Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Superconducting FCL using a combined inducted magnetic field trigger and shunt coil  

SciTech Connect

A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

Tekletsadik, Kasegn D. (Rexford, NY)

2007-10-16T23:59:59.000Z

2

A Superconducting transformer system for high current cable testing  

E-Print Network (OSTI)

A Superconducting Transformer System for High Current CableDC) superconducting transformer system for the high currentsuperconducting cables. The transformer consists of a core-

Godeke, A.

2010-01-01T23:59:59.000Z

3

Transformer current sensor for superconducting magnetic coils  

DOE Patents (OSTI)

A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

Shen, Stewart S. (Oak Ridge, TN); Wilson, C. Thomas (Norris, TN)

1988-01-01T23:59:59.000Z

4

A Superconducting transformer system for high current cable testing  

Science Conference Proceedings (OSTI)

This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

2010-02-15T23:59:59.000Z

5

Conductor requirements for high-temperature superconducting utility power transformers  

Science Conference Proceedings (OSTI)

High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

2010-01-01T23:59:59.000Z

6

Transformer current sensor for superconducting magnetic coils  

DOE Patents (OSTI)

The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

Shen, S.S.; Wilson, C.T.

1985-04-16T23:59:59.000Z

7

Superconducting current transformer for testing Nb3Sn cable splicing technique  

SciTech Connect

To provide a quick feedback on different approaches to superconducting cable splicing design and assembly techniques, a superconducting current transformer that can deliver more than 20 kA for testing splice samples has been designed and fabricated. The existing infrastructure of the Short Sample Test Facility at Fermilab, including its cryostat, power supply, and data acquisition system, was used for housing and operating the transformer. This report presents the design features of the transformer and the main results of cable splice tests.

Nicolai Andreev et al.

2002-09-10T23:59:59.000Z

8

Conceptual design of air-core superconducting power transformer for cable transmission system  

Science Conference Proceedings (OSTI)

The air-core superconducting transformer, which has a large magnetizing current, has been proposed as a power transformer that has the function as a shunt reactor. In this paper, the basic design procedure for the air-core superconducting transformer is presented. By using this procedure, 500/{radical}(3kV)--66/{radical}(3kV)--300 MVA single phase air-core transformer is designed for a model cable transmission system. Then, the performance of this transformer in the model cable transmission system is analyzed, and it is confirmed that the air-core superconducting transformer can function as a shunt reactor in addition to the principal as a power transformer.

Yamaguchi, Hiroshi; Sato, Yukihiko; Kataoka, Teruo [Tokyo Inst. of Tech. (Japan). Dept. of Electrical and Electronic Engineering

1996-04-01T23:59:59.000Z

9

Fault Current Limiters (FCL) Fact Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications An Assessment of Fault Current Limiter Testing Requirements Superconductivity Program Overview Superconductivity for Electric Systems: 2008 Annual Peer Review...

10

Microsoft Word - FCL Testing Report Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Assessment of Fault Current Limiter An Assessment of Fault Current Limiter Testing Requirements Prepared for U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by Brian Marchionini and Ndeye K. Fall, Energetics Incorporated Michael "Mischa" Steurer, Florida State University February 2009 Energetics Incorporated i EXECUTIVE SUMMARY The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is conducting research and development (R&D) on next-generation electricity delivery equipment including fault current limiters (FCLs). Prototype FCL devices are undergoing testing with the aim of market-ready devices making their debut in the transmission and distribution (T&D) system in the next five years. As these

11

Superconducting qubit as a quantum transformer routing entanglement between a microscopic quantum memory and a macroscopic resonator  

Science Conference Proceedings (OSTI)

We demonstrate experimentally the creation and measurement of an entangled state between a microscopic two-level system (TLS), formed by a defect in an oxide layer, and a macroscopic superconducting resonator, where their indirect interaction is mediated by an artificial atom, a superconducting persistent current qubit (PCQB). Under appropriate conditions, we found the coherence time of the TLS, the resonator, and the entangled state of these two are significantly longer than the Ramsey dephasing time of PCQB itself. This demonstrates that a PCQB can be used as a quantum transformer to address high coherence microscopic quantum memories by connecting them to macroscopic quantum buses.

Kemp, Alexander; Saito, Shiro; Semba, Kouichi [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan); Munro, William J. [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan); National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan); Nemoto, Kae [National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)

2011-09-01T23:59:59.000Z

12

Superconducting Power Equipment  

Science Conference Proceedings (OSTI)

The 2010 Electric Power Research Institute (EPRI) Technology Watch (Techwatch) report on superconducting power applications (EPRI report 1019995, Superconducting Power Equipment: Technology Watch 2010) introduced coverage about superconducting magnetic energy storage systems and superconducting transformers. The 2011 report contains additional information about superconducting power equipment, including progress to demonstrations in some projects. The 2011 report also includes a section on superconductin...

2011-12-22T23:59:59.000Z

13

Superconducting Multilayer Interconnect - lbl.gov  

Technique to fabricate multilayer interconnects and multiturn flux transformers for use with direct current superconducting quantum interference ...

14

2298 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 13, NO. 2, JUNE 2003 Cryogenic Cooling Temperature of HTS Transformers  

E-Print Network (OSTI)

, thermal optimization, transformer. I. INTRODUCTION MAIN advantages of HTS power transformers are the small Temperature of HTS Transformers for Compactness and Efficiency Ho-Myung Chang, Yeon Suk Choi, Steven W. Van- genic cooling temperature of HTS transformer is presented, aiming simultaneously at compactness

Chang, Ho-Myung

15

TRANSFORMATION  

SciTech Connect

Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

LACKS,S.A.

2003-10-09T23:59:59.000Z

16

TRANSFORMER  

DOE Patents (OSTI)

Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

Baker, W.R.

1959-08-25T23:59:59.000Z

17

High Temperature Superconducting Matrix Fault Current Limiter: Proof-of-Concept Test Results  

Science Conference Proceedings (OSTI)

This report describes the design and proof-of-concept test results of a pre-prototype superconducting fault current limiter (FCL). The device employs SuperPower's Matrix Fault Current Limiter (MFCL) technology and BSCCO-2212 bulk material manufactured by Nexans SuperConductors' melt cast processing (MCP) technique. The MFCL technology is targeted to address fault current over-duty problems at the transmission voltage level of 138kV and higher. In addition to EPRI sponsorship, this $12M development progra...

2004-09-27T23:59:59.000Z

18

Superconducting wire  

DOE Patents (OSTI)

This invention consists of a method of producing superconducting wire by drawing a glass fiber with a melted powder of a superconducting wire inside the glass tube. After drawing, the glass fiber is heated to crystallize the superconducting compound. The diameter of the superconducting wires is controlled by the rate at which the glass fiber s are drawn from the glass tube.

Day, D.E.; Petrovic, J.J.; Gac, F.D.; Ray, C.S.

1991-03-05T23:59:59.000Z

19

Superconductive wire  

DOE Patents (OSTI)

A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

Korzekwa, David A. (Los Alamos, NM); Bingert, John F. (Jemez Springs, NM); Peterson, Dean E. (Los Alamos, NM); Sheinberg, Haskell (Santa Fe, NM)

1995-01-01T23:59:59.000Z

20

Superconductive wire  

DOE Patents (OSTI)

This invention is comprised of a superconductive article including a first metallic tube having an interior surface and an exterior surface, said interior surface defining an interior hollow cavity, a layer of superconductive material surrounding said exterior surface of said first metallic tube, and, a second metallic tube having an interior surface and an exterior surface, said interior surface adjacent to said layer of superconductive material is provided together with processes of making such a superconductive article including, e.g., inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing and/or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Superconducting phase qubits  

E-Print Network (OSTI)

eld enhancement of superconductivity in ultranarrow wires.computation · Qubits · Superconductivity · Decoherence PACS

Martinis, John M.

2009-01-01T23:59:59.000Z

22

Supersymmetric color superconductivity  

E-Print Network (OSTI)

Supersymmetric Color Superconductivity 1 arXiv:hep-patterns such as color superconductivity and color-?avortional method in color superconductivity, namely µ ? ?. In

Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi

2003-01-01T23:59:59.000Z

23

Tunable high-q superconducting notch filter  

DOE Patents (OSTI)

A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

1979-11-29T23:59:59.000Z

24

Superconductive articles  

DOE Patents (OSTI)

An article of manufacture including a substrate, a patterned interlayer of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of oxides of Ce, Y, Cm, Dy, Er, Eu, Fe, Gd, Ho, In, La, Mn, Lu, Nd, Pr, Pu, Sm, Tb, Tl, Tm, Y, and Yb over the entire exposed surface of the intermediate article, and, a ceramic superconductive material layer as an overcoat upon the buffer layer whereby the ceramic superconductive material situated directly above the substrate has a crystal structure substantially different than the ceramic superconductive material situated above the overcoated patterned interlayer.

Wu, X.D.; Muenchausen, R.E.

1991-12-31T23:59:59.000Z

25

Superconducting cyclotrons  

SciTech Connect

Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q$sup 2$/A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons.

Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

1976-01-01T23:59:59.000Z

26

Superconductivity Conference Held  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconductivity Conference Held Z.-X. Shen SSRL sponsored a major international conference on superconductivity early this year. The conference, entitled "Spectroscopies in Novel...

27

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

28

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

29

Superconducting wires  

SciTech Connect

The requirement of high critical current density has prompted extensive research on ceramic processing of high-T/sub c/ superconductors. An overview of wire fabrication techniques and the limitations they impose on component design will be presented. The effects of processing on microstructure and critical current density will also be discussed. Particle alignment has been observed in extruded samples which is attributed to high shear stresses during plastic forming. Composites of superconductor and silver in several configurations have been made with little deleterious effect on the superconducting properties. 35 refs., 2 figs., 1 tab.

Lanagan, M.T.; Poeppel, R.B.; Singh, J.P.; Dos Santos, D.I.; Lumpp, J.K.; Dusek, J.T.; Goretta, K.C.

1988-06-01T23:59:59.000Z

30

ENERGY DIVISION STATUS OF SUPERCONDUCTING POWER TRANSFORMER  

Office of Scientific and Technical Information (OSTI)

technology would appear to leave little room for improvement. However, electric energy consumption continues to increase at about 2% per year nationally with most growth...

31

Superconducting magnet  

DOE Patents (OSTI)

A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

Satti, John A. (Naperville, IL)

1980-01-01T23:59:59.000Z

32

Secrets of superconductivity revealed  

NLE Websites -- All DOE Office Websites (Extended Search)

Secrets of superconductivity revealed Secrets of superconductivity revealed Secrets of superconductivity revealed The superconducting material Cerium-Colbalt-Indium5 reveals new secrets about how superconductivity and magnetism can be related. January 3, 2014 Simon Gerber, first author of the publication on the superconducting properties of CeCoIn5 at the Morpheus instrument of the Spallation Neutron Source SINQ in Switzerland. (Photo: Paul Scherrer Institute/Markus Fischer) Simon Gerber, first author of the publication on the superconducting properties of CeCoIn5 at the Morpheus instrument of the Spallation Neutron Source SINQ in Switzerland. (Photo: Paul Scherrer Institute/Markus Fischer) "Superconductivity continues to give new surprises. As its secrets are revealed, we learn more about the quantum world of electrons and can begin

33

Secrets of superconductivity revealed  

NLE Websites -- All DOE Office Websites (Extended Search)

Secrets of superconductivity revealed Secrets of superconductivity revealed Secrets of superconductivity revealed The superconducting material Cerium-Colbalt-Indium5 reveals new secrets about how superconductivity and magnetism can be related. January 3, 2014 Simon Gerber, first author of the publication on the superconducting properties of CeCoIn5 at the Morpheus instrument of the Spallation Neutron Source SINQ in Switzerland. (Photo: Paul Scherrer Institute/Markus Fischer) Simon Gerber, first author of the publication on the superconducting properties of CeCoIn5 at the Morpheus instrument of the Spallation Neutron Source SINQ in Switzerland. (Photo: Paul Scherrer Institute/Markus Fischer) "Superconductivity continues to give new surprises. As its secrets are revealed, we learn more about the quantum world of electrons and can begin

34

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

Wang, Shannon Xuanyue

35

Boron: Modeling, Superconductivity  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... Boron, Boron Compounds, and Boron Nanomaterials: Structure, Properties, Processing and Applications: Boron: Modeling, Superconductivity

36

High Temperature Superconductivity Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the High Temperature Superconductivity Program...

37

Basic principle of superconductivity  

E-Print Network (OSTI)

The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

Tian De Cao

2007-08-23T23:59:59.000Z

38

Superconductivity Program Overview High-Temperature Superconductivity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric currents over long lengths Superconductivity Program Overview High-Temperature Superconductivity for Electric Systems Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585

39

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

2010-10-28T23:59:59.000Z

40

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1998-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1997-03-11T23:59:59.000Z

42

Superconducting Power Cables  

Science Conference Proceedings (OSTI)

Power cables constructed from superconducting materials are being realized in utility demonstrations within the United States. Cooled by liquid nitrogen, high temperature superconducting power cables can transfer large amounts of power through relatively small cross sections. The key to their high power capacity is the high current density inherent with superconductors; a superconducting wire can conduct several times as much current as copper or aluminum conductors of the same cross section. For the pas...

2006-11-30T23:59:59.000Z

43

Superconducting Power Cables  

Science Conference Proceedings (OSTI)

This report is a continuation of a Technology Watch series on superconducting power cables that summarize full-scale superconducting cable projects throughout the world ranging from full-scale test installations to utility demonstration projects. The report covers various aspects of each project from design to implementation. When available, updated status regarding operation and maintenance (O&M) also is presented. The report will serve as a knowledge resource on the status of superconducting cable tech...

2008-12-19T23:59:59.000Z

44

Superconductive interconnections for cryoelectronics  

Science Conference Proceedings (OSTI)

Factors affecting the use of superconducting interconnections for cryoelectronics will be examined. The fundamental questions to be answered are why interconnections are important for high performance computing

Kenneth Rose

1992-01-01T23:59:59.000Z

45

Superconducting VAR control  

DOE Patents (OSTI)

Static VAR control means employing an asymmetrically controlled Graetz bridge and a superconducting direct current coil having low losses and low cost characteristics.

Boenig, Heinrich J. (Los Alamos, NM); Hassenzahl, William V. (Piedmont, CA)

1982-01-01T23:59:59.000Z

46

Superconductive imaging surface magnetometer  

DOE Patents (OSTI)

An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

Overton, Jr., William C. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM); Flynn, Edward R. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

47

Superconducting phase qubits  

Science Conference Proceedings (OSTI)

Experimental progress is reviewed for superconducting phase qubit research at the University of California, Santa Barbara. The phase qubit has a potential advantage of scalability, based on the low impedance of the device and the ability to microfabricate ... Keywords: 03.65.Yz, 03.67.Lx, 85.25.Cp, Decoherence, Quantum computation, Qubits, Superconductivity

John M. Martinis

2009-06-01T23:59:59.000Z

48

Superconducting thermoelectric generator  

DOE Patents (OSTI)

This invention is comprised of an apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a higher thermal conductivity than that of the superconducting material. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials, establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.

1992-12-31T23:59:59.000Z

49

The TESLA superconducting linear collider  

Science Conference Proceedings (OSTI)

This paper summarizes the present status of the studies for a superconducting Linear Collider (TESLA).

R. Brinkmann; the TESLA Collaboration

1997-01-01T23:59:59.000Z

50

Superconducting materials for large scale applications  

E-Print Network (OSTI)

IEEE Trans. Applied Superconductivity, vol. 12, pp.4. “Power Applications of Superconductivity,” in Handbookof Applied Superconductivity, B. Seeber, ed. , Bristol, UK:

Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

2004-01-01T23:59:59.000Z

51

6.763 Applied Superconductivity, Fall 2001  

E-Print Network (OSTI)

Phenomenological approach to superconductivity, with emphasis on superconducting electronics. Electrodynamics of superconductors, London's model, and flux quantization. Josephson Junctions and superconducting quantum ...

Orlando, Terry P.

52

Introduction to Color Superconductivity  

E-Print Network (OSTI)

At high nuclear density and small temperature, due to the asymptotic freedom property of Quantum ChromoDynamics and to the existence of an attractive channel in the color interaction, diquark condensates might be formed. Since these condensates break the color gauge symmetry, this phenomenon has the name of color superconductivity. In the last few years this has become a very active field of research. While a direct experimental test is still missing, color superconductivity might have implications in astrophysics because for some compact stars, e.g. pulsars, the baryon densities necessary for color superconductivity can probably be reached.

G. Nardulli

2006-10-23T23:59:59.000Z

53

Superconducting active impedance converter  

DOE Patents (OSTI)

A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

Ginley, D.S.; Hietala, V.M.; Martens, J.S.

1993-11-16T23:59:59.000Z

54

Appell Transformation and Canonical Transforms  

E-Print Network (OSTI)

The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown to be amenable for a similar interpretation involving the Laplace transform rather than the Fourier transform, when dealing with the 1D heat equation. Accordingly, when considering the radial heat equation, suitably defined Hankel-type transforms come to be involved in the inherent Appell transformation. The analysis is aimed at outlining the link between the Appell transformation and the canonical transforms.

Torre, Amalia

2011-01-01T23:59:59.000Z

55

Riesz transforms for Dunkl transform  

E-Print Network (OSTI)

In this paper we obtain the $L^p$-boundedness of Riesz transforms for Dunkl transform for all $1

Amri, Béchir

2011-01-01T23:59:59.000Z

56

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

Metzger, J.D.; El-Genk, M.S.

1998-05-05T23:59:59.000Z

57

Experimental work on superconductivity  

Science Conference Proceedings (OSTI)

The high thermal conductivity in the superconductive state at low reduced critical temperatures has been used for the detection of metal imperfections, including those caused by radiation damage. A statistically disordered single crystal of Ta with 30% ...

K. Mendelssohn

1962-01-01T23:59:59.000Z

58

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, John D. (Eaton' s Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

59

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.S.

1996-01-01T23:59:59.000Z

60

Alexei Abrikosov and Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Alexei Abrikosov and Superconductivity Alexei Abrikosov and Superconductivity Resources with Additional Information · Publications at ANL Alexei A. Abrikosov of the U.S. Department of Energy's Argonne National Laboratory (ANL) is a recipient of the 2003 Nobel Prize in Physics for his research in the area of superconductivity. Alexei Abrikosov Courtesy Argonne National Laboratory "Abrikosov's research [at ANL] centers on condensed-matter physics (the structure and behavior of solids and liquids), and concentrates on superconductivity, the ability of some materials to carry electrical current without resistance. He was the first to propose the concept of "type-II superconductors" in 1952 and constructed the theory of their magnetic properties, known as the Abrikosov vortex lattice.

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Superconducting Power Cables  

Science Conference Proceedings (OSTI)

This report is the fourth installment of a Technology Watch series on Superconducting Power Cables that summarize full-scale superconducting cable projects throughout the world. The series provides an overview of technical fundamentals and status updates on ongoing development efforts ranging from full-scale test installations to grid-deployed demonstration projects. This installment of the series covers ongoing full-scale utility installations and proposed demonstration projects worldwide. Information a...

2009-12-23T23:59:59.000Z

62

New Superconducting Materials  

Science Conference Proceedings (OSTI)

Superconductors with higher superconducting transition temperatures, higher critical currents, and better mechanical properties would be valuable. This report presents criteria to guide the search for higher transition temperature materials. To determine if candidate materials are suitably metallic, the study carried out detailed electronic structure calculations. These calculations identified boron-containing hydrides as particularly promising as a new class of possible superconducting materials that ma...

1994-11-04T23:59:59.000Z

63

Superconducting transmission line particle detector  

DOE Patents (OSTI)

A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

Gray, K.E.

1988-07-28T23:59:59.000Z

64

Superconducting transmission line particle detector  

DOE Patents (OSTI)

A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

Gray, Kenneth E. (Naperville, IL)

1989-01-01T23:59:59.000Z

65

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry L. (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1997-01-01T23:59:59.000Z

66

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry Lawrence (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1998-01-01T23:59:59.000Z

67

High temperature interfacial superconductivity  

DOE Patents (OSTI)

High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

2012-06-19T23:59:59.000Z

68

Integral transformation and Darboux transformation  

E-Print Network (OSTI)

We review Darboux-Crum transformation of Heun's differential equation. By rewriting an integral transformation of Heun's differential equation into a form of elliptic functions, we see that the integral representation is a generalization of Darboux-Crum transformation. We also consider conservation of monodromy with respect to the transformations.

Takemura, Kouichi

2009-01-01T23:59:59.000Z

69

DOE Superconductivity Program Stakeholders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stakeholders Map showing the stakeholders involved in High Temperature Superconductivity work with the DOE. DOE Superconductivity Program Stakeholders More Documents &...

70

Overview of Superconductivity and Challenges in Applications  

E-Print Network (OSTI)

Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device...

Flükiger, Rene

2012-01-01T23:59:59.000Z

71

Relativistic mechanism of superconductivity  

E-Print Network (OSTI)

According to the theory of relativity, the relativistic Coulomb's force between an electron pair is composed of two parts, the main part is repulsive, while the rest part can be attractive in certain situations. Thus the relativistic attraction of an electron pair provides an insight into the mechanism of superconductivity. In superconductor, there are, probably at least, two kinds of collective motions which can eliminate the repulsion between two electrons and let the attraction being dominant, the first is the combination of lattice and electron gas, accounting for traditional superconductivity; the second is the electron gas themselves, accounting for high $T_c$ superconductivity. In usual materials, there is a good balance between the repulsion and attraction of an electron pair, the electrons are regarded as free electrons so that Fermi gas theory plays very well. But in some materials, when the repulsion dominates electron pairs, the electron gas will has a behavior opposite to superconductivity. In the present paper the superconducting states are discussed in terms of relativistic quantum theory in details, some significant results are obtained including quantized magnetic flux, London equation, Meissner effect and Josephson effect.

H. Y. Cui

2002-12-17T23:59:59.000Z

72

Testability Transformation  

E-Print Network (OSTI)

A testability transformation is a source-to-source transformation that aims to improve the ability of a given test generation method to generate test data for the original program. This paper

Mark Harman; Lin Hu; Robert Hierons; Joachim Wegener; Harmen Sthamer; Andre Baresel; Marc Roper

2004-01-01T23:59:59.000Z

73

Fluorinated Precursors of Superconducting Ceramics ...  

Fluorinated precursors for superconducting ceramics typically increase the critical current in the ... Applications and Industries. High-temperature ...

74

Argonne TDC: Superconductive Components, Inc.  

Unlocking the Potential of High-Temperature Superconductors . Superconductive Components, Inc. Columbus, Ohio. For bulk applications of high-temperature ...

75

Argonne TDC: Superconductive Components, Inc.  

High-Performance Tailored Materials for Levitation Permanent Magnet Technologies Making materials to help advance flywheel energy storage. Superconductive Components ...

76

Market Transformation  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

Not Available

2008-09-01T23:59:59.000Z

77

Possibility of color magnetic superconductivity  

E-Print Network (OSTI)

Two aspects of quark matter at high density are addressed: one is color superconductivity and the other is ferromagnetism. We are mainly concerned with the latter and its relation to color superconductivity, which we call "color magnetic superconductivity". The relation of ferromagnetism and chiral symmetry restoration is also discussed.

Toshitaka Tatsumi; Tomoyuki Maruyama; Eiji Nakano

2003-12-26T23:59:59.000Z

78

Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - 6/13/06 3 - 6/13/06 Superconducting Magnet Division S&T Committee Program Review June 22-23, 2006 Conference Room A, Bldg. 725, BNL DRAFT AGENDA Thursday, June 22 0830 Executive Session to address the charge S. Aronson (25 min) 0855 Welcome S. Aronson (5 min) 0900 Superconducting Magnet Division Status & M. Harrison (45 + 15 min) Issues - mission statement, core competencies, themes, program, problems, etc. 1000 Themes - Nb3Sn, HTS, Direct wind, Accelerator integration, P. Wanderer (20 + 10 min) rapid cycling Core Competencies 1030 Superconducting Materials A. Ghosh (20 + 5 min) 1055 Break 1110 Magnetic Design R. Gupta (20 + 5 min) 1135 Magnet Construction M. Anerella (20 + 5 min) 1200 Magnet Testing G. Ganetis (20 + 5 min)

79

LANL: Superconductivity Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Sitemap | Lab Home | Phone Sitemap | Lab Home | Phone ABOUT LANL ContactsPhonebookPolicy CenterOrganizationMapsJobs Emergency NEWS LIBRARY JOBS Search Materials Physics & Applications: STC STC Home OUR FOCUS HTS Physics HTS Materials Development HTS Materials Processing Power Applications Electronic Materials FUTURE APPLICATIONS Biomedical Developments Magnetic Levitation Train MHD Ship CONTACTS Center Leader Ken Marken Program Administrator Brenda Espinoza Center Office Location: TA-03, Bdg. 0032, Rm. 141 Exploring technology at STC Superconductivity Technology Center (STC) The Superconductivity Technology Center (STC) coordinates a multidisciplinary program for research, development, and technology transfer in the area of high-temperature superconductivity. Our focus is on effective collaborations with American industry, universities, and other national laboratories to develop electric power and electronic device applications of high-temperature superconductors (HTS).

80

Orbit Spaces in Superconductivity  

E-Print Network (OSTI)

In the framework of Landau theory of phase transitions one is interested to describe all the possible low symmetry ``superconducting'' phases allowed for a given superconductor crystal and to determine the conditions under which this crystal undergoes a phase transition. These problems are best described and analyzed in the orbit space of the high symmetry group of the ``normal, non-superconducting'' phase of the crystal. In this article it is worked out a simple example concerning superconductivity, that shows the P-matrix method to determine the equations and inequalities defining the orbit space and its stratification. This approach is of general validity and can be used in all physical problems that make use of invariant functions, as long as the symmetry group is compact.

Vittorino Talamini

2006-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Superconducting active impedance converter  

DOE Patents (OSTI)

This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

Ginley, D.S.; Hietala, V.M.; Martens, J.S.

1992-12-31T23:59:59.000Z

82

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials  

E-Print Network (OSTI)

B. Superconductivity . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideSearch for Pressure Induced Superconductivity in Undoped Ce-

Zocco, Diego Andrés

2011-01-01T23:59:59.000Z

83

Models of Holographic superconductivity  

E-Print Network (OSTI)

We construct general models for holographic superconductivity parametrized by three couplings which are functions of a real scalar field and show that under general assumptions they describe superconducting phase transitions. While some features are universal and model independent, important aspects of the quantum critical behavior strongly depend on the choice of couplings, such as the order of the phase transition and critical exponents of second-order phase transitions. In particular, we study a one-parameter model where the phase transition changes from second to first order above some critical value of the parameter and a model with tunable critical exponents.

Francesco Aprile; Jorge G. Russo

2009-12-02T23:59:59.000Z

84

Superconductivity | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Research Highlights Superconductivity Neutron diffraction reveals semiconducting phase and contributes to new understanding of iron-based superconductors Contact: Huibo Cao New VULCAN tests of Japanese cable for US ITER's central magnet system (2012) Contact: Ke An ARCS maps collaborative magnetic spin behavior in iron telluride (2011) Published Work: "Unconventional Temperature Enhanced Magnetism in Fe1:1Te" Contact: Igor Zaliznyak Doug Scalapino discusses "common thread" linking unconventional superconducting materials (2011) Contact: Douglas Scalapino Materials Engineering Research at SNS Helps International Collaboration on Fusion Energy Scientists and engineers at ORNL are working with the ITER Organization and the Japanese Atomic Energy Agency to resolve issues with a critical

85

Free-standing superconductive articles  

DOE Patents (OSTI)

A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer, the ceramic superconductive material layer and the protective material layer, removing the protective material layer from the composite structure whereby a substrate-free, free-standing ceramic superconductive film remains.

Wu, X.D.; Muenchausen, R.E.

1991-12-31T23:59:59.000Z

86

Langmuir vacuum and superconductivity  

SciTech Connect

It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

Veklenko, B. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

2012-06-15T23:59:59.000Z

87

Superconductivity for Electric Systems  

E-Print Network (OSTI)

and Energy Reliability ­ Superconductivity for Electric Systems #12;3 Control Milestones and Status Control Milestone Due Date Status Section 1.1: Wire Development. · Short sample RABiTS using slot-die MOD CeO2 cap manufacturing process. Highlights: 1) HTS Program CPS Control Milestone Met - Short sample RABiTS using slot

88

Superconductivity and electron tunneling  

Science Conference Proceedings (OSTI)

Experiments on the tunneling of electrons through a thin dielectric layer separating two superconducting metals are reported. Data are presented for the pairs AI-Pb, Sn-Pb, and In-Sn. Particular attention is paid to the form of the tunneling current ...

S. Shapiro; P. H. Smith; J. Nicol; J. L. Miles; P. F. Strong

1962-01-01T23:59:59.000Z

89

Superconducting thermoelectric generator  

DOE Patents (OSTI)

Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

Metzger, J.D.; El-Genk, M.S.

1994-01-01T23:59:59.000Z

90

SUPERCONDUCTING VANADIUM BASE ALLOY  

DOE Patents (OSTI)

A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

Cleary, H.J.

1958-10-21T23:59:59.000Z

91

Market Transformation  

Fuel Cell Technologies Publication and Product Library (EERE)

This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

92

A worldwide overview of superconductivity development efforts for utility applications  

DOE Green Energy (OSTI)

The progress and prospects for the application of high temperature superconductivity to the electric power sector has been the topic of an IEA Implementing Agreement begun in 1990. The present task members are: Canada, Denmark, Finland, Germany, Israel, Italy, Japan, the Netherlands, Norway, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. As a result of the Implementing Agreement, work has been performed by the Operating Agent with the full participation of all of the member countries. This work has facilitated the exchange of information among experts in all member countries and is the basis for much of the information contained in this paper. This paper summarizes progress toward application of high temperature superconductivity to devices for use in the electric power sector such as: fault-current limiters, cables, superconducting magnetic energy Storage, rotating machinery, transformers, and flywheels incorporating magnetic bearings. Such devices are being designed, built and tested throughout the world.

Giese, R.F.

1996-04-01T23:59:59.000Z

93

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

44 44 Waukesha Electric System, Inc OE Southern Cal Edison activities Energy Delivery Technologies Div 2010 David Szucs approx. July 2010- January 2015 Irvine, CA "Recovery Act-Fault Current Limiting (FCL) Superconducting Transformer" Southern California Edison will install & operate a prototype FCL superconducting transformer rated 28 MVA, 66kV/12kV service, built by Waukesha Electric, in their MacArthur substation as a demonstration. 07 02 2010 David Szucs Digitally signed by David Szucs DN: cn=David Szucs, o=NETL, ou=EDTD, email=szucs@netl.doe.gov, c=US Date: 2010.07.02 13:16:07 -04'00' 07 16 2010 Fred E. Pozzuto Digitally signed by Fred E. Pozzuto DN: cn=Fred E. Pozzuto, o=USDOE, ou=NETL-Office of Project Facilitation and Compliance, email=fred.pozzuto@netl.doe.gov, c=US

94

AFRD - Superconducting Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Magnets Superconducting Magnets Home Organization Diversity Safety Links Gallery/History Updated July 2008 Ever-stronger magnets (which must be cost-effective as well) are a key to building tomorrow's high-energy accelerators and upgrading today's. Our role— not only a leading R&D group but also the administrators of the multi-institutional National Conductor Development Program— to create both evolutionary improvements and paradigm shifts in the application of accelerator magnets, providing innovative technology that enables new science. Improvements in conductor, innovative structures to solve the challenges of high fields and brittle superconductors, and integration of computerized design and analysis tools are key. The performance requirements of modern accelerators continue to press the

95

Equilibrium Distributions and Superconductivity  

E-Print Network (OSTI)

In this article two models for charges distributions are discussed. On the basis of our consideration we put different points of view for stationary state. We prove that only finite energy model for charges' distribution and well-known variation principle explain some well-known experimental results. A new model for superconductivity was suggested, too. In frame of that model some characteristic experimental results for superconductors is possible to explain.

Ashot Vagharshakyan

2011-06-07T23:59:59.000Z

96

Superconducting magnet wire  

DOE Patents (OSTI)

A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL); Banerjee, Indrajit (San Jose, CA)

1986-01-01T23:59:59.000Z

97

Superconducting magnet of Aurora  

Science Conference Proceedings (OSTI)

The AURORAsuperconducting magnet system is composed of a cylindrical single?body magnet and a refrigeration system for superconducting coils. The magnet generates B z =1 T on the central orbit at the 150 MeV electron beam injection energy and B z =4.3 T at the 650 MeV storage energy. The diameter of the central orbit is 1 m. Iron poles and yokes are used for shielding the magnetic field

T. Takayama; SHI Accelerator Research Group

1989-01-01T23:59:59.000Z

98

Crystalline Color Superconductivity  

E-Print Network (OSTI)

We give an introduction crystalline color superconductivity, arguing that it is likely to occur wherever quark matter in which color-flavor locking does not occur is found. We survey the properties of this form of quark matter, and argue that its presence in a compact star may result in pulsar glitches, and thus in observable consequences. However, elucidation of this proposal requires an understanding of the crystal structure, which is not yet in hand.

Krishna Rajagopal

2001-09-14T23:59:59.000Z

99

Solitons in SO(5) Superconductivity  

E-Print Network (OSTI)

A model unifying superconductivity and antiferromagnetism using an underlying approximate SO(5) symmetry has injected energy into the field of high-temperature superconductivity. This model might lead to a variety of interesting solitons. In this paper, the idea that superconducting vortices may have antiferromagnetic cores is presented, along with the results of some preliminary numerical work. An outlook for future work, including speculations about other possible exotic solitons, is presented. 1

R. Mackenzie; Québec Hc J; J. M. Cline

1999-01-01T23:59:59.000Z

100

Superconducting Cable Construction and Testing  

Science Conference Proceedings (OSTI)

Superconducting cables, carrying three to five times more power than conventional cables, can meet increasing power demands in urban areas via retrofit applications. These high capacity cables will allow utilities to greatly enhance capacity, thereby giving the grid more flexibility and reliability. This report describes the development, construction, and testing of a superconducting cable system. Background In the late eighties, a new class of ceramic oxides was discovered with superconducting propertie...

2000-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

102

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

103

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

104

Flavor Superconductivity & Superfluidity  

E-Print Network (OSTI)

In these lecture notes we derive a generic holographic string theory realization of a p-wave superconductor and superfluid. For this purpose we also review basic D-brane physics, gauge/gravity methods at finite temperature, key concepts of superconductivity and recent progress in distinct realizations of holographic superconductors and superfluids. Then we focus on a D3/D7-brane construction yielding a superconducting or superfluid vector-condensate. The corresponding gauge theory is 3+1-dimensional N=2 supersymmetric Yang-Mills theory with SU(N) color and SU(2) flavor symmetry. It shows a second order phase transition to a phase in which a U(1) subgroup of the SU(2) symmetry is spontaneously broken and typical superconductivity signatures emerge, such as a conductivity (pseudo-)gap and the Meissner-Ochsenfeld effect. Condensates of this nature are comparable to those recently found experimentally in p-wave superconductors such as a ruthenate compound. A string picture of the pairing mechanism and condensation is given using the exact knowledge of the corresponding field theory degrees of freedom.

Matthias Kaminski

2010-02-25T23:59:59.000Z

105

Magnetically leviated superconducting bearing  

DOE Patents (OSTI)

A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

1993-01-01T23:59:59.000Z

106

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

107

Superconductivity and Superfluidity  

E-Print Network (OSTI)

Currently there is a common belief that the explanation of superconductivity phenomenon lies in understanding the mechanism of the formation of electron pairs. Paired electrons, however, cannot form a superconducting condensate spontaneously. These paired electrons perform disorderly zero-point oscillations and there are no force of attraction in their ensemble. In order to create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. As a result of this ordering of zero-point oscillations in the electron gas, superconductivity arises. This model of condensation of zero-point oscillations creates the possibility of being able to obtain estimates for the critical parameters of elementary superconductors, which are in satisfactory agreement with the measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained, due to the ordering of zero-point fluctuations. It is therefore established that both related phenomena are based on the same physical mechanism.

B. V. Vasiliev

2010-08-16T23:59:59.000Z

108

Lightweight transformer  

DOE Green Energy (OSTI)

The technical effort described in this report relates to the program that was performed to design, fabricate, and test a lightweight transformer for Strategic Defense Initiative Organization (SDIO) mission requirements. The objectives of this program were two-fold: (1) design and fabricate a lightweight transformer using liquid hydrogen as the coolant; and (2) test the completed transformer assembly with a low voltage, dc power source. Although the full power testing with liquid helium was not completed, the program demonstrated the viability of the design approach. The lightweight transformer was designed and fabricated, and low and moderate power testing was completed. The transformer is a liquid hydrogen cooled air core transformer that uses thin copper for its primary and secondary windings. The winding mass was approximately 12 kg, or 0.03 kg/kW. Further refinements of the design to a partial air core transformer could potentially reduce the winding mass to as low as 4 or 5 kg, or 0.0125 kg/kW. No attempt was made on this program to reduce the mass of the related structural components or cryogenic container. 8 refs., 39 figs., 2 tabs.

Swallom, D.W.; Enos, G.

1990-05-01T23:59:59.000Z

109

Competition between singlet and triplet superconductivity  

E-Print Network (OSTI)

The competition between singlet and triplet superconductivity is examined in consideration of correlations on an extended Hubbard model. It is shown that the triplet superconductivity may not be included in the common Hubbard model since the strong correlation favors the singlet superconductivity, and thus the triplet superconductivity should be induced by the electron-phonon interaction and the ferromagnetic exchange interaction. We also present a superconducting qualification with which magnetism is unbeneficial to superconductivity.

Tian De Cao; Tie Bang Wang

2009-05-15T23:59:59.000Z

110

Hall effect in superconducting films  

E-Print Network (OSTI)

Near the superconducting phase transition, fluctuations significantly modify the electronic transport properties. Here we study the fluctuation corrections to the Hall conductivity in disordered films, extending previous ...

Michaeli, Karen

111

Superconducting VAR control. [Patent application  

DOE Patents (OSTI)

Static VAR control means are described employing an asymmetrically controlled Graetz bridge and a superconducting direct current coil having low losses and low cost characteristics.

Boenig, H.J.; Hassenzahl, W.V.

1980-12-05T23:59:59.000Z

112

High Pressure Studies of Superconductivity.  

E-Print Network (OSTI)

??Superconductivity has been studied extensively since it was first discovered over 100 years ago. High pressure studies, in particular, have been vital in furthering our… (more)

Hillier, Narelle Jayne

2013-01-01T23:59:59.000Z

113

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

that could transform the way information is stored and processed, in low-power-consumption devices that are not only '"green," but also immune to the overheating problems...

114

High-Temperature Superconductivity Cable Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into...

115

Superconductivity Program Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Overview Superconductivity Program Overview High-Temperature Superconductivity (HTS) has the potential for achieving a more fundamental change to electric power...

116

Thermal activation of superconducting Josephson junctions  

E-Print Network (OSTI)

Superconducting quantum circuits (SQCs) are being explored as model systems for scalable quantum computing architectures. Josephson junctions are extensively used in superconducting quantum interference devices (SQUIDs) ...

Devalapalli, Aditya P. (Aditya Prakash)

2007-01-01T23:59:59.000Z

117

Transformative copy  

E-Print Network (OSTI)

The ability to create an unlimited number of identical copies is a privilege of digital documents. What if that would not be the case, if each copy of a digital file would go along with some sort of transformation? This ...

Offenhuber, Dietmar

2008-01-01T23:59:59.000Z

118

The All Superconducting Substation: A Comparison with a Conventional Substation  

Science Conference Proceedings (OSTI)

Conventional substations today are quite similar in appearance to those of 50 years ago. However, substation components, efficiency, and safety have improved considerably in that time. If the improvements are to continue, different technologies will be required in the future. Superconducting devices such as transformers and cables are under development at present and may provide more efficient and more reliable service than conventional components. This report describes the effects of substituting superc...

2000-11-07T23:59:59.000Z

119

Power superconducting power transmission cable  

DOE Patents (OSTI)

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

Ashworth, Stephen P. (Cambridge, GB)

2003-01-01T23:59:59.000Z

120

Superconductivity Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconductivity Superconductivity SHARE Superconductivity Highlights 1-6 of 6 Results Doug Scalapino discusses "common thread" linking unconventional superconducting materials December 01, 2012 - Douglas Scalapino was the inaugural speaker for a new joint lecture series sponsored by the Spallation Neutron Source and the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory. New VULCAN tests of Japanese cable for US ITER's central magnet system February 01, 2012 - Neutron testing of the Japanese-made superconducting cable for the central solenoid (CS) magnetic system for US ITER begins next Tuesday, says Ke An, lead instrument scientist for the VULCAN Engineering Materials Diffractometer at the Spallation Neutron Source. ARCS maps collaborative magnetic spin behavior in iron telluride

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE Superconductivity Program Stakeholders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Force Research Laboratory Air Force Research Laboratory Air Liquide Air Products and Chemicals Inc. American Electric Power American Superconductor Argonne National Laboratory BOC Group Brookhaven National Laboratory Composite Technology Development Consolidated Edison Cryo-Industries of America Inc. Delta Star Inc. Directed Vapor Technologies Department of Defense Department of Homeland Security Electric Power Research Institute Entergy Florida State University Long Island Power Authority Los Alamos National Laboratory Metal Oxide Technologies Inc. Mipox International Corp. National Grid National Institute for Standards & Tech. National Renewable Energy Laboratory Nissan Electric Co. Ltd. Nexans nkt Cables Group Oak Ridge National Laboratory Oxford Superconducting Technology Pacific Gas and Electric

122

Superconducting dipole electromagnet  

DOE Patents (OSTI)

A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

Purcell, John R. (San Diego, CA)

1977-07-26T23:59:59.000Z

123

Precursor of Color Superconductivity  

E-Print Network (OSTI)

We investigate possible precursory phenomena of color superconductivity at finite temperature $T$ with an effective theory of QCD. It is found that the fluctuation of the diquark pair field exists with a prominent strength even well above the critical temperature $T_c$. We show that such a fluctuaiton forms a collective mode, the corresponding pole of which approaches the origin as $T$ is lowered to $T_c$ in the complex energy plane. We discuss the possible relevance of the precursor to the observables to be detected in heavy-ion collisions.

M. Kitazawa; T. Koide; T. Kunihiro; Y. Nemoto

2002-12-06T23:59:59.000Z

124

Superconducting magnet cooling system  

DOE Patents (OSTI)

A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

Vander Arend, Peter C. (Center Valley, PA); Fowler, William B. (St. Charles, IL)

1977-01-01T23:59:59.000Z

125

Substantial Transformation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Recovery Act/Buy American Information Related to Substantial Transformation GUIDANCE ON MANUFACTURED GOODS AND SUBSTANTIAL TRANSFORMATION FOR FINANCIAL ASSISTANCE AWARDS Section 1605 of the Recovery Act states, "None of the funds appropriated or otherwise made available by this Act may be used for a project for the construction, alteration, maintenance, or repair of a public building or public work unless all of the iron, steel, and manufactured goods used in the project are produced in the United States." The Office of Management and Budget's (OMB) guidance on implementing this section defines "manufactured good" as a "good brought to the construction site for incorporation into

126

Pushing the Limits of RF Superconductivity Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations Workshop Proceedings Suggested Reading Material on RF Superconductivity Workshop Dinner Accommodations Ground Transportation Access to...

127

A Superconducting transformer system for high current cable testing  

E-Print Network (OSTI)

presented in section IV. Uset Usec INT Ur A2 Ui Lr Msr LsaUset Htrafo Ip Amplitude Usec H1 H3 H4 Is | H trafo | Phase

Godeke, A.

2010-01-01T23:59:59.000Z

128

Color Superconductivity in Asymmetric Matter  

E-Print Network (OSTI)

The influence of different chemical potential for different flavors on color superconductivity is analyzed. It is found that there is a first order transition as the asymmetry grows. This transition proceeds through the formation of bubbles of low density, flavor asymmetric normal phase inside a high density, superconducting phase with a gap {\\it larger} than the one found in the symmetric case. For small fixed asymmetries the system is normal at low densities and superconducting only above some critical density. For larger asymmetries the two massless quarks system stays in the mixed state for arbitrarily high densities.

Paulo F. Bedaque

1999-10-06T23:59:59.000Z

129

Superconductivity, Superfluidity and Holography  

E-Print Network (OSTI)

This is a concise review of holographic superconductors and superfluids. We highlight some predictions of the holographic models and the emphasis is given to physical aspects rather than to the technical details, although some references to understand the latter are systematically provided. We include gapped systems in the discussion, motivated by the physics of high-temperature superconductivity. In order to do so we consider a compactified extra dimension (with radius R), or, alternatively, a dilatonic field. The first setup can also be used to model cylindrical superconductors; when these are probed by an axial magnetic field a universal property of holography emerges: while for large R (compared to the other scales in the problem) non-local operators are suppressed, leading to the so called Little-Parks periodicity, the opposite limit shows non-local effects, e.g. the uplifting of the Little-Parks periodicity. This difference corresponds in the gravity side to a Hawking-Page phase transition.

Alberto Salvio

2013-01-02T23:59:59.000Z

130

Superconducting coil protection  

SciTech Connect

The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics. (auth)

Woods, E.L.

1975-01-01T23:59:59.000Z

131

Superconducting combined function magnets  

SciTech Connect

Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

Hahn, H.; Fernow, R.C.

1983-01-01T23:59:59.000Z

132

Superconducting energy storage  

DOE Green Energy (OSTI)

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

133

Superconducting magnetic coil  

DOE Patents (OSTI)

A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

Aized, D.; Schwall, R.E.

1999-06-22T23:59:59.000Z

134

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

135

High Tc Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

by C. Kim (SSRL), D. H. Lu (Stanford), K. M. Shen (Stanford) and Z.-X. Shen (Stanford/SSRL) by C. Kim (SSRL), D. H. Lu (Stanford), K. M. Shen (Stanford) and Z.-X. Shen (Stanford/SSRL) Extensive research efforts to study the novel electronic properties of high-Tc superconductors and their related materials by angle-resolved photoemission spectroscopy at a recently commissioned Beam Line 5-4 (led by Z.-X. Shen) continue to be successful, producing many important results. These results, which are highlighted by five articles recently published in Physical Review Letters and one in Science, brought our understanding steps closer to solving the mystery of the high-Tc superconductivity. With the development of the latest generation of ultra-high resolution electron spectrometers in the past few years, the technique of angle resolved photoemission spectroscopy (ARPES) has recently experienced a renaissance. Nowhere is this revolution more evident than in the study of the high-temperature superconductors, which more than a decade after their discovery, continue to defy theoretical explanation. Recent ARPES experiments performed at Beam Line 5-4 have led to critical new discoveries about the fundamental nature of these mysterious superconductors and are now changing the way that the physics community views these materials. An excellent benchmark for the huge leap in detector resolution and technology is the recent work on Sr2RuO4. Although it belongs to a slightly different family than the high- temperature superconductors, its exotic superconducting mechanism (Tc = 1K) and complex electronic structure make it itself a fascinating material. In the past, due to poor resolutions, ARPES studies on this material were in disagreement with theory and other experimental techniques.

136

RF transformer  

DOE Patents (OSTI)

There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

Smith, James L. (Naperville, IL); Helenberg, Harold W. (Calumet City, IL); Kilsdonk, Dennis J. (Joliet, IL)

1979-01-01T23:59:59.000Z

137

Brett Parker | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Brett Parker Brett Parker Recent Presentations "BNL Direct Wind Magnets," (pdf) presentation dedicated to the memory of Pat Thompson given at the 22nd Magnet Technology Conference (MT22), September 11 - 16, 2011, Marseille, France A Review of BNL Direct-Wind Superconducting IR Magnet Experience, (pdf) presented at the 30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions, October 13 - 16, 2003, Stanford, California The Serpentine Coil Design for BEPC-II Superconducting IR Magnets, (pdf) presented at the "Mini-Workshop on BEPC-II IR Design", January 12 - 16, 2004, Beijing, P.R. China Ma nufacture of a Superconducting Octupole Magnet for the ALPHA Experiment at CERN using the Direct Wind Machine Presentations Prior to 2004 Superconducting Final Focus Magnet Issues (pdf), presented at

138

Partial Deconfinement in Color Superconductivity  

E-Print Network (OSTI)

We analyze the fate of the unbroken SU(2) color gauge interactions for 2 light flavors color superconductivity at non zero temperature. Using a simple model we compute the deconfining/confining critical temperature and show that is smaller than the critical temperature for the onset of the superconductive state itself. The breaking of Lorentz invariance, induced already at zero temperature by the quark chemical potential, is shown to heavily affect the value of the critical temperature and all of the relevant features related to the deconfining transition. Modifying the Polyakov loop model to describe the SU(2) immersed in the diquark medium we argue that the deconfinement transition is second order. Having constructed part of the equation of state for the 2 color superconducting phase at low temperatures our results are relevant for the physics of compact objects featuring a two flavor color superconductive state.

F. Sannino; N. Marchal; W. Schäfer

2002-02-26T23:59:59.000Z

139

QUENCHES IN LARGE SUPERCONDUCTING MAGNETS  

E-Print Network (OSTI)

stored energy (J); jo is the superconducting matrix currentstored energy Eo(J) XBL 777-1557 Superconductor matrixmatrix current density as a function of sto~ed magnetic energy

Eberhard, P.H.

2010-01-01T23:59:59.000Z

140

The challenge of unconventional superconductivity.  

SciTech Connect

During the past few decades, several new classes of superconductors have been discovered that do not appear to be related to traditional superconductors. The source of the superconductivity of these materials is likely different from the electron-ion interactions that are at the heart of conventional superconductivity. Developing a rigorous theory for any of these classes of materials has proven to be a difficult challenge and will remain one of the major problems in physics in the decades to come.

Norman, M. R. (Materials Science Division)

2011-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hermetically sealed superconducting magnet motor  

DOE Patents (OSTI)

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

1996-07-02T23:59:59.000Z

142

Hermetically sealed superconducting magnet motor  

DOE Patents (OSTI)

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

DeVault, Robert C. (Knoxville, TN); McConnell, Benjamin W. (Knoxville, TN); Phillips, Benjamin A. (Benton Harbor, MI)

1996-01-01T23:59:59.000Z

143

Process for producing clad superconductive materials  

DOE Patents (OSTI)

A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

Cass, R.B.; Ott, K.C.; Peterson, D.E.

1991-03-19T23:59:59.000Z

144

Process for producing clad superconductive materials  

DOE Patents (OSTI)

A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

Cass, Richard B. (Ringoes, NJ); Ott, Kevin C. (Los Alamos, NM); Peterson, Dean E. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

145

Strongly correlated electron behavior : superconductivity and non-Fermi liquid behavior in Ce?-xRxColn?  

E-Print Network (OSTI)

C. Superconductivity . . . . . . . . . . . . . . . . . . .1. Heavy Fermion Superconductivity . . . . . . .Introductioon to Superconductivity, ch.1, (Dover, New York [

Gonzales, Eileen

2009-01-01T23:59:59.000Z

146

bylaws of the superconducting materials committee of the minerals ...  

Science Conference Proceedings (OSTI)

of superconductivity through organized symposia and technical aspects of meetings ... macroscopic descriptions of superconductivity; physical, chemical, and.

147

Superconducting magnetic energy storage for BPA transmission-line stabilization  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) operates the electrical transmission system that joins the Pacific Northwest with southern California. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter is being installed at the Tacoma Substation to provide system damping for low frequency oscillations of 0.35 Hz. The integrated system status is described and reviewed. Components included in the system are the superconducting coil, seismically mounted in an epoxy fiberglass nonconducting dewar; a helium refrigerator; a heat rejection subsystem; a high pressure gas recovery subsystem; a liquid nitrogen trailer; the converter with power transformers and switchgear; and a computer system for remote microwave link operation of the SMES unit.

Rogers, J.D.; Barron, M.H.; Boenig, H.J.; Criscuolo, A.L.; Dean, J.W.; Schermer, R.I.

1982-01-01T23:59:59.000Z

148

Lorentz Transformations  

E-Print Network (OSTI)

This paper describes a particularly didactic and transparent derivation of basic properties of the Lorentz group. The generators for rotations and boosts along an arbitrary direction, as well as their commutation relations, are written as functions of the unit vectors that define the axis of rotation or the direction of the boost (an approach that can be compared with the one that in electrodynamics, works with the electric and magnetic fields instead of the Maxwell stress tensor). For finite values of the angle of rotation or the boost's velocity, collectively denoted by V, the existence of an exponential expansion for the coordinate transformation's matrix, M (in terms of GV where G is the generator) requires that the matrix's derivative with respect to V, be equal to GM. This condition can only be satisfied if the transformation is additive as it is indeed the case for rotations, but not for velocities. If it is assumed, however, that for boosts such an expansion exists, with V = V(v), v being the velocity, and if the above condition is imposed on the boost's matrix then its expression in terms of hyperbolic cosh(V) and sinh(V} is recovered, and the expression for V(= arc tanh(v)) is determined. A general Lorentz transformation can be written as an exponential containing the sum of a rotation and a boost, which to first order is equal to the product of a boost with a rotation. The calculations of the second and third order terms show that the equations for the generators used in this paper, allow to reliably infer the expressions for the higher order generators, without having recourse to the commutation relations. The transformationmatrices for Weyl spinors are derived for finite values of the rotation and velocity, and field representations, leading to the expression for the angular momentum operator, are studied.

Bernard R. Durney

2011-03-01T23:59:59.000Z

149

TRANSFORMER APPARATUS  

DOE Patents (OSTI)

Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

Wolfgang, F.; Nicol, J.

1962-11-01T23:59:59.000Z

150

Perspectives: Superconductivity The Race to Beat the Cuprates  

E-Print Network (OSTI)

Superconductors are materials that lose all electrical resistance below a specific temperature, known as the critical temperature (Tc). Large-scale applications, for example, in superconducting cables, require materials with high (ideally room temperature) Tc’s, but most superconductors have very low Tc’s, typically a few kelvin or less. The discovery of a layered copper oxide (cuprate) with a Tc of 38 K (see panel A in the first figure) in 1986 [1] raised hopes that high temperature superconductivity might be within reach. By 1993, cuprate Tc’s of 133 K at ambient pressure had been achieved [2,3], but efforts to further increase cuprate Tc’s have not been fruitful. Two reports by Schön et al. [4,5] in the current issue of science –applying a similar technique to two very different materials – drastically alter the perception that planar cuprates are the only route to high temperature superconductivity. Schön et al. use a field-effect device introduced in previous investigations to transform insulating compounds into metals [6]. On page 2430, they show that copper oxide materials with a ladder structure (panel B in the first figure) can be superconducting [4], even without the high pressure applied in previous studies of related compounds. Even more spectacularly, they report on page 2432 that the Tc of a noncuprate molecular materials, C60 (panel C in the first figure), known before to superconduct at 52 K upon hole doping [7], can be raised by hole doping with intercalated CHBr3 to 117 K [5], not far from the cuprate record. Simple extrapolations suggest that the Tc could be increased even further, effectively ending the dominance of cuprates in the high-Tc arena.

Elbio Dagotto

2001-01-01T23:59:59.000Z

151

Superconducting magnetic energy storage  

SciTech Connect

The U.S. electric utility industry transmits power to customers at a rate equivalent to only 60% of generating capacity because, on an annual basis, the demand for power is not constant. Load leveling and peak shaving units of various types are being used to increase the utilization of the base load nuclear and fossil power plants. The Los Alamos Scientific Laboratory (LASL) is developing superconducting magnetic energy storage (SMES) systems which will store and deliver electrical energy for the purpose of load leveling, peak shaving, and the stabilization of electric utility networks. This technology may prove to be an effective means of storing energy for the electric utilities because (1) it has a high efficiency (approximately 90%), (2) it may improve system stability through the fast response of the converter, and (3) there should be fewer siting restrictions than for other load leveling systems. A general SMES system and a reference design for a 10-GWh unit for load leveling are described; and the results of some recent converter tests are presented.

Hassenzahl, W.V.; Boenig, H.J.

1977-01-01T23:59:59.000Z

152

Superconducting Cable Termination  

SciTech Connect

Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

Sinha, Uday K. (Carrollton, GA); Tolbert, Jerry (Newnan, GA)

2005-08-30T23:59:59.000Z

153

Improved superconducting magnet wire  

DOE Patents (OSTI)

This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

Schuller, I.K.; Ketterson, J.B.

1983-08-16T23:59:59.000Z

154

Nonperturbative QCD vacuum and Colour Superconductivity  

E-Print Network (OSTI)

We discuss the possibility of existence of colour superconducting state in real QCD vacuum with nonzero gluon condensate. We argue, that nonperturbative gluonic fields might play a crucial role in colour superconductivity scenario.

N. O. Agasian; B. O. Kerbikov; V. I. Shevchenko

1999-02-12T23:59:59.000Z

155

Recent Developments in High Temperature Superconductivity  

E-Print Network (OSTI)

New material systems and the experimental progress of high temperature superconductivity are briefly reviewed. We examine both oxides and non-oxides which exhibit stable and/or unstable superconductivity at high temperatures.

Hor, P. H.

1988-09-01T23:59:59.000Z

156

Two key questions about color superconductivity  

E-Print Network (OSTI)

We pose two key questions about color superconductivity: What are the effects of the large strange quark mass, and what are the observable consequences of color superconductivity? Motivated by the first question, we study ...

Kundu, Joydip, 1977-

2004-01-01T23:59:59.000Z

157

Electrothermal simulation of superconducting nanowire avalanche photodetectors  

E-Print Network (OSTI)

We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting ...

Marsili, Francesco

158

Superconductivity in the system of p electrons  

SciTech Connect

The problem of superconductivity in an electron system with partly filled sp shell is studied. The scattering amplitudes are determined and the equations of superconductivity are derived from the assumption that the Hubbard energy is the largest energy parameter.

Zaitsev, R. O., E-mail: Zaitsev_rogdai@mail.ru [Moscow State Institute of Physics and Technology (Russian Federation)

2012-10-15T23:59:59.000Z

159

Superconducting Low Voltage Direct Current (LVDC) Networks  

Science Conference Proceedings (OSTI)

A low voltage dc superconducting distribution network is a challenging future opportunity for power distribution. This report presents a scheme for a superconducting, parallel- connected, multiterminal dc transmission system.

1994-04-27T23:59:59.000Z

160

A unified theory of superconductivity  

E-Print Network (OSTI)

In this paper, we study the reliability of BCS theory as a scientific explanation of the mystery of superconductivity. It is shown clearly that the phonon-mediated BCS theory is fundamentally incorrect. Two kinds of glues, pairing (pseudogap) glue and superconducting glue, are suggested based on a real space Coulomb confinement effect. The scenarios provide a unified explanation of the pairing symmetry, pseudogap and superconducting states, charge stripe order, spin density wave (SDW), checkerboard-type charge-ordered phase, magic doping fractions and vortex structures in conventional and unconventional (the high-Tc cuprates and MgB2) superconductors. The theory agrees with the existence of a pseudogap in high-temperature superconductors, while no pseudogap feature could be observed in MgB2 and most of the conventional superconductors. Our results indicate that the superconducting phase can coexist with a inclined hexagonal vortex lattice in pure MgB2 single crystal with a charge carrier density ps=1.49*10^{22}/cm^{3}. Finally, the physical reasons why the good conductors (for example, Ag, Au, and Cu) and the overdoped high-Tc superconductors are non-superconducting are also explored.

Xiuqing Huang

2008-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fast superconducting magnetic field switch  

DOE Patents (OSTI)

The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

Goren, Y.; Mahale, N.K.

1995-12-31T23:59:59.000Z

162

Fast superconducting magnetic field switch  

DOE Patents (OSTI)

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01T23:59:59.000Z

163

BCS-Bose Crossover in Color Superconductivity  

E-Print Network (OSTI)

It is shown that the onset of the color superconducting phase occurs in the BCS-BE crossover region.

B. O. Kerbikov

2002-04-17T23:59:59.000Z

164

Color Superconductivity: Symmetries and Effective Lagrangians  

E-Print Network (OSTI)

I briefly review the symmetries and the associated low energy effective Lagrangian for two light flavor Color Superconductivity (2SC).

Francesco Sannino

2001-07-24T23:59:59.000Z

165

Symmetric superconducting states in thin films  

Science Conference Proceedings (OSTI)

Keywords: Ginzburg-Landau theory for superconductivity, Meissner effect, boundary value problems, calculus of variations, implicit difference scheme, maximum principle

Sheng Wang; Yisong Yang

1992-06-01T23:59:59.000Z

166

Magnetism and Superconductivity in Iron Pnictides  

Science Conference Proceedings (OSTI)

The discovery of high temperature superconductivity in iron pnictides and chalcogenides has resulted in surprising new insights into high temperature superconductivity and its relationship with magnetism. Here we provide an overview of some of what is known about these materials and in particular about the interplay of magnetism and superconductivity in them. Similarities and contrasts with cuprate superconductors are emphasized and the superconducting pairing is discussed within the framework of spin fluctuation induced pairing.

Singh, David J [ORNL

2012-01-01T23:59:59.000Z

167

Superconducting Cuprates on Catalytic Substrates - Energy ...  

Electricity Transmission Superconducting Cuprates on Catalytic Substrates Brookhaven National Laboratory. Contact BNL About This Technology Technology Marketing ...

168

Compact High-Temperature Superconducting Cable Wins ' ...  

Science Conference Proceedings (OSTI)

Compact High-Temperature Superconducting Cable Wins 'R&D 100' Award. From NIST Tech Beat: June 22, 2011. ...

2011-07-06T23:59:59.000Z

169

Superconductive articles including cerium oxide layer  

DOE Patents (OSTI)

A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

Wu, X.D.; Muenchausen, R.E.

1991-12-31T23:59:59.000Z

170

Ferromagnetism and Superconductivity in Quark Matter - Color magnetic superconductivity -  

E-Print Network (OSTI)

A coexistent phase of spin polarization and color superconductivity in high-density QCD is studied at zero temperature. The axial-vector self-energy stemming from the Fock exchange term of the one-gluon-exchange interaction has a central role to cause spin polarization. As a significant feature, the Fermi surface is deformed by the axial-vector self-energy and then rotation symmetry is spontaneously broken down. The gap function results in being anisotropic in the momentum space in accordance with the deformation. It is found that spin polarization barely conflicts with color superconductivity, and almost coexists with it.

Toshitaka Tatsumi; Tomoyuki Maruyama; Eiji Nakano

2003-12-25T23:59:59.000Z

171

Evaluating Transformer Losses  

E-Print Network (OSTI)

This paper outlines how to determine what transformer losses cost and how to evaluate transformer bids to optimize the investment.

Grun, R. L. Jr.

1989-09-01T23:59:59.000Z

172

Superconducting wire with improved strain characteristics  

DOE Patents (OSTI)

A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

Luhman, Thomas (Westhampton Beach, NY); Klamut, Carl J. (E. Patchogue, NY); Suenaga, Masaki (Bellport, NY); Welch, David (Stony Brook, NY)

1982-01-01T23:59:59.000Z

173

Superconducting wire with improved strain characteristics  

DOE Patents (OSTI)

A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

Luhman, Thomas (Westhampton Beach, NY); Klamut, Carl J. (East Patchogue, NY); Suenaga, Masaki (Bellport, NY); Welch, David (Stony Brook, NY)

1982-01-01T23:59:59.000Z

174

Superconducting wire with improved strain characteristics  

DOE Patents (OSTI)

A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

1979-12-19T23:59:59.000Z

175

Electronic structure of superconductivity refined  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic structure of superconductivity refined Electronic structure of superconductivity refined Electronic structure of superconductivity refined A team of physicists propose a new model that expands on a little understood aspect of the electronic structure in high-temperature superconductors. July 10, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

176

Ramesh Gupta | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Ramesh Gupta Ramesh Gupta Ramesh Gupta has always been a leader in the world of superconducting magnets, which are essential to great modern accelerators such as the Relativistic Heavy Ion Collider at BNL, and the Large Hadron Collider at CERN, Switzerland. For the past decade, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. Gupta, head of the High Temperature Superconductor (HTS) Research and Development Group in the Superconducting Magnet Division, is among those exploring avenues for HTS magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth's. These new magnets could revolutionize use in future accelerators, play a key role in energy efficiency and storage, and make possible new

177

Strain tolerant microfilamentary superconducting wire  

DOE Patents (OSTI)

A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

Finnemore, Douglas K. (Ames, IA); Miller, Theodore A. (Tuscon, AZ); Ostenson, Jerome E. (Ames, IA); Schwartzkopf, Louis A. (Mankato, MN); Sanders, Steven C. (Ames, IA)

1993-02-23T23:59:59.000Z

178

Dual control active superconductive devices  

Science Conference Proceedings (OSTI)

A dual control active superconducting device is described comprising; (a) a first device having a first main conduction channel formed of a film of superconductor on a substrate, an active weak link region interposed in the first main conduction channel, the active weak link region composed of a plurality of links formed of a thin film of superconductor separated by non-superconductive voids, the thickness and lateral dimensions of the links selected such that magnetic flux can propagate across the weak link region when it is superconducting, and a first control line having a portion adjacent to the active weak link region of the first main conduction channel such that current in the first control line will impose a magnetic flux on the weak link region; (b) a second superconducting device having a second main conduction channel formed of a film of superconductor on a substrate, an active weak link region interposed in the second main conduction channel, the active weak link region composed of at least one link formed of a thin film of superconductor separated by non-superconductive voids, the thickness and lateral dimensions of the links selected such that magnetic flux can propagate across the weak link region when it is superconducting, and a second control line having a portion adjacent to the active weak link region such that current in the second control line will impose a magnetic flux on the weak link region in the second main conduction channel; (c) an internal control line electrically connected to receive the current passed through the first main conduction channel and having a portion adjacent to the active weak link region of the second main conduction channel such that a current in the internal control line will impose a magnetic flux on the weak link region; and (d) electrical connectors connected to provide input current to the first and second main conduction channels and to conduct the output current.

Martens, J.S.; Beyer, J.B.; Nordman, J.E.; Hohenwarter, G.K.G.

1993-07-20T23:59:59.000Z

179

A Physical Picture of Superconductivity  

E-Print Network (OSTI)

A universal mechanism of superconductivity applicable to “low temperature” and “high temperature ” superconductors is proposed in this paper. With this model of mechanism experimental facts of superconductors can be qualitatively explained. A function is introduced to describe the average separation distance between vibrating lattice atoms, which is crucial for the transition from normal to superconductive state. However, the most attractive and exciting conclusion that can be derived from this physical picture, is that given atoms of other element be successfully sandwiched between ferromagnetic atoms one by one, a superconductor constructed this way is most likely to have a very high transition temperature.

W. Z. Shangguan; T. C. Au-yeung

2000-01-01T23:59:59.000Z

180

Freely oriented portable superconducting magnet  

SciTech Connect

A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

Schmierer, Eric N. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM)

2010-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Free-standing oxide superconducting articles  

DOE Patents (OSTI)

A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

Wu, X.D.; Muenchausen, R.E.

1993-12-14T23:59:59.000Z

182

Meissner superconductivity in itinerant ferromagnets  

E-Print Network (OSTI)

Recent results about the coexistence of ferromagnetism and unconventional superconductivity with spin-triplet Cooper pairing are reviewed on the basis of the quasi-phenomenological Ginzburg-Landau theory. The superconductivity in the mixed phase of coexistence of ferromagnetism and unconventional superconductivity is triggered by the spontaneous magnetization. The mixed phase is stable whereas the other superconducting phases that usually exist in unconventional superconductors are either unstable or metastable at relatively low temperatures in a quite narrow domain of the phase diagram and the stability properties are determined by the particular values of Landau parameters. The phase transitions from the normal phase to the phase of coexistence is of first order while the phase transition from the ferromagnetic phase to the coexistence phase can be either of first or second order depending on the concrete substance. The Cooper pair and crystal anisotropy are relevant to a more precise outline of the phase diagram shape and reduce the degeneration of the ground states of the system. The results are discussed in view of application to itinerant ferromagnetic compounds as UGe2, ZrZn2, URhGe. 1

D. V. Shopova; D. I. Uzunov

2005-01-01T23:59:59.000Z

183

Superconducting flux flow digital circuits  

DOE Patents (OSTI)

A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

1995-02-14T23:59:59.000Z

184

Superconducting flux flow digital circuits  

DOE Patents (OSTI)

A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

185

Perfect NOT transformation and conjugate transformation  

E-Print Network (OSTI)

The perfect NOT transformation, probabilistic perfect NOT transformation and conjugate transformation are studied. Perfect NOT transformation criteria on a quantum state set $S$ of a qubit are obtained. Two necessary and sufficient conditions for realizing a perfect NOT transformation on $S$ are derived. When these conditions are not satisfied we discuss a probabilistic perfect NOT transformation (gate). We construct a probabilistic perfect NOT machine (gate) by a general unitary-reduction operation. With a postselection of the measurement outcomes, the probabilistic NOT gate yields perfectly complements of the input states. We prove that one can realize probabilistically the NOT gate of the input states secretly chosen from a certain set $S=\\{|\\Psi_1>, |\\Psi_2>,..., |\\Psi_n>\\}$ if and only if $|\\Psi_1>, |\\Psi_2>,...,$ and $|\\Psi_n>$ are linearly independent. We also generalize the probabilistic NOT transformation to the conjugate transformation in the multi-level quantum system. The lower bound of the best p...

Yan, Fengli; Yan, Zhichao

2012-01-01T23:59:59.000Z

186

Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006  

SciTech Connect

As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety codes. Unlike traditional grid technology, superconducting fault current limiters are smart. They increase their resistance abruptly in response to overcurrents from faults in the system, thus limiting the overcurrents and protecting the grid from damage. They react fast in both triggering and automatically resetting after the overload is cleared, providing a new, self-healing feature that enhances grid reliability. Superconducting reactive power regulators further enhance reliability by instantaneously adjusting reactive power for maximum efficiency and stability in a compact and economic package that is easily sited in urban grids. Not only do superconducting motors and generators cut losses, weight, and volume by a factor of two, but they are also much more tolerant of voltage sag, frequency instabilities, and reactive power fluctuations than their conventional counterparts. The challenge facing the electricity grid to provide abundant, reliable power will soon grow to crisis proportions. Continuing urbanization remains the dominant historic demographic trend in the United States and in the world. By 2030, nearly 90% of the U.S. population will reside in cities and suburbs, where increasingly strict permitting requirements preclude bringing in additional overhead access lines, underground cables are saturated, and growth in power demand is highest. The power grid has never faced a challenge so great or so critical to our future productivity, economic growth, and quality of life. Incremental advances in existing grid technology are not capable of solving the urban power bottleneck. Revolutionary new solutions are needed ? the kind that come only from superconductivity.

Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

2006-05-11T23:59:59.000Z

187

Transformations | Open Energy Information  

Open Energy Info (EERE)

Transformations Transformations Jump to: navigation, search Name Transformations Place Townsend, MA Website http://transformations-inc.com References Transformations[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Transformations is a company located in Townsend, MA. References ↑ "Transformations" Retrieved from "http://en.openei.org/w/index.php?title=Transformations&oldid=381743" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties

188

Bifurcation analysis for phase transitions in superconducting rings with nonuniform thickness  

Science Conference Proceedings (OSTI)

Keywords: Ginzburg-Landau functional, Little-Parks experiment, superconducting rings, superconductivity

Jorge Berger; Jacob Rubinstein

1998-02-01T23:59:59.000Z

189

e Lens Solenoid | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Lens Solenoid Electron Lens Solenoid To increase the proton beam luminosity in RHIC, an electron lens (e-lens) magnet system with two superconducting solenoids is being built at Brookhaven National Laboratory. Initial Design of 200 mm, 6T Superconducting Solenoid for e-lens (pdf), R. Gupta, 3/30/10 Iterated Design of 200 mm, 6T Superconducting Solenoid for e-lens (pdf), R. Gupta, 4/6/10 Corrector Designs for Superconducting Solenoid for e-lens (pdf), R. Gupta, 4/14/10 eLens Layout (pdf), P. Kovach, 5/25/10 eLens Main Solenoid (pdf), A. Marone, 5/25/10 Optimization in Corrector Design for Superconducting Solenoid for e-Lens (pdf), R. Gupta, 6/15/10 Main Solenoid Axial Force Retention (pdf), A. Marone 8/24/10 Superconducting Solenoid for e-lens with Fringe Field Coil (pdf), R.

190

Spacetime transformation acoustics  

E-Print Network (OSTI)

A recently proposed analogue transformation method has allowed the extension of transformation acoustics to general spacetime transformations. We analyze here in detail the differences between this new analogue transformation acoustics (ATA) method and the standard one (STA). We show explicitly that STA is not suitable for transformations that mix space and time. ATA takes as starting point the acoustic equation for the velocity potential, instead of that for the pressure as in STA. This velocity-potential equation by itself already allows for some transformations mixing space and time, but not all of them. We explicitly obtain the entire set of transformations that do not leave its form invariant. It is in these cases that ATA shows its true potential, allowing for building a transformation acoustics method that enables the full range of spacetime transformations. We provide an example of an important transformation which cannot be achieved with STA. Using this transformation, we design and simulate an acous...

García-Meca, C; Barceló, C; Jannes, G; Sánchez-Dehesa, J; Martínez, A

2013-01-01T23:59:59.000Z

191

Composite for superconducting metal oxide  

DOE Patents (OSTI)

A principal objective of the invention is to provide a new superconducting composite which has a greatly improved ductility and fracture resistance to assist in the fabrication and processing of superconductors and to provide long service life. A principal objective of the present invention is to provide a composite superconductor comprising a continuous superconductor phase and a minor amount of silver present as a discontinuous phase.

Singh, Jitendra P.; Shi, Donglu; Capone, D.W. II; Dusek, J.T.

1988-12-23T23:59:59.000Z

192

Processing method for superconducting ceramics  

DOE Patents (OSTI)

A process for preparing a superconducting ceramic and particularly YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, where {delta} is in the order of about 0.1--0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

Bloom, I.D.; Poeppel, R.B.; Flandermeyer, B.K.

1990-05-07T23:59:59.000Z

193

Ten questions and answers about superconductivity  

E-Print Network (OSTI)

This work answers the basic questions of superconductivity in a question-and-answer format. We extend a basic hypothesis to various superconductors. This hypothesis is that superconductivity requires that the pairing gap locates around the Fermi level. On the basis of this hypothesis our calculations give the so-called three factor theory with which some key problems of the high temperature superconductivity are explained.

Tian De Cao

2010-06-29T23:59:59.000Z

194

Superconducting thin films on potassium tantalate substrates  

DOE Patents (OSTI)

A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

195

Dual control active superconductive devices  

DOE Patents (OSTI)

A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

Martens, Jon S. (Albuquerque, NM); Beyer, James B. (Madison, WI); Nordman, James E. (Madison, WI); Hohenwarter, Gert K. G. (Madison, WI)

1993-07-20T23:59:59.000Z

196

Superconductivity with Stripes | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2000 | 1998 | Subscribe to APS Science Highlights rss feed Superconductivity with Stripes October 18, 2013 Bookmark and Share The interplay between stripe order,...

197

Superconductivity Technology Center - Los Alamos National Lab ...  

Researchers at the facility conduct research and development on processes for fabrication of high temperature superconducting tapes, measurement of the physical and ...

198

Center for Emergent Superconductivity 2013 Fall Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Emergent Superconductivity (CES) 2013 Fall Workshop Homepage Registration pulldown Talks pulldown CES Workshop Talks CES Jr. Research Talks Programs pulldown Contact Us...

199

Center for Emergent Superconductivity 2013 Fall Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

main gate, please inform the guard you are attending the Center for Emergent Superconductivity 2013 Fall Workshop workshop. You may be requested to check in at the security...

200

High Temperature Interfacial Superconductivity - Energy Innovation ...  

Cuprate superconductors exhibit relatively high transition temperatures, but their unit cells are complex and large. Localizing a superconducting layer to a small ...

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Publications | Ramesh Gupta | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

for muon collider" (pdf), R. Gupta, et al., 2010 Applied Superconductivity Conference, Washington, DC, August 2010. Slides from the talk (pdf) "Second Generation HTS Quadrupole...

202

ORNL superconducting wire yields unprecedented performance |...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL | News | News Releases | 2013 SHARE Media Contact: Morgan McCorkle Communications 865.574.7308 ORNL superconducting wire yields unprecedented performance This figure shows the...

203

Two key questions about color superconductivity.  

E-Print Network (OSTI)

??We pose two key questions about color superconductivity: What are the effects of the large strange quark mass, and what are the observable consequences of… (more)

Kundu, Joydip, 1977-

2004-01-01T23:59:59.000Z

204

Digital Cable Goes Quantum: NIST Debuts Superconducting ...  

Science Conference Proceedings (OSTI)

... The setup resembles a miniature version of a cable-television transmission line, but with some powerful added features, including superconducting ...

2012-06-08T23:59:59.000Z

205

Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1980  

DOE Green Energy (OSTI)

Work is reported on the development of two superconducting magnetic energy storage (SMES) units. One is a 30-MJ unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load leveling device. Emphasis has been on the stabilizing system. The manufacturing phase of the 30-MJ superconducting coil was initiated and the coil fabrication has advanced rapidly. The two converter power transformers were manufactured, successfully factory tested, and shipped. One transformer reached the Tacoma Substation in good condition; the other was dropped enroute and has been returned to the factory for rebuilding. Insulation of the 30-MJ coil has been examined for high voltage effects apt to be caused by transients such as inductive voltage spikes from the protective dump circuit. The stabilizing system converter and protective energy dump system were completed, factory tested, and delivered.

Rogers, J.D. (comp.)

1981-03-01T23:59:59.000Z

206

Learning Transformations From Video  

E-Print Network (OSTI)

on Natural Video . . . . . . . . . . . . . . . . .3 Learning Continuous Transformation from VideoProposed Video Coder

Wang, Ching Ming

2010-01-01T23:59:59.000Z

207

Generative model transformer  

Science Conference Proceedings (OSTI)

The Generative Model Transformer (GMT) project is an Open Source initiative to build a Model Driven Architecure™ tool that allows fully customisable Platform Independent Models, Platform Description Models, Texture Mappings, and Refinement Transformations. ... Keywords: QVT, domain-specific languages, generative model transformer (GMT), model driven architecture (MDA), model transformation, open source

Jorn Bettin; Ghica van Emde Boas

2003-10-01T23:59:59.000Z

208

Magnetism and superconductivity observed to exist in harmony  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetism and superconductivity exist in harmony Magnetism and superconductivity observed to exist in harmony Physicists have observed, for the first time in a single exotic phase,...

209

Current Challenges and Physics of Superconducting Radio-Frequency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent performance advances in superconducting RF (SRF) cavities have made RF superconductivity a vital technology for accelerators which serve a variety of experimental...

210

Commissioning of the superconducting ECR ion source VENUS  

E-Print Network (OSTI)

COMMISSIONING OF THE SUPERCONDUCTING ECR ION SOURCE VENUS *paper describes the ongoing commissioning. Initial resultscoils [2]. During commissioning of the superconducting

Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

2003-01-01T23:59:59.000Z

211

Quantum transport and field-induced superconductivity in carbon nanotubes.  

E-Print Network (OSTI)

?? For my thesis, I conducted experiments to investigate superconductivity and superconducting proximity effect in carbon nanotubes. The measurements are carried out on carbon nanotube… (more)

Yang, Yanfei

2010-01-01T23:59:59.000Z

212

A green transformer  

Science Conference Proceedings (OSTI)

The use of a new transformer and transformer fluid by a rural electric cooperative is described in the article. Edisol TR Transformers, which require about half as much fluid, are being used to replace existing transformers from 10- to 50 kVA. The dielectric fluid used in the transformers biodegrades more rapidly and completely, and is non-bioaccumulating in aquatic species. Standardized tests show that five to six weeks is required for biodegradation. The thermal design increases the efficiency of heat removal and reduces thermal gradients in the winding; the transformer is 20% smaller and 25% lighter than conventional transformers.

Wagner, A.

1997-03-01T23:59:59.000Z

213

Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology  

Science Conference Proceedings (OSTI)

First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

1998-05-01T23:59:59.000Z

214

Effects of strain on the superconducting properties of niobium-tin conductors  

Science Conference Proceedings (OSTI)

Investigations were performed to ascertain additional information on the connection between the cubic to tetragonal martensitic phase transformation and the phenomenon of superconductivity in Nb/sub 3/Sn. Of particular interest is the degradation of the critical parameters, such as T/sub c/, H/sub c2/, and J/sub c/, with mechanical straining of the superconductor. These studies yielded information that assisted in the derivation of the critical current-strain scaling laws mentioned above.

Hoard, R.W.

1980-11-01T23:59:59.000Z

215

Termination for a superconducting power transmission line including a horizontal cryogenic bushing  

DOE Patents (OSTI)

A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

Minati, Kurt F. (Northport, NY); Morgan, Gerry H. (Patchogue, NY); McNerney, Andrew J. (Shoreham, NY); Schauer, Felix (Upton, NY)

1984-01-01T23:59:59.000Z

216

Horizontal cryogenic bushing for the termination of a superconducting power-transmission line  

DOE Patents (OSTI)

A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

1982-07-29T23:59:59.000Z

217

The superconductivity of some intermetallic compounds  

Science Conference Proceedings (OSTI)

The W-Os, Re-W, Re-Mo, Re-Hf, and Mo-Hf binary systems were investigated for superconductivity down to 1°K. Several new superconducting regions were found with the most significant occurring in the primary and terminal solid-solution alloys. The ...

R. D. Blaugher; A. Taylor; J. K. Hulm

1962-01-01T23:59:59.000Z

218

Design Concepts for a Superconducting Cable  

Science Conference Proceedings (OSTI)

Superconducting cables carry higher currents and, depending upon the design, can experience substantially lower transmission losses than conventional cables. This report discusses previous approaches to designing superconducting cables, describes the technical issues that must be considered when designing a high-temperature superconductor (HTS) cable, and presents several design concepts for an HTS cable.

1994-09-28T23:59:59.000Z

219

Correlational analysis of superconducting mixed copper oxides  

Science Conference Proceedings (OSTI)

A unifying structural scheme of all layered superconducting cuprates is proposed. The paper is a review based on a three level correlational analysis of the behaviour of one compound, of a homologous series and a third interseries analysis, revealing ... Keywords: correlational analysis, homologous series, layered cuprates, superconductivity

Cristina Zarioiu; V. G. Lascu; Lidia Petrova; Anca Novac

2008-06-01T23:59:59.000Z

220

Stripes and superconductivity in cuprate superconductors  

E-Print Network (OSTI)

One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

J. M. Tranquada

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS  

SciTech Connect

One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

TRANQUADA, J.M.

2005-08-22T23:59:59.000Z

222

Applications of superconductivity in electric power systems  

DOE Green Energy (OSTI)

Major applications of superconductivity to power systems are considered. The state of the art of materials and refrigeration developments that are necessary for these applications is reviewed. Specific applications including superconducting cables for power transmission and superconducting magnetics for MHD generators, for energy storage, and for magnetically-confined fusion power generation are discussed in terms of their advantages and the progress being made toward introducing the various devices into real situations. It is concluded that the feasibility of superconducting devices is assured, and that, although their performance, reliability, and cost effectiveness for use in power generation, transmission, and storage remain to be proven, it is reasonable to expect that superconductivity can make it in the real world. (LCL)

Keller, W.E.

1976-01-01T23:59:59.000Z

223

Free-standing oxide superconducting articles  

DOE Patents (OSTI)

A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

Wu, Xin D. (Greenbelt, MD); Muenchausen, Ross E. (Espanola, NM)

1993-01-01T23:59:59.000Z

224

Microelectronic superconducting crossover and coil  

DOE Patents (OSTI)

A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions.

Wellstood, Frederick C. (Berkeley, CA); Kingston, John J. (Oakland, CA); Clarke, John (Berkeley, CA)

1994-01-01T23:59:59.000Z

225

Microelectronic superconducting crossover and coil  

DOE Patents (OSTI)

A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

Wellstood, F.C.; Kingston, J.J.; Clarke, J.

1994-03-01T23:59:59.000Z

226

On discrete cosine transform  

E-Print Network (OSTI)

The discrete cosine transform (DCT), introduced by Ahmed, Natarajan and Rao, has been used in many applications of digital signal processing, data compression and information hiding. There are four types of the discrete cosine transform. In simulating the discrete cosine transform, we propose a generalized discrete cosine transform with three parameters, and prove its orthogonality for some new cases. A new type of discrete cosine transform is proposed and its orthogonality is proved. Finally, we propose a generalized discrete W transform with three parameters, and prove its orthogonality for some new cases.

Zhou, Jianqin

2011-01-01T23:59:59.000Z

227

Superconducting coil and method of stress management in a superconducting coil  

DOE Patents (OSTI)

A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

McIntyre, Peter M. (College Station, TX); Shen, Weijun (Oak Ridge, TN); Diaczenko, Nick (College Station, TX); Gross, Dan A. (College Station, TX)

1999-01-01T23:59:59.000Z

228

Reassessment of Superconducting Magnetic Energy Storage (SMES) Transmission System Benefits  

Science Conference Proceedings (OSTI)

This report reassesses the benefits of superconducting magnetic energy storage (SMES) for enhancing transmission system performance.

2002-03-21T23:59:59.000Z

229

Method for making mirrored surfaces comprising superconducting material  

DOE Patents (OSTI)

Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

Early, J.T.; Hargrove, R.S.

1989-12-12T23:59:59.000Z

230

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

231

Metrics for enterprise transformation  

E-Print Network (OSTI)

The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

232

Typechecking for XML transformers  

Science Conference Proceedings (OSTI)

We study the typechecking problem for XML transformers: given an XML transformation program and a DTD for the input XML documents, check whether every result of the program conforms to a specified output DTD. We model XML transformers using a novel device ...

Tova Milo; Dan Suciu; Victor Vianu

2000-05-01T23:59:59.000Z

233

A dc transformer  

Science Conference Proceedings (OSTI)

Although conventional transformers are ac, a device that may be termed a dc transformer has been constructed by using superconductors. To provide an understanding of how such a transformer would operate, some of the properties of type I and type II superconductors ...

I. Giaever

1966-09-01T23:59:59.000Z

234

CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN  

E-Print Network (OSTI)

y CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURECritical Field for Superconductivity and Low-Temperaturemagnetic field for superconductivity In tungsten from 5.5 to

Triplett, B.B.

2008-01-01T23:59:59.000Z

235

Transforming a Transformative School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Transforming a Transformative School Transforming a Transformative School October 11, 2012 - 10:14am Addthis During a yearlong renovation, Harding Charter Preparatory school upgraded lighting fixtures, installed a new heating and cooling system, and replaced the entry doors. The new doors allow daylight into the school and restore the historical building envelope. | Photo courtesy of John Winkel, Energy Department. During a yearlong renovation, Harding Charter Preparatory school upgraded lighting fixtures, installed a new heating and cooling system, and replaced the entry doors. The new doors allow daylight into the school and restore the historical building envelope. | Photo courtesy of John Winkel, Energy Department. Julie McAlpin

236

Some aspects of color superconductivity: an introduction  

E-Print Network (OSTI)

A pedagogical introduction to color superconductivity in the weak coupling limit is given. The focus is on the basic tools of thermal field theory necessary to compute observables of color superconductivity. The rich symmetry structure and symmetry breaking patterns are analyzed on the basis of the Anderson-Higgs mechanism. Some techniques can also be applied for computing neutrino processes in compact stars. As an example, we show how to obtain the neutrino emissivity for Urca processes in neutron stars by computing the polarization tensor of the W-boson. We also illustrate how a spin-1 color superconducting phase generates an anisotropic neutrino emissions in compact stars.

Qun Wang

2009-12-13T23:59:59.000Z

237

Superconductivity  

Science Conference Proceedings (OSTI)

Add to Cart, Image, Click on Title to view details, Member (Student) Price, Non- member Price. Available at wiley.com, Advanced Materials for Energy Conversion ...

238

RHIC Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Project RHIC Project The Superconducting Magnet Division supplied 1740 magnetic elements, in 888 cryostats, for the RHIC facility at BNL. Of these, 780 magnetic elements were manufactured by Northrop-Grumman (Bethpage, NY) and 360 were made by Everson Electric (Bethlehem, PA). The magnets made in industry used designs developed at BNL. The first cooldown of the magnets for the RHIC engineering run was in 1999. Since then, the magnets have operated very reliably. arc dipole coil and yoke Arc dipole coil and yoke, with magnetic flux lines The magnets provide modest field (3.45 Teslas in the arc dipoles) in a cost-effective design. Key features in the principal bending and focusing magnets include the use of NbTi Rutherford cable, a single-layer coil, and cold iron as both yoke and collar. The magnets operate in forced-flow

239

Superconducting Magnet Division | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Magnet Division Superconducting Magnet Division Home Production & Testing LHC Dipole Acceptance APUL Schedule (pdf) Projects Main Projects HTS Magnet Program High Field Magnet R&D Linear Collider Final Focus e Lens Solenoid Correctors for J-PARC Correctors for SuperKEKB IR Magnets LARP APUL Past Projects BEPC-II IR Quadrupoles Bio-Med Variable Field MRI GSI Rapid Cycling Magnets Helical Magnets HERA upgrade LHC IR Dipoles RHIC Publications Search Publications Selected Cryogenic Data Notebook Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators Meetings & Workshops Safety Environmental, Safety & Health ES&H Documents Lockout-Tagout Personnel Staff Pages Ramesh Gupta Brett Parker Peter Wanderer Pe ter Wanderer, head of Brookhaven's Superconducting Magnet Division,

240

New Science with the APS Superconducting Undulator  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed New Science with the APS Superconducting Undulator JULY 24, 2013 Bookmark and Share The Nature...

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MAGNETIC DESIGN OF A SUPERCONDUCTING AGS SNAKE*  

NLE Websites -- All DOE Office Websites (Extended Search)

a partial helical snake for polarized proton acceleration in the AGS. It will be a 3 Tesla superconducting magnet having a magnetic length of 1.9 meter. AGS needs only one...

242

Helical Magnets Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC, the basic construction unit is a superconducting dipole magnet producing a four tesla dipole field that rotates through 360 degrees in a length of 2.4 meters. The magnets...

243

Bipolaron Model of Superconductivity in Chalcogenide Glasses  

E-Print Network (OSTI)

In this paper we propose a small bipolaron model for the superconductivity in the Chalcogenide glasses (c-As2Te3 and c-GeTe). The results are agree with the experiments.

Liang-You Zheng; Bo-Cheng Wang; Shan T. Lai

2010-10-25T23:59:59.000Z

244

Magnetism and superconductivity of heavy fermion matter  

E-Print Network (OSTI)

The interplay of magnetism and unconventional superconductivity (d singlet wave or p triplet wave) in strongly correlated electronic system (SCES) is discussed with recent examples found in heavy fermion compounds. A short presentation is given on the formation of the heavy quasiparticle with the two sources of a local and intersite enhancement for the effective mass. Two cases of the coexistence or repulsion of antiferromagnetism and superconductivity are given with CeIn3 and CeCoIn5. A spectacular example is the emergence of superconductivity in relatively strong itinerant ferromagnets UGe2 and URhGe. The impact of heavy fermion matter among other SCES as organic conductor or high TC oxide is briefly pointed out. Key words: heavy fermion, superconductivity, antiferromagnetism, ferromagnetism

J. Flouquet A; G. Knebel A; D. Braithwaite A; D. Aoki B; J. P. Brison C; F. Hardy A; A. Huxley A; S. Raymond A; B. Salce A; I. Sheikin D

2005-01-01T23:59:59.000Z

245

Degreasing and cleaning superconducting RF Niobium cavities  

Science Conference Proceedings (OSTI)

The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

Rauchmiller, Michael; Kellett, Ron; /Fermilab

2011-09-01T23:59:59.000Z

246

Publications | Ramesh Gupta | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Symposium on Superconductivity (ISS2012) in Tokyo, Japan, December 3-5, 2012. HTS Magnet R&D at BNL (pdf), LTHFSW2012 at Napa, CA, November 5-7, 2012 High Field Solenoid Program...

247

Near-zero modes in superconducting graphene  

E-Print Network (OSTI)

Vortices in the simplest superconducting state of graphene contain very-low-energy excitations whose existence is connected to an index theorem that applies strictly to an approximate form of the relevant Bogoliubov–de ...

Ghaemi, Pouyan

248

Superconductivity for electric power systems: Program overview  

SciTech Connect

Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

Not Available

1995-02-01T23:59:59.000Z

249

Cooling arrangement for a superconducting coil  

DOE Patents (OSTI)

A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.

Herd, K.G.; Laskaris, E.T.

1998-06-30T23:59:59.000Z

250

Electromagnetic Modelling of Superconducting Sensor Designs  

E-Print Network (OSTI)

DEPARTMENT OF MATERIALS SCIENCE AND METALLURGY Electromagnetic Modelling of Superconducting Sensor Designs Guido Gerra Clare Hall, University of Cambridge 1 Preface The present dissertation has been submitted... and for all the moments they have shared with me. 4 Abstract The problem of design optimisation of thin film direct current Superconducting QUantum Interference Device (SQUID) magnetometers made of YBCO (YBa2Cu3O7-x) was considered. The inductances...

Gerra, Guido

251

Dissipative hydride precipitates in superconducting niobium cavities  

Science Conference Proceedings (OSTI)

We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

Romanenko, A.; Cooley, L.D.; /Fermilab; Ciovati, G.; / /Jefferson Lab; Wu, G.; /Argonne

2011-10-01T23:59:59.000Z

252

Passive energy dump for superconducting coil protection  

DOE Patents (OSTI)

The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

Luton, J.N. Jr.

1973-01-16T23:59:59.000Z

253

Architecture for high critical current superconducting tapes  

DOE Patents (OSTI)

Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

254

Superconductive microstrip exhibiting negative differential resistivity  

DOE Patents (OSTI)

A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

Huebener, R.P.; Gallus, D.E.

1975-10-28T23:59:59.000Z

255

Armored spring-core superconducting cable and method of construction  

DOE Patents (OSTI)

An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

McIntyre, Peter M. (611 Montclair, College Station, TX 77840); Soika, Rainer H. (1 Hensel, #X4C, College Station, TX 77840)

2002-01-01T23:59:59.000Z

256

Solution of thin film magnetization problems in type-II superconductivity  

Science Conference Proceedings (OSTI)

Keywords: critical current, numerical solution, superconductivity, thin film, variational inequality

Leonid Prigozhin

1998-07-01T23:59:59.000Z

257

The interlaced chirp Z transform  

Science Conference Proceedings (OSTI)

In this paper we introduce the interlaced chirp Z transform (Interlaced CZT), It is based on the computation of several carefully staggered CZT that are progressively interlaced to result in a spectrum that has denser frequency samples where needed. ... Keywords: chirp Z transform, discrete fourier transform, interlaced chirp Z transform, warped discrete fourier transform, zoom chirp Z transform

Indranil Sarkar; Adly T. Fam

2006-09-01T23:59:59.000Z

258

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

259

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

260

Adaptive Discrete Cosine Transform  

Science Conference Proceedings (OSTI)

The theory and performance of the adaptive discrete cosine transform filter is examined. The discrete cosine transform filter is a realization of an FIR filter as the cascade of an all-zero FIR filter with a bank of IIR digital resonators. Each bank ... Keywords: FIR filter, IIR digital resonators, LMS algorithm, adaptive discrete cosine transform filter, adaptive filters, all-zero FIR filter, filter coefficient, frequency, magnitude, phase, transfer function, update method

S. J. Bukowinski; L. Gerhardt; M. Fargues; G. Coutu

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EPRI Transformer Guidebook Development  

Science Conference Proceedings (OSTI)

Utilities are losing many of their subject matter experts through retirement and downsizing. This is particularly true in the case of power transformers, so that there is now a critical need for a comprehensive transformer reference book geared toward utility engineers. In 2007, the Electric Power Research Institute EPRI published the technical update report Transformer Guidebook Design 1013799. That report described the results of the initial project to develop the Copper Book, a comprehensive reference...

2009-12-23T23:59:59.000Z

262

A New Integral Transform  

E-Print Network (OSTI)

Using Bauer's expansion and properties of spherical Bessel and Legender functions, we deduce a new transform and briefly indicate its use.

B. G. Sidharth

2004-12-04T23:59:59.000Z

263

Transforming the Freight Industry  

E-Print Network (OSTI)

Transforming the Freight Industry From Regulation to Icommon-carrier freight industry was Competition to backwardjourneys. When the freight industry was deregulated, it was

Regan, Amelia

2002-01-01T23:59:59.000Z

264

Transformer Ratio Enhancement Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSFORMER RATIO ENHANCEMENT EXPERIMENT A. Kanareykin, Euclid Concepts LLC, Solon, OH 44139, USA W. Gai, J. G. Power. ANL, Argonne, IL, 60439, USA E. Nenasheva, Ceramics Ltd., St....

265

Market Transformation Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvement Opportunities in TVs Implications for Market Transformation Programs journal Energy Policy volume year month pages keywords appliance energy efficiency...

266

Transformations of Grassman Spaces  

E-Print Network (OSTI)

This is a version of a part of the book ``Transformations of Grassman Spaces'' (in progress). We study transformations of Grassman spaces preserving certain geometrical constructions related to buildings. The next part will be devoted to Grassman spaces associated with polar spaces.

Mark Pankov

2004-04-05T23:59:59.000Z

267

Deployment & Market Transformation (Brochure)  

SciTech Connect

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

Not Available

2012-04-01T23:59:59.000Z

268

Generalized Lorentz Transformations  

E-Print Network (OSTI)

Generalized Lorentz transformations with modified velocity parameter are considered. Lorentz transformations depending on the mass of the observer are suggested.The modified formula for the addition of velocities remarkably preserves the constancy of the velocity of light for all observers. The Doppler red shift is affected and can provide a test of such generalisations.

Virendra Gupta

2013-05-22T23:59:59.000Z

269

Biochemical transformation of coals  

DOE Patents (OSTI)

A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

Lin, M.S.; Premuzic, E.T.

1999-03-23T23:59:59.000Z

270

Deployment & Market Transformation (Brochure)  

SciTech Connect

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

2012-04-01T23:59:59.000Z

271

Photon emission near superconducting bodies  

Science Conference Proceedings (OSTI)

We study the photon emission due to a magnetic spin-flip transition of a two-level atom in the vicinity of a dielectric body such as a normal conducting metal or a superconductor. For temperatures below the transition temperature T{sub c} of a superconductor, the corresponding spin-flip lifetime is boosted by several orders of magnitude as compared to the case of a normal conducting body. Numerical results of an exact formulation are also compared to a previously derived approximative analytical expression for the spin-flip lifetime, and we find excellent agreement. We present results on how the spin-flip lifetime depends on the temperature T of a superconducting body as well as its thickness H. Finally, we study how nonmagnetic impurities as well as possible Eliashberg strong-coupling effects influence the spin-flip rate. It is found that nonmagnetic impurities as well as strong-coupling effects have no dramatic impact on the spin-flip lifetime.

Skagerstam, Bo-Sture K.; Rekdal, Per Kristian [Department of Physics, The Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2007-11-15T23:59:59.000Z

272

Some elementary theoretical considerations concerning superconductivity of superimposed metallic films  

Science Conference Proceedings (OSTI)

A microscopic theory of superconductivity of superimposed metallic films is proposed, based on the fact that thee lectron pair correlation function penetrates into a normal metal where the electron-electron interaction would not by itself produce a superconducting ...

L. N. Cooper

1962-01-01T23:59:59.000Z

273

Proposed Giaever transformer to probe the pseudogap phase of cuprates.  

Science Conference Proceedings (OSTI)

We develop a theory of the rectification effect in a double-layer system where both layers are superconductors or one of the layers is a normal metal. The Coulomb interaction is assumed to provide the dominant coupling between the layers. We find that superconducting fluctuations strongly enhance the drag conductivity, with rectification most pronounced when both layers are superconductors. In view of their distinct dependence on temperature near T{sub c} and layer separation, drag measurements based on a Giaever transformer could distinguish whether rectification occurs due to fluctuating pairs or inductively coupled fluctuating vortices.

Levchenko, A.; Norman, M. R. (Materials Science Division)

2011-03-01T23:59:59.000Z

274

High Temperature Superconductivity in Cuprates: a model  

E-Print Network (OSTI)

A model is proposed such that quasi-particles (electrons or holes) residing in the CuO2 planes of cuprates may interact leading to metallic or superconducting behaviors. The metallic phase is obtained when the quasi-particles are treated as having classical kinetic energies and the superconducting phase occurs when the quasi-particles are taken as extremely relativistic objects. The interaction between both kinds of particles is provided by a force dependent-on-velocity. In the case of the superconducting behavior, the motion of apical oxygen ions provides the glue to establish the Cooper pair. The model furnishes explicit relations for the Fermi velocity, the perpendicular and the in-plane coherence lengths, the zero-temperature energy gap, the critical current density, the critical parallel and perpendicular magnetic fields. All these mentioned quantities are expressed in terms of fundamental physical constants as: charge and mass of the electron, light velocity in vacuum, Planck constant, electric permittivity of the vacuum. Numerical evaluation of these quantities show that their values are close those found for the superconducting YBaCuO, leading to think the model as being a possible scenario to explain superconductivity in cuprates.

P. R. Silva

2010-07-16T23:59:59.000Z

275

Superconductivity in bulk ultrafine-grained metals prepared by high ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Ultrafine Grained Materials VIII. Presentation Title, Superconductivity in bulk ...

276

RECENT ADVANCES IN THE TECHNOLOGY OF SUPERCONDUCTING ACCELERATOR MAGNETS  

E-Print Network (OSTI)

Accelerator Magnets,· Brookhaven National Laboratory,in Superconducting Magnets,- Brookhaven National Laboratory,Accelerator Magnet Wire," Brookhaven National Laboratory,

Taylor, C.E.

2010-01-01T23:59:59.000Z

277

Iron-based Materials May Unlock Superconductivity's Secrets  

Science Conference Proceedings (OSTI)

... wide use in next-generation systems for storing, distributing and using electricity. ... whose appearance shatters the fragile superconductive state. ...

2011-04-26T23:59:59.000Z

278

Proceedings of 2009 KEPRI-EPRI Joint Superconductivity Conference  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and Korea Electric Power Research Institute (KEPRI) held the 2009 KEPRI-EPRI Joint Superconductivity Conference on November 1618, 2009 in Daejeon, Korea at KEPRIs facilities. The conference was the ninth in EPRIs series of annual superconductivity conferences. KEPRI, which is the research center of Korea Electric Power Corporation, cosponsored the event with EPRIs Superconductivity Program. The Korea Institute of Applied Superconductivity and Cryogenics was th...

2010-02-25T23:59:59.000Z

279

Lorentz transformation by mimicking the Lorentz transformation  

E-Print Network (OSTI)

We show that starting with the fact that special relativity theory is concerned with a distortion of the observed length of a moving rod, without mentioning if it is a "contraction" or "dilation", we can derive the Lorentz transformations for the spacetime coordinates of the same event. This derivation is based on expressing the length of the moving rod as a sum of components with all the lengths involved in this summation being measured by the observers of the same inertial reference frame.

Bernhard Rothenstein; Stefan Popescu

2007-07-16T23:59:59.000Z

280

Microsoft Word - FCL Testing Report Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at transmission-level voltages. While there is a need to conduct high voltage-current tests, there are a number of experts that believe it may be possible to substitute modeling...

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Study on the energy criterion of cuprate superconductivity  

E-Print Network (OSTI)

In this paper, we use the variation of spontaneous magnetization to describe the influence of electron holes in cuprate superconductors, and use competitive energy relations to explore the superconductivity rule and energy criterion, on this basis, we can deduce a clear physical image of superconducting phase diagram and superconducting mechanism.

Gu Jiapu

2007-07-07T23:59:59.000Z

282

A discrete fractional random transform  

E-Print Network (OSTI)

We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.

Zhengjun Liu; Haifa Zhao; Shutian Liu

2006-05-20T23:59:59.000Z

283

Market Transformation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformation Market Transformation is based on the concept that federal support can catalyze a market to achieve economic and environmental benefits that can reduce costs through economies of scale. Adoption of fuel cells in emerging markets expands the growth of green jobs, with new opportunities in manufacturing, fuel cell maintenance and support systems, and domestic hydrogen fuel production and delivery. By providing reliable field operations data and increasing user confidence, early market deployments help overcome non-technical challenges like developing appropriate safety codes and standards and reducing high insurance costs. Strategies Market Transformation's primary goal is to accelerate the expansion of hydrogen and fuel cell use by lowering the life

284

RHIC Superconducting Accelerator and Electron Cooling Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Chart (PDF) Organization Chart (PDF) Accelerator R&D Division eRHIC R&D Energy Recovery Linac Photocathode R&D Superconducting RF Electron Cooling LARP Center for Accelerator Science and Education C-AD Accelerator R&D Division Superconducting RF Group Group Headed By: Sergey Belomestnykh This web site presents information on the Superconducting Accelerator and RHIC Electron Cooling Group, which is in the Accelerator R&D Division of the Collider-Accelerator Department of Brookhaven National Laboratory. Work is supported mainly by the Division of Nuclear Physics of the US Department of Energy. Upcoming Events: TBD Most recent events: 56 MHz 2nd External Review, March 8-9, 2011 External Review of the Energy Recovery Linac, February 17-18, 2010. Report of the Review Committee

285

J-PARC Correctors | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnet Construction Magnet Construction The final turn of the J-PARC extracted proton beam is a superconducting combined function magnet line. The combined function magnets are dipole cable magnets, typical of cold mass collared magnets, but have been designed to include a large component of quadrupole field. This provides both bending and focussing of the proton beam prior to target impact, where neutrinos will be produced. The BNL Superconducting Magnet Division is using its direct wind facility to produce superconducting corrector magnets to be used in conjunction with the combined function magnets. combined function magnet The first direct wind magnet set designed and fabricated is a combined function magnet with an additional skew dipole. This magnet is intended to be used within the cable collared combined function dipole used for the

286

Superconducting magnetic shielding apparatus and method  

DOE Patents (OSTI)

Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

Clem, J.R.

1982-07-09T23:59:59.000Z

287

Superconducting magnetic shielding apparatus and method  

DOE Patents (OSTI)

Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

Clem, J.R.; Clem, J.R.

1983-10-11T23:59:59.000Z

288

Superconducting magnetic shielding apparatus and method  

DOE Patents (OSTI)

Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

Clem, John R. (Ames, IA); Clem, John R. (Ames, IA)

1983-01-01T23:59:59.000Z

289

Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators  

SciTech Connect

REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

2012-01-01T23:59:59.000Z

290

Criterion of stability of the superconducting state  

E-Print Network (OSTI)

In this paper, we propose to draw attention to the stability criterion of the superconductor current state. We use for this purpose the rough systems mathematical apparatus allowing us to relate the desired criterion with the dielectric permittivity of the matter and to identify the type of all possible phonons trajectories in its superconducting state. The state of superconductivity in the matter can be explained only by the phonons behavior peculiarity. And on the basis of the above-mentioned assumption, the corresponding mathematical model is constructed.

Iogann Tolbatov

2009-10-23T23:59:59.000Z

291

Safety and reliability in superconducting MHD magnets  

DOE Green Energy (OSTI)

This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

1979-07-01T23:59:59.000Z

292

On Color Superconductivity in External Magnetic Field  

E-Print Network (OSTI)

We study color superconductivity in external magnetic field. We discuss the reason why the mixing angles in color-flavor locked (CFL) and two-flavor superconductivity (2SC) phases are different despite the fact that the CFL gap goes to the 2SC gap for $m_s \\to \\infty$. Although flavor symmetry is explicitly broken in external magnetic field, we show that all values of gaps in their coset spaces of possible solutions in the CFL phase are equivalent in external magnetic field.

E. V. Gorbar

2000-01-20T23:59:59.000Z

293

Superconducting phases of f-electron compounds  

E-Print Network (OSTI)

Superconductivity was discovered almost a century ago. Yet, unexpected and fascinating new variants of this same old theme are being found at an increasing pace. This is due to great technical advances in materials preparation and an increasingly more systematic screening of new compounds. Prior to the late 1970s all known superconductors could be accounted for in terms of a condensate of Cooper pairs, where the Cooper pairs form due to electron-phonon interactions. With the discovery of the superfluid phases of 3He this understanding began to change in two ways (Osheroff et al., 1972; Vollhardt and Wölfle, 1990). First, 3He provided an example of non-electron-phonon mediated pairing. Second, it provided an example of a superfluid condensate that breaks additional symmetries. The discovery of heavy-fermion superconductivity as a prime candidate for complex order parameter symmetries and non-electron-phonon mediated pairing in f-electron compounds nearly three decades ago was long recognized as an important turning point in the history of superconductivity. However, progress in heavy fermion superconductivity until not long ago seemed to have been slow. In recent years especially the superconductivity in the cuprates, ruthenates, cobaltates, pyrochlores and ironpnictides received great attention. However, a spectacular series of discoveries and developments in f-electron superconductors took place at the same time. While in the first twelve years following the discovery of heavyfermion superconductivity in CeCu2Si2 only five more heavy fermion superconductors could be identified, over twenty five additional systems have been found in the past fifteen years (see Fig. 1). By now over thirty systems are known, about half of which were discovered in the past five years alone. This illustrates the speed of development the field of f-electron superconductivity has picked up despite its long tradition. As a result there is growing appreciation that superconducting phases of f-electron compounds frequently exist at the border of competing and coexisting forms of electronic order. For the majority of systems, including the original heavy-fermion superconductors, an inarXiv:0905.2625v1

Christian Pfleiderer

2009-01-01T23:59:59.000Z

294

Apparatus for characterizing conductivity of superconducting materials  

DOE Patents (OSTI)

Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

Doss, J.D.

1993-12-07T23:59:59.000Z

295

Transformation inverse design  

E-Print Network (OSTI)

We present a new technique for the design of transformation-optics devices based on large-scale optimization to achieve the optimal effective isotropic dielectric materials within prescribed index bounds, which is ...

Liu, David

296

The Quantum Mellin transform  

E-Print Network (OSTI)

We uncover a new type of unitary operation for quantum mechanics on the half-line which yields a transformation to ``Hyperbolic phase space''. We show that this new unitary change of basis from the position x on the half line to the Hyperbolic momentum $p_\\eta$, transforms the wavefunction via a Mellin transform on to the critial line $s=1/2-ip_\\eta$. We utilise this new transform to find quantum wavefunctions whose Hyperbolic momentum representation approximate a class of higher transcendental functions, and in particular, approximate the Riemann Zeta function. We finally give possible physical realisations to perform an indirect measurement of the Hyperbolic momentum of a quantum system on the half-line.

J. Twamley; G. J. Milburn

2007-02-12T23:59:59.000Z

297

On Bianchi's Backlund transformation  

E-Print Network (OSTI)

We investigate basic features of Bianchi's B\\"acklund transformation of quadrics to see if it can be obtained under weaker assumptions and if it can be generalized to deformations of other surfaces.

Dinca, Ion

2011-01-01T23:59:59.000Z

298

Imaging Fourier transform spectrometer  

DOE Patents (OSTI)

This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

Bennett, C.L.

1993-09-13T23:59:59.000Z

299

Series Transmission Line Transformer  

DOE Patents (OSTI)

A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

2004-06-29T23:59:59.000Z

300

Color symmetric superconductivity in a phenomenological QCD model  

E-Print Network (OSTI)

In this paper, we construct a theory of the NJL-type where superconductivity is present, and yet the super-conducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singlet-ness. Indeed, quarks are free in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singlet-ness. On the other hand, the color superconducting state here proposed, is color symmetric in the sense that an arbitrary color rotation leads to an equivalent state, with precisely the same physical properties.

Henrik Bohr; Constança Providência; João da Providência

2009-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CX-003061: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

061: Categorical Exclusion Determination 061: Categorical Exclusion Determination CX-003061: Categorical Exclusion Determination Recovery Act-Fault Current Limiting (FCL) Superconducting Transformer CX(s) Applied: A9, B3.6, B4.11 Date: 07/16/2010 Location(s): Irvine, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory Southern California Edison will install and operate a prototype fault current limiting superconducting transformer rated 28 megavolt ampere, 66 kilovolt/12 kilovolt service, built by Waukesha Electric, in their MacArthur substation as a demonstration. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003061.pdf More Documents & Publications CX-002486: Categorical Exclusion Determination CX-002485: Categorical Exclusion Determination CX-00120

302

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 6850 of 29,416 results. 41 - 6850 of 29,416 results. Download CX-003061: Categorical Exclusion Determination Recovery Act-Fault Current Limiting (FCL) Superconducting Transformer CX(s) Applied: A9, B3.6, B4.11 Date: 07/16/2010 Location(s): Irvine, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003061-categorical-exclusion-determination Download CX-003062: Categorical Exclusion Determination Recovery Act-Fault Current Limiting Superconducting Transformer CX(s) Applied: A11, B3.6 Date: 07/16/2010 Location(s): Schenectady, New York Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003062-categorical-exclusion-determination

303

Pseudogap and Superconducting Gap in High-Temperature Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Pseudogap and Superconducting Gap in Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting gap, appears at the superconducting transition temperature Tc where the resistance also vanishes. For high temperature superconductors, the story is more complicated. Over a wide region of compositions and temperatures, there exists an energy gap well above Tc. This energy gap is called pseudogap [1], because there is no direct correlation to the superconducting transition. The origin of this pseudogap and its relation to the superconducting gap are believed to hold the key for understanding the mechanism of high-Tc superconductivity - one of the outstanding problems in condensed matter physics. In this regard, researchers Kiyohisa Tanaka and Wei-Sheng Lee, along with their co-workers in Prof. Zhi-Xun Shen's group at Stanford University, have recently made an important discovery about the coexistence of two distinct energy gaps that have opposite doping dependence. Their observation not only provides a natural explanation for the contradictory results about the superconducting gap deduced from different experimental techniques, but also has profound implications on the mechanism of high-Tc superconductivity.

304

30-MJ superconducting magnetic energy storage system for electric utility transmission stabilization  

SciTech Connect

A superconducting magnetic energy storage (SMES) system has been built to damp power oscillations on the Western U.S. Power System, particularly on the Pacific AC Intertie that is used to transmit power from the Northwest to southern California. The 30-MJ superconducting inductor that stores energy for this purpose is contained in a nonconducting dewar and is supported by a helium refrigerator and a gas-handling system mounted on trailers. Energy flows in and out of the inductor at frequencies from 0.1 to 1.0 Hz with power amplitudes up to 11 MW. The principal oscillation to be damped has a characteristic frequency of 0.35 Hz. The superconducting coil maximum current is 5 kA with terminal voltages up to 2.2 kV. The coil interfaces with the Bonneville Power Administration 13.8-kV bus at the Tacoma Substation through a converter and transformers. The system can be operated with the converter either in parallel-bridge mode or for constant VAR control with the bridges in buck-boost mode. The program for the design, fabrication, installation, and the preliminary experimental operation of the system is reviewed.

Rogers, J.D.; Hauer, J.F.; Miller, B.L.; Schermer, R.J.

1982-09-01T23:59:59.000Z

305

Termination for superconducting power transmission systems  

DOE Patents (OSTI)

This patent relates to a cold, electrical gradient, terminal section for a superconducting cable for alternating current power transmission. A cold electrical gradient section filled with a gaseous coolant acting as an insulator is provided in series with a separate thermal gradient section. (auth)

Forsyth, E.B.; Jensen, J.E.

1975-08-26T23:59:59.000Z

306

Eccentric superconducting RF cavity separator structure  

DOE Patents (OSTI)

Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.

Aggus, John R. (Shoreham, NY); Giordano, Salvatore T. (Port Jefferson, NY); Halama, Henry J. (Shoreham, NY)

1976-01-01T23:59:59.000Z

307

High temperature superconducting fault current limiter  

DOE Patents (OSTI)

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

308

Positive and inverse isotope effect on superconductivity  

E-Print Network (OSTI)

This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

Tian De Cao

2009-09-04T23:59:59.000Z

309

Color superconductivity and the strange quark  

E-Print Network (OSTI)

At ultra-high density, matter is expected to form a degenerate Fermi gas of quarks in which there is a condensate of Cooper pairs of quarks near the Fermi surface: color superconductivity. In these proceedings I review some of the underlying physics, and discuss outstanding questions about the phase structure of ultra-dense quark matter.

Mark G Alford

2005-12-01T23:59:59.000Z

310

Active superconducting devices formed of thin films  

DOE Patents (OSTI)

Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

Martens, Jon S. (Madison, WI); Beyer, James B. (Madison, WI); Nordman, James E. (Madison, WI); Hohenwarter, Gert K. G. (Madison, WI)

1991-05-28T23:59:59.000Z

311

Optical transformation from chirplet to fractional Fourier transformation kernel  

E-Print Network (OSTI)

We find a new integration transformation which can convert a chirplet function to fractional Fourier transformation kernel, this new transformation is invertible and obeys Parseval theorem. Under this transformation a new relationship between a phase space function and its Weyl-Wigner quantum correspondence operator is revealed.

Hong-yi Fan; Li-yun Hu

2009-02-11T23:59:59.000Z

312

Optical transformation from chirplet to fractional Fourier transformation kernel  

E-Print Network (OSTI)

We find a new integration transformation which can convert a chirplet function to fractional Fourier transformation kernel, this new transformation is invertible and obeys Parseval theorem. Under this transformation a new relationship between a phase space function and its Weyl-Wigner quantum correspondence operator is revealed.

Fan, Hong-yi

2009-01-01T23:59:59.000Z

313

DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS  

E-Print Network (OSTI)

Workshop on RF Superconductivity, DESY, Hamburg, Germany,Gennaro, Physica C: Superconductivity 441 (2006) 130. [10]the Limits of RF Superconductivity, Padua, Italy, 2010. [12

Anders, Andre

2013-01-01T23:59:59.000Z

314

Contact transformations for difference schemes  

E-Print Network (OSTI)

We define a class of transformations of the dependent and independent variables in an ordinary difference scheme. The transformations leave the solution set of the system invariant and reduces to a group of contact transformations in the continuous limit. We use a simple example to show that the class is not empty and that such "contact transformations for discrete systems" genuinely exist.

Levi, Decio; Winternitz, Pavel

2011-01-01T23:59:59.000Z

315

Partial core pulse transformer  

DOE Patents (OSTI)

A light-weight partial-core pule transformer is provided for generating high voltage output pulses with low distortion. The transformer includes sets of ferrite bars arranged so as to extend longitudinally along the inside and outside surfaces of a high frequency cylindrical coil winding-pair. The ferrite bars are arranged in pairs with the bars of each pair being located on opposite sides of winding-pair. The bars are preferably disposed in a radially symmetric arrangement around the winding-pair, and each has a length at least equal to the width of the winding-pair.

Lawson, R.N.; Rohwein, G.J.

1991-12-31T23:59:59.000Z

316

Functional Mellin Transforms  

E-Print Network (OSTI)

Functional integrals are defined in terms of locally compact topological groups and their associated Banach-valued Haar integrals. This approach generalizes the functional integral scheme of Cartier and DeWitt-Morette. The definition allows a construction of functional Mellin transforms. In turn, the functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored. As an application, we construct a functional Mellin representation of the quantum evolution operator.

J. LaChapelle

2013-08-05T23:59:59.000Z

317

Model Transformations And Tool Integration  

E-Print Network (OSTI)

Model transformations are increasingly recognised as being of significant importance to many areas of software development and integration. Recent attention on model transformations has particularly focused on the OMG's Queries / Views / Transformations (QVT) Request for Proposals (RFP). In this paper I motivate the need for dedicated approaches to model transformations, particularly for the data involved in tool integration, outline the challenges involved, and then present a number of technologies and techniques which allow the construction of flexible, powerful and practical model transformations.

Laurence Tratt

2004-01-01T23:59:59.000Z

318

Coordinate transformations in quaternion spaces  

E-Print Network (OSTI)

The quaternion spaces can be used to describe the property of electromagnetic field and gravitational field. In the quaternion space, some coordinate transformations can be deduced from the feature of quaternions, including Lorentz transformation and Galilean transformation etc., when the coordinate system is transformed into others. And some coordinate transformations with variable speed of light can be obtained in the electromagnetic field and gravitational field.

Zihua Weng

2008-08-31T23:59:59.000Z

319

Creation of Electron Spinless Pairs in the Superconductivity  

E-Print Network (OSTI)

First, it is demonstrated that the Froolich Hamiltonian of system in the superconductivity, proposed by the model of a phonon gas and an electron gas mixture, contains a subtle error. In this respect, we present a correct form of the Froolich Hamiltonian of system where the term of the interaction between the phonon modes and the density modes of the electron modes is described by the term of scattering, introduced by the Froolich in a phonon gas electron gas mixture. The later is removed by a canonical transformation of the Froolich Hamiltonian by an appearance of the attractive interaction mediated via the electron modes, which leads to a bound state on a spinless electron pairs. In this letter, we show that the Cooper approximation as the constancy of the density states within around of the Fermi level has a flaw because the effective attractive forces cannot create the Cooper pairs into energetic gap at the Fermi level. In this letter, we find a condition for density metal which determines metal as superconductor.

V. N. Minasyan

2009-03-02T23:59:59.000Z

320

Measurements of AC Losses and Current Distribution in Superconducting Cables  

Science Conference Proceedings (OSTI)

This paper presents our new experimental facility and techniques to measure ac loss and current distribution between the layers for High Temperature Superconducting (HTS) cables. The facility is powered with a 45 kVA three-phase power supply which can provide three-phase currents up to 5 kA per phase via high current transformers. The system is suitable for measurements at any frequency between 20 and 500 Hz to better understand the ac loss mechanisms in HTS cables. In this paper, we will report techniques and results for ac loss measurements carried out on several HTS cables with and without an HTS shielding layer. For cables without a shielding layer, care must be taken to control the effect of the magnetic fields from return currents on loss measurements. The waveform of the axial magnetic field was also measured by a small pick-up coil placed inside a two-layer cable. The temporal current distribution between the layers can be calculated from the waveform of the axial field.

Nguyen, Doan A [Los Alamos National Laboratory (LANL); Ashworth, Stephen P [Los Alamos National Laboratory (LANL); Duckworth, Robert C [ORNL; Carter, Bill [AMSC; Fleshler, Steven [AMER Superconductor Corp, Devens, MA 01434

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Torsional texturing of superconducting oxide composite articles  

DOE Patents (OSTI)

A method of texturing a multifilamentary article having filaments comprising a desired oxide superconductor or its precursors by torsionally deforming the article is provided. The texturing is induced by applying a torsional strain which is at least about 0.3 and preferably at least about 0.6 at the surface of the article, but less than the strain which would cause failure of the composite. High performance multifilamentary superconducting composite articles having a plurality of low aspect ratio, twisted filaments with substantially uniform twist pitches in the range of about 1.00 inch to 0.01 inch (25 to 0.25 mm), each comprising a textured desired superconducting oxide material, may be obtained using this texturing method. If tighter twist pitches are desired, the article may be heat treated or annealed and the strain repeated as many times as necessary to obtain the desired twist pitch. It is preferred that the total strain applied per step should be sufficient to provide a twist pitch tighter than 5 times the diameter of the article, and twist pitches in the range of 1 to 5 times the diameter of the article are most preferred. The process may be used to make a high performance multifilamentary superconducting article, having a plurality of twisted filaments, wherein the degree of texturing varies substantially in proportion to the radial distance from the center of the article cross-section, and is substantially radially homogeneous at any given cross-section of the article. Round wires and other low aspect ratio multifilamentary articles are preferred forms. The invention is not dependent on the melting characteristics of the desired superconducting oxide. Desired oxide superconductors or precursors with micaceous or semi-micaceous structures are preferred. When used in connection with desired superconducting oxides which melt irreversibly, it provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly superior to any currently available for these materials. In a preferred embodiment, the desired superconducting oxide material is BSCCO 2223.

Christopherson, Craig John (Grafton, MA); Riley, Jr., Gilbert N. (Marlborough, MA); Scudiere, John (Bolton, MA)

2002-01-01T23:59:59.000Z

322

Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Working at the ALS, a multi-institutional collaboration led by researchers at ALS and Stanford University has identified a pseudogap phase with a nodal-antinodal dichotomy in ferromagnetic manganese oxide materials (manganites). Even though ferromagnetism and superconductivity do not exist together, the pseudogap state found in these manganites is remarkably similar to that found in high-temperature superconducting copper oxide materials (cuprates). This discovery casts new doubts on any direct link between the pseudogap phase and high-temperature superconductivity and adds fire to the debate over one of the great scientific mysteries of our time: What causes high-temperature superconductivity?

323

Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Working at the ALS, a multi-institutional collaboration led by researchers at ALS and Stanford University has identified a pseudogap phase with a nodal-antinodal dichotomy in ferromagnetic manganese oxide materials (manganites). Even though ferromagnetism and superconductivity do not exist together, the pseudogap state found in these manganites is remarkably similar to that found in high-temperature superconducting copper oxide materials (cuprates). This discovery casts new doubts on any direct link between the pseudogap phase and high-temperature superconductivity and adds fire to the debate over one of the great scientific mysteries of our time: What causes high-temperature superconductivity?

324

Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Pseudogaps, Polarons, and the Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Wednesday, 26 April 2006 00:00 Working at the ALS, a multi-institutional collaboration led by researchers at ALS and Stanford University has identified a pseudogap phase with a nodal-antinodal dichotomy in ferromagnetic manganese oxide materials (manganites). Even though ferromagnetism and superconductivity do not exist together, the pseudogap state found in these manganites is remarkably similar to that found in high-temperature superconducting copper oxide materials (cuprates). This discovery casts new doubts on any direct link between the pseudogap phase and high-temperature superconductivity and adds fire to the debate over one of the great scientific mysteries of our time: What causes high-temperature superconductivity?

325

ORNL Publishes Study on Superconducting Wire Performance | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORNL Publishes Study on Superconducting Wire Performance ORNL Publishes Study on Superconducting Wire Performance ORNL Publishes Study on Superconducting Wire Performance August 23, 2013 - 4:06pm Addthis The Department of Energy's Oak Ridge National Laboratory (ORNL) recently released a new study on advances in superconducting wire technology. A team led by ORNL's Amit Goyal demonstrated that the ability to control nanoscale imperfections in superconducting wires results in materials with excellent and customized performance. The team's findings are published in Nature Publishing Group's Scientific Reports. The full press release and link to the new report are available on ORNL's website. Dr. Goyal, a high temperature superconductivity (HTS) research at ORNL, won the Department's 2011 E.O. Lawrence Award in the inaugural category of

326

Color superconductivity with determinant interaction in strange quark matter  

E-Print Network (OSTI)

We investigate the effect of six fermion determinant interaction on color superconductivity as well as on chiral symmetry breaking. Coupled mass gap equations and the superconducting gap equation are derived through the minimisation of the thermodynamic potential. The effect of nonzero quark -- antiquark condensates on the superconducting gap is derived. This becomes particularly relevant for the case of 2-flavor superconducting matter with unpaired strange quarks in the diquark channel. While the effect of six fermion interaction leads to an enhancement of u-d superconductivity, due to nonvanishing strange quark--antiquark condensates, such an enhancement will be absent at higher densities for u-s or d-s superconductivity due to early (almost) vanishing of light quark-- antiquark condensates.

Amruta Mishra; Hiranmaya Mishra

2006-05-21T23:59:59.000Z

327

Superconductivity with stripes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers The brightness and energy of X-ray beams are critical properties for research. The APS Upgrade will make our X-ray beams brighter, meaning more X-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Superconductivity with stripes November 12, 2013 Tweet EmailPrint The physics of low-temperature superconductivity is fairly well understood, but the ultimate goal of achieving the phenomenon at much higher temperatures remains tantalizingly elusive. The most promising high-temperature superconductor candidates are generally considered to be

328

Energy Programs | Center for Emergent Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Emergent Superconductivity (CES) Center for Emergent Superconductivity (CES) The mission of the CES is to advance the frontier of understanding and control of the materials, mechanisms, and critical currents of superconductors, including existing and new materials, and to communicate Center and other research results throughout national and international communities. More... Principal Investigators CES News Publications Recent CES Presentations EFRC Acknowledgements Reference Document (pdf) Guide to EFRC Science Review Documents (pdf) CES-EFRC Materials Catalog (restricted) CES-EFRC April 2009 Kickoff Meeting (restricted) CES-EFRC 2010 Winter Workshop (restricted) CES Fall Workshop: 2013 | 2012 | 2011 | 2010 April 2, 2012 Review (restricted) Story Archives Recent News atomic-scale microscopy Opposing Phenomena Possible Key to High-Efficiency Electricity Delivery

329

Energy Extraction for the LHC Superconducting Circuits  

E-Print Network (OSTI)

The superconducting magnets of the LHC will be powered in about 1700 electrical circuits. The energy stored in circuits, up to 1.3 GJ, can potentially cause severe damage of magnets, bus bars and current leads. In order to protect the superconducting elements after a resistive transition, the energy is dissipated into a dump resistor installed in series with the magnet chain that is switched into the circuit by opening current breakers. Experiments and simulation studies have been performed to identify the LHC circuits that need energy extraction. The required values of the extraction resistors have been computed. The outcome of the experimental results and the simulation studies are presented and the design of the different energy extraction systems that operate at 600 A and at 13 kA is described.

Dahlerup-Petersen, K; Schmidt, R; Sonnemann, F

2001-01-01T23:59:59.000Z

330

Superconductivity and the BCS-Bogoliubov Theory  

E-Print Network (OSTI)

First, we reformulate the BCS-Bogoliubov theory of superconductivity from the viewpoint of linear algebra. We define the BCS Hamiltonian on $\\mathbb{C}^{2^{2M}}$, where $M$ is a positive integer. We discuss selfadjointness and symmetry of the BCS Hamiltonian as well as spontaneous symmetry breaking. Beginning with the gap equation, we give the well-known expression for the BCS state and find the existence of an energy gap. We also show that the BCS state has a lower energy than the normal state. Second, we introduce a new superconducting state explicitly and show from the viewpoint of linear algebra that this new state has a lower energy than the BCS state. Third, beginning with our new gap equation, we show from the viewpoint of linear algebra that we arrive at the results similar to those in the BCS-Bogoliubov theory.

Shuji Watanabe

2010-06-07T23:59:59.000Z

331

Method of fabricating composite superconducting wire  

DOE Patents (OSTI)

An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

Strauss, Bruce P. (Downers Grove, IL); Reardon, Paul J. (Princeton, NJ); Remsbottom, Robert H. (Middleton, WI)

1977-01-01T23:59:59.000Z

332

High-temperature superconducting current leads  

Science Conference Proceedings (OSTI)

Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

Niemann, R.C.

1995-03-01T23:59:59.000Z

333

High-Temperature Superconductivity Cable Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Temperature Temperature Superconductivity Cable Demonstration Projects Superconductivity Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585. Plugging America Into the Future of Power "A National Effort to Introduce New Technology into the Power Delivery Infrastructure" "In order to meet President Obama's ambitious energy goals, we must modernize the nation's electrical grid to improve the transmission, storage and reliability of clean energy across the country and help to move renewable energy from the places it can be produced to the places it can be used. The Department of Energy is working with industry partners to develop the

334

Use of superconductive technology for energy storage and power transmission for large power systems: power parks  

DOE Green Energy (OSTI)

A general review and technology assessment of superconducting magnets for energy storage and superconducting cables for power transmission are presented. It is concluded that the technology is now available for applying superconductivity in the power industry. (TFD)

Keller, W.E.

1977-01-01T23:59:59.000Z

335

Superconducting RF systems for eRHIC  

Science Conference Proceedings (OSTI)

The proposed electron-hadron collider eRHIC will consist of a six-pass 30-GeV electron Energy Recovery Linac (ERL) and one of RHIC storage rings operating with energy up to 250 GeV. The collider design extensively utilizes superconducting RF (SRF) technology in both electron and hadron parts. This paper describes various SRF systems, their requirements and parameters.

Belomestnykh S.; Ben-Zvi, I.; Brutus, J.C.; Hahn, H. et al

2012-05-20T23:59:59.000Z

336

Superconducting Power Equipment: Technology Watch 2012  

Science Conference Proceedings (OSTI)

The demand to transport large quantities of renewable energy from wind, solar, or hydro projects in remote locations to population load centers is increasing worldwide. Improved efficiency and greater power capacity that superconducting cables provide in this application continue to attract interest. In the United States, the Tres Amigas interconnect project, which reportedly will eventually use dc superconductors, is, in part, motivated by the need to transport wind power from west to east. ...

2012-12-20T23:59:59.000Z

337

Specifying and Testing Superconducting Power Equipment  

Science Conference Proceedings (OSTI)

EPRI held a workshop on September 21, 2007 in Hauppauge, New York to discuss what is needed to develop standards and specifications for testing superconducting power equipment. Stakeholders, including developers, equipment manufacturers, and electric utilities, participated in the discussions, which were arranged in a semi-formal setting to promote open dialogue. The U.S. Department of Energy provided assistance with meeting facilitation and recording.

2008-07-22T23:59:59.000Z

338

Holographic Superconductivity with Gauss-Bonnet gravity  

E-Print Network (OSTI)

I review recent work on holographic superconductivity with Einstein-Gauss-Bonnet gravity, and show how the critical temperature of the superconductor depends on both gravitational backreaction and the Gauss-Bonnet parameter, using both analytic and numerical arguments. I also review computations of the conductivity, finding the energy gap, and demonstrating that there is no universal gap ratio, $\\omega_g/T_c$, for these superconductors.

Ruth Gregory

2010-12-07T23:59:59.000Z

339

Compact Superconducting Crabbing and Deflecting Cavities  

SciTech Connect

Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

De Silva, Payagalage Subashini Uddika [JLAB, Old Dominion U.

2012-09-01T23:59:59.000Z

340

On a Model of Superconductivity and Biology  

E-Print Network (OSTI)

The paper deals with a semilinear integrodifferential equation that characterizes several dissipative models of Viscoelasticity, Biology and Superconductivity. The initial - boundary problem with Neumann conditions is analyzed. When the source term F is a linear function, then the explicit solution is obtained. When F is non linear, some results on existence, uniqueness and a priori estimates are deduced. As example of physical model the reaction - diffusion system of Fitzhugh Nagumo is considered.

Monica De Angelis

2012-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High temperature superconductivity in metallic region near Mott transition  

E-Print Network (OSTI)

The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

Tian De Cao

2009-06-11T23:59:59.000Z

342

Method for manufacturing a rotor having superconducting coils  

DOE Patents (OSTI)

A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

2001-01-01T23:59:59.000Z

343

Substrates suitable for deposition of superconducting thin films  

DOE Patents (OSTI)

A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

344

Strategic Intelligence Update: Superconductivity for Power Delivery Applications, April 2013  

Science Conference Proceedings (OSTI)

EPRI’s Strategic Intelligence Update: Superconductivity for Power Delivery Applications newsletter is part of its commitment to keep its members informed on the latest industry news and intelligence. Superconductivity is a rapidly evolving field, and this newsletter—along with EPRI’s annual Technology Watch reports—will closely follow developments in key technologies, R&D programs, demonstrations, deployments, and other superconductivity activities. The ...

2013-04-30T23:59:59.000Z

345

Superconductivity, superfluidity and zero-point oscillations  

E-Print Network (OSTI)

Currently it is thought that in order to explain the phenomenon of superconductivity is necessary to understand the mechanism of formation of electron pairs. However, the paired electrons cannot form a superconducting condensate. They perform disorderly zero-point oscillations and there are no attractive forces in their ensemble. To create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. For this reason, the ordering of zero-point oscillations in the electron gas is the cause of superconductivity and the parameters characterizing this order determine the properties of superconductors. The model of condensation of zero-point oscillations creates the possibility to obtain estimates for the critical parameters of elementary superconductors, which are also in the satisfactory agreement with measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained due to the ordering of zero-point fluctuations. Thus it is established that the both related phenomena are based on the same physical mechanism.

B. V. Vasiliev

2010-09-13T23:59:59.000Z

346

Magnetic profiles in ferromagnetic/superconducting superlattices.  

SciTech Connect

The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

2007-02-28T23:59:59.000Z

347

Rotatable superconducting cyclotron adapted for medical use  

DOE Patents (OSTI)

A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

Blosser, Henry G. (East Lansing, MI); Johnson, David A. (Williamston, MI); Riedel, Jack (East Lansing, MI); Burleigh, Richard J. (Berkeley, CA)

1985-01-01T23:59:59.000Z

348

Design and testing of a 13. 75-MW converter for a superconducting magnetic-energy-storage system  

DOE Green Energy (OSTI)

A 30 MJ superconducting magnetic energy storage system will be installed in 1982 in Tacoma, WA, to act as a transmission line stabilizer. Two 6 MVA transformers and a 5.5 kA, + 2.5 kV converter will connect the superconducting coil to the 13.8 kV bus and regulate the power flow between the coil and the three phase system. The design philosophy for the converter including its control and protection system is given in the paper. The converter has been tested with 10% overvoltage at no load, with 10% overcurrent at zero output voltage and with a watercooled resistive load of about 1 MW. These test results show that the converter will meet the expected full load operating conditions.

Boenig, H.J.; Turner, R.D.; Neft, C.L.; Sueker, K.H.

1981-01-01T23:59:59.000Z

349

Algorithms for transform selection in multiple-transform video compression  

E-Print Network (OSTI)

Selecting proper transforms for video compression has been based on the rate-distortion criterion. Transforms that appear reasonable are incorporated into a video coding system and their performance is evaluated. This ...

Cai, Xun, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

350

Vital Tool in Superconductivity Studies | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Short Title Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011 In 2008, the totally unexpected discovery of a New class of superconductors,...

351

On superconductivity of high-spin transition metal compounds  

SciTech Connect

The possibility of Cooper instability in transition metal compounds is established based of the concept of the strong interaction in the same unit cell. The multicomponent scattering amplitude of excitations is calculated. The superconductivity equations are derived for compounds of 3d transition metals. It is shown that in the pole approximation, the superconductivity equations can be reduced to the multicomponent superconductivity equations with preset BCS constants. A method is developed for calculating one-orbital constants and constants with different orbitals as functions of the total spin. The concentration ranges of superconducting ordering are obtained for one-orbital equations.

Zaitsev, R. O., E-mail: Zaitsev_rogdai@mail.ru [Moscow Institute of Physics and Technology (State University) (Russian Federation)

2011-11-15T23:59:59.000Z

352

BSA 08-04: High Temperature Interfacial Superconductivity  

Cuprate superconductors exhibit relatively high transition temperatures, but their unit cells are complex and large. Localizing a superconducting layer to a small ...

353

"ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman...  

NLE Websites -- All DOE Office Websites (Extended Search)

March 10, 2012, 9:30am Science On Saturday "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials Science Division, Argonne National Laboratory http:...

354

Superconductivity for Electric Systems: 2008 Annual Peer Review...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Electric Systems: 2008 Annual Peer Review Final Report The Office of Electricity Delivery and Energy Reliability's High Temperature Superconductivity (HTS) for...

355

Magnetism and Superconductivity in Ruthenates, Ruthenocuprates, and Other Layered Oxides.  

E-Print Network (OSTI)

??There exist several classes of materials that simultaneously exhibit superconductivity and anomalous magnetic order, where both effects are homogeneous throughout the material. No cohesive explanation… (more)

Smylie, Matthew Passmore

2010-01-01T23:59:59.000Z

356

EFFECTS OF DIMENSIONALITY, SAMPLE TOPOLOGY, AND DISORDER ON SUPERCONDUCTIVITY.  

E-Print Network (OSTI)

??The primary goal of this thesis work is to explore various phenomena related to the effects of dimensionality, sample topology, and disorder on superconductivity, motivated… (more)

Wang, Haohua

2006-01-01T23:59:59.000Z

357

Effects of geometric constraints and sample topology on superconductivity.  

E-Print Network (OSTI)

??The goal of this dissertation is to explore the effects of geometric constraints and sample topology on superconductivity. This work started with an effort to… (more)

Staley, Neal

2012-01-01T23:59:59.000Z

358

Studies in Magnetism and Superconductivity under Extreme Pressure.  

E-Print Network (OSTI)

??Abstract Studies of superconductivity, magnetism and structure under pressure have made important contributions to furthering our understanding of the physical properties of materials. High pressure… (more)

Bi, Wenli

2011-01-01T23:59:59.000Z

359

Type-I superconductivity and neutron star precession  

E-Print Network (OSTI)

Type-I proton superconducting cores of neutron stars break up in a magnetic field into alternating domains of superconducting and normal fluids. We examine two channels of superfluid-normal fluid friction where (i) rotational vortices are decoupled from the non-superconducting domains and the interaction is due to the strong force between protons and neutrons; (ii) the non-superconducting domains are dynamically coupled to the vortices and the vortex motion generates transverse electric fields within them, causing electronic current flow and Ohmic dissipation. The obtained dissipation coefficients are consistent with the Eulerian precession.

Armen Sedrakian

2004-08-25T23:59:59.000Z

360

Superconductivity Efforts at the US Department of Energy (DOE)  

Science Conference Proceedings (OSTI)

The DOE Office of Electricity Delivery and Energy Reliability Superconductivity Program's specific mission is to work in partnership with industry to develop HTS

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Developing a High-Temperature Superconducting Bulk Magnet for ...  

Science Conference Proceedings (OSTI)

In addition to these well-developed technologies, high-critical temperature superconductors that show superconductivity at liquid nitrogen are also prospective ...

362

Optimizing Power Using Transformations  

E-Print Network (OSTI)

: The increasing demand for portable computing has elevated power consumption to be one of the most critical design parameters. A high-level synthesis system, HYPER-LP, is presented for minimizing power consumption in application specific datapath intensive CMOS circuits using a variety of architectural and computational transformations. The synthesis environment consists of high-level estimation of power consumption, a library of transformation primitives, and heuristic/probabilistic optimization search mechanisms for fast and efficient scanning of the design space. Examples with varying degree of computational complexity and structures are optimized and synthesized using the HYPER-LP system. The results indicate that more than an order of magnitude reduction in power can be achieved over current-day design methodologies while maintaining the system throughput; in some cases this can be accomplished while preserving or reducing the implementation area. 1.0 Introduction VLSI research a...

Anantha P. Chandrakasan; Miodrag Potkonjak; Renu Mehra; Jan Rabaey; Robert W. Brodersen

1995-01-01T23:59:59.000Z

363

EPRI Intelligent Universal Transformer  

Science Conference Proceedings (OSTI)

The vision of the EPRI ADA Program (Program 124) is to create the technology basis for the distribution system of the future by transforming traditional single-function distribution systems into multifunctional power and information exchange systems with increased reliability, improved performance (lower system losses), better economics, better power quality, and more customer service options. Achieving this vision will require capturing the benefits of new capabilities in power electronics, information ...

2006-12-18T23:59:59.000Z

364

Grid Transformation Workshop Results  

Science Conference Proceedings (OSTI)

In an earlier white paper entitled Needed: A Grid Operating System to Facilitate Grid Transformation; EPRI; Palo Alto, CA: 2011; 1023223, we set the stage for a new grid operating system called Grid 3.0. Since that time we have identified four core research areas that are required to achieve the expected outcome. These research areas are called: seamless geospatial power system model, seamless power system analytics, integrated energy management system and setting-less protection method. While each area ...

2012-05-08T23:59:59.000Z

365

Growth and Superconductivity of Pb and Pb-Bi Alloys in the Quantum Regime.  

E-Print Network (OSTI)

??Superconductivity is a collective quantum phenomenon that is inevitably suppressed in reduced dimensionality. Questions of how thin superconducting wires or films can be before they… (more)

Ozer, Mustafa Murat

2006-01-01T23:59:59.000Z

366

Rainfall Analysis by Power Transformation  

Science Conference Proceedings (OSTI)

Power transformation was used to normalize the peak daily and peak monthly rainfall at various raingage stations in Iraq. Excellent correlations were found between the coefficient of skewness (Cs) and a parameter for power transformation (?), ...

Hameed Rasheed; A. S. Aldabagh; Murur V. Ramamoorthy

1983-08-01T23:59:59.000Z

367

Yeo-Johnson Power Transformations  

E-Print Network (OSTI)

This paper describes an Arc add-in for using the Yeo-Johnson power transformations in place of the Box-Cox power transformations in various places in Arc. 1

Sanford Weisberg

2001-01-01T23:59:59.000Z

368

Remarks on restricted Nevanlinna transforms  

E-Print Network (OSTI)

The Nevanlinna transform K(z), of a measure and a real constant, plays an important role in the complex analysis and more recently in the free probability theory (boolean convolution). It is shown that its restriction k(it) (the restricted Nevanlinna transform) to the imaginary axis can be expressed as the Laplace transform of the Fourier transform (characteristic function) of the corresponding measure. Finally, a relation between the Voiculescu and the boolean convolution is indicated.

Jankowski, Lech

2010-01-01T23:59:59.000Z

369

Remarks on the conformal transformations  

E-Print Network (OSTI)

Conformal transformations are obtained by demanding that the form of the metric change by a conformal factor. Nevertheless, this transformation of the metric is not taken into account when a variation of the action is performed. The basic purpose of this paper is to take the transformation of the metric into the variation of the action. When this is done, we obtain now that even massive particles are invariant under the conformal transformations.

L. C. T. Guillen

2004-08-10T23:59:59.000Z

370

Remarks on the conformal transformations  

E-Print Network (OSTI)

Conformal transformations are obtained by demanding that the form of the metric change by a conformal factor. Nevertheless, this transformation of the metric is not taken into account when a variation of the action is performed. The basic purpose of this paper is to take the transformation of the metric into the variation of the action. When this is done, we obtain now that even massive particles are invariant under the conformal transformations.

Guillen, L C T

2004-01-01T23:59:59.000Z

371

Phase Transformation and Microstructural Evolution  

Science Conference Proceedings (OSTI)

Jul 15, 2013 ... Relationship between Microstructural Evolution, Order-disorder Transformation and Plastic Inhomogeneities during Deformation of Beta Brass.

372

Applying a Model Transformation Taxonomy to Graph Transformation Technology  

E-Print Network (OSTI)

A taxonomy of model transformations was introduced in [16]. Among others, such a taxonomy can help developers in deciding which language, forma lism, tool or mechanism is best suited to carry out a particular model transformation activity. In this paper we apply the taxonomy to the technique of graph transformation, and we exemplify it by referring to four representative graph transformation tools. As a byproduct of our analysis, we discuss how well each of the considered tools carry out the activity of model transformation.

Tom Mens; Pieter Van Gorp; Dániel Varró; Gabor Karsai

2005-01-01T23:59:59.000Z

373

Generalized Transforms and Special Functions  

E-Print Network (OSTI)

We study the properties of different type of transforms by means of operational methods and discuss the relevant interplay with many families of special functions. We consider in particular the binomial transform and its generalizations. A general method, based on the use of the Fourier transform technique, is proposed for the study of the properties of functions of operators.

G. Dattoli; E. Sabia

2010-10-08T23:59:59.000Z

374

A taxonomy of model transformation  

E-Print Network (OSTI)

This report summarises the results of the discussions of a working group on model transformation of the Dagstuhl Seminar on Language Engineering for Model-Driven Software Development. The main contribution is a taxonomy of model transformation. This taxonomy can be used to help developers in deciding which model transformation approach is best suited to deal with a particular problem.

Tom Mens; Krzysztof Czarnecki; Pieter Van Gorp

2005-01-01T23:59:59.000Z

375

Wavelet transform and Radon transform on the Quaternion Heisenberg group  

E-Print Network (OSTI)

Let $\\mathscr Q$ be the quaternion Heisenberg group, and let $\\mathbf P$ be the affine automorphism group of $\\mathscr Q$. We develop the theory of continuous wavelet transform on the quaternion Heisenberg group via the unitary representations of $\\mathbf P$ on $L^2(\\mathscr Q)$. A class of radial wavelets is constructed. The inverse wavelet transform is simplified by using radial wavelets. Then we investigate the Radon transform on $\\mathscr Q$. A Semyanistri-Lizorkin space is introduced, on which the Radon transform is a bijection. We deal with the Radon transform on $\\mathscr Q$ both by the Euclidean Fourier transform and the group Fourier transform. These two treatments are essentially equivalent. We also give an inversion formula by using wavelets, which does not require the smoothness of functions if the wavelet is smooth.

He, JIanxun

2011-01-01T23:59:59.000Z

376

A new boson-fermion model of superconductivity  

E-Print Network (OSTI)

It is shown that the superconducting energy gap necessarily lead to the disappearance of some quasi-electrons, thus we suggest a new boson-fermion Hamiltonian to describe superconductivity. The new supercurrent equations are derived with this Hamiltonian. Some new results can be found besides the zero resistance effect, the Meissner effect and the magnetic flux quantum can be explained.

Tian De Cao

2010-10-17T23:59:59.000Z

377

Superconductivity at 35 K in Graphite-Sulfur Composites  

E-Print Network (OSTI)

We report magnetization measurements performed on graphite–sulfur composites which demonstrate a clear superconducting behavior below the critical temperature Tc0 = 35 K. The Meissner-Ochsenfeld effect, screening supercurrents, and magnetization hysteresis loops characteristic of type-II superconductors were measured. The results indicate that the superconductivity occurs in a small sample fraction, possibly related to the sample surface.

R. Ricardo Da Silva; J. H. S. Torres; Y. Kopelevich

2001-01-01T23:59:59.000Z

378

Superconducting magnetic energy storage for asynchronous electrical systems  

DOE Patents (OSTI)

It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

Boenig, H.J.

1984-05-16T23:59:59.000Z

379

Superconducting magnetic energy storage for asynchronous electrical systems  

DOE Patents (OSTI)

A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

Boenig, Heinrich J. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

380

Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride  

Science Conference Proceedings (OSTI)

A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.

Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; /UC, Davis; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.

2010-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Proceedings of 8th Annual EPRI Superconductivity Conference  

Science Conference Proceedings (OSTI)

The Electric Power Research Institutes EPRIs Eighth Annual EPRI Superconductivity ConferencePower Delivery Applications for Superconductivitywas held November 1213, 2008 in Oak Ridge, Tennessee at the Doubletree Hotel Oak Ridge. The U.S. Department of Energy DOE and Oak Ridge National Laboratory co-sponsored the event with EPRIs Superconductivity Program. This report contains the papers presented at the conference.

2008-12-23T23:59:59.000Z

382

Nonrelativistic conformal transformations in Lagrangian formalism  

E-Print Network (OSTI)

The conformal transformations corresponding to $N$-Galilean conformal symmetries, previously defined as canonical symmetry transformations on phase space, are constructed as point transformations in coordinate space.

Andrzejewski, K; Kijanka-Dec, A

2013-01-01T23:59:59.000Z

383

A Bijective String Sorting Transform  

E-Print Network (OSTI)

Given a string of characters, the Burrows-Wheeler Transform rearranges the characters in it so as to produce another string of the same length which is more amenable to compression techniques such as move to front, run-length encoding, and entropy encoders. We present a variant of the transform which gives rise to similar or better compression value, but, unlike the original, the transform we present is bijective, in that the inverse transformation exists for all strings. Our experiments indicate that using our variant of the transform gives rise to better compression ratio than the original Burrows-Wheeler transform. We also show that both the transform and its inverse can be computed in linear time and consuming linear storage.

Gil, Joseph Yossi

2012-01-01T23:59:59.000Z

384

Lorentz transformations: Einstein's derivation simplified  

E-Print Network (OSTI)

We show that the Lorentz transformations for the space-time coordinates of the same event are a direct consequence of the principle of relativity and of Einstein's distant clocks synchronization procedure. In our approach, imposing the linear character of the Lorentz transformations we guess that the transformation equation for the space coordinate has the form x=ax'+cbt'. Imposing the condition that it accounts for the time dilation relativistic effect and taking into account the fact that due to the clock synchronization a la Einstein the space-time coordinates of the same event in the two frames are related by x=ct and x'=ct', we find out expressions for a and b. Dividing the transformation equation for the space coordinate by c we obtain the transformation equation for the time coordinate t=at'+b/cx'. Combining the two transformation equations we obtain directly the inverse Lorentz transformations.

Bernhard Rothenstein; Stefan Popescu

2007-02-19T23:59:59.000Z

385

STATEMENT OF CONSIDERATIONS REQUEST BY DUPONT SUPERCONDUCTIVITY FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUPONT SUPERCONDUCTIVITY FOR AN ADVANCE DUPONT SUPERCONDUCTIVITY FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE CONTRACT NO. DE-FC36-99GO10287; W(A)-99-008; CH-1002 The Petitioner, DuPont Superconductivity (hereinafter "DuPont"), has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced contract entitled "High Temperature Superconducting Reciprocating Magnetic Separator". This contract relates to the construction of 1/4 commercial scale High Temperature Superconducting (hereinafter "HTS") Reciprocating Magnetic Separations Unit for the purification ofkaoline clay and titanium dioxide. It is anticipated that this project will be performed in three phases, over a period of

386

Los Alamos scientists see new mechanism for superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

New mechanism for superconductivity New mechanism for superconductivity Los Alamos scientists see new mechanism for superconductivity Researchers have posited an explanation for superconductivity that may open the door to the discovery of new, unconventional forms of superconductivity. November 24, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

387

Damping in high-temperature superconducting levitation systems  

Science Conference Proceedings (OSTI)

Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

Hull, John R. (Sammamish, WA)

2009-12-15T23:59:59.000Z

388

Dual Superconductivity in G2 group  

E-Print Network (OSTI)

We investigate the dual superconductivity mechanism in the exceptional group $G_2$. This is a centerless group (no 't Hooft flux vortices are allowed) and we check for the presence of a magnetic monopole condensate in the confined phase by measuring on the lattice a disorder parameter related to the vacuum expectation value of an operator carrying magnetic charge. The behaviour of the disorder parameter is consistent with the dual superconductor picture. A first step of an analysis on the thermodynamical properties of the theory is conducted by mean of this operator.

G. Cossu; M. D'Elia; A. Di Giacomo; B. Lucini; C. Pica

2006-09-28T23:59:59.000Z

389

Superconductivity as a Bose-Einstein condensation?  

E-Print Network (OSTI)

Bose-Einstein condensation (BEC) in two dimensions (2D) (e.g., to describe the quasi-2D cuprates) is suggested as the possible mechanism widely believed to underlie superconductivity in general. A crucial role is played by nonzero center-of-mass momentum Cooper pairs (CPs) usually neglected in BCS theory. Also vital is the unique {\\it linear} dispersion relation appropriate to weakly-coupled "bosonic" CPs moving in the Fermi sea--rather than in vacuum where the dispersion would be quadratic but only for very strong coupling, and for which BEC is known to be impossible in 2D.

S. K. Adhikari; M. Casas; A. Puente; A. Rigo; M. Fortes; M. A. Solís; M. de Llano; A. A. Valladares; O. Rojo

2000-04-13T23:59:59.000Z

390

Superconducting Hair on Charged Black String Background  

E-Print Network (OSTI)

Behaviour of Dirac fermions in the background of a charged black string penetrated by an Abelian Higgs vortex is elaborated. One finds the evidence that the system under consideration can support fermion fields acting like a superconducting cosmic string in the sence that a nontrivial Dirac fermion field can be carried by the system in question. The case of nonextremal and extremal black string vortex systems were considered. The influence of electric and Higgs charge, the winding number and the fermion mass on the fermion localization near the black string event horizon was studied. It turned out that the extreme charged black string expelled fermion fields more violently comparing to the nonextremal one.

Lukasz Nakonieczny; Marek Rogatko

2012-01-25T23:59:59.000Z

391

Critical Magnetic Field Determination of Superconducting Materials  

Science Conference Proceedings (OSTI)

Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

2011-11-04T23:59:59.000Z

392

Higgs instability in gapless superfluidity/superconductivity  

E-Print Network (OSTI)

In this letter we explore the Higgs instability in the gapless superfluid/superconducting phase. This is in addition to the (chromo)magnetic instability that is related to the fluctuations of the Nambu-Goldstone bosonic fields. While the latter may induce a single-plane-wave LOFF state, the Higgs instability favors spatial inhomogeneity and cannot be removed without a long range force. In the case of the g2SC state the Higgs instability can only be partially removed by the electric Coulomb energy. But this does not exclude the possibility that it can be completely removed in other exotic states such as the gCFL state.

Ioannis Giannakis; Defu Hou; Mei Huang; Hai-cang Ren

2006-06-16T23:59:59.000Z

393

Superconducting radiofrequency linac development at Fermilab  

SciTech Connect

As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

Holmes, Stephen D.; /Fermilab

2009-10-01T23:59:59.000Z

394

Current discontinuities on superconducting cosmic strings  

Science Conference Proceedings (OSTI)

The propagation of current perturbations on superconducting cosmic strings is considered. The conditions for the existence of discontinuities similar to shock waves have been found. The formulas relating the string parameters and the discontinuity propagation speed are derived. The current growth law in a shock wave is deduced. The propagation speeds of shock waves with arbitrary amplitudes are calculated. The reason why there are no shock waves in the case of time-like currents (in the 'electric' regime) is explained; this is attributable to the shock wave instability with respect to perturbations of the string world sheet.

Troyan, E., E-mail: et@iaaru.astronautiko.org; Vlasov, Yu. V. [Moscow Institute of Physics and Technology (Russian Federation)

2011-07-15T23:59:59.000Z

395

Superconducting RF Cavities Past, Present and Future  

E-Print Network (OSTI)

In the last two decades many laboratories around the world, notably Argonne (ANL), TJNAF (formerly CEBAF), CERN, DESY and KEK, decided to develop the technology of superconducting (SC) accelerating cavities. The aim was either to increase the accelerator energy or to save electrical consumption or both. This technology has been used extensively in the operating machines showing good performances and strong reliability. At present, the technology using bulk niobium (Nb) or Nb coated on copper (Cu) is mature enough to be applied for many different applications, such as synchrotron light sources and spallation neutron drivers. Results, R&D work and future projects will be presented with emphasis on application to linear accelerators.

Chiaveri, Enrico

2003-01-01T23:59:59.000Z

396

Fast Fourier transform telescope  

Science Conference Proceedings (OSTI)

We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

Tegmark, Max; Zaldarriaga, Matias [Department of Physics and MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Astrophysics, Harvard University, Cambridge, Massachusetts 02138 (United States)

2009-04-15T23:59:59.000Z

397

Superconducting Proximity Effect in Single-Crystal Nanowires  

E-Print Network (OSTI)

This dissertation describes experimental studies of the superconducting proximity effect in single-crystal Pb, Sn, and Zn nanowires of lengths up to 60 um, with both ends of the nanowires in contact with macroscopic electrodes that are either superconducting (Sn or Pb) or non-superconducting (Au). The Pb, Sn, and Zn nanowires are fabricated using a template-based electrochemical deposition method. Electric contacts to the nanowires are formed in situ during electrochemical growth. This method produces high transparency contacts between a pair of macroscopic electrodes and a single nanowire, circumventing the formation of oxide or other poorly conducting interface layers. Extensive analyses of the structure and the composition of the nanowire samples are presented to demonstrate that (1) the nanowires are single crystalline and (2) the nanowires are clean without any observable mixing of the materials from the electrodes. The nanowires being investigated are significantly longer than the nanowires with which electrode-induced superconductivity was previously investigated by other groups. We have observed that in relatively short (~6 um) Sn and Zn nanowires, robust superconductivity is induced at the superconducting transition temperatures of the electrodes. When Sn and Pb nanowires are in contact with a pair of Au electrodes, superconductivity is suppressed completely. For nanowires of 60 um in length, although the suppression of superconductivity by Au electrodes is only partial, the induced superconductivity at the higher transition temperatures of the electrodes remains full and robust. Therefore, an anomalous superconducting proximity effect has been observed on a length scale which far exceeds the expected length based on the existing theories of the proximity effect. The measured current-voltage characteristic of the nanowires reveals more details such as hysteresis, multiple Andreev reflection, and phase-slip centers. An interesting relation between the proximity effect and the residual-resistance-ratio of the nanowires has also been observed. Possible mechanisms for this proximity effect are discussed based on these experimental observations.

Liu, Haidong

2009-05-01T23:59:59.000Z

398

Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites  

DOE Patents (OSTI)

Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

Norem, James H.; Pellin, Michael J.

2013-06-11T23:59:59.000Z

399

LU transformation invariant operators and LU transformation invariant  

E-Print Network (OSTI)

We proposed a concept of LU transformation invariant operators. By using this operator, arbitrary multi-qubit states LU transformation invariant and SLOCC invariant could be easily obtained. And we find that presences two kinds of invariant operators and corresponding invariants. One kind of operators yields LU invariants and the other operators results in SLOCC invariants. For three-qubit states, all independence LU transformation invariant are obtained. Furthermore, by this system method, arbitrary multi-qubit states invariants can be given.

Xin-wei Zha; Chun-min Zhang

2007-02-06T23:59:59.000Z

400

Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets  

E-Print Network (OSTI)

Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets

Piekarz, H; Huang, Y; Shiltsev, V

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Bottom-up superconducting and Josephson junction devices inside a Group-IV semiconductor  

E-Print Network (OSTI)

We propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyze the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, SQUIDs, and qubits are realizable. This work motivates the pursuit of bottom-up superconductivity for improved or fundamentally different technology and physics.

Yun-Pil Shim; Charles Tahan

2013-08-30T23:59:59.000Z

402

SLPX: superconducting long-pulse experiment  

DOE Green Energy (OSTI)

The principal objectives of the SLPX--Superconducting Long-Pulse Experiment--are to demonstrate quasi-steady operation of 3 to 5 MA hydrogen and deuterium plasmas at high temperature and high thermal wall loading, and to develop reliable operation of a prototypical reactor magnetics systems featuring a toroidal assembly of high-field niobium-tin coils. This report summarizes the results of an engineering scoping study for the SLPX. A range of sizes has been investigated, from a TF (toroidal-field) coil aperture of 2.6 m x 3.65 m, to an aperture of 3.1 m x 4.8 m, and with a maximum field at the Nb/sub 3/Sn conductor of 10 to 12 Tesla. The poloidal-field magnetics system utilizes superconducting ohmic-heating and d.c. EF coils located outside the TF coils, together with normal-conducting EF and divertor coils located inside the TF coils. For the largest embodiment, the D-shaped plasma in hydrogen operation has major radius = 3.6 m, half-width = 0.90 m, elongation < 1.5, and B = 7,2 T. Maximum plasma current of 5.0 MA can be maintained for a 30-s flat-top when Z/sub eff/approximately 1. A single-null poloidal magnetic divertor disposes of particles and heat diffusing out of the current channel, thereby helping to insure the feasibility of quasi-steady operation.

Jassby, D.L.; File, J.; Reardon, P.J.

1978-10-01T23:59:59.000Z

403

Brittle superconducting magnets: an equivilent strain model  

Science Conference Proceedings (OSTI)

To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb{sub 3}Sn and Nb{sub 3}Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb{sub 3}Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.

Barzi, E.; /Fermilab; Danuso, M.

2010-08-01T23:59:59.000Z

404

Superconducting solenoids for the MICE channel  

DOE Green Energy (OSTI)

This report describes the channel of superconductingsolenoids for the proposed international Muon Ionization CoolingExperiment (MICE). MICE consists of two cells of a SFOFO cooling channelthat is similar to that studied in the level 2 study of a neutrinofactory[1]. MICE also consists of two detector solenoids at either end ofthe cooling channel section. The superconducting solenoids for MICEperform three functions. The coupling solenoids, which are largesolenoids around 201.25 MHz RF cavities, couple the muon beam between thefocusing sections as it passes along the cooling channel. The focusingsolenoids are around the liquid hydrogen absorber that reduces themomentum of the muons in all directions. These solenoids generate agradient field along the axis as they reduce the beta of the muon beambefore it enters the absorber. Each detector solenoid system consists offive coils that match the muon beam coming to or from an absorber to a4.0 T uniform solenoidal field section that that contains the particledetectors at the ends of the experiment. There are detector solenoids atthe beginning and at the end of the experiment. This report describes theparameters of the eighteen superconducting coils that make up the MICEmagnetic channel.

Green, M.A.; Barr, G.; Baynham, D.E.; Rockford, J.H.; Fabbricatore, P.; Farinin, S.; Palmer, R.B.; Rey, J.M.

2003-05-01T23:59:59.000Z

405

Density matrix, superconductivity and molecular structure  

Science Conference Proceedings (OSTI)

Starting from Yang`s offdiagonal long-range order concept and the macroscopic occupation condition for the second order density matrix as the basis for condensation phenomena the authors develop the notion that the extremal wave function (EWF), which is related to these conditions, leads to superconductivity in monatomic systems. It is proven that the BCS model and the version where it is projected onto a fixed number of particles possesses EWF properties, differs negligibly from the EWF, and conserves offdiagonal long-range order. The condition for the EWF to be energetically favored is the presence of macroscopic degenerate one-electron energy levels in the system, partial occupation of this degenerate region, and also an effective attraction among the electrons. Considerations are advanced indicating that these conditions are satisfied in the high temperature superconducting metal oxide ceramics, due to the presence of macroscopically degenerate diffusion orbitals distributed among the O{sup -} ions in the CuO{sub 2} layers, and with the effective screening of these layers by the metal-like La, Ba, Y, or O layers. 51 refs., 3 figs., 1 tab.

Mestechkin, M.M.; Klimko, G.T.; Vaiman, G.E. [Academy of Science of the Ukrainian SSR, Donetsk (Russian Federation)

1992-01-01T23:59:59.000Z

406

Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1982  

SciTech Connect

Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit, its installation at the Bonneville Power Administration (BPA) Tacoma Substation, and the preliminary site tests in preparation for its use to stabilize power oscillations on the BPA Pacific AC Inertie. The seismic mounting of the 30 MJ superconducting coil to the dewar lid was completed. The manufacture and testing of the nonconducting dewar were completed. The 5 kV vapor cooled leads were assembled and tested. The refrigerator was placed in operation at the Tacoma Substation and tested by making liquid helium in a 500 l dewar. The refrigerator was connected to the coil dewar and is now used for cooling the 30 MJ coil and dewar with extended purification of the circulating helium to remove contaminants. All equipment was shipped and installed at the BPA Tacoma Substation. Assembly of the 30 MJ coil into the nonconducting dewar was done at the BPA Covington facility and transported to the Tacoma Substation. Substation preparation was completed by 11-1-82. BPA, at considerable expense, did an excellent job preparing the site and assisting with the SMES unit installation. All equipment is in place and operable except for components of the computer control and for full refrigeration of the 30 MJ coil. The converter was tested with the output shorted with the input transformers connected to the 13.8 kV. A new schedule for the SMES operation was established.

Rogers, J.D. (comp.)

1983-05-01T23:59:59.000Z

407

Definition: Transformer | Open Energy Information  

Open Energy Info (EERE)

Transformer Transformer Jump to: navigation, search Dictionary.png Transformer An electromagnetic device that changes the voltage of alternating current electricity.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition A transformer consists of a primary- and secondary coil, coupled by a magnetic field. The primary coil induces the voltage in the secondary coil. The voltage transformation depends on the number of windings. Related Terms Electricity, Transmission, Electric grid, transmission lines, electricity generation, transmission line, alternating current References ↑ http://www1.eere.energy.gov/site_administration/glossary.html#T Retrieved LikeLike UnlikeLike You like this.Sign Up to see what your friends like. from "http://en.openei.org/w/index.php?title=Definition:Transformer&oldid=502565

408

On-line transformer monitoring  

Science Conference Proceedings (OSTI)

There are presently many different approaches to transformer monitoring, either on the market or under development. There are also, many different opinions about how on-line monitoring should be accomplished. On the one hand, efforts are being made to develop expert systems that monitor all transformer parameters and generate an estimate of overall transformer condition. On the other hand, a large number of transformer monitors, designed to monitor one or two specific parameters are already on the market. Another important factor to consider in choosing a monitor is who receives the information and how it is transmitted. The ultimate transformer monitor should feed into the supervisory control and data acquisition (Scada) system. This paper discusses the various aspects of this issue including asset protection, cost control, dissolved gases, pinpointing bad bushings and current transformers, hot spot measurement partial discharge, and water-in-oil measurements. 10 figs.

NONE

1995-10-01T23:59:59.000Z

409

Strong enhancement of superconductivity in a nanosized Pb bridge  

E-Print Network (OSTI)

In recent experiments with a superconducting nanosized Pb bridge formed between a scanning tunneling microscope tip and a substrate, superconductivity has been detected at magnetic fields, which are few times larger than the third (surface) critical field. We describe the observed phenomenon on the basis of a numerical solution of the Ginzburg-Landau equations in a model structure consisting of six conoids. The spatial distribution of the superconducting phase is shown to be strongly inhomogeneous, with concentration of the superconducting phase near the narrowest part (the “neck”) of the bridge. We show that suppression of superconductivity in the bridge by applied magnetic field or by temperature first occurs near the bases and then in the neck region, what leads to a continuous superconducting-to-normal resistive transition. A position of the transition midpoint depends on temperature and, typically, is by one order of magnitude higher than the second critical field Hc2. We find that the vortex states can be realized in the bridge at low temperatures T/Tc ? 0.6. The vortex states lead to a fine structure of the superconducting-to-normal resistive transition. We also analyze vortex states in the bridge, which are characterized by a varying vorticity as a function of the bridge’s height.

V. R. Misko; V. M. Fomin; J. T. Devreese

2008-01-01T23:59:59.000Z

410

Transformer Population Model With Testing  

Science Conference Proceedings (OSTI)

EPRI's asset management research focuses on developing a rational basis for selecting repair or replacement options for specific classes of equipment by balancing the risks of equipment failure against the costs of continued maintenance or capital replacement. This Model User Guide is a companion to Transformer Asset Management and Testing Methodology, EPRI, Palo Alto, CA: 2006. 1012504, which discusses methods for making decisions about transformers, and It explicitly models transformer degradation, ins...

2006-12-05T23:59:59.000Z

411

Gassing of Transformers: An Update  

Science Conference Proceedings (OSTI)

Transformers rarely, if ever, operate under equilibrium conditions; rather, they exist in a dynamic state where decomposition products migrate among various phases, including headspace (when present), oil, and solid insulation. Detailed knowledge of these parameters is needed for accurately interpreting fault gas analysis and for continuous transformer condition monitoring. This report describes work to date on laboratory experiments using test chambers to simulate transformer conditions under various dy...

2001-11-26T23:59:59.000Z

412

EPRI Transformer Task Force Proceedings  

Science Conference Proceedings (OSTI)

The EPRI Transformer Task Force held a meeting on December 4, 2007, in San Antonio, Texas. This technical update contains the proceedings of the meeting.

2008-02-12T23:59:59.000Z

413

EPRI Transformer Task Force Proceedings  

Science Conference Proceedings (OSTI)

This report contains the proceedings from the EPRI Transformers Task Force, which was held in Montreal on October 26 and 27, 2006.

2006-12-12T23:59:59.000Z

414

Phase Transformation and Microstructural Evolution  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Yunzhi Wang, Ohio State University. Scope, Phase transformation is still one of the most effective and efficient means to produce desired ...

415

Transformations of hypergeometric elliptic integrals  

E-Print Network (OSTI)

The paper classifies algebraic transformations of Gauss hypergeometric functions with the local exponent differences $(1/2,1/4,1/4)$, $(1/2,1/3,1/6)$ and $(1/3,1/3,1/3)$. These form a special class of algebraic transformations of Gauss hypergeometric functions, of arbitrary high degree. The Gauss hypergeometric functions can be identified as elliptic integrals on the genus 1 curves $y=x^3-x$ or $y=x^3-1$. Especially interesting are algebraic transformations of the hypergeometric functions into themselves; these transformations come from isogenies of the respective elliptic curves.

Vidunas, Raimundas

2008-01-01T23:59:59.000Z

416

An investigation of Lorentz transformation  

E-Print Network (OSTI)

A new method of derivation of Lorentz Transformation (LT) is given based on both axioms of special relativity (SR) and physical intuitions. The essence of the transformation is established and the crucial role played by the presumptions is presented for clarification. I consider the most general form of transformations between two sets of events in two inertial reference frames and use the most basic properties expected from such a transformation together with the principle of the constancy of the velocity of light to derive LT. The method is very simple, succinct and useful for students trying a better understanding of the subject.

Farid Shahandeh

2013-04-13T23:59:59.000Z

417

FOURIER TRANSFORM MULTIPLE QUANTUM NMR  

E-Print Network (OSTI)

TRANSFORM MULTIPLE QUANTUM NMR G. Drobny, A. Pines, S.TRANSFO~~ MULTIPLE QUANTUM NMR G. Drobny, A. Pines, S.

Drobny, G.

2011-01-01T23:59:59.000Z

418

Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison  

SciTech Connect

Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

Kelley, Nathan; Corsaro, Pietro

2004-12-01T23:59:59.000Z

419

Non-Fermi Liquid Regimes and Superconductivity in the Low Temperature Phase Diagrams of Strongly Correlated d- and f-Electron Materials  

E-Print Network (OSTI)

Zapf, J. Wosnitza, Superconductivity in Conventional andLiquid Regimes and Superconductivity in the Low Temperatureas un- conventional superconductivity and novel magnetic

Brian Maple, M.; Baumbach, Ryan E.; Butch, Nicholas P.; Hamlin, James J.; Janoschek, Marc

2010-01-01T23:59:59.000Z

420

Business Transformation Workbench: A Practitioner's Tool for Business Transformation  

Science Conference Proceedings (OSTI)

Business transformation is a key management initiative that attempts to align people, process and technology of an enterprise more closely with its business strategy and vision. It is an essential part of the competitive business cycle. Existing consulting ... Keywords: business transformation, business process models, software tools

Juhnyoung Lee; Rama Akkiraju; Chun Hua Tian; Shun Jiang; Sivaprashanth Danturthy; Ponn Sundhararajan; Carl Nordman; Rakesh Mohan; Hitansh Singala; Wei Ding

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Power Switches Utilizing Superconducting Material for Accelerator Magnets  

E-Print Network (OSTI)

Power switches that utilize superconducting material find application in superconducting systems. They can be used for the protection of magnets as a replacement for warm DC breakers, as well as for the replacement of cold diodes. This paper presents a comparison of switches made of various superconducting materials having transport currents of up to 600 A and switching times of the order of milliseconds. The switches operate in the temperature range 4.2-77 K and utilize stainless steel clad YBCO tape and MgB2 tape with a nickel, copper, and iron matrix. Results from simulations and tests are reported.

March, S A; Yang, Y; 10.1109/TASC.2009.2017890

2009-01-01T23:59:59.000Z

422

Topologically-protected quantum memory interfacing atomic and superconducting qubits  

E-Print Network (OSTI)

We propose a scheme to manipulate a kind of topological spin qubits realized with cold atoms in a one-dimensional optical lattice. In particularly, by introducing a quantum optomechanical setup, we are able to fist transfer a superconducting qubit state to an atomic state and then to store it into the topological spin qubit. In this way, an efficient topological quantum memory may be constructed for the superconducting qubit. Therefore, we can consolidate the advantages of both the noise resistance of topological qubits and the scalability of superconducting qubits in this hybrid architecture.

Zheng-Yuan Xue; Zhang-qi Yin; Yan Chen; Z. D. Wang; Shi-Liang Zhu

2013-01-17T23:59:59.000Z

423

Thermal evolution of rotating strange stars in color superconductivity phase  

E-Print Network (OSTI)

Under the combination effect of the recommencement heating due to spin-down of strange stars and the heat perseveration due to weak conduct heat of the crust, the Cooper pair breaking and formation(PBF) in color superconduction quark matter arises. We investigated the cooling of the strange stars with a crust in color superconductivity phase including both decomfinement heating and PBF process. We find that deconfinement heating can delay the thermal evolution of strange stars and the PBF process suppresses the early temperature rise of the stars. The cooling strange stars behave within the brightness constraint of young compact objects when the color superconductivity gap is small enough.

X. P. Zheng; X. Zhou; Y. W. Yu

2006-07-04T23:59:59.000Z

424

System and method for cooling a superconducting rotary machine  

Science Conference Proceedings (OSTI)

A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

Ackermann, Robert Adolf (Schenectady, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrui (Clifton Park, NY); Bray, James William (Niskayuna, NY)

2011-08-09T23:59:59.000Z

425

LHC Magnet Program | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnet Program Magnet Program The Superconducting Magnet Division is building a number of dipole magnets for the Large Hadron Collider (LHC), which is now under construction at CERN in Geneva, Switzerland. Scheduled to begin operation in 2007, this machine will collide beams of protons with the unprecedented energy of 7 TeV per beam to explore the nature of matter at its most basic level (RHIC can collide beams of protons with energies of 0.25 TeV, but is mostly used to collide heavy ions with energies of 0.1 TeV per nucleon). The magnets are being built as part of the US program, recommended by the High Energy Physics Advisory Panel (HEPAP) and approved by Congress, to contribute to the construction and, later, use of that frontier machine by the US high energy physics community. Fermi National Accelerator Laboratory (FNAL) and

426

HERA Upgrade Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

HERA Upgrade Project HERA Upgrade Project As part of the HERA luminosity upgrade, 6 superconducting Interaction Region quadrupoles were delivered, accepted, and are in service. These 6 layer magnets were designed to include the main quadrupole focus, a skew quad, a normal and skew dipole, and a final sextupole layer. Because of the physical space constraints imposed by the existing detector region components, the DESY magnets were of necessity designed to be very compact. In addition, they are also are required to operate within the solenoidal detector fields at the collision points, so all construction materials had to be non magnetic. Two types of DESY magnets were fabricated. The first, designated as G0, was a two meter long, constant radius magnet. The second, designated GG, is a

427

J-PARC Correctors | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

J-PARC Correctors J-PARC Correctors Physics Japan is constructing a 50 Gev, high intensity proton accelerator at a site near the Japanese high energy research laboratory, KEK. The project is called J-PARC (Japan Proton Accelerator Research Complex). The site is at Tokai and is part of the Japanese Atomic Energy Research Institute (JAERI). KEK and JAERI are jointly responsible for its construction. J-PARC will serve many uses. One of the uses will be to produce neutrinos that will be directed toward a detector located in Kamiokande, Japan. The neutrinos will be produced when protons are extracted from J-PARC and are directed by magnets in a beam line to strike a target. Further information about the neutrino experiment is available. KEK and the BNL Superconducting Magnet Division are working together to

428

Meetings & Workshops | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings & Workshops Meetings & Workshops S&T Committee Program Review June 22 - 23, 2006 Second Annual VLHC Meeting October 16 - 18, 2000 Workshop on the Effect of Synchrotron Radiation in the VLHC September 18 - 20, 2000 Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators Upcoming Events JAN 17 Friday East Coast Conference for Undergraduate Women in Physics - Lecture "The Nation's Nuclear Physics Program and the Role of the Government" Presented by Dr. Jehanne Gillo, U.S. Department of Energy, Nuclear Physics 9:30 am, Berkner Hall Auditorium Friday, January 17, 2014, 9:30 am Hosted by: Director's Office JAN 22 Wednesday Brookhaven Lecture "491st Brookhaven Lecture: Juergen Thieme of Photon Sciences Directorate" Presented by Juergen Thieme, Brookhaven Lab's Photon Sciences Directorate

429

LOTO Authorized Personnel | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Lockout/Tagout (LOTO) Personnel Lockout/Tagout (LOTO) Personnel Primary Authorized Employee Have the training and/or experience to exercise group and system-level judgments, and are authorized to lockout and tagout any equipment for which they have division's approval. If coordinated multiple lock and tags are applied by more than one employee, those of the "primary authorized employee" must be the first to be applied and the last to be removed. SMD - LOTO Primary Authorized Personnel Name Phone # Systems/Group Raymond Ceruti Ext. 7116 Mechanical Engineering Technical Support John Cintorino Ext. 2544 Magnet Test & Measurement Joseph D'Ambra Ext. 3764 Superconducting Materials R&D Sebastian Dimaiuta Ext. 5265 Electrical Systems Technical Support Glenn Jochen Ext. 7320 Mechanical Engineering Technical Support

430

Automated Hydroforming of Seamless Superconducting RF Cavity  

SciTech Connect

We are studying the possibility of automated hydroforming process for seamless superconducting RF cavities. Preliminary hydroforming tests of three-cell cavities from seamless tubes made of C1020 copper have been performed. The key point of an automated forming is to monitor and strictly control some parameters such as operation time, internal pressure and material displacements. Especially, it is necessary for our studies to be able to control axial and radial deformation independently. We plan to perform the forming in two stages to increase the reliability of successful forming. In the first stage hydroforming by using intermediate constraint dies, three-cell cavities were successfully formed in less than 1 minute. In parallel, we did elongation tests on cavity-quality niobium and confirmed that it is possible to achieve an elongation of >64% in 2 stages that is required for our forming of 1.3 GHz cavities.

Nagata, Tomohiko [ULVAC, Inc.; Shinozawa, Seiichi [ULVAC, Inc.; Abe, Noriyuki [ULVAC, Inc.; Nagakubo, Junki [ULVAC, Inc.; Murakami, Hirohiko [ULVAC, Inc.; Tajima, Tsuyoshi [Los Alamos National Laboratory; Inoue, Hitoshi [High Energy Accelerator Research Organization, KEK; Yamanaka, Masashi [High Energy Accelerator Research Organization, KEK; Ueno, Kenji [High Energy Accelerator Research Organization, KEK

2012-07-31T23:59:59.000Z

431

Type I Superconductivity in Neutron Stars  

E-Print Network (OSTI)

The magnetic structure of neutron vortices in the superfluid cores of neutron stars is determined assuming that the proton condensate forms a type I superconductor. It is shown that the entrainment currents induced by the neutron vortex circulation cause the proton superconductor to break into successive domains of normal and superconducting regions. The Gibbs free-energy is found in the case in which the normal domains form cylindrical tubes coaxial with the neutron vortex. The minimum of the energy functional corresponds to a tube radius $a\\sim 0.1-0.5 ~b$, where $b$ is the outer radius of the neutron vortex. The magnetic field within the tube is of the order of $ 5 \\times 10^{14}$ G.

D. M. Sedrakian; A. Sedrakian; G. F. Zharkov

1997-10-24T23:59:59.000Z

432

Diffusion effects on a superconductive model  

E-Print Network (OSTI)

A superconductive model characterized by a third order parabolic operator L" is analysed. When the viscous terms, represented by higher - order deriva- tives, tend to zero, a hyperbolic operator L0 appears. Furthermore, if P" is the Dirichlet initial boundary - value problem for L", when L" turns into L0; P" turns into a problem P0 with the same initial - boundary conditions as P". The solution of the nonlinear problem related to the remainder term r is achieved, as long as the higher-order derivatives of the solution of P0 are bounded. More- over, some classes of explicit solutions related to P0 are determined, proving the existence of at least one motion whose derivatives are bounded. The estimate shows that the diffusion effects are bounded even when time tends to infinity.

M. de Angelis; G. Fiore

2012-11-06T23:59:59.000Z

433

Method of preparing composite superconducting wire  

DOE Patents (OSTI)

An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

Verhoeven, John D. (Ames, IA); Gibson, Edwin D. (Ames, IA); Finnemore, Douglas K. (Ames, IA); Ostenson, Jerome E. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Owen, Charles V. (Ames, IA)

1985-08-06T23:59:59.000Z

434

Improved method of preparing composite superconducting wire  

DOE Patents (OSTI)

An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

1979-10-17T23:59:59.000Z

435

Improved method of preparing composite superconducting wire  

DOE Patents (OSTI)

An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin is described. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

1981-04-24T23:59:59.000Z

436

Electromagnetically induced interference at superconducting qubits  

E-Print Network (OSTI)

We study electromagnetically induced interference at superconducting qubits. The interaction between qubits and electromagnetic fields can provide additional coupling channels to qubit states, leading to quantum interference in a microwave driven qubit. In particular, the interwell relaxation or Rabi oscillation, resulting respectively from the multi- or single-mode interaction, can induce effective crossovers. The environment is modeled by a multi-mode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillation, Rabi oscillation induced interference involves more complicate...

Du, Lingjie

2010-01-01T23:59:59.000Z

437

Tunable electromagnetic environment for superconducting quantum bits  

E-Print Network (OSTI)

We introduce a setup which realises a tunable engineered environment for experiments in circuit quantum electrodynamics. We illustrate this concept with the specific example of a quantum bit, qubit, in a high-quality-factor cavity which is capacitively coupled to another cavity including a resistor. The temperature of the resistor, which acts as the dissipative environment, can be controlled in a well defined manner in order to provide a hot or cold environment for the qubit, as desired. Furthermore, introducing superconducting quantum interference devices (SQUIDs) into the cavity containing the resistor, provides control of the coupling strength between this artificial environment and the qubit. We demonstrate that our scheme allows us to couple strongly to the environment enabling rapid initialization of the system, and by subsequent tuning of the magnetic flux of the SQUIDs we may greatly reduce the resistor-qubit coupling, allowing the qubit to evolve unhindered.

P. J. Jones; J. A. M. Huhtamäki; J. Salmilehto; K. Y. Tan; M. Möttönen

2013-02-15T23:59:59.000Z

438

Self field triggered superconducting fault current limiter  

DOE Patents (OSTI)

A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

Tekletsadik, Kasegn D. (Rexford, NY)

2008-02-19T23:59:59.000Z

439

Competition between superconductivity and spin density wave  

E-Print Network (OSTI)

The Hubbard model has been investigated widely by many authors, while this work may be new in two aspects. One, we focus on the possible effects of the positions of the gaps associated with the pairing and the spin density wave. Two, we suggest that the models with different parameters are appropriate for different materials (or a material in different doped regions). This will lead to some new insights into the high temperature superconductors. It is shown that the SDW can appear at some temperature region when the on-site Coulomb interaction is larger, while the SC requires a decreased U at a lower temperature. This can qualitatively explain the relationship between superconducting and pseudogap states of Cu-based superconductors in underdoped and optimally doped regions. The superinsulator is also discussed.

Tian De Cao

2011-01-02T23:59:59.000Z

440

The Lichnerowicz-Weitzenboeck formula and superconductivity  

SciTech Connect

We derive the Lichnerowicz-Weitzenboeck formula for the two-component order parameter superconductor, which provides a twofold view of the kinetic energy of the superconductor. For the one component order parameter superconductor we review the connection between the Lichnerowicz-Weitzenboeck formula and the Ginzburg-Landau theory. For the two-component case we claim that this formula opens a venue to describe inhomogeneous superconducting states intertwined by spin correlations and charged dislocation. In this case the Lichnerowicz-Weitzenboeck formula displays local rotational and electromagnetic gauge symmetry (SU(2) Circled-Times U(1)) and relies on local commuting momentum and spin operators. The order parameter lives in a space with curvature and torsion described by Elie Cartan geometrical formalism. The Lichnerowickz-Weitzenboeck formula leads to first order differential equations that are a three-dimensional version of the Seiberg-Witten equations.

Vargas-Paredes, Alfredo A.; Doria, Mauro M. [Departamento de Fisica dos Solidos, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (Brazil)] [Departamento de Fisica dos Solidos, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (Brazil); Neto, Jose Abdala Helayeel [Centro Brasileiro de Pesquisas Fisicas, 22290-160 Rio de Janeiro RJ (Brazil)] [Centro Brasileiro de Pesquisas Fisicas, 22290-160 Rio de Janeiro RJ (Brazil)

2013-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Quench anaylsis of MICE spectrometer superconducting solenoid  

SciTech Connect

MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

Kashikhin, Vladimir; Bross, Alan; /Fermilab; Prestemon, Soren; / /LBL, Berkeley

2011-09-01T23:59:59.000Z

442

Fast thermometry for superconducting rf cavity testing  

SciTech Connect

Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

2007-06-01T23:59:59.000Z

443

Some aspects of superconducting accelerator design  

SciTech Connect

The performance of an accelerator can be characterized by the efficiency with which electrical energy, the minimumm energy needed to generate a given beam voltage. The current accelerator improvement program at SLAC aims at raising the beam voltage to 50 GV which will use 240 klystrons each capable of producing a pulse 5 ..mu..s in length at a peak power of 36 MW. The Linear Collider requires 50 MW klystrons to achieve 60 GV which will raise the concomittant power consumption to 32.3 MW. We show that with superconducting elements we can increase the rf and ac conversion efficiencies and achieve the necessary 50 GV using only 1/3 of the present power requirements, provided that we exclude CW operation. We will further demonstrate that this increase in efficiency is crucial and highly significant in the design of a proposed 1000 GV linear accelerator.

Farkas, Z.D.; St. Lorant, S.J.

1982-11-01T23:59:59.000Z

444

HTS Magnet Program | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

HTS Magnet Program HTS Magnet Program High Temperature Superconductors (HTS) have the potential to revolutionize the field of superconducting magnets for particle accelerators, energy storage and medical applications. This is because of the fact that as compared to the conventional Low Temperature Superconductors (LTS), the critical current density (Jc ) of HTS falls slowly both: as a function of increasing field, and as a function of increasing temperature These unique properties can be utilized to design and build: HTS magnets that produce very high fields (20 - 50 T) HTS magnets that operate at elevated temperatures (20 - 77 K) This is a significant step forward over the convention LTS magnets which generally operate at a temperature of ~4 K and with field usually limited

445

Diagnostics Techniques of Power Transformer  

Science Conference Proceedings (OSTI)

This paper provides the information on the diagnostics techniques for condition monitoring of power transformer (PT). This paper deals with the practical importance of the transformer diagnostic in the Electrical Engineering field. A review has been ... Keywords: temperature, condition monitoring, diagnostics methods, paper analysis techniques, oil analysis techniques

Piush Verma; Y. R. Sood; Jashandeep Singh

2009-12-01T23:59:59.000Z

446

Graph Transformations in Relational Databases  

E-Print Network (OSTI)

The theory of graph transformation [2] was originally developed as a generalization of Chomsky grammars from strings to graphs. Methods, techniques, and tools from the area of graph transformations have already been studied and applied in many fields of computer science such as formal language theory, pattern recognition and generation, compiler construction, software engineering, etc. Despite the large variety of existing graph transformation tools, the implementation of their graph transformation engine typically follows the same principle. In this respect, first a matching occurrence of the left-hand side (LHS) of the graph transformation rule is being found by some sophisticated graph pattern matching algorithm. Then the engine performs some local modifications to add or remove graph elements to the matching pattern, and the entire process starts all over again. Since graph pattern matching leads to the subgraph isomorphism problem that is known to be NPcomplete in general, this step is considered to be the most crucial in the overall performance of a graph transformation engine. Current tools (e.g., PROGRES [4]) use different efficient strategies for the graph pattern matching phase. However, I argue that the overall complexity of a graph transformation engine is not necessarily equal to the complexity of the graph pattern matching phase, especially for long transformation sequences.

Gergely Varró

2004-01-01T23:59:59.000Z

447

Definition: Line Transformer Monitors | Open Energy Information  

Open Energy Info (EERE)

Transformer Monitors Transformer Monitors Jump to: navigation, search Dictionary.png Line Transformer Monitors Transformer Monitoring System can monitor different aspects of transformers, including oil levels and multiple temperatures within the transformer. This allows for analysis of the health of either individual key power transformers or multiple power transformers networked in the system. For example, the transformer monitors provide transformer oil dissolved gas analysis (DGA), oil temperature, ambient temperature, and moisture in oil measurements. These measurements are made in relation to transformer load.[1] Related Terms transformer, system, transformer References ↑ https://www.smartgrid.gov/category/technology/line_transformer_monitors [[Cat LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

448

High Power Superconducting Continuous Wave Linacs for Protons and  

Office of Science (SC) Website

Power Superconducting Continuous Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions

449

J. Robert Schrieffer and the BCS Theory of Superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Robert Schrieffer and the BCS Theory of Superconductivity J. Robert Schrieffer and the BCS Theory of Superconductivity Resources with Additional Information J. Robert Schrieffer Courtesy of NHMFL Robert Schrieffer received his BS from M.I.T. in 1953 and his Ph.D. from the University of Illinois in 1957. Upon entering the University of Illinois, "he immediately began research with Professor John Bardeen. After working out a problem dealing with electrical conduction on semiconductor surfaces, Schrieffer spent a year in the laboratory, applying the theory to several surface problems. In the third year of graduate studies, he joined Bardeen and [Leon] Cooper in developing the theory of superconductivity, which constituted his doctoral dissertation."1 Bardeen, Cooper and Schrieffer were awarded the 1972 Nobel Prize in Physics "for their jointly developed theory of superconductivity, usually called the BCS-theory".

450

Proceedings of the 1968 Summer Study on Superconducting Devices and  

NLE Websites -- All DOE Office Websites (Extended Search)

1968 Summer Study on Superconducting Devices and 1968 Summer Study on Superconducting Devices and Accelerators Brookhaven National Laboratory June 10 - July 19, 1968 1968 summer study on superconducting devices and accelerators at Brookhaven National Laboratory is considered as one of the most important and defining meeting that led to the application of superconductivity in modern particle accelerators and storage rings. One must admire that bold vision, and years of persistent and hard work of number of scientists, engineers and technicians which turned that vision in to reality. Moreover, the research work presented then, serves as a good reference material even today. Given its historical and scientific importance, the entire proceedings of this six week study is made available now on the web for easy and wide access.

451

Fermilab | Recovery Act | High-field superconducting magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

may allow scientists to create high-field superconducting magnets that could exceed 50 Tesla, or more than twice the strength of existing magnets. In the project's first phase,...

452

Critical magnetic field of surface superconductivity in lead  

SciTech Connect

The critical superconductivity field H{sub c3} is measured on lead single crystals. It is shown that the temperature dependence of H{sub c3}/H{sub c} in the vicinity of superconducting transition temperature T{sub c} is essentially nonlinear. Relative changes in the value of H{sub c3}/H{sub c} reach approximately 30%, which cannot be described by the Ginzburg-Landau theory. The experimental temperature dependences lead to the conclusion that the surface superconducting transition temperature noticeably exceeds the superconducting transition temperature in the bulk of the semiconductor. The differences in the critical temperatures and in the Ginzburg-Landau parameters for lead are estimated.

Khlyustikov, I. N., E-mail: khly@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute of Physical Problems (Russian Federation)

2011-12-15T23:59:59.000Z

453

Chiral superconductivity from repulsive interactions in doped graphene  

E-Print Network (OSTI)

Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where ...

Chubukov, A. V.

454

Dual Superconductivity and Chiral Symmetry in Full QCD  

E-Print Network (OSTI)

A disorder parameter detecting dual superconductivity of the vacuum is measured across the chiral phase transition in full QCD with two flavours of dynamical staggered fermions. The observed behaviour is similar to the quenched case.

J. M. Carmona; M. D'Elia; L. Del Debbio; A. Di Giacomo; B. Lucini; G. Paffuti

2001-10-12T23:59:59.000Z

455

Color symmetrical superconductivity in a schematic nuclear quark model  

E-Print Network (OSTI)

In this note, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. The physical properties of the BCS vacuum (average numbers of quarks of different colors) remain unchanged under an arbitrary color rotation. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle states of two colors, the single particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color-charge is automatically insured. It is found that the groundstate energy of the color symmetrical sector of the Bonn model is well approximated by the average energy of the color symmetrical superconducting state proposed here.

Henrik Bohr; João da Providência

2009-09-14T23:59:59.000Z

456

Cryogenic deformation of high temperature superconductive composite structures  

DOE Patents (OSTI)

An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

2001-01-01T23:59:59.000Z

457

Novel Approach to Linear Accelerator Superconducting Magnet System  

SciTech Connect

Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

Kashikhin, Vladimir; /Fermilab

2011-11-28T23:59:59.000Z

458

Efficiently Coupling Light to Superconducting Nanowire Single-Photon Detectors  

E-Print Network (OSTI)

We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, ...

Hu, Xiaolong

459

Afterpulsing and instability in superconducting nanowire avalanche photodetectors  

E-Print Network (OSTI)

We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 30?nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance and discovered that ...

Marsili, Francesco

460

Multi-level quantum description of decoherence in superconducting qubits  

E-Print Network (OSTI)

We present a multi-level quantum theory of decoherence for a general circuit realization of a superconducting qubit. Using electrical network graph theory, we derive a Hamiltonian for the circuit. The dissipative circuit elements (external impedances, shunt resistors) are described using the Caldeira-Leggett model. The master equation for the superconducting phases in the Born-Markov approximation is derived and brought into the Bloch-Redfield form in order to describe multi-level dissipative quantum dynamics of the circuit. The model takes into account leakage effects, i.e. transitions from the allowed qubit states to higher excited states of the system. As a special case, we truncate the Hilbert space and derive a two-level (Bloch) theory with characteristic relaxation (T_1) and decoherence (T_2) times. We apply our theory to the class of superconducting flux qubits; however, the formalism can be applied for both superconducting flux and charge qubits.

Guido Burkard; Roger H. Koch; David P. DiVincenzo

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Superconductivity with deformed Fermi surfaces and compact stars  

E-Print Network (OSTI)

I discuss the deformed Fermi surface superconductivity (DFS) and some of its alternatives in the context of nucleonic superfluids and two flavor color superconductors that may exist in the densest regions of compact stellar objects.

Armen Sedrakian

2003-12-15T23:59:59.000Z

462

Evolution of spin excitations into the superconducting state...  

NLE Websites -- All DOE Office Websites (Extended Search)

x )Fe 2 As 2 . Phys. Rev. Lett. 101, 107006 (2008). 4. Christianson, A. D. et al. Unconventional superconductivity in Ba 0.6 K 0.4 Fe 2 As 2 from inelastic neutron scattering....

463

Radiofrequency amplifier based on a dc superconducting quantum interference device  

DOE Patents (OSTI)

A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

Hilbert, C.; Martinis, J.M.; Clarke, J.

1984-04-27T23:59:59.000Z

464

Radiofrequency amplifier based on a dc superconducting quantum interference device  

DOE Patents (OSTI)

A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

Hilbert, Claude (Berkeley, CA); Martinis, John M. (Berkeley, CA); Clarke, John (Berkeley, CA)

1986-01-01T23:59:59.000Z

465

Strain-induced time-reversal odd superconductivity in graphene  

E-Print Network (OSTI)

Time-reversal symmetry breaking superconductors are exotic phases of matter with fascinating properties, which are, however, encountered rather sparsely. Here we identify the possibility of realizing such a superconducting state that exhibits an $f+is$ pairing symmetry in strained graphene. Although the underlying attractive interactions need to be sufficiently strong and comparable in pristine graphene to support such pairing state, we argue that strain can be conducive for its formation even for weak interactions. We show that quantum-critical behavior near the transition is controlled by a multicritical point, characterized by various critical exponents computed here in the framework of an $\\epsilon$-expansion near four spacetime dimensions. Furthermore, a vortex in this mixed superconducting state hosts a pair of Majorana fermions supporting a quartet of insulating and superconducting orders, among which topologically nontrivial quantum spin Hall insulator. These findings suggest that strained graphene could provide a platform for the realization of exotic superconducting states of Dirac fermions.

Bitan Roy; Vladimir Juricic

2013-09-02T23:59:59.000Z

466

Spontaneous brillouin scattering quench diagnostics for large superconducting magnets  

E-Print Network (OSTI)

Large superconducting magnets used in fusion reactors, as well as other applications, need a diagnostic that can non-invasively measure the temperature and strain throughout the magnet in real-time. A new fiber optic sensor ...

Mahar, Scott B

2008-01-01T23:59:59.000Z

467

Wire rope superconducting cable for diurnal load leveling SMES  

DOE Green Energy (OSTI)

The design of a wire rope cable for a superconducting magnetic energy storage (SMES) unit is discussed. The superconducting wires in the rope permit the passage of large currents in the relatively small conductors of the windings and hence cause large electromagnetic forces to act on the rope. The diameter of the rope, from a strength point of view, can be considerably reduced by supporting the rope at various points along its length.

Costello, G.A.

1980-01-01T23:59:59.000Z

468

Control of Superconductivity in Cuprate/Manganite Heterostructures  

E-Print Network (OSTI)

Control of Superconductivity in Cuprate/Manganite Heterostructures Brian SiewHan Pang Hughes Hall University of Cambridge A dissertation submitted for the degree of Doctor of Philosophy at University of Cambridge June 2004 iAbstract Research has... shown that the spin alignment in an adjacent ferromagnet is capable of suppress- ing superconductivity. In this project, devices incorporating cuprate/manganite heterostuctres were successfully fabricated to study the effects of spin transport...

Pang, Brian SiewHan

469

Toroidal constant-tension superconducting magnetic energy storage units  

DOE Patents (OSTI)

A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant in the magnet.

Herring, J.S.

1990-10-26T23:59:59.000Z

470

Toroidal constant-tension superconducting magnetic energy storage units  

DOE Patents (OSTI)

A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet.

Herring, J. Stephen (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

471

Cooling of superconducting devices by liquid storage and refrigeration unit  

SciTech Connect

A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

2013-08-20T23:59:59.000Z

472

Microstrip filters for measurement and control of superconducting qubits  

E-Print Network (OSTI)

Careful filtering is necessary for observations of quantum phenomena in superconducting circuits at low temperatures. Measurements of coherence between quantum states requires extensive filtering to protect against noise coupled from room temperature electronics. We demonstrate distributed transmission line filters which cut off exponentially at GHz frequencies and can be anchored at the base temperature of a dilution refrigerator. The compact design makes them suitable to filter many different bias lines in the same setup, necessary for the control and measurement of superconducting qubits.

Longobardi, Luigi; Patel, Vijay; Chen, Wei; Lukens, James E

2013-01-01T23:59:59.000Z

473

SCMS-1, Superconducting Magnet System for an MHD generator  

DOE Green Energy (OSTI)

The research and development effort connected with the building of the superconducting magnet systems for MHD generators at the Institute for High Temperatures of the U.S.S.R. Academy of Sciences included the designing, fabrication and testing of the superconducting magnet system for an MHD generator (SCMS-1), producing a magnetic field up to 4 Tesla in a warm bore tube 300 mm in diameter and 1000 mm long (the nonuniformity of the magnetic field in the warm bore did not exceed +-5%. The superconducting magnet system is described. The design selected consisted of a dipole, saddle-form coil, wound around a tube. The cooling of the coils is of the external type with helium access to each layer of the winding. For winding of the superconducting magnet system a 49-strand cable was used consisting of 42 composition conductors, having a diameter of 0.3 mm each, containing six superconducting strands with a niobium-titanium alloy base (the superconducting strands were 70 microns in diameter), and seven copper conductors of the same diameter as the composite conductors. The cable is made monolithic with high purity indium and insulated with lavsan fiber. The cable diameter with insulation is 3.5 mm. (WHK)

Zenkevich, V.B.; Kirenin, I.A.; Tovma, V.A.

1977-01-01T23:59:59.000Z

474

Road to room-temperature superconductivity: A universal model  

E-Print Network (OSTI)

In a semiclassical view superconductivity is attributed exclusively to the advance of atoms' outer s electrons through the nuclei of neighbor atoms in a solid. The necessary progression of holes in the opposite direction has the electric and magnetic effect as if two electrons were advancing instead of each actual one. Superconductivity ceases when the associated lateral oscillation of the outer s electrons extends between neighbor atoms. If such overswing occurs already at T = 0, then the material is a normal conductor. Otherwise, lateral overswing can be caused by lattice vibrations at a critical temperature Tc or by a critical magnetic field Bc. Lateral electron oscillations are reduced - and Tc is increased - when the atoms of the outer s electrons are squeezed, be it in the bulk crystal, in a thin film, or under external pressure on the sample. The model is applied to alkali metals and alkali-doped fullerenes. Aluminum serves as an example of a simple metal with superconductivity. Application of the model to transition metals, intertransitional alloys and compounds of transition metals with other elements sheds light on the pattern of their critical temperature. More examples of the squeeze effect are provided by the superconductivity of PdH, MgB2, borocarbides, ferropnictides, and organic charge-transfer salts. The model also provides the superconduction mechanism in the oxide superconductors, exemplified by YBa2Cu3O7. Finally the model suggests which steps to take in order to reach superconductivity at room temperature and above.

Manfred Bucher

2013-02-15T23:59:59.000Z

475

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials.  

E-Print Network (OSTI)

??Superconductivity, charge- and spin-density waves are collective electronic phenomena that originate from electron-electron and electron-phonon interactions, and the concept of Fermi surface competition between these… (more)

Zocco, Diego Andrés

2011-01-01T23:59:59.000Z

476

Transformer Efficiency Assessment - Okinawa, Japan  

Science Conference Proceedings (OSTI)

The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

2012-08-01T23:59:59.000Z

477

Transformer Efficiency Assessment - Okinawa, Japan  

SciTech Connect

The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

2012-05-01T23:59:59.000Z

478

Transformational Technologies to Expedite Space Access and Development  

Science Conference Proceedings (OSTI)

Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

Rather, John D. G. [Rather Creative Innovations Group, Inc., 102 Windsong Lane, Oak Ridge, TN (United States)

2010-01-28T23:59:59.000Z

479

Research on Differential Protection of Power Transformer Based Wavelet Transform  

Science Conference Proceedings (OSTI)

This article introduces wavelet analysis theory to identify inrush and internal fault correctly. The wavelet transform has the characteristic of multi-scale analysis and good time and frequency domain localization, fits to extract sudden-change signals ...

Yang Long; Li Donghui

2009-10-01T23:59:59.000Z

480

On the fundamental limitations of transformational design  

Science Conference Proceedings (OSTI)

The completeness of a collection of design transformations is an important aspect in transformational design. Completeness guarantees that any correct design can in principle be explored using the transformation system. In the field of transformational ... Keywords: Completeness, formal methods, high-level synthesis, syntactic variance problem, transformational design

Jeroen Voeten

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fcl superconducting transformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

482

Electrokinetic Effects in Power Transformers  

Science Conference Proceedings (OSTI)

Electrokinetic effects such as static electrification can cause catastrophic failures in large forced-oil-cooled power transformers. The development of a network-based theoretical model provides a critical perspective not apparent from previous small-scale laboratory experiments.

1999-08-10T23:59:59.000Z

483

Inducing Transformational Energy Technological Change  

Science Conference Proceedings (OSTI)

Reducing risks of severe climate change in the latter part of the 20th Century is likely to require not only incremental improvements in known energy technologies, but the discovery of transformational new energy technologies. This paper reviews current knowledge about both demand and supply aspects of the challenge of accelerating transformational change, considering both economic and policy incentives, including targeted government funding of research and development, and several other schools of thought about drivers of scientific discovery and innovation.

Wilbanks, Thomas J [ORNL

2011-01-01T23:59:59.000Z

484

Transforms for the Motion Compensation Residual  

E-Print Network (OSTI)

The Discrete-Cosine-Transform (DCT) is the most widely used transform in image and video compression. Its use in image compression is often justified by the notion that it is the statistically optimal transform for first-order ...

Kamisli, Fatih

485

Reusable and correct endogenous model transformations  

Science Conference Proceedings (OSTI)

Correctness of model transformations is a prerequisite for generating correct implementations from models. Given refining model transformations that preserve desirable properties, models can be transformed into correct-by-construction implementations. ...

Suzana Andova; Mark G. J. van den Brand; Luc Engelen

2012-05-01T23:59:59.000Z

486

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

487

PURPA and Superconducting Magnetic Energy Storage: Energy Conservation, Environmental Protection and Entrepreneurial Opportunity in the Next Technological Revolution  

E-Print Network (OSTI)

1988] SUPERCONDUCTING MAGNETIC ENERGY STORAGE Corp. ,60 theSupercon- ducting Magnetic Energy Storage, 2 SUPERCURRENTS1988] SUPERCONDUCTING MAGNETIC ENERGY STORAGE facilities (

Bovett, Robert E.

1988-01-01T23:59:59.000Z

488

Substation distribution transformers failures and spares  

Science Conference Proceedings (OSTI)

Electric utilities should have a sufficient number of spare transformers to backup substation distribution transformers to replace transformers that fail and require factory rebuild or replacement. To identify such a number, the statistical methodology was developed to analyze available failure data for different groups of transformer. That methodology enables the estimation of future numbers of failures with associated probabilities, recommends the proper number of spares, identifies the necessity and shows the means to shorten the transformer`s replacement time.

Kogan, V.I. Roeger, C.J.; Tipton, D.E. [American Electric Power Service Corp., Columbus, OH (United States)

1996-11-01T23:59:59.000Z

489

Electromagnetically induced interference at superconducting qubits  

E-Print Network (OSTI)

We study electromagnetically induced interference at superconducting qubits. The interaction between qubits and electromagnetic fields can provide additional coupling channels to qubit states, leading to quantum interference in a microwave driven qubit. In particular, the interwell relaxation or Rabi oscillation, resulting respectively from the multi- or single-mode interaction, can induce effective crossovers. The environment is modeled by a multi-mode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillation, Rabi oscillation induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation, in not only the flux qubit but also the systems with no crossover structure, e.g. phase qubits.

Lingjie Du; Yang Yu

2010-12-14T23:59:59.000Z

490

Excitation Fields in a Superconducting Global String  

E-Print Network (OSTI)

A model of a straight superconducting global cosmic string is examined in a setting wherein the string supports a charge/current pulse described by a travelling wave along the string. Linearized field equations are obtained for fluctuations of the scalar and vector fields of the theory, and a set of approximate particular solutions are found for the case in which the linear charge density and the current of the string have equal magnitudes. Although the equations of motion seem to suggest that the scalar and vector excitation fields are massive inside the string core, the particular solutions show that they behave as effectively massless fields which propagate at the speed of light along the string along with the primary charge/current pulse. The effect of the mass parameter is to modulate the radial profile of the excitation fields. The vector excitation field generates radial and angular components for both the electric and magnetic fields, but the particular solutions do not describe the emission or absorption of electromagnetic radiation from the string.

J. R. Morris

1995-09-28T23:59:59.000Z

491

Strong Coupling BCS Superconductivity and Holography  

E-Print Network (OSTI)

We attempt to give a holographic description of the microscopic theory of a BCS superconductor. Exploiting the analogy with chiral symmetry breaking in QCD we use the Sakai-Sugimoto model of two D8 branes in a D4 brane background with finite baryon number. In this case there is a new tachyonic instability which is plausibly the bulk analog of the Cooper pairing instability. We analyze the Yang-Mills approximation to the non-Abelian Born-Infeld action. We give some exact solutions of the non-linear Yang-Mills equations in flat space and also give a stability analysis, showing that the instability disappears in the presence of an electric field. The holograhic picture also suggests a dependence of $T_c$ on the number density which is different from the usual (weak coupling) BCS. The flat space solutions are then generalized to curved space numerically and also, in an approximate way, analytically. This configuration should then correspond to the ground state of the boundary superconducting (superfluid) ground state. We also give some preliminary results on Green functions computations in the Sakai - Sugimoto model without any chemical potential

S. Kalyana Rama; Swarnendu Sarkar; B. Sathiapalan; Nilanjan Sircar

2011-04-14T23:59:59.000Z

492

Nonequilibrium transport in superconducting tunneling structures.  

SciTech Connect

We derive the current-voltage (I-V) characteristics of far from equilibrium superconducting tunneling arrays and find that the energy relaxation ensuring the charge transfer occurs in two stages: (i) the energy exchange between charge carriers and the intermediate bosonic agent, environment, and (ii) relaxing the energy further to the (phonon) thermostat, the bath, provided the rate of the environmental modes-phonon interactions is slower than their energy exchange rate with the tunneling junction. For a single junction we find I {proportional_to} (V/R)ln({Lambda}/V), where R is the bare tunnel resistance of the junction and {Lambda} is the high energy cut-off of the electron-environment interaction. In large tunneling arrays comprised of macroscopic number of junctions, low-temperature transport is governed by the cotunneling processes losing energy to the electron-hole environment. Below some critical temperature, T*, the Coulomb interactions open a finite gap in the environment excitations spectrum blocking simultaneously Cooper pair and normal excitations currents through the array; this is the microscopic mechanism of the insulator-to-superinsulator transition.

Chtchelkatchev, N. M.; Vinokur, V. M.; Baturina, T. I. (Materials Science Division); (Moscow Inst. Physics and Technology); (Inst. Semiconductor Physics)

2010-12-01T23:59:59.000Z

493

Superconductivity for Large Scale Wind Turbines  

SciTech Connect

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

494

Method of constructing a superconducting magnet  

DOE Patents (OSTI)

A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

Satti, John A. (Naperville, IL)

1981-01-01T23:59:59.000Z

495

Flywheel energy storage using superconducting magnetic bearings  

DOE Green Energy (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

496

High-Tech Buildings - Market Transformation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech Buildings - Market Transformation Project Title High-Tech Buildings - Market Transformation Project Publication Type Report LBNL Report Number LBNL-49112 Year of Publication...

497

NREL: Technology Deployment - Deployment and Market Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Search More Search Options Site Map Printable Version Deployment and Market Transformation Email Updates NREL's deployment and market transformation email updates...

498

TRANSFORMING ELECTRICITY DELIVERY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSFORMING ELECTRICITY DELIVERY TRANSFORMING ELECTRICITY DELIVERY Designing research, development, and demonstration programs based on a future look at electric power delivery...

499

National Electric Delivery Technologies Roadmap: Transforming...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to...

500

Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materials used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.

Schwenterly, S W [ORNL; Zhang, Y. [Oak Ridge National Laboratory (ORNL); Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Rufer, M. [Scorpius Space Launch Co.

2010-01-01T23:59:59.000Z