet foreseeable to 1990) will result in a net ozone increase of about 1 percent, considering normal flight altitudes. Whatever the net change in total column ozone, increases or depletions will occur at different altitudes. These are expected to have subtle influences on atmospheric circulation, the effects of which are only beginning to be understood. As a formal program, the High Altitude Pollution Program will be terminated in 1982 with the issuance of a final report. The FAA will continue to maintain and update, as appropriate, its capability to make quantitative assessments of the environmental effects of cruise-altitude emissions, and will monitor and assist, as possible, other research programs, both here and abroad.

  15. air act issues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and offered advice Minnesota, University of 44 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  16. Clean Energy Research Areas | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean Energy ManufacturingHorse

  17. Clean Cities: Central Coast Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast Clean Cities Coalition

  18. Clean Cities: Central Florida Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast Clean Cities

  19. Clean Cities: Centralina Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast Clean

  20. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro Clean Cities Coalition The

  1. Clean Cities: Detroit Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro Clean Cities Coalition

  2. Clean Cities: East Tennessee Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro Clean Cities

  3. Clean Cities: Empire Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro Clean

  4. Clean Cities: Granite State Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGenesee Region

  5. Clean Cities: Greater Indiana Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGenesee RegionIndiana

  6. Clean Cities: Honolulu Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonolulu Clean Cities

  7. Clean Cities: Kentucky Clean Cities Partnership coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonolulu CleanIowa

  8. Clean Cities: Long Beach Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonolulu CleanIowaLandLong

  9. Clean Cities: Los Angeles Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonolulu CleanIowaLandLongLos

  10. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonoluluMaine Clean

  11. Clean Cities: Northern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern Colorado Clean Cities

  12. Clean Cities: Norwich Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern Colorado Clean

  13. Clean Cities: Ocean State Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern Colorado CleanOcean State

  14. Clean Cities: Palmetto State Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern Colorado CleanOcean

  15. Clean Cities: Rogue Valley Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern ColoradoRogue Valley Clean

  16. Clean Cities: South Shore Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouth Shore Clean Cities

  17. Clean Cities: Southeast Florida Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouth Shore Clean

  18. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouth ShoreColorado Clean

  19. Clean Cities: Tampa Bay Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouthTampa Bay Clean Cities

  20. Clean Cities: Treasure Valley Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouthTampa Bay Clean

  1. Clean Cities: Tucson Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouthTampa BayTucson Clean

  2. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target the recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.

  3. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31T23:59:59.000Z

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  4. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01T23:59:59.000Z

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  5. UNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION

    E-Print Network [OSTI]

    program in order to reduce Federal employee's contribution to traffic congestion and air pollutionUNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION PUBLIC TRANSPORTATION BENEFIT PROGRAM): ____________ City (Residence): __________________________State: _______________ Zip Code: ________________ Air Force

  6. Clean coal today

    SciTech Connect (OSTI)

    none,

    1990-01-01T23:59:59.000Z

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  7. Federal Register

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 Federal Energy1999; Exceeds Goal |of65541 Vol. 79,

  8. Federal Register

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6Awards »Facilities |Federal29853 Vol.

  9. Federal Register

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12 Press989 Federal Register

  10. Federal Register

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12 Press989 Federal

  11. Federal Register

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12 Press989 Federal49

  12. Federal Register

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12 Press989 Federal4954

  13. Federated search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office of SciencedefaultFederated

  14. Midwest Clean Energy Application Center

    SciTech Connect (OSTI)

    Cuttica, John; Haefke, Cliff

    2013-12-31T23:59:59.000Z

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: ? Market Opportunity Analyses Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. ? Education and Outreach Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. ? Technical Assistance Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  15. Clean coal technology: Export finance programs

    SciTech Connect (OSTI)

    Not Available

    1993-09-30T23:59:59.000Z

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  16. What is Clean Cities? Clean Cities, March 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  17. What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  18. Clean Cities National Partner Awards: Clean Cities Fact Sheet

    SciTech Connect (OSTI)

    LaRocque, T.

    2001-04-30T23:59:59.000Z

    This fact sheet briefly describes each of the 10 winners of the Clean Cities National Partner Awards.

  19. Federal Tax Incentives Encourage Alternative Fuel Use; Clean...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on the Incentives and Laws section of the Alternative Fuels and Vehicles Data Center Web site at www.eere.energy.govafdcprogsfedsummaryphpafdcUS0. Please refer to this...

  20. Plains and Eastern Clean Line Transmission Line: Federal Register...

    Energy Savers [EERE]

    3,500 megawatts primarily from renewable energy generation facilities in the Oklahoma and Texas Panhandle regions to load-serving entities in the Mid-South and Southeast...

  1. Federal Task Force Sends Recommendations to President on Fostering Clean

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDTheJune 6, 2012. ARRA870A Recovery ActCoal

  2. Guide to Federal Financing for Energy Efficiency and Clean Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| Department ofFormsDepartmentforDeployment |

  3. Guide to Federal Financing for Energy Efficiency and Clean Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthe PublicDocument providesDeployment |

  4. Federal Task Force Sends Recommendations to President on Fostering Clean

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6AwardsScorecard for FY2011Coal

  5. Plains and Eastern Clean Line Transmission Line: Federal Register Notice,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to aEnergy LivingSystemPilotVolume 80,

  6. Plains and Eastern Clean Line Transmission Line: Federal Register Notice,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of Energy Photovoltaics atPROJECTDepartment||Volume

  7. Clean Cities & Transportation Tools

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation on July 28, 2010 by Sandra Loi, project leader at the DOE National Renewable Energy Laboratory (NREL), about the DOE Clean Cities program to promote the use of alternative fuels and reduce petroleum consumption.

  8. Air Pollution 7.1 INTRODUCTION

    E-Print Network [OSTI]

    Kammen, Daniel M.

    CHAPTER 7 Air Pollution 7.1 INTRODUCTION 7.2 OVERVIEW OF EMISSIONS 7.3 THE CLEAN AIR ACT 7.4 THE POLLUTANT STANDARDS INDEX 7.5 CRITERIA POLLUTANTS 7.6 TOXIC AIR POLLUTANTS 7.7 AIR POLLUTION IN THE WORLD'S MEGACITIES 7.8 MOTOR VEHICLE EMISSIONS 7.9 STATIONARY SOURCES 7.10 AIR POLLUTION AND METEOROLOGY 7

  9. Clean Cities National Partner Awards

    SciTech Connect (OSTI)

    Not Available

    2002-05-01T23:59:59.000Z

    U. S. DOE Clean Cities Program has awarded its National Partner awards for 2002, and the awards will be presented at the Clean Cities Conference in May 2002. This fact sheets describe the winners and their contributions.

  10. Sustainable development with clean coal

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  11. SIMWyPES Cleaning Cloths

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-01-23T23:59:59.000Z

    SIMWyPES cleaning cloths remove hazardous particulates from dry surfaces so well that the contaminants are undetectable....

  12. Clean Cities Education & Outreach Activities

    Broader source: Energy.gov (indexed) [DOE]

    Education Project (CTEP) Principal Investigator: Anne Tazewell North Carolina Solar Center North Carolina State University Clean Cities Education & Outreach Activities...

  13. NREL's Clean Energy Policy Analyses Project: 2009 U.S. State Clean Energy Data Book, October 2010

    SciTech Connect (OSTI)

    Gelman, R.; Hummon, M.; McLaren, J.; Doris, E.

    2010-10-01T23:59:59.000Z

    This data book provides a summary of the status of state-level energy efficiency and renewable energy (taken together as clean energy) developments and supporting policy implementation. It is intended as a reference book for those interested in the progress of the states and regions toward a clean energy economy. Although some national-scale data are given in the initial section, the data are mostly aggregated by states and region, and no data on federal- or utility-level policies are presented here.

  14. Clean Energy and the Electric System: Assessing the Many Benefits of State and Local Clean Energy Initiatives Multiple Benefits of Clean Energy Initiatives

    E-Print Network [OSTI]

    unknown authors

    Reducing energy demand and/ or increasing renewable energy generation from state and local clean energy initiativessuch as goals, standards, codes, funds and programscan generate many benefits including: Security, diversity, and overall reliability improvements for the electric system. Improved environmental quality, human health, and quality of life. Positive economic gains through energy costs saved, avoided medical costs, higher disposable incomes, increased labor productivity, and more jobs. This brochure is part of a series and focuses on electric system benefits. Whats Inside: Why assess electric system benefits? How can state and local governments estimate potential electric system benefits? Quantitative examples of how clean energy initiatives result in direct energy benefits. How to find more information. What are clean energy initiatives? Clean energy initiatives are policies and programs that state and local governments are using to save energy, improve air quality, reduce carbon emissions, support electric system reliability and security, and improve economic development. Examples include: Energy efficiency policies that reduce demand for energy, such as: Building codes for energy efficiency in both commercial and residential buildings; energy efficiency portfolio standards; public benefit funds for energy efficiency; and appliance efficiency standards. Energy supply policies that increase the use of renewables and clean sources, such as: Clean distributed generation and net metering interconnection standards; output-based environmental regulations; public benefit funds for clean energy supply; combined heat and power; and renewable portfolio standards. Clean energy initiatives reduce demand for fossil-fuel powered electricity and increase electricity generated with clean, renewable energy, contributing to a less polluting, more reliable and affordable electric system. Specifically, energy efficiency and/or renewable energy are resources that can: Avoid costs typically associated with conventional generation, including: Fuel, variable operation, and maintenance costs; emissions allowances; costs of emission Greenhouse gas (GHG) related policies that measure or limit emissions, such as: GHG registries, mandatory GHG reporting; CO offset requirements;

  15. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  16. Clean Slate 2 Revegetation and Monitoring Plan

    SciTech Connect (OSTI)

    David Anderson

    1998-02-01T23:59:59.000Z

    This document is a reclamation plan for short-term and long-term stabilization of land disturbed by activities associated with interim clean-up of radionuclide-contaminated surface soil at Clean Slate 2 located northwest of the Nevada Test Site on the Nellis Air Force Range. Surface soils at Clean Slate 2 were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Excavation of contaminated soils at Clean Slate 2 will follow procedures similar to those used during the cleanup of the Double Tracks and Clean Slate 1 sites. A maximum of approximately 33 cm (12 in) of the surface soils will be excavated and removed from the site. Near ground zero, where contamination levels are highest, approximately 2 m (7 ft) of soil may be removed. The maximum area to be excavated is estimated to be 18.4 hectares (45.4) acres. In addition to the disturbance associated with soil excavation, approximately 2.0 hectares (5.0) acres will be disturbed by the construction of staging areas and placement of support facilities. Short term stabilization consists of an application of a chemical soil stabilizer and long-term stabilizations involves the establishment of a permanent vegetative cover using selective native plant species, site preparation techniques, increasing organic matter and water holding capacity, irrigation to ensure seed germination and plant establishment. The cleanup site will be monitored to ensure success of revegetation and resuspension of soil particles is within established limits.

  17. LHC CLEANING EFFICIENCYWITH IMPERFECTIONS

    E-Print Network [OSTI]

    Bracco, C; Redaelli, S; Weiler, T

    2009-01-01T23:59:59.000Z

    The performance reach of the LHC depends on the magnitude of beam losses and the achievable cleaning efficiency of its collimation system. The ideal performance reach for the nominal Phase 1 collimation system is reviewed. However, unavoidable imperfections affect any accelerator and can further deteriorate the collimation performance. Multiple static machine and collimator imperfections were included in the LHC tracking simulations. Error models for collimator jaw flatness, collimator setup accuracy, the LHC orbit and the LHC aperture were set up, based to the maximum extent possible on measurements and results of experimental beam tests. It is shown that combined realistic imperfections can reduce the LHC cleaning efficiency by about a factor 11 on average.

  18. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31T23:59:59.000Z

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  19. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06T23:59:59.000Z

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  20. Biosciences Division Media Mentions | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Division Publications Newsletters Organizational Charts Research Highlights Media Mentions Clean Energy Home | Science & Discovery | Clean Energy | Supporting...

  1. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting...

  2. Clean Cities National Partner Awards (Fact sheet)

    SciTech Connect (OSTI)

    Not Available

    2004-06-01T23:59:59.000Z

    A Clean Cities publication regarding the National Partner Award winners announced at the 2004 Clean Cities Conference.

  3. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  4. Laser surface cleaning

    SciTech Connect (OSTI)

    Crivella, E.C.; Freiwald, J.; Freiwald, D.A.

    1996-12-31T23:59:59.000Z

    Decontamination of contaminated metal and material recycle, two of 31 priority needs identified by the D&D focus group, are the most promising applications for laser ablation within the DOE complex. F2 Associates has developed a robotic laser ablation system that is capable of high contamination rates, waste volume reduction, surface pore cleaning, and real-time characterization of materials. It is being demonstrated that this system will be the most cost-effective technology for metal decontamination and material recycle.

  5. Presented to: Federal Aviation

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Aviation Administration 2 Briefing Agenda Federal Aviation Administration (FAA) Overview Chicago Federal Aviation Administration 5 FAA relationship with Airport Sponsors Regulatory airport Federal Aviation Administration 8 FAA involvement with the O'Hare Modernization Program Special Projects

  6. Presented to: Federal Aviation

    E-Print Network [OSTI]

    Bustamante, Fabin E.

    Administration 2 Briefing Agenda Federal Aviation Administration (FAA) Overview Chicago/Chicago Department of Aviation (CDA) and the O'Hare Modernization Program (OMP) Federal Aviation Administration (FAA) actions Federal Aviation Administration 5 FAA relationship with Airport Sponsors Regulatory airport

  7. Clean steels for fusion

    SciTech Connect (OSTI)

    Gelles, D.S.

    1995-03-01T23:59:59.000Z

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  8. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15T23:59:59.000Z

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  9. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609.Lightweighting

  10. U.S. DOE Intermountain Clean Energy Application Center

    SciTech Connect (OSTI)

    Case, Patti

    2013-09-30T23:59:59.000Z

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  11. Regulatory Reform to Promote Clean Energy: The Potential of Output-Based Emissions Standards

    SciTech Connect (OSTI)

    Cox, Matthew [Georgia Institute of Technology] [Georgia Institute of Technology; Brown, Dr. Marilyn Ann [Georgia Institute of Technology] [Georgia Institute of Technology; Jackson, Roderick K [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Barriers to industrial energy-efficient technologies hinder their use. A number of EPA analyses and industrial experts have found that the utilization of input-based emissions standards (measured in parts-per-million or pounds/MMBtu) in the Clean Air Act creates a regulatory barrier to the installation and deployment of technologies that emit fewer criteria pollutants and use energy more efficiently. Changing emission management strategies to an output-based emissions standard (measured in tons of pollutant emitted) is a way to ameliorate some of these barriers. Combined heat and power (CHP) is one of the key technologies that would see increased industrial application if the emissions standards were modified. Many states have made this change since the EPA first approved it in 2000, although direction from the Federal government could speed implementation modifications. To analyze the national impact of accelerated state adoption of output-based standards on CHP technologies, this paper uses detailed National Energy Modeling System (NEMS) and spreadsheet analysis illustrating two phased-in adoption scenarios for output-based emissions standards in the industrial sector. Benefit/cost metrics are calculated from a private and public perspective, and also a social perspective that considers the criteria and carbon air pollution emissions. These scenarios are compared to the reference case of AEO 2010 and are quite favorable, with a social benefit-cost ratio of 16.0 for a five-year phase-in scenario. In addition, the appropriateness of the Federal role, applicability, technology readiness, and administrative feasibility are discussed.

  12. Federal Energy Resources Modernization Coordinating Committee

    SciTech Connect (OSTI)

    Parker, G.B.

    1993-04-01T23:59:59.000Z

    This report summarizes the broad range of activities that are focused on meeting the President's Executive Order on Federal Energy Management promulgated to meet energy savings goals and encourage more efficient management of all federal energy resources. These activities are reported semiannually under the auspices of the Federal Energy Resource Modernization (FERM) Coordinating Committee, and as such include activities undertaken from April 1, 1992, through September 30, 1992. The activities reported are classified into four major categories: (1) technology-base support, which includes development of processes, software, metering and monitoring equipment and strategies, and other tools for federal energy managers to better understand and characterize their energy resources; (2) federal energy systems testing and monitoring; (3) federal energy systems revitalization projects at federal installations in cooperation with the utilities serving the sites; and (4) energy supply, distribution and end-use conservation assessment for federal agencies and/or facilities. Lighting systems and air conditioning projects at federal facilities, especially military bases are updated.

  13. Federal Incentives for Renewable Energy

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFORTechnicalFINAL REPORT Plant FINALi

  14. State Clean Energy Policies Analysis (SCEPA): State Tax Incentives

    SciTech Connect (OSTI)

    Lantz, E.; Doris, E.

    2009-10-01T23:59:59.000Z

    As a policy tool, state tax incentives can be structured to help states meet clean energy goals. Policymakers often use state tax incentives in concert with state and federal policies to support renewable energy deployment or reduce market barriers. This analysis used case studies of four states to assess the contributions of state tax incentives to the development of renewable energy markets. State tax incentives that are appropriately paired with complementary state and federal policies generally provide viable mechanisms to support renewable energy deployment. However, challenges to successful implementation of state tax incentives include serving project owners with limited state tax liability, assessing appropriate incentive levels, and differentiating levels of incentives for technologies with different costs. Additionally, state tax incentives may result in moderately higher federal tax burdens. These challenges notwithstanding, state tax incentives that consider certain policy design characteristics can support renewable energy markets and state clean energy goals.The scale of their impact though is directly related to the degree to which they support the renewable energy markets for targeted sectors and technologies. This report highlights important policy design considerations for policymakers using state tax incentives to meet clean energy goals.

  15. Clean Cities: Las Vegas Regional Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    for Las Vegas Regional Clean Cities coalition. Southern Nevada Fleet Association P.O. Box 336779 North Las Vegas, NV 89033 Search Coalitions Search for another coalition...

  16. Clean the Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean EnergyAnxiety and

  17. Enhanced Chemical Cleaning

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic LawEnergyEnhanced Chemical Cleaning

  18. ClEAN ENERGy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014Christopher SmithWin"City 25 ClEAN

  19. Federal Aviation Administration

    E-Print Network [OSTI]

    /Testing #12;16Federal Aviation Administration GMU CATSR 6 February 2012 The FAA William J. Hughes Technical operational test and evaluation agent for FAA #12;17Federal Aviation Administration GMU CATSR 6 February 2012Federal Aviation Administration Federal Aviation AdministrationNextGen: Primer, Challenges

  20. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee's Summit, MO); Hand, Thomas E. (Lee's Summit, MO); Powers, Michael T. (Santa Rosa, CA)

    1997-10-21T23:59:59.000Z

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  1. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1996-05-07T23:59:59.000Z

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  2. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21T23:59:59.000Z

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  3. International Clean Energy Coalition

    SciTech Connect (OSTI)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28T23:59:59.000Z

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  4. Light Duty Efficient Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Clean Combustion February 27, 2008 Tim Frazier Research & Technology 2008 Semi-Mega Merit Review Agenda Project Goals and Objectives Project Partners Technical...

  5. Enabling High Efficiency Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Combustion 2008 Semi-Mega Merit Review Donald Stanton Research & Technology February 26 th , 2008 This presentation does not contain any proprietary or...

  6. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating systems or...

  7. Clean Energy Development Fund (CEDF)

    Broader source: Energy.gov [DOE]

    NOTE:The Vermont Clean Energy Development Fund has issued its Five Year Strategic Plan. See the web site for details.

  8. Sustainable Electricity | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Analysis Advanced Components and Materials Systems Integration Energy Security Wind Geothermal Solar Energy-Water Resource Systems Systems Biology Transportation Clean Energy...

  9. Connecting with Clean Tech CEO's

    Broader source: Energy.gov [DOE]

    Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

  10. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30T23:59:59.000Z

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  11. Clean Cities National Partner Awards

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    This fact sheet recognizes the 2003 Clean Cities National Partner Award winners and their outstanding efforts to promote alternative fuels and alternative fuel vehicles.

  12. Self-Cleaning CSP Collectors

    Broader source: Energy.gov [DOE]

    This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

  13. Clean Cities Around the World

    SciTech Connect (OSTI)

    Not Available

    2005-11-01T23:59:59.000Z

    This fact sheet provides an update of Clean Cities International news, including successful activities, notable accomplishments, and plans for the future. It also includes background information.

  14. Clean Coal Technology - From Research to Reality | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. PolicyClean Coal

  15. Clean Coal and Power Conference | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. PolicyClean

  16. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309*Ministerial: JoinClean

  17. Covered Product Category: Air-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, which are covered by the ENERGY STAR program.

  18. Covered Product Category: Residential Air-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR-qualified product category.

  19. FE Clean Coal News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexasManager FAQS Reference Guide -September 30,

  20. What's Possible for Clean Energy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Building Efficiency 45 Concentrating Solar Power 59 Construction Materials 71 Geothermal 81 Nuclear 91 Plug authors and endorsers. Go to gigatonthrowdown.org for report downloads, supplemental material for clean energy technologies, and entrepreneurs can starting building the leading clean energy companies

  1. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  2. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect (OSTI)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01T23:59:59.000Z

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  3. The Clean Energy Race | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Clean Energy Race The Clean Energy Race June 29, 2011 - 5:09pm Addthis Hybrid vehicles circle the track at Indianapolis Motor Speedway as part of the inaugural Clean Cities...

  4. Clean cities: Award winning coalition -- Paso del Norte

    SciTech Connect (OSTI)

    O'Connor, K.

    1999-10-25T23:59:59.000Z

    Designated the 41st Clean Cities coalition in November 1995, the Paso del Norte Clean Cities Coalition (PDNCCC) is the first in the country to gain international participation. Spanning the US-Mexico border; the coalition includes stakeholders from El Paso, Texas; Ciudad Juarez, Mexico; and Las Cruces, New Mexico. PDNCCC developed a comprehensive plan to jump-start its program place, alternative fuel vehicles (AFVs) on the road, and eliminate barriers inhibiting alternative fuel market growth. PDNCC raised more than $2.3 million for alternative fuel activities and clean air initiatives in less than 26 months. In 1998, the US Department of Energy (DOE) recognized that PDNCCC accomplishment with its Rainmaker Award for leveraging the most funds from outside sources. PDNCCC is proud of its efforts to drive the alternative fuels and AFV market in the El Paso/Juarez region.

  5. Federal Agency NEPA Procedures

    Broader source: Energy.gov [DOE]

    Each Federal agency is required to develop NEPA procedures that supplement the CEQ Regulations. Developed in consultation with CEQ, Federal agency NEPA procedures must meet the standards in the CEQ...

  6. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ti017ebron2012o.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

  7. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ti017ebron2011p.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

  8. Energy Department Technical Assistance Bolsters Tribal Clean...

    Energy Savers [EERE]

    Technical Assistance Bolsters Tribal Clean Energy Deployment Energy Department Technical Assistance Bolsters Tribal Clean Energy Deployment December 2, 2011 - 3:39pm Addthis The...

  9. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  10. baepgig-clean | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Feb 2003) Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Combustion Engineering IGCC Repowering Project, Clean Energy...

  11. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  12. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 360.1B, FEDERAL EMPLOYEE TRAINING. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Cancels DOE M 360.1A-1. Canceled by DOE O 360.1C.

  13. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-21T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 360.1A, Federal Employee Training, dated 9-21-99. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Canceled by DOE M 360.1-1B.

  14. Federal Aviation Administration 1

    E-Print Network [OSTI]

    Waliser, Duane E.

    , 2012 Federal Aviation Administration Introduction to the FAA COE CST & NASA Participation Options KenFederal Aviation Administration 1 COE CST Presentation to NASA Date of this revision: March 21 Davidian AST Director of Research Date of this revision: March 21, 2012 #12;Federal Aviation Administration

  15. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05T23:59:59.000Z

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  16. The reduced environmental liability of clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D. [Energetics, Inc., Columbia, MD (United States); McMillen, M. [Energetics, Inc., Washington, DC (United States)

    1997-08-01T23:59:59.000Z

    In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

  17. Developing an Online Database of National and Sub-National Clean Energy Policies

    SciTech Connect (OSTI)

    Haynes, R.; Cross, S.; Heinemann, A.; Booth, S.

    2014-06-01T23:59:59.000Z

    The Database of State Incentives for Renewables and Efficiency (DSIRE) was established in 1995 to provide summaries of energy efficiency and renewable energy policies offered by the federal and state governments. This primer provides an overview of the major policy, research, and technical topics to be considered when creating a similar clean energy policy database and website.

  18. State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy

    SciTech Connect (OSTI)

    Kubert, C.; Sinclair, M.

    2011-04-01T23:59:59.000Z

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  19. Clean Energy Tax Credit (Maryland)

    Broader source: Energy.gov [DOE]

    The Clean Energy Tax Credit is 0.85 cents for each kilowatt hour of electricity sold that was produced from a Maryland qualified energy resource during the 5-year period specified in the initial...

  20. Clean Energy Investment Program (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Opportunity Fund's Clean Energy Investment Program is a direct investment program created to promote the adoption of energy efficient and renewable energy (EE/RE) products and...

  1. Alternative and Clean Energy Program

    Broader source: Energy.gov [DOE]

    It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean Energy...

  2. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01T23:59:59.000Z

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  3. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  4. Clean Water Partnership Law (Minnesota)

    Broader source: Energy.gov [DOE]

    The main purpose of the Clean Water Partnership Law is to provide financial and technical assistance to local governments for the protection, enhancement, and restoration of surface waters. However...

  5. Clean Energy Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    '''''NOTE: Due to a high level of interest, the Clean Energy Tax Credit annual funding of $5 million for years 2012, 2013 and 2014 has been fully allocated to compensate applicants wait listed from...

  6. Clean Energy Solutions Center (Presentation)

    SciTech Connect (OSTI)

    Reategui, S.

    2012-07-01T23:59:59.000Z

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  7. Optimization of Heat Exchanger Cleaning

    E-Print Network [OSTI]

    Siegell, J. H.

    yiven in equations (7) and (8) results in the TFRE curves shown in Figure 6. In performing the calculations to compare chemical and mechanical cleaning, it is important to remember to include the value of the 20 MBtu/Hr heat lost between... MBtu/hr/day 20 Data From Operating Unit 10 20 30 40 50 60 70 ...., ........ ...................... ~.... ---- Time (Days) Figure 4. Comparison of Models for Heat Recovery ~ecay to Simulated Operating Data. MECHANICAL CLEANING W 100 MBtu...

  8. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOE Patents [OSTI]

    Jody, Bassam (Chicago, IL); Daniels, Edward (Oak Lawn, IL); Libera, Joseph A. (Clarendon Hills, IL)

    1999-01-01T23:59:59.000Z

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.

  9. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOE Patents [OSTI]

    Jody, B.; Daniels, E.; Libera, J.A.

    1999-03-16T23:59:59.000Z

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.

  10. Method and apparatus to clean the intake system of an internal combustion engine

    SciTech Connect (OSTI)

    Hein, S.R.; Clack, S.R.; Burrows, J.L.

    1991-02-05T23:59:59.000Z

    This patent describes an apparatus for cleaning the intake system of an internal combustion engine. It comprises: an air metering block having air passage means therein including an air outlet; an adapter means to connect the outlet of the air metering block to the intake system of the engine; air inlet means in the block communicating with the air passage means, an adjustment means within the air metering block for controlling the amount of air introduced into the air passage means; an injector means for connection to the intake system of an engine for injecting a solvent into the intake system of the engine; and a control means for controlling the injector means to vary the amount of solvent injected into the intake system of the engine by the injector means.

  11. What is Clean Cities? May 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  12. Clean Energy and Bond Finance Initiative

    Broader source: Energy.gov [DOE]

    Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

  13. Clean Cities Now, Vol. 10, No. 4

    SciTech Connect (OSTI)

    Not Available

    2006-10-01T23:59:59.000Z

    Official Publication of Clean Cities and the Alternative Fuels Data Center (Newsletter) volume 10, number 4

  14. Plugging Vehicles into Clean Energy October, 2012

    E-Print Network [OSTI]

    California at Davis, University of

    Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

  15. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    SciTech Connect (OSTI)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31T23:59:59.000Z

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.

  16. BROOKINGS-ROCKEFELLER Project on State and Metropolitan Innovation State Clean Energy Finance Banks: New Investment Facilities for Clean Energy Deployment

    E-Print Network [OSTI]

    Ken Berlin; Reed Hundt; Mark Muro; Devashree Saha

    ?The creation of state clean energy banks represents another arena for state leadership on alternative energy finance. Summary Propelled by private entrepreneurship, technology gains, and public support, clean energy and energy efficiency solutions began to proliferate in recent years. However, federal policy gridlock and state budget challenges are now jeopardizing the availability of government finance, exacerbating the serious finance challenges that impede the large-scale deployment of low-carbon energy solutions. Fortunately a number of states are now exploring a variety of ways to leverage scarce public resources with sophisticated banking and finance mechanisms. Epitomized by Connecticuts

  17. ECR plasma cleaning: an in-situ processing technique for RF cavities

    SciTech Connect (OSTI)

    Wu, G.; /Fermilab; Moeller, W-D.; /DESY; Antoine, C.; /Saclay; Jiang, H.; Pechenezhskiy, I.; Cooley, L.; Khabiboulline, T.; Terechkine, Y.; Edwards, H.; Koeth, T.; Romanenko, A.; /Cornell U., Phys. Dept. /Jefferson Lab

    2008-01-01T23:59:59.000Z

    A condition for Electron Cyclotron Resonance (ECR) can be established inside a fully assembled RF cavity without the need for removing high-power couplers. As such, plasma generated by this process can be used as a final cleaning step, or as an alternative cleaning step in place of other techniques. Tests showed filtered dry air plasma can successfully remove sulfur particles on niobium surface while the surface oxygen content remains intact.

  18. Clean Energy Application Center

    SciTech Connect (OSTI)

    Freihaut, Jim

    2013-09-30T23:59:59.000Z

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

  19. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03T23:59:59.000Z

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  20. 2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE?

    E-Print Network [OSTI]

    2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE? Growth, Competition and Opportunity in the World's Largest Economies G-20 CLEAN ENERGY FACTBOOK #12;3 WHO'S WINNING THE CLEAN ENERGY the Clean Energy Race? was developed for public informational and educational purposes. It reviews

  1. Enact legislation supporting residential property assessed clean energy financing (PACE)

    SciTech Connect (OSTI)

    Saha, Devashree

    2012-11-15T23:59:59.000Z

    Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nations states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nations state and metropolitan areas.

  2. Leading the Nation in Clean Energy Deployment (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agencies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions.

  3. An evaluation of alternative cleaning methods for removing an organic contaminant from a stainless steel part

    SciTech Connect (OSTI)

    Boyd, J.L.

    1996-08-01T23:59:59.000Z

    As of December 1995, the manufacture of Freon, along with many other chlorofluorocarbons (CFCs), was prohibited by the Clean Air Act of 1990 (CAA). The ban of CFC solvents has forced manufacturers across the country to search for alternative metal cleaning techniques. The objective of this study was to develop a thorough, scientific based approach for resolving one specific manufacturer`s problem of removing organic contamination from a stainless steel part. This objective was accomplished with an approach that involved: (1) defining the problem, (2) identifying the process constraints, (3) researching alternate cleaning methods, (4) researching applicable government regulations, (5) performing a scientific evaluation and (6) drawing conclusions.

  4. What`s new in federal energy management: FEMP program overview. Federal energy saver showcases

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    To promote widespread Federal energy efficiency, agencies are showcasing their best energy efficiency, water conserving, and solar and other renewable energy technologies. To highlight these successful energy-efficient projects, Executive Order 12902 directs agencies to designate at least one newly constructed or existing building as a showcase facility. At existing facilities, agencies must also try to incorporate cogeneration and indoor air quality improvements. Agencies are directed to develop and implement effective plans to make these showcase projects happen. Project successes will show the strength of partnering with other agencies, energy services companies, utilities, and national laboratories, and of using the US Department of Energy Federal Energy Management Program (FEMP) as a resource. The goal is Federal facilities operating at peak efficiency. A Federal Energy Saver Showcase plaque is prominently displayed at each showcase site, notifying visitors they are entering a government building that successfully conserves energy and water and saves taxpayer dollars.

  5. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01T23:59:59.000Z

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  6. air engine coolant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Maryville Clean Air Engineering DENSO Dow Chemical Duke Energy DuPont Eastman Chemical Eaton Corp. Emerson Process Management EMJ Corp. ExxonMobil FedEx Garmin General...

  7. Clean Cities: Clean Communities of Western New York (Buffalo) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast CleanChicagoClean

  8. Clean Cities: Genesee Region Clean Communities (Rochester) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGenesee Region Clean

  9. Federal Railroad Administration

    Broader source: Energy.gov (indexed) [DOE]

    mandated the study. Federal Railroad Administration DOT Reorganization DOT is in the process of looking at reorganizing the Department to try to achieve even greater...

  10. Federal Employee Health Services

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-10-18T23:59:59.000Z

    The order establishes requirements and responsibilities for occupational medical, employee assistance, and workers' compensation programs for Federal employees. Cancels DOE O 341.1.

  11. Federal Railroad Administration

    Broader source: Energy.gov (indexed) [DOE]

    very similar to this bill in regard to the core provisions Core provisions: Review and reform the Federal hours of service requirements Establish a new risk reduction program...

  12. Federal NEPA Contacts

    Broader source: Energy.gov [DOE]

    CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law attorney, or member of agency leadership, these...

  13. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26T23:59:59.000Z

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  14. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B. (Maple Grove, MN); Baldner, Richard (Minnetonka, MN)

    1982-01-01T23:59:59.000Z

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  15. 4th Annual Clean Coal

    E-Print Network [OSTI]

    Ferriter John P

    Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

  16. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31T23:59:59.000Z

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  17. Spring is in the Air and so is a Plethora of Pollen Dr. Joan Bradshaw, County Extension Director

    E-Print Network [OSTI]

    Jawitz, James W.

    and skin. Use air filters and clean regularly, or run an air conditioner and change the air filterSpring is in the Air and so is a Plethora of Pollen Dr. Joan Bradshaw, County Extension Director, Suite 1 Lecanto, FL 34461 Springtime is in the air in Citrus County with its glorious weather

  18. Clean air. Safe, congestion-free highways and transit systems.

    E-Print Network [OSTI]

    Pennycook, Steve

    and weight, and increase safety and reliability of next-generation hybrid, battery-powered, and fuel cell. Through materials characterization, processing, and systems simulations, lab experts are developing next-generation batteries and manufacturing processes. ORNL is also addressing the bioenergy supply chain to enable large

  19. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    VOCs substitute for ventilation in commercial buildings? ."Gorfain J (2008). Analysis of ventilation data from the U.S.Commercial Building Ventilation Energy Meera Sidheswaran,

  20. air cleaning systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind market: we are currently building Haliade 150, the first new-generation offshore wind turbine, with an output of 6 MW. This turbine integrates proven ALSTOM PURE TORQUE ...

  1. air cleaning system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind market: we are currently building Haliade 150, the first new-generation offshore wind turbine, with an output of 6 MW. This turbine integrates proven ALSTOM PURE TORQUE ...

  2. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    trading program, the Emissions Trading System (ETS), and inCLIMATE CHANGE: THE EU EMISSIONs TRADING Sci HlME (ETS) GEsRegulatory Agency in Emissions Trading, 59 ADMIN. L. Riv.

  3. Nuclear. Clean Air Energy November 2013NYSE MKT

    E-Print Network [OSTI]

    ISR Uranium Production About to Commence #12;Cautionary Statements This presentation contains, future pursuit of uranium sales contracts, anticipated exposure to uranium market price fluctuations, including resource estimates, our planned exploration and drilling programs and anticipated results

  4. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    calcination temperature." Applied Catalysis B-EnvironmentalOXYGEN AVAILABILITY." Applied Catalysis 20(1-2): 15- Benne,ambient temperature." Applied Catalysis B-Environmental 81(

  5. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    largely from coal and natural gas fired power plants. ENVIL.switching from coal to natural gas). 62. See infra note 110equivalent, and that natural gas generates much smaller co-

  6. Clean-up of Contaminated Indoor Air Using Photocatalytic Technology

    E-Print Network [OSTI]

    Hingorani, S.; Greist, H.; Goswami, T.; Goswami, Y.

    2000-01-01T23:59:59.000Z

    destruction using Acetone as a representative VOC. While monitoring the VOC destruction, carbon dioxide (C02) levels were also measured. By performing a mass balance between the VOC destruction and C02 production, the photocatalytic technology was found...

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    scrubbed with potassium iodide scrubbers preceding each DNPHWaters Sep-pak Ozone scrubber). The concentration valueusing potassium iodide scrubbers (Waters Sep-pak Ozone

  8. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    fa- cilities and alternative energy sources, notwithstandinggas rather than alternative energy or efficiency. See Trippfits of a shift to alternative energy or reduced consumer

  9. Clean Air Nonroad Diesel Rule (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    On June 29, 2004, the Environmental Protection Agency issued a comprehensive final rule regulating emissions from nonroad diesel engines and sulfur content in nonroad diesel fuel. The nonroad fuel market makes up more than 18% of the total distillate pool. The rule applies to new equipment covering a broad range of engine sizes, power ratings, and equipment types. There are currently about 6 million pieces of nonroad equipment operating in the United States, and more than 650,000 new units are sold each year.

  10. Clean Air Act General Conformity Requirements and the National

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock

  11. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    by comparing coal- fired power plant emissions with naturalcoal-fired power plants could achieve emissions reductionsheavy metal emissions from coal-fired power plants,

  12. Clean Air Act, Section 309 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartmentDepartment ofCity and 25Clay Sell

  13. Puget Sound Clean Air Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwindPuda Coal Inc Jump|

  14. International Council for Local Environmental Initiatives (ICLEI) Clean Air

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to: navigation,Machines Corpand Climate

  15. Hawaii Department of Health Clean Air Branch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |Hatchet Ridge Wind Farm JumpHavoco1

  16. Clean Air Initiative for Asian Cities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity ofInformationClaridgeClassicClay Jump to:

  17. Center for Clean Air Policy (CCAP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenter Ethanol CompanyCenter

  18. Center for Clean Air Policy (CCAP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillarCAPS Jump to:

  19. Clean Air Task Force CATF | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy CoopValleyPower

  20. Clean Air-Cool Planet Community Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy

  1. Local Option- Clean Energy Financing

    Broader source: Energy.gov [DOE]

    '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most...

  2. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19T23:59:59.000Z

    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  3. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05T23:59:59.000Z

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  4. Presidential Documents Federal Register

    E-Print Network [OSTI]

    Presidential Documents 67249 Federal Register Vol. 65, No. 218 Thursday, November 9, 2000 Title 3 principles set forth in section 2, agencies shall adhere, to the extent permitted by law, to the following #12;67250 Federal Register / Vol. 65, No. 218 / Thursday, November 9, 2000 / Presidential Documents (a

  5. Electricity Advisory Committee - Federal Register Notices | Department...

    Energy Savers [EERE]

    Federal Register Notices Electricity Advisory Committee - Federal Register Notices Electricity Advisory Committee - Federal Register Notices February 17, 2015 Electricity Advisory...

  6. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31T23:59:59.000Z

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  7. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01T23:59:59.000Z

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  8. Carbon smackdown: visualizing clean energy

    ScienceCinema (OSTI)

    Juan Meza

    2010-09-01T23:59:59.000Z

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  9. Carbon smackdown: visualizing clean energy

    SciTech Connect (OSTI)

    Juan Meza

    2010-08-11T23:59:59.000Z

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  10. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Environmental Management (EM)

    from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and...

  11. Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed...

    Broader source: Energy.gov (indexed) [DOE]

    Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing...

  12. Energy Saver Heroes: Clean Cities Coordinators | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Saver Heroes: Clean Cities Coordinators Energy Saver Heroes: Clean Cities Coordinators April 2, 2009 - 3:32pm Addthis Shannon Brescher Shea Communications Manager, Clean...

  13. Property-Assessed Clean Energy Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Financing Financing Structures Property-Assessed Clean Energy Programs Property-Assessed Clean Energy Programs The property-assessed clean energy (PACE) model is an...

  14. Clean Energy Infrastructure Educational Initiative

    SciTech Connect (OSTI)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31T23:59:59.000Z

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master??s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master??s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master??s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

  15. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  16. Climate VISION: Events - Advanced Clean Coal Workshop

    Office of Scientific and Technical Information (OSTI)

    Secretary Kyle McSlarrow, DOE, and Jim Rogers, CEO Chairman, Cinergy 10:15 Break 10:30 Case Studies on Clean Coal Projects Case StudiesLessons Learned on Clean Coal Plants (to...

  17. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  18. Clean Coal Incentive Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

  19. Clean Cities Web Sites and Web Tools

    Broader source: Energy.gov (indexed) [DOE]

    Clean Cities Web Sites and Web Tools Johanna Levene July 28, 2010 Innovation for Our Energy Future Fuel Economy fueleconomy.gov What vehicle? Clean Cities Web Site * Information...

  20. Clean Tennessee Energy Grant Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The purpose of the Clean Tennessee Energy Grant Program is to select and fund projects that best result in a reduction of emissions and pollutants identified below. The Clean Tennessee Energy...

  1. Clean Cities Coalition and Coordinator Awards 2003

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    This fact sheet recognizes the 2003 Clean Cities Coalition and Coordinator awards winners and their outstanding efforts to promote alternative fuels and alternative fuel vehicles. The recipients will receive their awards at the Clean Cities Conference in Palm Springs, CA.

  2. Clean Cities Coalition and Coordinator's Awards

    SciTech Connect (OSTI)

    Not Available

    2002-05-01T23:59:59.000Z

    U. S. DOE Clean Cities Program has awarded its Coalition awards for 2002, and the awards will be presented at the Clean Cities Conference in May 2002. This fact sheets describe the winners and their contributions.

  3. Foundations 6% Federal 49%

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Administration National Renewable Energy Laboratory National Science Foundation National Security Agency Naval Agencies Administration for Children and Families Air Force Office of Scientific Research Air Force Administration Lawrence Livermore National Laboratory NASA Headquarters NASA Jet Propulsion Laboratory National

  4. Sixth clean coal technology conference: Proceedings. Volume 2: Technical papers

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 2 contains 28 papers related to fluidized-bed combustion, coal gasification for combined cycle power plants, the Liquid Phase Methanol Process, use of coal in iron making, air pollution control of nitrogen oxides, coke making, and hot gas cleanup.

  5. Federal Facility Reporting and Data

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides information and tools to help agencies report annual energy and water consumption and resource management efforts within Federal facilities.

  6. Federal Activities in the Bioeconomy

    Broader source: Energy.gov [DOE]

    Plenary V: Federal Activities in the Bioeconomy Federal Activities in the Bioeconomy Zia Haq, Senior Analyst, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  7. What is Clean Cities? December 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

  8. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  9. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  10. Advanced Clean Cars Zero Emission Vehicle Regulation

    E-Print Network [OSTI]

    California at Davis, University of

    Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program 2020 2021 2022 2023 2024 2025 Current Regulation -ZEVs Current Regulation -PHEVs Projected: PHEVs 15 infrastructure, the cars won't come Complementary Policies to support ZEV regulation Clean Fuels Outlet

  11. Economic Impact of the American Clean Energy

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Economic Impact of the American Clean Energy and Security Act of 2009 on the West Virginia Economy ........................................................................................................................ 1 American Clean Energy and Security Act of 2009 at reducing greenhouse gas emissions. This report examines the impact of the American Clean Energy

  12. The National Workshop on Clean Energy Education

    E-Print Network [OSTI]

    Gilbert, Matthew

    The National Workshop on Clean Energy Education ENERGYLITERACY Recommendations and Strategies Full Report #12;THE NATIONAL WORKSHOP ON CLEAN ENERGY EDUCATION UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN OCTOBER 13, 2011 Full Report #12;#12;FOREWORD Clean energy education is an enabling foundation with far

  13. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  14. Federated Search Not your ordinary search technology!

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFORTechnicalFINAL REPORT

  15. Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day

    E-Print Network [OSTI]

    Awtar, Shorya

    Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day A publication of U of M Waste Management Services July 2013 #12;Table of Contents What is a Green Clean Day? 2 Why have a Green Clean Day? 2 How Do We Get Started? 2 How Waste Management Services Can Help 2

  16. Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition

    SciTech Connect (OSTI)

    Not Available

    2008-04-01T23:59:59.000Z

    Document serves as an instruction manual for developing, implementing, and running a Clean Cities coalition.

  17. Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon

    SciTech Connect (OSTI)

    Akturk, Selcuk; D'Amico, Ciro; Franco, Michel; Couairon, Arnaud; Mysyrowicz, Andre [Laboratoire d'Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees-Ecole Polytechnique, CNRS UMR 7639 F-91761 Palaiseau Cedex, France and Centre de Physique Theorique, CNRS UMR 7644, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)

    2007-12-15T23:59:59.000Z

    We performed a comprehensive study of filamentation in xenon. Due to its high nonlinear refraction index, but relatively low ionization potential, xenon can support filamentation at peak powers lower than in air. In our experiments, we studied pulse shortening, spatial mode cleaning, and generation of terahertz radiation. We observed that in xenon, self-compression is easily obtainable and terahertz radiation generation efficiency is significantly stronger as compared to air.

  18. Federal Employee Health Services

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-12-01T23:59:59.000Z

    To establish requirements and responsibilities for occupational medical, employee assistance, and workers' compensation programs for Federal employees. Cancels DOE 3790.1B. Canceled by DOE O 341.1A.

  19. Federal Water Use Indices

    Broader source: Energy.gov [DOE]

    FEMP provides water use indices as a guide for Federal agencies. Note that each is a rough estimate of water usage at different types of sites. Your site may vary considerably.

  20. Federal Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-15T23:59:59.000Z

    This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

  1. Presidential Documents Federal Register

    E-Print Network [OSTI]

    Presidential Documents 67249 Federal Register Vol. 65, No. 218 Thursday, November 9, 2000 Title 3 principles set forth in section 2, agencies shall adhere, to the extent permitted by law, to the following

  2. Sandia National Laboratories: U.S.-China Clean Energy Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -China Clean Energy Research Center-Clean Vehicles Consortium Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles...

  3. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C. (Aiken, SC)

    1996-01-01T23:59:59.000Z

    An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  4. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  5. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    MacKenzie, D.; Odell, C.

    1994-03-01T23:59:59.000Z

    An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

  6. Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance

    E-Print Network [OSTI]

    Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance renewable energy projects. The federal government lowers the cost of debt by providing created under the Energy Tax Incentives Act of 2005 (and detailed in Internal Revenue Code Section 54

  7. National Park Service Greens Its Rides with the Help of Clean Cities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Park Service is working with the U.S. Department of Energy's Clean Cities Program to provide sustainable travel options, including using more efficient vehicles themselves and encouraging visitors to green their rides in the parks to minimize their contribution to climate change and air pollution.

  8. Regulations of the Arkansas Plan of Implementation for Air Pollution Control (Arkansas)

    Broader source: Energy.gov [DOE]

    The Regulations of the Arkansas Plan of Implementation for Air Pollution Control are applicable to any stationary source that has the potential to emit any federally regulated air pollutant. The...

  9. Post processing large integer programming problems in air traffic flow management

    E-Print Network [OSTI]

    Gangadharan, Rajesh

    1994-01-01T23:59:59.000Z

    The Federal Aviation Administration is keen to develop new strategies for air traffic control, in order to better tackle the numerous problems arising due to increasing traffic in the national air space. The Traffic Flow Management (TFM) problem...

  10. Clean Coal Power Initiative Round III | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. Policy

  11. Clean Energy Ministerial 2012 in London | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309*

  12. Clean Energy Ministerial: Join the Discussion | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309*Ministerial: Join the

  13. Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability Goals

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309*Ministerial: Join the|

  14. CleanEnergyProjectsonTribalLands_Project_Descriptions_072011.pdf |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309*Ministerial:

  15. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect (OSTI)

    Acomb, L.J. [Geosphere, Inc., Anchorage, AK (United States); McKay, D.; Currier, P. [Army Corps of Engineers, Hanover, NH (United States). Cold Regions Research Engineering Lab.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V. [Federal Aviation Administration, Anchorage, AK (United States). Airway Facilities Div.

    1995-12-31T23:59:59.000Z

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  16. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10| Department ofClean Energy

  17. Clean Cities: Central Oklahoma Clean Cities (Oklahoma City) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast Clean CitiesCentral

  18. Clean Cities: Clean Cities Coachella Valley Region coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast CleanChicago Area

  19. Clean Cities: Clean Communities of Central New York (Syracuse) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast CleanChicago

  20. Clean Cities: Columbia-Willamette Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoastColumbia-Willamette Clean