National Library of Energy BETA

Sample records for fcl superconducting transformer

  1. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D. (Rexford, NY)

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  2. A Superconducting transformer system for high current cable testing

    E-Print Network [OSTI]

    Godeke, A.

    2010-01-01

    A Superconducting Transformer System for High Current CableDC) superconducting transformer system for the high currentsuperconducting cables. The transformer consists of a core-

  3. A Superconducting transformer system for high current cable testing

    SciTech Connect (OSTI)

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  4. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect (OSTI)

    Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  5. ENERGY DIVISION STATUS OF SUPERCONDUCTING POWER TRANSFORMER

    Office of Scientific and Technical Information (OSTI)

    Momvm, evert the very limited losses of existing transfmers represent a significant cost over the expected life of the transformer. The desire to reduce these losses in...

  6. Transformer current sensor for superconducting magnetic coils

    DOE Patents [OSTI]

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  7. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    SciTech Connect (OSTI)

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  8. Superconducting current transformer for testing Nb3Sn cable splicing technique

    SciTech Connect (OSTI)

    Nicolai Andreev et al.

    2002-09-10

    To provide a quick feedback on different approaches to superconducting cable splicing design and assembly techniques, a superconducting current transformer that can deliver more than 20 kA for testing splice samples has been designed and fabricated. The existing infrastructure of the Short Sample Test Facility at Fermilab, including its cryostat, power supply, and data acquisition system, was used for housing and operating the transformer. This report presents the design features of the transformer and the main results of cable splice tests.

  9. Superconducting phase qubits

    E-Print Network [OSTI]

    Martinis, John M.

    2009-01-01

    frequency noise in dc superconducting quantum interfer- enceeld enhancement of superconductivity in ultranarrow wires.Transformed dissipation in superconducting quantum circuits.

  10. Superconducting qubit as a quantum transformer routing entanglement between a microscopic quantum memory and a macroscopic resonator

    SciTech Connect (OSTI)

    Kemp, Alexander; Saito, Shiro; Semba, Kouichi [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan); Munro, William J. [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan); National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan); Nemoto, Kae [National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)

    2011-09-01

    We demonstrate experimentally the creation and measurement of an entangled state between a microscopic two-level system (TLS), formed by a defect in an oxide layer, and a macroscopic superconducting resonator, where their indirect interaction is mediated by an artificial atom, a superconducting persistent current qubit (PCQB). Under appropriate conditions, we found the coherence time of the TLS, the resonator, and the entangled state of these two are significantly longer than the Ramsey dephasing time of PCQB itself. This demonstrates that a PCQB can be used as a quantum transformer to address high coherence microscopic quantum memories by connecting them to macroscopic quantum buses.

  11. 2298 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 13, NO. 2, JUNE 2003 Cryogenic Cooling Temperature of HTS Transformers

    E-Print Network [OSTI]

    Chang, Ho-Myung

    2298 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 13, NO. 2, JUNE 2003 Cryogenic Cooling grant from the Center for Applied Superconductivity Technology (CAST) under the 21st Century Frontier R

  12. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    SciTech Connect (OSTI)

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  13. Superconducting Spintronics

    E-Print Network [OSTI]

    Linder, Jacob; Robinson, Jason W. A.

    2015-04-02

    device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting...

  14. New Advance in SuperConducting Materials

    ScienceCinema (OSTI)

    None

    2010-01-08

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  15. SUPERCONDUCTING DEVICES

    E-Print Network [OSTI]

    Clarke, John

    2014-01-01

    communications. References Superconductor Applications: ~on all aspects of superconducting devices. IEEE Trans.on all aspects vf superconducting devices. The IBM Journal

  16. Transformation Composition Transformational Geometry

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    Isomotries Transformation Composition Congruence Transformational Geometry Christopher Ograin Christopher Ograin Transformational Geometry #12;Isomotries Transformation Composition Congruence Geo Transformational Geometry #12;Isomotries Transformation Composition Congruence Definitions Transformation

  17. Superconducting Cable

    DOE Patents [OSTI]

    Hughey, Raburn L. (Franklin, GA); Sinha, Uday K. (Carrollton, GA); Reece, David S. (Carrollton, GA); Muller, Albert C. (Eidson, TN)

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  18. Superconducting Cable

    DOE Patents [OSTI]

    Hughey, Raburn L. (Franklin, GA); Sinha, Uday K. (Carrollton, GA); Reece, David S. (Carrollton, GA); Muller, Albert C. (Eidson, TN)

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  19. Superconducting structure

    DOE Patents [OSTI]

    Kwon, Chuhee (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  20. Superconducting Structure

    DOE Patents [OSTI]

    Kwon, Chuhee (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  1. New Advances in SuperConducting Materials

    ScienceCinema (OSTI)

    None

    2014-08-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  2. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  3. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    ScienceCinema (OSTI)

    Marken, Ken [Superconductivity Technology Center, Los Alamos, New Mexico, United States

    2010-01-08

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors ? high-temperature superconducting (HTS) tapes ? which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  4. Superconductivity for Electric Systems

    E-Print Network [OSTI]

    Superconductivity Program Oak Ridge National Laboratory For: Department of Energy Office of Electricity Delivery and Energy Reliability ­ Superconductivity for Electric Systems #12;3 Control Milestones and Status ControlSuperconductivity for Electric Systems Superconductivity Program Quarterly Progress Report

  5. The Lorentz transformations of the vectors E, B, P, M and the external electric fields from a stationary superconducting wire with a steady current and from a stationary permanent magnet

    E-Print Network [OSTI]

    Tomislav Ivezic

    2012-11-02

    In the first part of this paper we review the fundamental difference between the usual transformations of the three-dimensional (3D) vectors of the electric field $\\mathbf{E}$, the magnetic field $\\mathbf{B}$, the polarization $\\mathbf{P}$, the magnetization $\\mathbf{M}$ and the Lorentz transformations of the 4D geometric quantities, vectors E, B, P, M, with many additional explanations and several new results. In the second part, we have discussed the existence of the electric field vector E outside a stationary superconducting wire with a steady current and also different experiments for the detection of such electric fields. Furthermore, a fundamental prediction of the existence of the external electric field vector E from a stationary permanent magnet is considered. These electric fields are used for the resolution of the "charge-magnet paradox" with 4D geometric quantities for a qualitative explanation of the Aharonov-Bohm effect in terms of fields and not, as usual, in terms of the vector potential and for a qualitative explanation that the particle interference is not a test of a Lorentz-violating model of electrodynamics according to which a magnetic solenoid generates not only a static magnetic field but also a static electric field.

  6. Superconducting magnets

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  7. (Final Draft) Superconducting

    E-Print Network [OSTI]

    ANDAND (Final Draft) Achieving Advanced Electrical Wires From Superconducting Coatings Prepared and Development Roadmap to Achieve Electrical Wire Advancements from Superconducting Coatings (Final Draft) Edited

  8. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  9. Superconducting wires

    SciTech Connect (OSTI)

    Lanagan, M.T.; Poeppel, R.B.; Singh, J.P.; Dos Santos, D.I.; Lumpp, J.K.; Dusek, J.T.; Goretta, K.C.

    1988-06-01

    The requirement of high critical current density has prompted extensive research on ceramic processing of high-T/sub c/ superconductors. An overview of wire fabrication techniques and the limitations they impose on component design will be presented. The effects of processing on microstructure and critical current density will also be discussed. Particle alignment has been observed in extruded samples which is attributed to high shear stresses during plastic forming. Composites of superconductor and silver in several configurations have been made with little deleterious effect on the superconducting properties. 35 refs., 2 figs., 1 tab.

  10. Superconductivity for Electric Systems

    E-Print Network [OSTI]

    1 Superconductivity for Electric Systems Superconductivity Program Quarterly Progress Report For the Period October 1, 2006, to December 31, 2006 #12;2 Superconductivity Program Quarterly Progress Report Superconductivity Program Oak Ridge National Laboratory For U.S. Department of Energy Office of Electricity Delivery

  11. Superconductivity for Electric Systems

    E-Print Network [OSTI]

    Superconductivity for Electric Systems Superconductivity Program Quarterly Progress Report For the Period April 1, 2007, to June 30, 2007 #12;2 Superconductivity Program Quarterly Progress Report Superconductivity Program Oak Ridge National Laboratory For: Department of Energy Office of Electricity Delivery

  12. QUENCHES IN LARGE SUPERCONDUCTING MAGNETS

    E-Print Network [OSTI]

    Eberhard, P.H.

    2010-01-01

    QUENCHES IN LARGE SUPERCONDUCTING MAGNETS. P. H. Eberhard,Study of an Unprotected Superconducting Coil Going Normal,"Method for Testing Superconducting Magnets," LBL Physics

  13. Quadratic superconducting cosmic strings revisited

    E-Print Network [OSTI]

    Mustapha Azreg-Aïnou

    2008-02-22

    It has been shown that 5-dimensional general relativity action extended by appropriate quadratic terms admits a singular superconducting cosmic string solution. We search for cosmic strings endowed with similar and extended physical properties by directly integrating the non-linear matrix field equations thus avoiding the perturbative approach by which we constructed the above-mentioned \\textsl{exact} solution. The most general superconducting cosmic string, subject to some constraints, will be derived and shown to be mathematically \\textsl{unique} up to linear coordinate transformations mixing its Killing vectors. The most general solution, however, is not globally equivalent to the old one due to the existence of Killing vectors with closed orbits.

  14. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

  15. ENERGY DIVISION STATUS OF SUPERCONDUCTING POWER TRANSFORMER

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting Host Site:

  16. Superconducting quantum circuits theory and application

    E-Print Network [OSTI]

    Deng, Xiuhao

    2015-01-01

    viii General theory of Superconducting cavity coupled to2.4 Decoherence in superconductingProposed circuit for superconducting qubits . . . . .

  17. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  18. Basic principle of superconductivity

    E-Print Network [OSTI]

    Tian De Cao

    2009-11-10

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  19. Experimental Advanced Superconducting Tokamak

    E-Print Network [OSTI]

    ASIPP Experimental Advanced Superconducting Tokamak (EAST) Design, Fabrication and Assembly Weng of the project is to develop an advanced superconducting tokamak · Explore and demonstrate of steady magnets Total weight 38.7 tons, Total flux swing 10 VS Magnet system Superconducting coils; CIC conductor

  20. Superconducting Power Generation

    E-Print Network [OSTI]

    Mario Rabinowitz

    2003-02-20

    The superconducting ac generator has the greatest potential for large-scale commercial application of superconductivity that can benefit the public. Electric power is a vital ingredient of modern society, and generation may be considered to be the vital ingredient of a power system. This articles gives background, and an insight into the physics and engineering of superconducting power generation.

  1. Protective link for superconducting coil

    DOE Patents [OSTI]

    Umans, Stephen D. (Belmont, MA)

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  2. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

    2010-12-14

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  3. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    E-Print Network [OSTI]

    Wu, Hong

    2009-01-01

    of Cryogenics and Superconductivity Technology, Harbinof cryogenics and superconductivity engineering technologyof Cryogenics and Superconductivity Technology, “Engineering

  4. Philosophy 26 High Temperature Superconductivity

    E-Print Network [OSTI]

    Callender, Craig

    Philosophy 26 High Temperature Superconductivity By Ohm's Law, resistance will dim. Low temperature superconductivity was discovered in 1911 by Heike was explained by BCS theory. BCS theory explains superconductivity microscopically

  5. Superconductive imaging surface magnetometer

    DOE Patents [OSTI]

    Overton, Jr., William C. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM); Flynn, Edward R. (Los Alamos, NM)

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  6. Superconducting VAR control

    DOE Patents [OSTI]

    Boenig, Heinrich J. (Los Alamos, NM); Hassenzahl, William V. (Piedmont, CA)

    1982-01-01

    Static VAR control means employing an asymmetrically controlled Graetz bridge and a superconducting direct current coil having low losses and low cost characteristics.

  7. Alexei Abrikosov and Superconductivity

    Office of Scientific and Technical Information (OSTI)

    quantum liquids. ... Superconductivity is the ability of some materials to conduct electricity without resistance when they are chilled to extremely low temperatures....

  8. Search for: superconduct* | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    superconduct* Find + Advanced Search Advanced Search All Fields: superconduct* Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search Authors Type: All...

  9. SciTech Connect: superconduct*

    Office of Scientific and Technical Information (OSTI)

    superconduct* Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: superconduct* Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  10. Superconducting Magnet Division

    E-Print Network [OSTI]

    Gupta, Ramesh

    Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e

  11. Superconductivity of magnesium diboride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  12. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  13. 6.763 Applied Superconductivity, Fall 2001

    E-Print Network [OSTI]

    Orlando, Terry P.

    Phenomenological approach to superconductivity, with emphasis on superconducting electronics. Electrodynamics of superconductors, London's model, and flux quantization. Josephson Junctions and superconducting quantum ...

  14. Superconducting solenoids for the MICE channel

    E-Print Network [OSTI]

    2003-01-01

    IEEE Transactions on Applied Superconductivity 13, No. 2 S.SUPERCONDUCTING SOLENOIDS FOR THE MICE CHANNEL* M. A. Green,describes the channel of superconducting solenoids for the

  15. Introduction to Color Superconductivity

    E-Print Network [OSTI]

    G. Nardulli

    2006-10-23

    At high nuclear density and small temperature, due to the asymptotic freedom property of Quantum ChromoDynamics and to the existence of an attractive channel in the color interaction, diquark condensates might be formed. Since these condensates break the color gauge symmetry, this phenomenon has the name of color superconductivity. In the last few years this has become a very active field of research. While a direct experimental test is still missing, color superconductivity might have implications in astrophysics because for some compact stars, e.g. pulsars, the baryon densities necessary for color superconductivity can probably be reached.

  16. Superconducting active impedance converter

    DOE Patents [OSTI]

    Ginley, David S. (Albuquerque, NM); Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Albuquerque, NM)

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  17. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  18. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  19. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  20. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, Kenneth E. (Naperville, IL)

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  1. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  2. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L. (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  3. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  4. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  5. The ion pairs and superconducting bosons

    E-Print Network [OSTI]

    V. N. Minasyan

    2009-02-11

    First, it is shown that the creation of the spinless ion pairs in the lattice, which are hold by the binding with neighbor ion pairs together regarded as covalent. These ion pairs are created by the repulsive potential interaction of two ions which is bound as linear oscillator. The repulsive S-wave scattering between ion pairs and electrons is transformed to the attractive effective interaction between electrons which leads to a creation of electron pairs by a binding energy depending on the condensate fraction of ion pairs $\\frac{N_0}{N}$. In this respect, the absence of ion pairs in the condensate destroys a binding energy of electron pairs and in turn so-called superconductimg phase. As new result presented theory is that the number of the superconducting bosons is not changed in the superconducting phase.

  6. Superconducting Quantum Computing without Switches

    E-Print Network [OSTI]

    Marc J. Feldman; Xingxiang Zhou

    2002-11-25

    This paper presents a very simple architecture for a large-scale superconducting quantum computer. All of the SQUID qubits are fixed-coupled to a single large superconducting loop.

  7. Relativistic mechanism of superconductivity

    E-Print Network [OSTI]

    H. Y. Cui

    2002-12-17

    According to the theory of relativity, the relativistic Coulomb's force between an electron pair is composed of two parts, the main part is repulsive, while the rest part can be attractive in certain situations. Thus the relativistic attraction of an electron pair provides an insight into the mechanism of superconductivity. In superconductor, there are, probably at least, two kinds of collective motions which can eliminate the repulsion between two electrons and let the attraction being dominant, the first is the combination of lattice and electron gas, accounting for traditional superconductivity; the second is the electron gas themselves, accounting for high $T_c$ superconductivity. In usual materials, there is a good balance between the repulsion and attraction of an electron pair, the electrons are regarded as free electrons so that Fermi gas theory plays very well. But in some materials, when the repulsion dominates electron pairs, the electron gas will has a behavior opposite to superconductivity. In the present paper the superconducting states are discussed in terms of relativistic quantum theory in details, some significant results are obtained including quantized magnetic flux, London equation, Meissner effect and Josephson effect.

  8. Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials

    E-Print Network [OSTI]

    Zocco, Diego Andrés

    2011-01-01

    B. Superconductivity . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideSearch for Pressure Induced Superconductivity in Undoped Ce-

  9. Superconductivity and Magnetism: Materials Properties

    E-Print Network [OSTI]

    .g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

  10. Nonlinear terahertz superconducting plasmonics

    SciTech Connect (OSTI)

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50?nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  11. Orbit Spaces in Superconductivity

    E-Print Network [OSTI]

    Vittorino Talamini

    2006-07-30

    In the framework of Landau theory of phase transitions one is interested to describe all the possible low symmetry ``superconducting'' phases allowed for a given superconductor crystal and to determine the conditions under which this crystal undergoes a phase transition. These problems are best described and analyzed in the orbit space of the high symmetry group of the ``normal, non-superconducting'' phase of the crystal. In this article it is worked out a simple example concerning superconductivity, that shows the P-matrix method to determine the equations and inequalities defining the orbit space and its stratification. This approach is of general validity and can be used in all physical problems that make use of invariant functions, as long as the symmetry group is compact.

  12. Superconductivity at Any Temperature

    E-Print Network [OSTI]

    Anber, Mohamed M; Sabancilar, Eray; Shaposhnikov, Mikhail

    2015-01-01

    We construct a 2+1 dimensional model that sustains superconductivity at all temperatures. This is achieved by introducing a Chern Simons mixing term between two Abelian gauge fields A and Z. The superfluid is described by a complex scalar charged under Z, whereas a sufficiently strong magnetic field of A forces the superconducting condensate to form at all temperatures. In fact, at finite temperature, the theory exhibits Berezinsky-Kosterlitz-Thouless phase transition due to proliferation of topological vortices admitted by our construction. However, the critical temperature is proportional to the magnetic field of A, and thus, the phase transition can be postponed to high temperatures by increasing the strength of the magnetic field. This model can be a step towards realizing the long sought room temperature superconductivity.

  13. Superconducting metamaterials and qubits

    E-Print Network [OSTI]

    B. L. T. Plourde; Haozhi Wang; Francisco Rouxinol; M. D. LaHaye

    2015-05-05

    Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line resonators patterned from Al thin films. We also describe multiple approaches for numerical simulations of the microwave properties of these structures, along with comparisons with the measured transmission spectra. The ability to predict the mode spectrum based on the chip layout provides a path towards future designs integrating metamaterial resonators with superconducting qubits.

  14. Realization and Modeling of Metamaterials Made of rf Superconducting Quantum-Interference Devices

    E-Print Network [OSTI]

    Anlage, Steven

    ,5], cloaking [6,7], transformation optics [8,9], and perfect absorption [10]. Most of the applications invoking in space (e.g., for cloaking or transformation optics) or that can be tuned and reconfigured after for digital rf receivers [25,26]. Superconducting metamaterials have been proposed to address all three

  15. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  16. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B?+?n?????+?{sup 7}Li, with ? and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T?=?8?K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40?mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  17. Langmuir vacuum and superconductivity

    SciTech Connect (OSTI)

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  18. Superconducting Magnet Division

    E-Print Network [OSTI]

    Ohta, Shigemi

    Superconducting Magnet Division MAGNETIC DESIGN OF E-LENS SOLENOID AND CORRECTOR SYSTEM FOR RHIC* R.6 A gun collectors gun Combined Horizontal and Vertical Corrector Design Both types of dipole correctors. Gupta, M. Anerella, W. Fischer, G. Ganetis, X. Gu, A. Ghosh, A. Jain, P. Kovach, A. Marone, S. Plate, A

  19. TRANSFORME Dpartement

    E-Print Network [OSTI]

    Mignotte, Max

    (b) Transformée de Hough (Espace (s, #)) (c) Principales lignes reconstruites 5 #12; TRANSFORM�E DE

  20. Market Transformation

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  1. Transformative Experiences

    E-Print Network [OSTI]

    Gering, Jon C.

    Transformative Experiences Internships & Field Schools Honors & Research Faculty Notables Alumni have at least one poten- tially transformative experi- ence - an opportunity to de- sign and carry out to be transformational are study abroad, internships, service learning, research, student-led learning, and lead- ership

  2. Superconductivity: the Gift that Keeps on Giving

    E-Print Network [OSTI]

    Goldberg, Bennett

    Superconductivity: the Gift that Keeps on Giving Superconductivity, first discovered recently the discovery of high superconducting transition temperatures in the ceramic copper oxides has superconductors. In the underdoped or pseudogap phase of the cuprate superconductors, a significant portion

  3. The superconducting solenoid magnets for MICE

    E-Print Network [OSTI]

    Green, Michael A.

    2002-01-01

    IEEE Transactions on Applied Superconductivity 13, No. 2 M.M. A. Green and J. M. Rey, “Superconducting Solenoids for anHigh Current Density Superconducting Solenoid Magnets for

  4. Superconducting vortex pinning with artificially prepared nanostructures

    E-Print Network [OSTI]

    Rosen, Yaniv Jacob

    E. Dubin, Physica C: Superconductivity 369, 21 (2002). R. D.P. G. De Gennes, Superconductivity of Metals and Alloys (W.Schuller, Journal of Superconductivity and Novel Magnetism

  5. Superconductivity in graphite intercalation compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Robert P. [Univ. of Cambridge (United Kingdom); Dean, Mark P. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Weller, Thomas E. [Univ. College of London (United Kingdom); Howard, Christopher A. [Univ. College of London (United Kingdom); Rahnejat, Kaveh C. [Univ. College of London (United Kingdom); Saxena, Siddharth S. [Univ. of Cambridge (United Kingdom); Ellerby, Mark [Univ. College of London (United Kingdom)

    2015-07-01

    The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s This paper recontextualizes the field in light of the discovery of superconductivity in CaC? and YbC? in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  6. Superconductivity in graphite intercalation compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC? and YbC? in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore »and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  7. Model of Antiferromagnetic Superconductivity

    E-Print Network [OSTI]

    Geoffrey L. Sewell

    2015-09-28

    We present a simple model that supports superconductive and antiferromagnetic ordering. The model consists of a system of electrons on a simple cubic lattice that move by tunnel effect and interact via antiferromagnetic Ising spin couplings and short range repulsions: these include infinitely strong Hubbard forces that prevent double occupancy of any lattice site. Hence, under the filling condition of one electron per site and at sufficiently low temperature, the system is an antiferromagnetic Mott insulator. However, when holes are created by suitable doping, they are mobile charge carriers. We show that, at low concentration, their interactions induced by the above interelectronic ones lead to Schafroth pairing. Hence, under certain plausible but unproved assumptions, the model exhibits the off-diagonal long range order that characterises superconductivity, while retaining the antiferromagnetic ordering.

  8. Competition between singlet and triplet superconductivity

    E-Print Network [OSTI]

    Tian De Cao; Tie Bang Wang

    2009-10-04

    The competition between singlet and triplet superconductivity is examined in consideration of correlations on an extended Hubbard model. It is shown that the triplet superconductivity may not be included in the common Hubbard model since the strong correlation favors the singlet superconductivity, and thus the triplet superconductivity should be induced by the electron-phonon interaction and the ferromagnetic exchange interaction. We also present a superconducting qualification with which magnetism is unbeneficial to superconductivity.

  9. Superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL); Banerjee, Indrajit (San Jose, CA)

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  10. Equilibrium Distributions and Superconductivity

    E-Print Network [OSTI]

    Ashot Vagharshakyan

    2011-06-07

    In this article two models for charges distributions are discussed. On the basis of our consideration we put different points of view for stationary state. We prove that only finite energy model for charges' distribution and well-known variation principle explain some well-known experimental results. A new model for superconductivity was suggested, too. In frame of that model some characteristic experimental results for superconductors is possible to explain.

  11. Topological confinement and superconductivity

    SciTech Connect (OSTI)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  12. Superconducting VAR control. [Patent application

    DOE Patents [OSTI]

    Boenig, H.J.; Hassenzahl, W.V.

    1980-12-05

    Static VAR control means are described employing an asymmetrically controlled Graetz bridge and a superconducting direct current coil having low losses and low cost characteristics.

  13. Superconducting magnet development in Japan

    SciTech Connect (OSTI)

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  14. Superconductivity and Superfluidity

    E-Print Network [OSTI]

    B. V. Vasiliev

    2013-10-31

    Currently there is a common belief that the explanation of superconductivity phenomenon lies in understanding the mechanism of the formation of electron pairs. Paired electrons, however, cannot form a superconducting condensate spontaneously. These paired electrons perform disorderly zero-point oscillations and there are no force of attraction in their ensemble. In order to create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. As a result of this ordering of zero-point oscillations in the electron gas, superconductivity arises. This model of condensation of zero-point oscillations creates the possibility of being able to obtain estimates for the critical parameters of elementary superconductors, which are in satisfactory agreement with the measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained, due to the ordering of zero-point fluctuations. It is therefore established that both related phenomena are based on the same physical mechanism.

  15. Superconducting dark energy

    E-Print Network [OSTI]

    Shi-Dong Liang; Tiberiu Harko

    2015-04-10

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a non-minimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolution of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  16. Flavor Superconductivity & Superfluidity

    E-Print Network [OSTI]

    Matthias Kaminski

    2010-02-25

    In these lecture notes we derive a generic holographic string theory realization of a p-wave superconductor and superfluid. For this purpose we also review basic D-brane physics, gauge/gravity methods at finite temperature, key concepts of superconductivity and recent progress in distinct realizations of holographic superconductors and superfluids. Then we focus on a D3/D7-brane construction yielding a superconducting or superfluid vector-condensate. The corresponding gauge theory is 3+1-dimensional N=2 supersymmetric Yang-Mills theory with SU(N) color and SU(2) flavor symmetry. It shows a second order phase transition to a phase in which a U(1) subgroup of the SU(2) symmetry is spontaneously broken and typical superconductivity signatures emerge, such as a conductivity (pseudo-)gap and the Meissner-Ochsenfeld effect. Condensates of this nature are comparable to those recently found experimentally in p-wave superconductors such as a ruthenate compound. A string picture of the pairing mechanism and condensation is given using the exact knowledge of the corresponding field theory degrees of freedom.

  17. Magnetically leviated superconducting bearing

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  18. Superconducting Magnets for a Muon Collider

    E-Print Network [OSTI]

    Green, M.A.

    1996-01-01

    IEEE Transactions on Applied Superconductivity 3, No. 1,pMAG-544 LBL-38398 UC-414 Superconducting Magnets for a Muonsections, the nominal superconductor plus matrix current

  19. THE TECHNOLOGY OF SUPERCONDUCTING ACCELERATOR DIPOLES

    E-Print Network [OSTI]

    Hassenzahl, W.V.

    2010-01-01

    properties of practical superconductors,2 2. their sta-winding from the superconductive to the resistive state. *I. II. III. IV. V. Superconducting Materials Conductor Matri

  20. High-Temperature Superconducting Composite Conductors

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Groves, James R. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Ayala, Alicia (Santa Fe, NM)

    2005-01-18

    Copper or excess copper is added to one or more layers of a superconducting composite structure to reduce migration of copper form a copper based superconducting layer.

  1. Market Transformation

    SciTech Connect (OSTI)

    2011-02-15

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  2. Market Transformation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  3. Optimization of superconducting tiling pattern for superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  4. Optimization of superconducting tiling pattern for superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  5. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  6. High critical current superconducting tapes

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  7. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore National Lab on Supercomputing Click toSuperconducting

  8. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore National Lab on Supercomputing ClickSuperconducting

  9. Superconductivity Conference Held

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore National Lab on SupercomputingSuperconductivity

  10. The integration of cryogenic cooling systems with superconducting electronic systems

    E-Print Network [OSTI]

    Green, Michael A.

    2011-01-01

    applications for superconductivity have low heat loads in aTransactions on Applied Superconductivity t I, P 2615, (Cooling Systems With Superconducting Electronic Systems M.

  11. RECENT ADVANCES IN THE TECHNOLOGY OF SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.E.

    2010-01-01

    Current Multipoles in Superconducting Accelerator Magnets."Utilization of the Superconducting Super Collider, Snowmass,Field Harmonics in Superconducting Accelerator Magnets,·

  12. Cryogenic Tests of the g-2 Superconducting Solenoid Magnet System

    E-Print Network [OSTI]

    Jia, L.X.

    2011-01-01

    in IEEE Transactions on Applied Superconductivity 5. No.F. Krienen et al.. "The Superconducting Inflector Dipole forTransactions on Applied Superconductivity 5. No.2 (1995) G.

  13. A superconducting focusing solenoid for the neutrino factory linear accelerator

    E-Print Network [OSTI]

    Green, Michael A.; Lebedev, V.; Strauss, B.P.

    2001-01-01

    et al, “The Role of Superconductivity and Cryogenics in theA Superconducting Focusing Solenoid for the Neutrino FactoryAcceleration Cells for the Superconducting Linac. Shown in

  14. Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

    E-Print Network [OSTI]

    Rodionov, Andrey

    2014-01-01

    2.2 Review of superconducting qubits . . . . . .State Tomography for superconducting qubits 3.1 The idea ofPossible new effects in superconductive tunnelling”, Physics

  15. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    E-Print Network [OSTI]

    Virostek, S.P.

    2010-01-01

    IEEE Transactions on Applied Superconductivity 15, No. 2, p.IEEE Transactions on Applied Superconductivity 15, No. 2, p.AND MODELING OF THE MICE SUPERCONDUCTING SPECTROMETER

  16. Quantum State Protection and Transfer Using Superconducting Qubits

    E-Print Network [OSTI]

    Keane, Kyle Michael

    2012-01-01

    relaxation . . . . . . . . .1.5 Superconducting ? ux-biasedCorrection Algorithms for Superconducting Qubits,” APS Marchand correction for superconducting qubits,” Phys. Rev. A,

  17. Preliminary Test Results for the MICE Spectrometer Superconducting Solenoids

    E-Print Network [OSTI]

    Virostek, Steve P.

    2009-01-01

    Transactions on Applied Superconductivity 19, No. 3 MICETransactions on Applied Superconductivity 15, No. 2, p 1259,Transactions on Applied Superconductivity 18, No. 2, p 937,

  18. Los Alamos scientists see new mechanism for superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New mechanism for superconductivity Los Alamos scientists see new mechanism for superconductivity Researchers have posited an explanation for superconductivity that may open the...

  19. Transformative copy

    E-Print Network [OSTI]

    Offenhuber, Dietmar

    2008-01-01

    The ability to create an unlimited number of identical copies is a privilege of digital documents. What if that would not be the case, if each copy of a digital file would go along with some sort of transformation? This ...

  20. Smart monitoring system based on adaptive current control for superconducting cable test

    SciTech Connect (OSTI)

    Arpaia, Pasquale; Ballarino, Amalia; Montenero, Giuseppe; Daponte, Vincenzo; Svelto, Cesare

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  1. Radio Broadcasts from Superconducting Strings

    E-Print Network [OSTI]

    Yi-Fu Cai; Eray Sabancilar; Daniele A. Steer; Tanmay Vachaspati

    2012-05-14

    Superconducting cosmic strings can give transient electromagnetic signatures that we argue are most evident at radio frequencies. We investigate the three different kinds of radio bursts from cusps, kinks, and kink-kink collisions on superconducting strings. We find that the event rate is dominated by kink bursts in a range of parameters that are of observational interest, and can be quite high (several a day at 1 Jy flux) for a canonical set of parameters. In the absence of events, the search for radio transients can place stringent constraints on superconducting cosmic strings.

  2. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  3. Superconductivity, Superfluidity and Holography

    E-Print Network [OSTI]

    Alberto Salvio

    2013-01-16

    This is a concise review of holographic superconductors and superfluids. We highlight some predictions of the holographic models and the emphasis is given to physical aspects rather than to the technical details, although some references to understand the latter are systematically provided. We include gapped systems in the discussion, motivated by the physics of high-temperature superconductivity. In order to do so we consider a compactified extra dimension (with radius R), or, alternatively, a dilatonic field. The first setup can also be used to model cylindrical superconductors; when these are probed by an axial magnetic field a universal property of holography emerges: while for large R (compared to the other scales in the problem) non-local operators are suppressed, leading to the so called Little-Parks periodicity, the opposite limit shows non-local effects, e.g. the uplifting of the Little-Parks periodicity. This difference corresponds in the gravity side to a Hawking-Page phase transition.

  4. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  5. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  6. Superconductivity from correlated hopping

    SciTech Connect (OSTI)

    Batista, C.D.; Lema, F.; Aligia, A.A. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 Bariloche (Argentina)] [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 Bariloche (Argentina)

    1995-09-01

    We consider a chain described by a next-nearest-neighbor hopping combined with a nearest-neighbor spin flip. In two dimensions this three-body term arises from a mapping of the three-band Hubbard model for CuO{sub 2} planes to a generalized {ital t}-{ital J} model and for large O-O hopping favors resonance-valence-bond superconductivity of predominantly {ital d}-wave symmetry. Solving the ground-state and low-energy excitations by analytical and numerical methods we find that the chain is a Luther-Emery liquid with correlation exponent {ital K}{sub {rho}}=(2{minus}{ital n}){sup 2}/2, where {ital n} is the particle density.

  7. Fabrication of arrays of nano-superconducting quantum interfernce devices using a double-angle processing approach

    E-Print Network [OSTI]

    Roediger, Peter

    2014-01-01

    incommensurate area superconducting quantum interferencearray of incommensurate superconducting quantum interferencetransition-temperature superconducting quantum interference

  8. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  9. On the theory of superconductivity 

    E-Print Network [OSTI]

    Cheng, Kai-Chia

    The phenomenon of superconductivity has so for defied all attempts of explanation since it was first discovered in 1911. Although two phenomenological theories have been put forward and proved very successful, yet no atomic theories based on quantum...

  10. EIS-0138: Superconducting Super Collider

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the potential environmental impacts of constructing the Superconducting Super Collider, a large proton accelerator, at each of seven alternative locations.

  11. Fourier Transform Pairs The Fourier transform transforms a function of

    E-Print Network [OSTI]

    Masci, Frank

    Fourier Transform Pairs The Fourier transform transforms a function of time, f(t), into a function of frequency, F(s): F {f(t)}(s) = F(s) = Z - f(t)e- j2st dt. The inverse Fourier transform transforms a func. The inverse Fourier transform of the Fourier trans- form is the identity transform: f(t) = Z - Z - f()e- j2s

  12. PHYSICAL REVIEW B 91, 214508 (2015) Superconducting spin-valve effect and triplet superconductivity

    E-Print Network [OSTI]

    Fominov, Yakov

    2015-01-01

    PHYSICAL REVIEW B 91, 214508 (2015) Superconducting spin-valve effect and triplet superconductivity 12 June 2015) We report magnetic and superconducting properties of the modified spin-valve system Co theoretical description of the superconducting spin-valve effect and of the manifestation of the long

  13. Electrothermal simulation of superconducting nanowire avalanche photodetectors

    E-Print Network [OSTI]

    Marsili, Francesco

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting ...

  14. Recent Developments in High Temperature Superconductivity 

    E-Print Network [OSTI]

    Hor, P. H.

    1988-01-01

    New material systems and the experimental progress of high temperature superconductivity are briefly reviewed. We examine both oxides and non-oxides which exhibit stable and/or unstable superconductivity at high temperatures....

  15. HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.

    2011-01-01

    D. C. 'Niobium-Titanium Superconducting Material s ', in S.Nb -Ti and Nb3Sn superconductors. , •• ,""" s. S. Clamp, Tie14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.

  16. Superconducting Partnership with Readiness Review Update

    E-Print Network [OSTI]

    1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

  17. ORNL/HTSPC-10 ORNL Superconducting

    E-Print Network [OSTI]

    ORNL/HTSPC-10 ORNL Superconducting Technology Program for Electric Power Systems Annual Report http://www.doe.gov/bridge #12;ORNL/HTSPC-10 ORNL SUPERCONDUCTING TECHNOLOGY PROGRAM FOR ELECTRIC POWER

  18. Design of a Superconducting Quantum Computer

    E-Print Network [OSTI]

    Vallette, Bruno

    Design of a Superconducting Quantum Computer John Martinis UC Santa Barbara Is it really possible theory i d hi *error-correction and architecture* 4) Xmon superconducting qubits) p g q integrated

  19. AMORPHOUS MOLYBDENUM SILICON SUPERCONDUCTING THIN FILMS

    E-Print Network [OSTI]

    Bosworth, D.; Sahonta, S.-L.; Hadfield, R. H.; Barber, Z. H.

    2015-01-01

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been...

  20. A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER

    E-Print Network [OSTI]

    O'Donnell, Tom

    A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER FOR PRODUCTION OF NEUTRON-RICH NUCLEI ( 136 Xe Superconducting Cyclotron Laboratory's weekly \\Green Sheet," 30 July 1999 #12; c Thomas W. O'Donnell 2000 All

  1. A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

    E-Print Network [OSTI]

    Godeke, Arno

    2007-01-01

    Fundamental Physics Superconducting Magnets Yields: Accuraterecord setting superconducting magnet systems ITER, NMRScience, Fundamental Physics, and Superconducting Magnets

  2. Superconducting Cable Termination

    DOE Patents [OSTI]

    Sinha, Uday K. (Carrollton, GA); Tolbert, Jerry (Newnan, GA)

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  3. Improved superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  4. A unified theory of superconductivity

    E-Print Network [OSTI]

    Xiuqing Huang

    2008-09-22

    In this paper, we study the reliability of BCS theory as a scientific explanation of the mystery of superconductivity. It is shown clearly that the phonon-mediated BCS theory is fundamentally incorrect. Two kinds of glues, pairing (pseudogap) glue and superconducting glue, are suggested based on a real space Coulomb confinement effect. The scenarios provide a unified explanation of the pairing symmetry, pseudogap and superconducting states, charge stripe order, spin density wave (SDW), checkerboard-type charge-ordered phase, magic doping fractions and vortex structures in conventional and unconventional (the high-Tc cuprates and MgB2) superconductors. The theory agrees with the existence of a pseudogap in high-temperature superconductors, while no pseudogap feature could be observed in MgB2 and most of the conventional superconductors. Our results indicate that the superconducting phase can coexist with a inclined hexagonal vortex lattice in pure MgB2 single crystal with a charge carrier density ps=1.49*10^{22}/cm^{3}. Finally, the physical reasons why the good conductors (for example, Ag, Au, and Cu) and the overdoped high-Tc superconductors are non-superconducting are also explored.

  5. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  6. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  7. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, Xin D. (Greenbelt, MD); Muenchausen, Ross E. (Espanola, NM)

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  8. Hough Transform Common Names: Hough transform

    E-Print Network [OSTI]

    Masci, Frank

    Hough Transform Common Names: Hough transform Brief Description The Hough transform is a technique that the desired features be specified in some parametric form, the classical Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses, etc. A generalized Hough transform can

  9. Superconducting PM undiffused machines with stationary superconducting coils

    DOE Patents [OSTI]

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  10. Topical Review Progress in superconducting metamaterials

    E-Print Network [OSTI]

    Anlage, Steven

    Topical Review Progress in superconducting metamaterials Philipp Jung1,2 , Alexey V Ustinov1 in the development and applications of superconducting metamaterials. The review is organized in terms of several distinct advantages and unique properties brought to the metamaterials field by superconductivity

  11. Comment on "d id0 Chiral Superconductivity

    E-Print Network [OSTI]

    Wu, Zhigang

    Comment on "d þ id0 Chiral Superconductivity in Bilayer Silicene" In Ref. [1], Liu et al, their random-phase-approximation analysis sug- gests that the system is superconducting with the Cooper pairs, they claim that a high superconducting critical temperature is possible due to the tunable Fermi pocket via

  12. Superconductivity in iron compounds G. R. Stewart

    E-Print Network [OSTI]

    Wu, Zhigang

    of the superconductivity in this new class of compounds. These iron pnictide and chalcogenide (FePn/Ch) superconductors-phonon coupled ``conventional'' superconductors. Clearly, superconductivity and magnetism or magnetic of magnetism and superconductivity in FePn/Ch superconductors 1606 D. Tc and TS=TSDW versus pressure 1607 1

  13. Superconducting wire with improved strain characteristics

    DOE Patents [OSTI]

    Luhman, Thomas (Westhampton Beach, NY); Klamut, Carl J. (E. Patchogue, NY); Suenaga, Masaki (Bellport, NY); Welch, David (Stony Brook, NY)

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  14. Superconducting wire with improved strain characteristics

    DOE Patents [OSTI]

    Luhman, Thomas (Westhampton Beach, NY); Klamut, Carl J. (East Patchogue, NY); Suenaga, Masaki (Bellport, NY); Welch, David (Stony Brook, NY)

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  15. Strain tolerant microfilamentary superconducting wire

    DOE Patents [OSTI]

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  16. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    E-Print Network [OSTI]

    L. García-Álvarez; U. Las Heras; A. Mezzacapo; M. Sanz; E. Solano; L. Lamata

    2015-11-30

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we prove that fermionic models of molecular structure can be optimally digitalized with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  17. Freely oriented portable superconducting magnet

    DOE Patents [OSTI]

    Schmierer, Eric N. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM)

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  18. Free-standing oxide superconducting articles

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  19. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  20. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  1. Evaluating Transformer Losses 

    E-Print Network [OSTI]

    Grun, R. L. Jr.

    1989-01-01

    This paper outlines how to determine what transformer losses cost and how to evaluate transformer bids to optimize the investment....

  2. Testability Transformation --Program Transformation to Improve Testability

    E-Print Network [OSTI]

    Binkley, David W.

    Testability Transformation -- Program Transformation to Improve Testability Mark Harman1 , Andr, 26 Richmond Street, Glasgow G1 1XH, UK. Corresponding Author. Abstract. Testability transformation. The goal is to improve the testing process by transforming a program to one that is more amenable

  3. Testability Transformation: Program Transformation to Improve Testability

    E-Print Network [OSTI]

    Harman, Mark

    Testability Transformation: Program Transformation to Improve Testability An Overview of Recent Author. Abstract. Testability transformation is a new form of program transfor- mation in which the goal to some chosen test adequacy criterion. The goal is to improve the testing process by transforming

  4. Two-resonator circuit QED: A superconducting quantum switch

    E-Print Network [OSTI]

    Matteo Mariantoni; Frank Deppe; A. Marx; R. Gross; F. K. Wilhelm; E. Solano

    2008-09-23

    We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch between the two resonators, which are assumed to be originally independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus permitting to switch on and off the interaction between the two resonators via a qubit population inversion or a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction, which constitutes a fundamental property characteristic of superconducting quantum circuits without counterpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the robustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related parameters. In this manner, we show that this setup can be used to implement a superconducting quantum switch with available technology.

  5. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    SciTech Connect (OSTI)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety codes. Unlike traditional grid technology, superconducting fault current limiters are smart. They increase their resistance abruptly in response to overcurrents from faults in the system, thus limiting the overcurrents and protecting the grid from damage. They react fast in both triggering and automatically resetting after the overload is cleared, providing a new, self-healing feature that enhances grid reliability. Superconducting reactive power regulators further enhance reliability by instantaneously adjusting reactive power for maximum efficiency and stability in a compact and economic package that is easily sited in urban grids. Not only do superconducting motors and generators cut losses, weight, and volume by a factor of two, but they are also much more tolerant of voltage sag, frequency instabilities, and reactive power fluctuations than their conventional counterparts. The challenge facing the electricity grid to provide abundant, reliable power will soon grow to crisis proportions. Continuing urbanization remains the dominant historic demographic trend in the United States and in the world. By 2030, nearly 90% of the U.S. population will reside in cities and suburbs, where increasingly strict permitting requirements preclude bringing in additional overhead access lines, underground cables are saturated, and growth in power demand is highest. The power grid has never faced a challenge so great or so critical to our future productivity, economic growth, and quality of life. Incremental advances in existing grid technology are not capable of solving the urban power bottleneck. Revolutionary new solutions are needed ? the kind that come only from superconductivity.

  6. Superconducting Cable Having A Felexible Former

    DOE Patents [OSTI]

    Hughey, Raburn L. (Franklin, GA); Sinha, Uday K. (Carrollton, GA); Reece, David S. (Carrollton, GA); Muller, Albert C. (Eidson, TN)

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  7. Superconducting Cable Having A Flexible Former

    DOE Patents [OSTI]

    Hughey, Raburn L. (Franklin, GA); Sinha, Uday K. (Carrollton, GA); Reece, David S. (Carrollton, GA); Muller, Albert C. (Eidson, TN)

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  8. Ten questions and answers about superconductivity

    E-Print Network [OSTI]

    Tian De Cao

    2012-11-13

    This work answers the basic questions of superconductivity in a question-and-answer format. We extend a basic hypothesis to various superconductors. This hypothesis is that superconductivity requires that the pairing gap locates around the Fermi level. On the basis of this hypothesis our calculations give the so-called three factor theory with which some key problems of the high temperature superconductivity are explained.

  9. Superconducting thin films on potassium tantalate substrates

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  10. Effective theory of color superconductivity

    E-Print Network [OSTI]

    Deog Ki Hong

    2007-07-17

    We briefly review an effective theory of QCD at high baryon density, describing the relevant modes near the Fermi surface. The high density effective theory has properties of reparametrization invariance and gauge invariance, maintained in a subtle way. It also has a positive measure, allowing lattice simulations at high baryon density. We then apply it to gapless superconductors and discuss recent proposals to resolve the magnetic instability of gapless superconductivity.

  11. Processing method for superconducting ceramics

    DOE Patents [OSTI]

    Bloom, Ira D. (Bolingbrook, IL); Poeppel, Roger B. (Glen Ellyn, IL); Flandermeyer, Brian K. (Cincinnati, OH)

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  12. Reverse circling supercurrents along a superconducting ring

    E-Print Network [OSTI]

    Tian De Cao

    2012-01-21

    The reason why high temperature superconductivity has been being debated is that many basic ideas in literatures are wrong. This work shows that the magnetic flux quantum in a superconducting ring have been inaccurately explained in fact, thus we suggest a reinterpretation of the magnetic flux quantum in a superconducting ring on the basis of the translations of pairs. We also predict that the internal and external surface of a superconducting tube have the reverse circling supercurrents. This means that a more thick tube could trap a larger amount of flux. Both the magnetic flux quantum and the reverse circling supercurrents could not be found with the London equation.

  13. MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE...

    Office of Scientific and Technical Information (OSTI)

    Open problems in condensed matter physics, 1987 Falicov, L.M. 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE PHYSICS; RESEARCH PROGRAMS;...

  14. Superconducting Magnet Technology for Future Hadron Colliders

    E-Print Network [OSTI]

    Scanlan, R.M.

    2011-01-01

    Trans. on Applied Superconductivity, 5 (1995), J.R. Millersummer study on superconductingdevices and acceleratorsGeneral. Advanced Superconductors (IGC). Waterbury.

  15. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  16. Light Induced Superconductivity | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Induced Superconductivity Wednesday, August 5, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Daniele Nicoletti, Max Planck Institute for the Structure and...

  17. Superconducting inductive displacement detection of a microcantilever

    SciTech Connect (OSTI)

    Vinante, A., E-mail: anvinante@fbk.eu [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy)

    2014-07-21

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100??T, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2?K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  18. Testing gravitational physics with superconducting gravimeters

    E-Print Network [OSTI]

    Sachie Shiomi

    2009-02-24

    Superconducting gravimeters are the most sensitive instruments to measure surface gravity changes at low frequencies. Currently, about twenty five superconducting gravimeters are operating in the world and their global network has been developed. We investigate possible applications of the superconducting gravimeters to tests of gravitational physics. Previous experimental searches for spatial anisotropies in the gravitational constant G and for gravitational waves, performed with gravimeters in 1960's to 1970's, can be improved by applications of the current superconducting gravimeters. Also, we describe other proposed applications of testing the universality of free-fall and searching for composition-dependent dilatonic waves, and discuss future works necessary for these geophysical tests.

  19. A potential Rosetta Stone of high temperature superconductivity...

    Office of Science (SC) Website

    for the high temperature superconductivity. Summary Superconductivity enables the flow of electricity without any loss of energy, but this extremely-low temperature...

  20. Distinct superconducting states in the pressure-induced metallic...

    Office of Scientific and Technical Information (OSTI)

    Distinct superconducting states in the pressure-induced metallic structures of the nominal semimetal Bi4Te3 Citation Details In-Document Search Title: Distinct superconducting...

  1. Spin Torques in Magnetic and Superconducting Tunnel Junctions

    E-Print Network [OSTI]

    Hoffman, Silas Eli

    2012-01-01

    Proximity Effects at Superconducting Interfaces . . . . . .of spin-triplet superconductivity in Co-based JosephsonExchange Field in Superconductor- Ferromagnet Structures. ”

  2. Estimating the Cost of Large Superconducting Thin Solenoid Magnets

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    W. C. T. Stoddart, Superconductivity Conference Proceedings,Powell, Applied Superconductivity p 346, (1972). Appliedpure aluminum stabilized superconductor. The cost of this

  3. FORCED TWO PHASE HELIUM COOLING OF LARGE SUPERCONDUCTING MAGNETS

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01

    DIAMETER TPC THIN SUPERCONDUCTING SOLENOID . 'i.A. Green,an Aluminum Stabilized Superconductor", Cryogenics 17, Vol.and Construction of a Superconducting Stabilized Aluminum

  4. Planar superconducting resonators with internal quality factors above one million

    E-Print Network [OSTI]

    Martinis, John M.

    Planar superconducting resonators with internal quality factors above one million A. Megrant,1,2 C criti- cal elements for superconducting electromagnetic radiation detectors,1 quantum memories,2

  5. GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01

    FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL M. A. Green,Time Projection Cnamber) thin superconducting solenoid. Theand breakage of the superconductor. The UPA circuit melted

  6. Progress on Superconducting Magnets for the MICE Cooling Channel

    E-Print Network [OSTI]

    Green, Michael A

    2010-01-01

    IEEE Transactions on Applied Superconductivty 15, No. 2, p274 Progress on the Superconducting Magnets for the MICETransactions on Applied Superconductivity 13, No. 2 p 1373 (

  7. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect (OSTI)

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  8. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOE Patents [OSTI]

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  9. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOE Patents [OSTI]

    Minati, Kurt F. (Northport, NY); Morgan, Gerry H. (Patchogue, NY); McNerney, Andrew J. (Shoreham, NY); Schauer, Felix (Upton, NY)

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  10. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  11. Exotic Superconductivity in Correlated Electron Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital,more »and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  12. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    SciTech Connect (OSTI)

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  13. Free-standing oxide superconducting articles

    DOE Patents [OSTI]

    Wu, Xin D. (Greenbelt, MD); Muenchausen, Ross E. (Espanola, NM)

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  14. Fermionic Models with Superconducting Circuits

    E-Print Network [OSTI]

    U. Las Heras; L. García-Álvarez; A. Mezzacapo; E. Solano; L. Lamata

    2015-03-31

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups.

  15. Quantum trajectories of superconducting qubits

    E-Print Network [OSTI]

    S. J. Weber; K. W. Murch; M. E. Schwartz; N. Roch; I. Siddiqi

    2015-06-26

    In this review, we discuss recent experiments that investigate how the quantum sate of a superconducting qubit evolves during measurement. We provide a pedagogical overview of the measurement process, when the qubit is dispersively coupled to a microwave frequency cavity, and the qubit state is encoded in the phase of a microwave tone that probes the cavity. A continuous measurement record is used to reconstruct the individual quantum trajectories of the qubit state, and quantum state tomography is performed to verify that the state has been tracked accurately. Furthermore, we discuss ensembles of trajectories, time-symmetric evolution, two-qubit trajectories, and potential applications in measurement-based quantum error correction.

  16. Radio bursts from superconducting strings

    E-Print Network [OSTI]

    Yi-Fu Cai; Eray Sabancilar; Tanmay Vachaspati

    2012-01-30

    We show that radio bursts from cusps on superconducting strings are linearly polarized, thus, providing a signature that can be used to distinguish them from astrophysical sources. We write the event rate of string-generated radio transients in terms of observational variables, namely, the event duration and flux. Assuming a canonical set of observational parameters, we find that the burst event rate can be quite reasonable, e.g., order ten a year for Grand Unified strings with 100 TeV currents, and a lack of observed radio bursts can potentially place strong constraints on particle physics models.

  17. The Theory of Super-conductivity in the

    E-Print Network [OSTI]

    Landweber, Laura

    of high-Tc superconductivity in the cuprates. (Cuprates are ceramic materials that superconduct at temperatures much higher than should be possible according to conventional the- ory.) Superconductivity the development of a theory of high-temperature superconductivity. Since there is as yet no complete theory

  18. Superconductivity and Quantum Oscillations in Crystalline Bi Nanowire

    E-Print Network [OSTI]

    inner core and the surface oxide layer. Under a perpendicular H, the resistance in the superconducting

  19. Superconducting coil and method of stress management in a superconducting coil

    DOE Patents [OSTI]

    McIntyre, Peter M. (College Station, TX); Shen, Weijun (Oak Ridge, TN); Diaczenko, Nick (College Station, TX); Gross, Dan A. (College Station, TX)

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  20. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  1. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20?GPa. Here, we report high–pressure synthesis of hexagonal ?–MoN and cubic ?–MoN through an ion–exchange reaction at 3.5?GPa. The final products are in the bulk form with crystallite sizesmore »of 50 – 80??m. Based on indentation testing on single crystals, hexagonal ?–MoN exhibits excellent hardness of ~30?GPa, which is 30% higher than cubic ?–MoN (~23?GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for ?–MoN and cubic ?–MoN are 13.8 and 5.5?K, respectively, in good agreement with previous measurements.« less

  2. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal ?–MoN and cubic ?–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore »crystallite sizes of 50 – 80 ?m. Based on indentation testing on single crystals, hexagonal ?–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic ?–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for ?–MoN and cubic ?–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  3. Progress on the Modeling and Modification of the MICE Superconducting Spectrometer Solenoids

    E-Print Network [OSTI]

    Virostek, S.P.

    2013-01-01

    IEEE Transactions on Applied Superconductivity 15, No. 2, p.E E Transactions on Applied Superconductivity 15, No. 2, p.and Modeling of the MICE Superconducting Spectrometer

  4. Superconducting magnets for induction linac phase-rotation in a neutrino factory

    E-Print Network [OSTI]

    Green, M.A.; Yu, S.

    2001-01-01

    et al, "The Role of Superconductivity and Cryogenics in theTransactions on Applied Superconductivity 11, p 2180, (2001)hydrogen absorbers. The superconducting solenoid quench

  5. Frequency-Domain Multiplexed Readout for Superconducting Gamma-Ray Detectors

    E-Print Network [OSTI]

    Dreyer, Jonathan G.

    2008-01-01

    sensor arrays with a superconducting quantum interferenceMultiplexed Readout for Superconducting Gamma-Ray Detectorsdetectors based on superconducting transition edge sensors (

  6. Update on the Modification and Testing of the MICE Superconducting Spectrometer Solenoids

    E-Print Network [OSTI]

    Virostek, S.P.

    2013-01-01

    IEEE Transactions on Applied Superconductivity 15, No. 2, p.IEEE Transactions on Applied Superconductivity 15, No. 2, p.TESTING OF THE MICE SUPERCONDUCTING SPECTROMETER SOLENOIDS*

  7. QUENCH PROTECTION AND DESIGN OF LARGE HIGH CURRENT DENSITY SUPERCONDUCTING MAGNETS

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01

    failure in the TPC superconducting magnet," Proceedings ofstrain on epoxy-impregnated superconducting composties," inQuench protection for superconduct­ ing magnets with a

  8. Fabrication of a Short-Period Nb3Sn Superconducting Undulator

    E-Print Network [OSTI]

    Dietderich, Daniel

    2008-01-01

    Trans. on Applied Superconductivity, Vol. 13, No. 2, pp.Trans. on Applied Superconductivity, MT-19, June 2005. [7]Trans. on Applied Superconductivity, vol. 15, no. 2, 2005,

  9. A LARGE HIGH CURRENT DENSITY SUPERCONDUCTING SOLENOID FOR THE TIME PROJECTION CHAMBER EXPERIMENT

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    TPC magnet integrates the superconduct- ing coil, the quenchto 1978 Applied Superconductivity Conference in Pittsburgh,HIGH CURRENT DENSITY SUPERCONDUCTING SOLENOID FOR THE TIME

  10. A Superconducting Bending Magnet System for a Compact Synchrotron Light Source

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    Garren, "Optimization of Superconducting Bending Magnets foral, "Development of a Superconducting Compact Storage Ringsdesigns M. A Green, "Superconducting Dipole Magnets for

  11. Antenna-coupled Superconducting Bolometers for Observations of the Cosmic Microwave Background Polarization

    E-Print Network [OSTI]

    Myers, Michael James

    2010-01-01

    4.3.2 Superconducting microstrip simulations 4.4 Impedance4.3 Superconducting microstrip . . . . . . . . . . 4.3.1Principles of superconductive devices and circuits, (second

  12. Optimization of superconducting flux qubit readout using near-quantum-limited amplifiers

    E-Print Network [OSTI]

    Johnson, Jedediah Edward Jensen

    2012-01-01

    junctions . . . . . . . 1.4 Superconducting QuantumInterference 1.5 Superconducting qubits . . . . . . . . .2 Superconducting flux qubits 2.1 The one-junction flux

  13. A SUPERCONDUCTING MAGNET SYSTEM FOR THE SPIRIT COSMIC RAY SPACE TELESCOPE

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01

    secondary circuit*® NbVSh superconducting coils ElectricalAugust 21-24, 1979 A SUPERCONDUCTING MAGNET SYSTEM FOR THETELESCOPE MASTER A SUPERCONDUCTING MAGNET SYSTEM FOR THE

  14. Perfect NOT transformation and conjugate transformation

    E-Print Network [OSTI]

    Fengli Yan; Ting Gao; Zhichao Yan

    2012-03-15

    The perfect NOT transformation, probabilistic perfect NOT transformation and conjugate transformation are studied. Perfect NOT transformation criteria on a quantum state set $S$ of a qubit are obtained. Two necessary and sufficient conditions for realizing a perfect NOT transformation on $S$ are derived. When these conditions are not satisfied we discuss a probabilistic perfect NOT transformation (gate). We construct a probabilistic perfect NOT machine (gate) by a general unitary-reduction operation. With a postselection of the measurement outcomes, the probabilistic NOT gate yields perfectly complements of the input states. We prove that one can realize probabilistically the NOT gate of the input states secretly chosen from a certain set $S=\\{|\\Psi_1>, |\\Psi_2>,..., |\\Psi_n>\\}$ if and only if $|\\Psi_1>, |\\Psi_2>,...,$ and $|\\Psi_n>$ are linearly independent. We also generalize the probabilistic NOT transformation to the conjugate transformation in the multi-level quantum system. The lower bound of the best possible efficiencies attained by a probabilistic perfect conjugate transformation are obtained.

  15. Status of superconducting magnets for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980`s. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation.

  16. Nb-Pb superconducting RF gun

    SciTech Connect (OSTI)

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  17. Gapless superconductivity and string theory

    E-Print Network [OSTI]

    Sergei Khlebnikov

    2014-11-06

    Coexistence of superconducting and normal components in nanowires at currents below the critical (a "mixed" state) would have important consequences for the nature and range of potential applications of these systems. For clean samples, it represents a genuine interaction effect, not seen in the mean-field theory. Here we consider properties of such a state in the gravity dual of a strongly coupled superconductor constructed from D3 and D5 branes. We find numerically uniform gapless solutions containing both components but argue that they are unstable against phase separation, as their free energies are not convex. We speculate on the possible nature of the resulting non-uniform sate ("emulsion") and draw analogies between that state and the familiar mixed state of a type II superconductor in a magnetic field.

  18. Subranging technique using superconducting technology

    DOE Patents [OSTI]

    Gupta, Deepnarayan (Hawthorne, NY)

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  19. Magnetic fluctuations and heavy electron superconductivity

    SciTech Connect (OSTI)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals.

  20. Nonlinear high-temperature superconducting terahertz metamaterials

    E-Print Network [OSTI]

    Grady, Nathaniel K.

    We report the observation of a nonlinear terahertz response of split-ring resonator arrays made of high-temperature superconducting films. Intensity-dependent transmission measurements indicate that the resonance strength ...

  1. Bipolaron Model of Superconductivity in Chalcogenide Glasses

    E-Print Network [OSTI]

    Liang-You Zheng; Bo-Cheng Wang; Shan T. Lai

    2010-10-25

    In this paper we propose a small bipolaron model for the superconductivity in the Chalcogenide glasses (c-As2Te3 and c-GeTe). The results are agree with the experiments.

  2. Cooling arrangement for a superconducting coil

    DOE Patents [OSTI]

    Herd, K.G.; Laskaris, E.T.

    1998-06-30

    A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.

  3. Energy Programs | Center for Emergent Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jin, R., Sales, B.C., Mandrus, D., Gillett, J., Sebastian, S.E., and Greene, L.H., Superconduct. Sci. Technol. 23, 054009-1-7 (2010). C-axis critical current density of...

  4. Towards a next theory of superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Office (505) 667-0471 Email "High magnetic-field measurements of doped copper-oxide superconductors are paving the way to a new theory of superconductivity," said...

  5. Cellulose-Bound Magnesium Diboride Superconductivity

    E-Print Network [OSTI]

    Ryan, Dominic

    Cellulose-Bound Magnesium Diboride Superconductivity Y.L. Lin and M.O. Pekguleryuz Department a cellulose based polymer. Cellulose tends to react only very weekly and is very robust, hence constitutes

  6. Superconductivity with Stripes | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure in high-Tc superconductors was manipulated in high-pressure experiments at the APS. The physics of low-temperature superconductivity is fairly well understood, but the...

  7. Operational experience with superconducting synchrotron magnets

    SciTech Connect (OSTI)

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  8. Strongly correlated electron behavior : superconductivity and non-Fermi liquid behavior in Ce?-xRxColn?

    E-Print Network [OSTI]

    Gonzales, Eileen

    2009-01-01

    C. Superconductivity . . . . . . . . . . . . . . . . . . .1. Heavy Fermion Superconductivity . . . . . . .of a type I and type II superconductor showing magnetization

  9. Armored spring-core superconducting cable and method of construction

    DOE Patents [OSTI]

    McIntyre, Peter M. (611 Montclair, College Station, TX 77840); Soika, Rainer H. (1 Hensel, #X4C, College Station, TX 77840)

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  10. Architecture for high critical current superconducting tapes

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  11. Casimir energy and the superconducting phase transition

    E-Print Network [OSTI]

    Giuseppe Bimonte; Enrico Calloni; Giampiero Esposito; Luigi Rosa

    2006-01-24

    We study the influence of Casimir energy on the critical field of a superconducting film, and we show that by this means it might be possible to directly measure, for the first time, the variation of Casimir energy that accompanies the superconducting transition. It is shown that this novel approach may also help clarifying the long-standing controversy on the contribution of TE zero modes to the Casimir energy in real materials.

  12. Metrics for enterprise transformation

    E-Print Network [OSTI]

    Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

    2009-01-01

    The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

  13. LAPPED TRANSFORMS COMPRESSION

    E-Print Network [OSTI]

    de Queiroz, Ricardo L.

    Chapter 6 LAPPED TRANSFORMS FOR IMAGE COMPRESSION Ricardo L. de Queiroz Digital Imaging Technology aspects of lapped transforms and their applications to image compression. It is a subject that has been extensively studied mainly because lapped transforms are closely related to filter banks, wavelets, and time

  14. Entangling two superconducting LC coherent modes via a superconducting flux qubit

    E-Print Network [OSTI]

    Mei-Yu Chen; Matisse W. Y. Tu; Wei-Min Zhang

    2009-11-10

    Based on a pure solid-state device consisting of two superconducting LC circuits coupled to a superconducting flux qubit, we propose in this paper that the maximally entangled coherent states of the two LC modes can be generated for arbitrary coherent states through flux qubit controls.

  15. 2003 Annual Superconductivity2003 Annual Superconductivity Peer ReviewPeer Review

    E-Print Network [OSTI]

    ;Superconductivity Program at NREL for Electric SystemsSuperconductivity Program at NREL for Electric Systems Non NREL Team Members:NREL Team Members: RaghuRaghu BhattacharyaBhattacharya (Team Leader) Jun ChenJun Chen Cooperative Programs are funded by NREL. 03458202 #12;Program Objectives/Relevance (FY 2003)Program Objectives

  16. Fluctuations in systemsFluctuations in systems with superconducting islandswith superconducting islands

    E-Print Network [OSTI]

    Fominov, Yakov

    Fluctuations in systemsFluctuations in systems with superconducting islandswith superconducting islands Mikhail A. Skvortsov Mikhail V. Feigel'man Anatoly I. Larkin Landau Institute, Moscow #12;OutlineOutline #12;Uniform materials, grains, islandsUniform materials, grains, islands #12;Two mechanism of

  17. Anisotropic transport properties of ferromagnetic-superconducting bilayers 

    E-Print Network [OSTI]

    Kayali, MA; Pokrovsky, Valery L.

    2004-01-01

    We study the transport properties of vortex matter in a superconducting thin film separated by a thin insulator layer from a ferromagnetic layer. We assume an alternating stripe structure for both FM and superconducting (SC) layers as found in S...

  18. Supplementary Information for Simulating weak localization in superconducting quantum circuit

    E-Print Network [OSTI]

    Martinis, John M.

    Supplementary Information for Simulating weak localization in superconducting quantum circuit Yu-type entangled state in superconducting quantum circuits.[2, 3] We rst generated a photon in the readout qubit

  19. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    of Various Cases for Superconducti ng Magnets Inside andTransactions on Applied Superconductivity 7, No 2. P 642 (LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUON

  20. Control of Superconductivity in Cuprate/Manganite Heterostructures

    E-Print Network [OSTI]

    Pang, Brian SiewHan

    deposited, which exhibited superconducting and magnetic properties to minimum thicknesses of 3nm for both YBCO and LSMO. Using spin injection, via a ferromagnet, to create a spin imbalance in the superconductor, a suppression of superconducting critical...

  1. Friedel-Like Oscillations from Interstitial Iron in Superconducting...

    Office of Scientific and Technical Information (OSTI)

    Interstitial Iron in Superconducting Fe1+yTe0.62Se0.38 Using polarized and unpolarized neutron scattering we show that interstitial Fe in superconducting Fe1+yTe1-xSex...

  2. Optimization of superconducting magnetic bearings using finite element modeling

    E-Print Network [OSTI]

    Bryslawskyj, Jason (Jason Bogdan)

    2009-01-01

    This project investigated the possibility of using superconducting bearings in large (3 - 100 MW) electric drives. Superconducting bearings are used to levitate the rotors inside electric drives via the Meiissner effect, ...

  3. Digitales Video 1 Spatial Transformations

    E-Print Network [OSTI]

    spatial transformations derived for digital image warping applications in computer vision and computerDigitales Video 1 Spatial Transformations 2. SPATIAL TRANSFORMATIONS This chapter describes common graphics. A spatial transformation is a mapping function that establishes a spatial correspondence between

  4. High Temperature Superconductivity in Cuprates: a model

    E-Print Network [OSTI]

    P. R. Silva

    2010-07-16

    A model is proposed such that quasi-particles (electrons or holes) residing in the CuO2 planes of cuprates may interact leading to metallic or superconducting behaviors. The metallic phase is obtained when the quasi-particles are treated as having classical kinetic energies and the superconducting phase occurs when the quasi-particles are taken as extremely relativistic objects. The interaction between both kinds of particles is provided by a force dependent-on-velocity. In the case of the superconducting behavior, the motion of apical oxygen ions provides the glue to establish the Cooper pair. The model furnishes explicit relations for the Fermi velocity, the perpendicular and the in-plane coherence lengths, the zero-temperature energy gap, the critical current density, the critical parallel and perpendicular magnetic fields. All these mentioned quantities are expressed in terms of fundamental physical constants as: charge and mass of the electron, light velocity in vacuum, Planck constant, electric permittivity of the vacuum. Numerical evaluation of these quantities show that their values are close those found for the superconducting YBaCuO, leading to think the model as being a possible scenario to explain superconductivity in cuprates.

  5. Superconductivity at Dawn of the Iron Age

    ScienceCinema (OSTI)

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2010-09-01

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  6. Color superconductivity and dense quark matter

    E-Print Network [OSTI]

    Massimo Mannarelli

    2008-12-26

    The properties of cold and dense quark matter have been the subject of extensive investigation, especially in the last decade. Unfortunately, we still lack of a complete understanding of the properties of matter in these conditions. One possibility is that quark matter is in a color superconducting phase which is characterized by the formation of a diquark condensate. We review some of the basic concepts of color superconductivity and some of the aspects of this phase of matter which are relevant for compact stars. Since quarks have color, flavor as well as spin degrees of freedom many different color superconducting phases can be realized. At asymptotic densities QCD predicts that the color flavor locked phase is favored. At lower densities where the QCD coupling constant is large, perturbative methods cannot be applied and one has to rely on some effective model, eventually trying to constrain such a model with experimental observations. The picture is complicated by the requirement that matter in the interior of compact stars is in weak equilibrium and neutral. These conditions and the (possible) large value of the strange quark mass conspire to separate the Fermi momenta of quarks with different flavors, rendering homogenous superconducting phases unstable. One of the aims of this presentation is to introduce non-experts in the field to some of the basic ideas of color superconductivity and to some of its open problems.

  7. Superconducting Circuitry for Quantum Electromechanical Systems

    E-Print Network [OSTI]

    Matthew D. LaHaye; Francisco Rouxinol; Yu Hao; Seung-Bo Shim; Elinor K. Irish

    2015-04-11

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and efforts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  8. PERCOLATION AND SUPERCONDUCTIVITY IN ION-IMPLANTED ALUMINIUM FILMS (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    L-435 PERCOLATION AND SUPERCONDUCTIVITY IN ION-IMPLANTED ALUMINIUM FILMS (*) F. MEUNIER and P of Si and Ge in Al thin films at 8 K produces alloys exhibiting enhanced superconducting transition in the superconducting transition temperature Tc of several such alloys [2], [5], [6] : Josephson tunnelling

  9. Superconducting Wires Enabled by Nanodots wins Nano50TM Award

    E-Print Network [OSTI]

    includes nanoscale columns of non-superconducting material embedded within the superconductorSuperconducting Wires Enabled by Nanodots wins Nano50TM Award HTS Wires Enabled via 3D Self-Assembly of Insulating Nanodots Background · For most large-scale applications of high-temperature superconducting (HTS

  10. Fluctuations from edge defects in superconducting resonators A. Megrant,1

    E-Print Network [OSTI]

    Martinis, John M.

    Fluctuations from edge defects in superconducting resonators C. Neill,1 A. Megrant,1 R. Barends,1 August 2013) Superconducting resonators, used in astronomy and quantum computation, couple strongly to microscopic two-level defects. We monitor the microwave response of superconducting resonators and observe

  11. Field Test of the Superconducting Gravimeter as a Hydrologic Sensor

    E-Print Network [OSTI]

    Scanlon, Bridget R.

    Field Test of the Superconducting Gravimeter as a Hydrologic Sensor by Clark R. Wilson1 , Bridget of a transportable version of a superconducting gravimeter (SG) intended for groundwater storage monitoring. The test of a transportable superconducting gravimeter (SG) designed to monitor sur- face gravity and provide a direct measure

  12. Strong Coupling of a Spin Ensemble to a Superconducting Resonator

    E-Print Network [OSTI]

    Vallette, Bruno

    Strong Coupling of a Spin Ensemble to a Superconducting Resonator: Towards Superconducting Hybrid Quantum Circuits Yui KUBO, Cecile Greze, Florian R. Ong, Patrice Bertet). Superconducting qubit #12;Yui KUBO GDR-IQFA, Nice, 24 Mar 2011 Y. Nakamura et al., Nature

  13. Emulation of a Quantum Spin with a Superconducting Phase Qudit

    E-Print Network [OSTI]

    Martinis, John M.

    Emulation of a Quantum Spin with a Superconducting Phase Qudit Matthew Neeley,1 M. Ansmann,1 computing tasks. We demonstrate the operation of a superconducting phase qudit with d = 5, showing how, making a qudit emulator potentially more efficient. We demonstrate the operation of a superconducting

  14. Quantum Logic Gates in Superconducting Qubits John M. Martinis

    E-Print Network [OSTI]

    Martinis, John M.

    Quantum Logic Gates in Superconducting Qubits John M. Martinis Department of Physics University on surface codes may allow errors in the 10-2 range [2]. Much research in superconducting qubits has been di for superconducting qubits, since they typically use fixed coupling elements set by fabrication. TRANSITION LOGIC

  15. Singlet oxygen luminescence detection with a fibre-coupled superconducting

    E-Print Network [OSTI]

    Greenaway, Alan

    Singlet oxygen luminescence detection with a fibre-coupled superconducting nanowire single luminescence detection Fibre-based singlet oxygen luminescence detection References Superconducting Detector, is an intermediate in many biological processes. We employ a superconducting nanowire single-photon detector (SNSPD

  16. Sr2IrO4: Gateway to cuprate superconductivity?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mitchell, J. F.

    2015-06-05

    High temperature superconductivity in cuprates remains a defining challenge in condensed matter physics. Recently, a new set of related compounds based on Ir rather than Cu has been discovered that may be on the verge of superconductivity themselves or be able to shed new light on the underlying interactions responsible for superconductivity in the cuprates.

  17. Study on the energy criterion of cuprate superconductivity

    E-Print Network [OSTI]

    Gu Jiapu

    2010-02-09

    In this paper, we use the variation of spontaneous magnetization to describe the influence of electron holes in cuprate superconductors, and use competitive energy relations to explore the superconductivity rule and energy criterion, on this basis, we can deduce a clear physical image of superconducting phase diagram and superconducting mechanism.

  18. ACCOUNTING ROADMAP TRANSFORMING LIVES

    E-Print Network [OSTI]

    ACCOUNTING ROADMAP TO SUCCESS THE TRANSFORMING LIVES COLLEGE OF BUSINESS Department of Accounting #12;TABLEOFCONTENTS Greetings from Accounting Department Chair ..............................2 What is Accounting? .......................................................................4 Successful Study

  19. Transforming Biomass - main page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Biomass to Bioenergy Feedstocks The DOE Biomass Program has shaped the vision of a national, commodity-scale feedstock supply system. Much progress has been made in...

  20. Impurity effects in superconducting UPt sub 3

    SciTech Connect (OSTI)

    Aronson, M.C. (The Harrison M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109 (USA)); Vorenkamp, T.; Koziol, Z.; de Visser, A.; Bakker, K.; Franse, J.J.M. (Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands (USA)); Smith, J.L. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA))

    1991-04-15

    Superconducting UPt{sub 3} is characterized by a novel and complex magnetic field-temperature phase diagram, with two superconducting transitions at {ital T}{sub {ital c}1} and {ital T}{sub {ital c}2} in zero field. We have studied the effects of Pd and Y impurities on the zero field superconducting properties of UPt{sub 3}. Resistance measurements show that both dopants increase the residual resistivity and decrease the spin fluctuation temperature in the normal state. {ital T}{sub {ital c}1} is depressed by both dopants, but more effectively by Pd. {vert bar}{ital T}{sub {ital c}1} {minus} {ital T}{sub {ital c}2}{vert bar} is essentially unaffected by Y doping, but increases dramatically with Pd doping.

  1. Superconducting magnetic shielding apparatus and method

    DOE Patents [OSTI]

    Clem, John R. (Ames, IA); Clem, John R. (Ames, IA)

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  2. Superconducting magnetic shielding apparatus and method

    DOE Patents [OSTI]

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  3. Superconducting magnetic shielding apparatus and method

    DOE Patents [OSTI]

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  4. Proposed Giaever transformer to probe the pseudogap phase of cuprates.

    SciTech Connect (OSTI)

    Levchenko, A.; Norman, M. R. (Materials Science Division)

    2011-03-01

    We develop a theory of the rectification effect in a double-layer system where both layers are superconductors or one of the layers is a normal metal. The Coulomb interaction is assumed to provide the dominant coupling between the layers. We find that superconducting fluctuations strongly enhance the drag conductivity, with rectification most pronounced when both layers are superconductors. In view of their distinct dependence on temperature near T{sub c} and layer separation, drag measurements based on a Giaever transformer could distinguish whether rectification occurs due to fluctuating pairs or inductively coupled fluctuating vortices.

  5. Discovery of plutonium-based superconductivity

    SciTech Connect (OSTI)

    Sarrao, John L.,; Thompson, J. D. (Joe David); Moreno, N. O.; Morales, L. A. (Luis A.); Wastin, F. (Franck); Rebizant, J.; Boulet, P.; Colineau, E.; Lander, G. H.

    2002-01-01

    The discovery of superconductivity in single crystals of PuCoGa{sub 5} with transition temperature T{sub c}=18.5 K is discussed. The existing data lead to the speculation that the superconductivity in PuCoGa{sub 5} may be unconventional. In such a scenario the properties of PuCoGa{sub 5} would be intermediate between those of isostructural UCoGa{sub 5} and CeCoIn{sub 5}, more heavily studied f-electron materials.

  6. Criterion of stability of the superconducting state

    E-Print Network [OSTI]

    Iogann Tolbatov

    2009-10-23

    In this paper, we propose to draw attention to the stability criterion of the superconductor current state. We use for this purpose the rough systems mathematical apparatus allowing us to relate the desired criterion with the dielectric permittivity of the matter and to identify the type of all possible phonons trajectories in its superconducting state. The state of superconductivity in the matter can be explained only by the phonons behavior peculiarity. And on the basis of the above-mentioned assumption, the corresponding mathematical model is constructed.

  7. Apparatus for characterizing conductivity of superconducting materials

    DOE Patents [OSTI]

    Doss, J.D.

    1993-12-07

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  8. On Testing Entropic Inequalities for Superconducting Qudit

    E-Print Network [OSTI]

    Evgenii Glushkov; Anastasiia Glushkova; V. I. Man'ko

    2015-05-20

    The aim of this work is to verify the new entropic and information inequalities for non-composite systems using experimental $5 \\times 5$ density matrix of the qudit state, measured by the tomographic method in a multi-level superconducting circuit. These inequalities are well-known for bipartite and tripartite systems, but have never been tested for superconducting qudits. Entropic inequalities can also be used to evaluate the accuracy of experimental data and the value of mutual information, deduced from them, may charachterize correlations between different degrees of freedom in a noncomposite system.

  9. Superconducting Detectors for Super Light Dark Matter

    E-Print Network [OSTI]

    Yonit Hochberg; Yue Zhao; Kathryn M. Zurek

    2015-04-27

    We propose and study a new class of of superconducting detectors which are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark matter limit, mX > keV. We compute the rate of dark matter scattering off free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with all astrophysical and terrestrial constraints could be detected by such detectors with a moderate size exposure.

  10. Induced Magnetism in Color-Superconducting Media

    E-Print Network [OSTI]

    Efrain J. Ferrer

    2010-01-22

    The dense core of compact stars is the natural medium for the realization of color superconductivity. A common characteristic of such astrophysical objects is their strong magnetic fields, especially those of the so called magnetars. In this talk, I discuss how a color superconducting core can generate or/and enhance the stellar magnetic field independently of a magnetohydrodynamic dynamo mechanism. The magnetic field generator is in this case a gluonic current which circulates to stabilize the color superconductor in the presence of a strong magnetic field or under the pairing stress produced in the medium by the neutrality and $\\beta$-equilibrium constraints.

  11. Superconducting nanowire single photon detector on diamond

    SciTech Connect (OSTI)

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lon?ar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310?nm and 632?nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300?pm Root Mean Square surface roughness are obtained.

  12. Superconductivity observed in platinum-silicon interface

    SciTech Connect (OSTI)

    Kuo, Pai-Chia, E-mail: paichia@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Ku-Pin; Shiue, Jessie, E-mail: yshiue@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ?0.6?K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ?2.5?eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a???7?nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  13. Apparatus for characterizing conductivity of superconducting materials

    DOE Patents [OSTI]

    Doss, James D. (Los Alamos, NM)

    1993-01-01

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.

  14. Superconducting Detectors for Super Light Dark Matter

    E-Print Network [OSTI]

    Hochberg, Yonit; Zurek, Kathryn M

    2015-01-01

    We propose and study a new class of of superconducting detectors which are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark matter limit, mX > keV. We compute the rate of dark matter scattering off free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with all astrophysical and terrestrial constraints could be detected by such detectors with a moderate size exposure.

  15. Superconducting Detectors for Super Light Dark Matter

    E-Print Network [OSTI]

    Yonit Hochberg; Yue Zhao; Kathryn M. Zurek

    2015-11-11

    We propose and study a new class of superconducting detectors which are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark matter limit, mX > keV. We compute the rate of dark matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological/astrophysical constraints could be detected by such detectors with a moderate size exposure.

  16. Microsoft Word - FCL Testing Report Final.doc

    Office of Environmental Management (EM)

    Southern California Edison territory due to an absence of 138kV substations. Part of the design criteria for the device is to reduce a fault from 63 kA to 40 kA. The design is...

  17. Fault Current Limiters (FCL) Fact Sheet | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rog enOffice|DOEofPrimusonFanPlugging

  18. Microsoft Word - FCL Testing Report Final.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May2.docTechnical Consumer Products,An Assessment of

  19. Transforming America's Energy Economy Transforming America's

    E-Print Network [OSTI]

    Laboratory National Renewable Energy Laboratory Oak Ridge National Laboratory Pacific Northwest National #12;Transforming America's Energy Economy A. Introduction: A Call for Action B. Envisioning the Future of Energy B.1 Renewable and Low-Carbon Energy Sources for Electricity Production B.2 Energy

  20. Quantum network of superconducting qubits through opto-mechanical interface

    E-Print Network [OSTI]

    Zhang-qi Yin; W. L. Yang; L. Sun; L. M. Duan

    2015-01-08

    We propose a scheme to realize quantum networking of superconducting qubits based on the opto-mechanical interface. The superconducting qubits interact with the microwave photons, which then couple to the optical photons through the opto-mechanical interface. The interface generates a quantum link between superconducting qubits and optical flying qubits with tunable pulse shapes and carrier frequencies, enabling transmission of quantum information to other superconducting or atomic qubits. We show that the scheme works under realistic experimental conditions and it also provides a way for fast initialization of the superconducting qubits under 1 K instead of 20 mK operation temperature.

  1. Color symmetric superconductivity in a phenomenological QCD model

    E-Print Network [OSTI]

    Henrik Bohr; Constança Providência; João da Providência

    2009-09-19

    In this paper, we construct a theory of the NJL-type where superconductivity is present, and yet the super-conducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singlet-ness. Indeed, quarks are free in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singlet-ness. On the other hand, the color superconducting state here proposed, is color symmetric in the sense that an arbitrary color rotation leads to an equivalent state, with precisely the same physical properties.

  2. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  3. Deployment & Market Transformation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  4. Exploring Functional Mellin Transforms

    E-Print Network [OSTI]

    J. LaChapelle

    2015-01-08

    We define functional Mellin transforms within a scheme for functional integration proposed in [1]. Functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

  5. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  6. Superconducting fault current-limiter with variable shunt impedance

    DOE Patents [OSTI]

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  7. Logarithmic transformation of response Logarithmic transformation of response

    E-Print Network [OSTI]

    Komarek, Arnost

    Logarithmic transformation of response Logarithmic transformation of response Often, support S of Y is S = (0, ). Logarithm is then one of transformations to consider when trying to obtain a correct (wrong. Model Building 1. Transformation of response #12;Logarithmic transformation of response When does

  8. Program Transformation Mechanics A Classification of Mechanisms for Program Transformation

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Program Transformation Mechanics A Classification of Mechanisms for Program Transformation with a Survey of Existing Transformation Systems Jonne van Wijngaarden Eelco Visser UU-CS-2003-048 Institute Transformation Mechanics A Classification of Mechanisms for Program Transformation with a Survey of Existing

  9. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    E-Print Network [OSTI]

    Anders, Andre

    2013-01-01

    Workshop on RF Superconductivity, DESY, Hamburg, Germany,Gennaro, Physica C: Superconductivity 441 (2006) 130. [10]the Limits of RF Superconductivity, Padua, Italy, 2010. [12

  10. Cooling of Color Superconducting Compact Stars

    E-Print Network [OSTI]

    David Blaschke

    2006-03-26

    We review the status of research on the cooling of compact stars, with emphasis on the influence of color superconducting quark matter phases. Although a consistent microscopic approach is not yet available, severe constraints on the phase structure of matter at high densities come from recent mass and cooling observations of compact stars.

  11. Low frequency noise in superconducting qubits

    E-Print Network [OSTI]

    Fominov, Yakov

    Low frequency noise in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA) Exp-traps Faoro and Ioffe, PRL 96, 47001 (2006) · a discussion on the mysterious and puzzling flux noise at low... IN PROGRESS WITH EXPERIMENTALISTS! 4. Origin of low frequency flux noise at low temperature ? WHAT THE HELL

  12. Positive and inverse isotope effect on superconductivity

    E-Print Network [OSTI]

    Tian De Cao

    2009-09-04

    This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

  13. Geometrical Dynamics in a Transitioning Superconducting Sphere

    E-Print Network [OSTI]

    James R. Claycomb; Rambis K. Chu

    2006-02-22

    Recent theoretical work has concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.

  14. Di-Antiquarks condensation in Color Superconductivity

    E-Print Network [OSTI]

    Fabio L. Braghin

    2006-11-30

    Some consequences of a classical vector field (chromo-electromagnetic field) coupled to quarks, which undergo to superfluid and/or superconductive states with diquark / diantiquark condensation, are investigated. For this, one scalar field exchange is considered in the lines investigated by Pisarski and Rischke \\cite{PISARSKI-RISCHKE} in the mean field approach. Some effects and possible consequences are discussed.

  15. DOE, Texas settle super(conducting) differences

    SciTech Connect (OSTI)

    Crawford, M.

    1994-08-02

    The US DOE agreed to pay over $200 million in cash and transfer $510 million in property to Texas to settle the state`s claims against the federal government for cancellation of the Superconducting Super Collider. This article discusses the settlement and its history and what will be done with the facilities.

  16. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  17. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  18. Fractons and high-$T_{c}$ superconductivity

    E-Print Network [OSTI]

    Wellington da Cruz; Marcelo Pagotto Carneiro

    2001-01-18

    We consider the concept of fractons in the context of high-$T_{c}$ superconductivity. These objects, which carry rational or irrational quantum numbers, are classified into universal classes $h$ of particles or quasiparticles which obey specific fractal distribution function. We show that the relaxation time associated to Hall conductivity for the superconducting cuprate systems came to out as $\\tau_{H}\\propto T^{-2}$. We also consider the pairing of fractons as a mechanism to produce bosonic systems and therefore superconducting states. For that an effective mass obtained from the propagator of a charge-flux system is considered. In this way, some experimental results of infrared studies of the cuprates for the effective mass, $m^*=m_{e}(1+\\lambda)$, compared with our effective mass expression, $m_{eff}=m(1+s)$, show us that the dominant factor for interactions came from the spin. Thus spin flutuactions as a mechanism of high-$T_{c}$ superconductivity and fractons as quasiparticles are related. An expression to the low temperature specific heat of a quantum liquid of fractons is also obtained.

  19. Transformer Abdullah Al-Otaibi

    E-Print Network [OSTI]

    Masoudi, Husain M.

    Transformer Abdullah Al-Otaibi ID#242374 Section#2 Abstract- this is a brief description for transformer and how it works. I. DEFINITION A transformer is a device that transfers electrical energy from of the transformer in 1831. The transformer is used by Faraday only to demonstrate the principle of electromagnetic

  20. Transformation Algebra R. J. Renka

    E-Print Network [OSTI]

    Renka, Robert

    Transformation Algebra R. J. Renka Department of Computer Science & Engineering University of North Texas 03/21/2011 R. J. Renka Transformation Algebra #12;Linear Transformations A point with Cartesian transformations. A linear transformation L on R3 is represented by a 3 by 3 matrix A. In fact, there is a 1

  1. A discrete fractional random transform

    E-Print Network [OSTI]

    Zhengjun Liu; Haifa Zhao; Shutian Liu

    2006-05-20

    We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.

  2. Multiple, Simultaneous, Martensitic Transformations: Implications on Transformation Texture Intensities

    E-Print Network [OSTI]

    Cambridge, University of

    kind of martensite to be followed as a function of the steel temperature. The problem is relevantMultiple, Simultaneous, Martensitic Transformations: Implications on Transformation Texture, multiple martensitic transformations. Abstract. A theory is developed for martensite variants that have

  3. Lorentz transformation by mimicking the Lorentz transformation

    E-Print Network [OSTI]

    Bernhard Rothenstein; Stefan Popescu

    2007-09-24

    We show that starting with the fact that special relativity theory is concerned with a distortion of the observed length of a moving rod, without mentioning if it is a "contraction" or "dilation", we can derive the Lorentz transformations for the spacetime coordinates of the same event. This derivation is based on expressing the length of the moving rod as a sum of components with all the lengths involved in this summation being measured by the observers of the same inertial reference frame.

  4. The Quantum Mellin transform

    E-Print Network [OSTI]

    J. Twamley; G. J. Milburn

    2007-02-12

    We uncover a new type of unitary operation for quantum mechanics on the half-line which yields a transformation to ``Hyperbolic phase space''. We show that this new unitary change of basis from the position x on the half line to the Hyperbolic momentum $p_\\eta$, transforms the wavefunction via a Mellin transform on to the critial line $s=1/2-ip_\\eta$. We utilise this new transform to find quantum wavefunctions whose Hyperbolic momentum representation approximate a class of higher transcendental functions, and in particular, approximate the Riemann Zeta function. We finally give possible physical realisations to perform an indirect measurement of the Hyperbolic momentum of a quantum system on the half-line.

  5. Transformation inverse design

    E-Print Network [OSTI]

    Liu, David

    We present a new technique for the design of transformation-optics devices based on large-scale optimization to achieve the optimal effective isotropic dielectric materials within prescribed index bounds, which is ...

  6. TRANSFORMATION TOUGHENING IN CERAMICS

    E-Print Network [OSTI]

    Evans, A.G.

    2013-01-01

    Preprint ~. Submitted to Advances in Ceramics TRANSFORMATIONTOUGHENING IN CERAMICS A.G. Evans, D.B. Marshall, and N.H.TRANSFORMATION TOUGHENING IN CERAMICS by Ao Go Evans, D. Be

  7. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  8. Functional Mellin Transforms

    E-Print Network [OSTI]

    J. LaChapelle

    2015-01-07

    Functional integrals are defined in terms of locally compact topological groups and their associated Banach-valued Haar integrals. This approach generalizes the functional integral scheme of Cartier and DeWitt-Morette. The definition allows a construction of functional Mellin transforms. In turn, the functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

  9. Sandia Energy - Past Market Transformation Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Market Transformation Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Past Market Transformation...

  10. Creation of Electron Spinless Pairs in the Superconductivity

    E-Print Network [OSTI]

    V. N. Minasyan

    2009-03-28

    First, it is demonstrated that the Froolich Hamiltonian of system in the superconductivity, proposed by the model of a phonon gas and an electron gas mixture, contains a subtle error. In this respect, we present a correct form of the Froolich Hamiltonian of system where the term of the interaction between the phonon modes and the density modes of the electron modes is described by the term of scattering, introduced by the Froolich in a phonon gas electron gas mixture. The later is removed by a canonical transformation of the Froolich Hamiltonian by an appearance of the attractive interaction mediated via the electron modes, which leads to a bound state on a spinless electron pairs. In this letter, we show that the Cooper approximation as the constancy of the density states within around of the Fermi level has a flaw because the effective attractive forces cannot create the Cooper pairs into energetic gap at the Fermi level. In this letter, we find a condition for density metal which determines metal as superconductor.

  11. Torsional texturing of superconducting oxide composite articles

    DOE Patents [OSTI]

    Christopherson, Craig John (Grafton, MA); Riley, Jr., Gilbert N. (Marlborough, MA); Scudiere, John (Bolton, MA)

    2002-01-01

    A method of texturing a multifilamentary article having filaments comprising a desired oxide superconductor or its precursors by torsionally deforming the article is provided. The texturing is induced by applying a torsional strain which is at least about 0.3 and preferably at least about 0.6 at the surface of the article, but less than the strain which would cause failure of the composite. High performance multifilamentary superconducting composite articles having a plurality of low aspect ratio, twisted filaments with substantially uniform twist pitches in the range of about 1.00 inch to 0.01 inch (25 to 0.25 mm), each comprising a textured desired superconducting oxide material, may be obtained using this texturing method. If tighter twist pitches are desired, the article may be heat treated or annealed and the strain repeated as many times as necessary to obtain the desired twist pitch. It is preferred that the total strain applied per step should be sufficient to provide a twist pitch tighter than 5 times the diameter of the article, and twist pitches in the range of 1 to 5 times the diameter of the article are most preferred. The process may be used to make a high performance multifilamentary superconducting article, having a plurality of twisted filaments, wherein the degree of texturing varies substantially in proportion to the radial distance from the center of the article cross-section, and is substantially radially homogeneous at any given cross-section of the article. Round wires and other low aspect ratio multifilamentary articles are preferred forms. The invention is not dependent on the melting characteristics of the desired superconducting oxide. Desired oxide superconductors or precursors with micaceous or semi-micaceous structures are preferred. When used in connection with desired superconducting oxides which melt irreversibly, it provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly superior to any currently available for these materials. In a preferred embodiment, the desired superconducting oxide material is BSCCO 2223.

  12. Photon-counting optical coherence-domain reflectometry using superconducting single-

    E-Print Network [OSTI]

    Teich, Malvin C.

    Photon-counting optical coherence-domain reflectometry using superconducting single- photon reflecting samples. In particular, we experimentally demonstrate the possibility of using superconducting. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single

  13. Color superconductivity with determinant interaction in strange quark matter

    E-Print Network [OSTI]

    Amruta Mishra; Hiranmaya Mishra

    2006-08-28

    We investigate the effect of six fermion determinant interaction on color superconductivity as well as on chiral symmetry breaking. Coupled mass gap equations and the superconducting gap equation are derived through the minimisation of the thermodynamic potential. The effect of nonzero quark -- antiquark condensates on the superconducting gap is derived. This becomes particularly relevant for the case of 2-flavor superconducting matter with unpaired strange quarks in the diquark channel. While the effect of six fermion interaction leads to an enhancement of u-d superconductivity, due to nonvanishing strange quark--antiquark condensates, such an enhancement will be absent at higher densities for u-s or d-s superconductivity due to early (almost) vanishing of light quark-- antiquark condensates.

  14. Optical transformation from chirplet to fractional Fourier transformation kernel

    E-Print Network [OSTI]

    Hong-yi Fan; Li-yun Hu

    2009-02-11

    We find a new integration transformation which can convert a chirplet function to fractional Fourier transformation kernel, this new transformation is invertible and obeys Parseval theorem. Under this transformation a new relationship between a phase space function and its Weyl-Wigner quantum correspondence operator is revealed.

  15. Laplace Transforms An integral transform is an operator

    E-Print Network [OSTI]

    Ikenaga, Bruce

    9­28­1998 Laplace Transforms An integral transform is an operator F (s) = Z b a K(s; t)f(t) dt: The input to the transform is the function f(t); the output is the function F (s). (By convention, small letters denote the inputs to a transform, and the corresponding capital letters denote the corresponding

  16. Superconductivity and Superfluidity as Universal Emergent Phenomena

    E-Print Network [OSTI]

    Guidry, Mike

    2015-01-01

    Superconductivity (SC) or superfluidity (SF) is observed across a remarkably broad range of fermionic systems: in BCS, cuprate, iron-based, organic, and heavy-fermion superconductors, and superfluid helium-3 in condensed matter; in a variety of SC/SF phenomena in low-energy nuclear physics; in ultracold, trapped atomic gases; and in various exotic possibilities in neutron stars. The range of physical conditions and differences in microscopic physics defy all attempts to unify this behavior in any conventional picture. Here we propose a unification through the shared symmetry properties of the emergent condensed states, with microscopic differences absorbed into parameters. This, in turn, forces a rethinking of specific occurrences of SC/SF such as cuprate high-temperature superconductivity, which becomes far less mysterious when seen as part of a continuum of behavior shared by a variety of other systems.

  17. Critical parameters of superconducting materials and structures

    SciTech Connect (OSTI)

    Fluss, M.J.; Howell, R.H.; Sterne, P.A.; Dykes, J.W.; Mosley, W.D.; Chaiken, A.; Ralls, K.; Radousky, H.

    1995-02-01

    We report here the completion of a one year project to investigate the synthesis, electronic structure, defect structure, and physical transport properties of high temperature superconducting oxide materials. During the course of this project we produced some of the finest samples of single crystal detwinned YBa{sub 2}Cu{sub 3}O{sub 7}, and stoichiometrically perfect (Ba,K)BiO{sub 3}. We deduced the Fermi surface of YBa{sub 2}Cu{sub 3}O{sub 7}, (La,Sr){sub 2}CuO{sub 4}, and (Ba,K)BiO{sub 3} through the recording of the electron momentum density in these materials as measured by positron annihilation spectroscopy and angle resolved photoemission. We also performed extensive studies on Pr substituted (Y,Pr)Ba{sub 2}Cu{sub 3}O{sub 7} so as to further understand the origin of the electron pairing leading to superconductivity.

  18. Superconductivity and magnetism in rapidly solidified perovskites

    SciTech Connect (OSTI)

    O'Handley, R.C.; Kalonji, G.

    1991-01-01

    The report is divided into six parts, reflecting major thrusts of our work since 1987. The six areas are: molecular orbital theory of high {Tc} superconductivity; rapid solidification processing of oxide superconductors; time dependent magnetic and superconducting properties of these inhomogeneous materials; excess Gd in Gd{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7-{delta}} perovskites; rapid solidification and directional annealing to achieve high Jc; and Mossbauer studies of T = Fe, Co and Ni site selection in YBa{sub 2}(CuT){sub 3}O{sub 7-{delta}} and GdBa{sub 2}(CuT){sub 3}O{sub 7-{delta}}.

  19. Self-triggering superconducting fault current limiter

    DOE Patents [OSTI]

    Yuan, Xing (Albany, NY); Tekletsadik, Kasegn (Rexford, NY)

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  20. Composite arrays of superconducting microstrip line resonators

    SciTech Connect (OSTI)

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  1. The superconducting solenoid magnets for MICE

    SciTech Connect (OSTI)

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  2. Digital feedback in superconducting quantum circuits

    E-Print Network [OSTI]

    D. Ristè; L. DiCarlo

    2015-08-06

    This chapter covers the development of feedback control of superconducting qubits using projective measurement and a discrete set of conditional actions, here referred to as digital feedback. We begin with an overview of the applications of digital feedback in quantum computing. We then introduce an implementation of high-fidelity projective measurement of superconducting qubits. This development lays the ground for closed-loop control based on the binary measurement result. A first application of digital feedback control is fast and deterministic qubit reset, allowing the repeated initialization of a qubit more than an order of magnitude faster than its relaxation rate. A second application employs feedback in a multi-qubit setting to convert the generation of entanglement by parity measurement from probabilistic to deterministic, targeting an entangled state with the desired parity every time.

  3. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect (OSTI)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2?x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, ?V??I{sup 3}, with a coefficient ?(T) that correlates with the temperature variation of the resistivity d?/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e?ph}?1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  4. HINS Superconducting Lens and Cryostat Performance

    SciTech Connect (OSTI)

    Page, T.M.; DiMarco, J.; Huang, Y.; Orris, D.F.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; /Fermilab

    2008-08-01

    Fermi National Accelerator Laboratory is involved in the development of a 60 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. A prototype solenoid cryostat was built and tested at the Fermilab Magnet Test Facility. This paper discusses the test results of the prototype and compares the measured and estimated performance of the cryostat. We also present the methods and results for measuring and fiducializing the axis of the solenoid lens.

  5. Ted Geballe: A Lifetime of Contributions To Superconductivity

    E-Print Network [OSTI]

    Stewart, G R

    2015-01-01

    The editors have dedicated this special issue on superconducting materials "to Ted Geballe in honor of his numerous seminal contributions to the field of superconducting materials over more than 60 years, on the year of his 95th birthday." Here, as an executive summary, are just a few highlights of his research in superconductivity, leavened with some anecdotes, and ending with some of Teds general insights and words of wisdom.

  6. High temperature superconductivity in metallic region near Mott transition

    E-Print Network [OSTI]

    Tian De Cao

    2009-09-11

    The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

  7. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  8. Method for manufacturing a rotor having superconducting coils

    DOE Patents [OSTI]

    Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  9. Quantum Heat Engines Using Superconducting Quantum Circuits

    E-Print Network [OSTI]

    H. T. Quan; Y. D. Wang; Yu-xi Liu; C. P. Sun; Franco Nori

    2006-09-14

    We propose a quantum analog of the internal combustion engine used in most cars. Specifically, we study how to implement the Otto-type quantum heat engine (QHE) with the assistance of a Maxwell's demon. Three steps are required: thermalization, quantum measurement, and quantum feedback controlled by the Maxwell demon. We derive the positive-work condition of this composite QHE. Our QHE can be constructed using superconducting quantum circuits. We explicitly demonstrate the essential role of the demon in this macroscopic QHE.

  10. Electromagnetic Modelling of Superconducting Sensor Designs

    E-Print Network [OSTI]

    Gerra, Guido

    OF MATERIALS SCIENCE AND METALLURGY Electromagnetic Modelling of Superconducting Sensor Designs Guido Gerra Clare Hall, University of Cambridge 1 Preface The present dissertation has been submitted for the degree of Master... in the current circulating in it to the magnetic field the SQUID is subjected to. This possibility arises from the dynamics of electromagnetic fields in superconductors combined with the Josephson effect, and appropriate coupling schemes can be used to measure...

  11. Holographic Superconductivity with Gauss-Bonnet gravity

    E-Print Network [OSTI]

    Ruth Gregory

    2010-12-07

    I review recent work on holographic superconductivity with Einstein-Gauss-Bonnet gravity, and show how the critical temperature of the superconductor depends on both gravitational backreaction and the Gauss-Bonnet parameter, using both analytic and numerical arguments. I also review computations of the conductivity, finding the energy gap, and demonstrating that there is no universal gap ratio, $\\omega_g/T_c$, for these superconductors.

  12. On a Model of Superconductivity and Biology

    E-Print Network [OSTI]

    Monica De Angelis

    2012-03-02

    The paper deals with a semilinear integrodifferential equation that characterizes several dissipative models of Viscoelasticity, Biology and Superconductivity. The initial - boundary problem with Neumann conditions is analyzed. When the source term F is a linear function, then the explicit solution is obtained. When F is non linear, some results on existence, uniqueness and a priori estimates are deduced. As example of physical model the reaction - diffusion system of Fitzhugh Nagumo is considered.

  13. Holographic Competition of Phases and Superconductivity

    E-Print Network [OSTI]

    Kiritsis, Elias

    2015-01-01

    We use a holographic theory to model and study the competition of four phases: an antiferromagnetic phase, a superconducting phase, a metallic phase and a striped phase, using as control parameters temperature and a doping-like parameter. We analyse the various instabilities and determine the possible phases. One class of phase diagrams, that we analyse in detail, is similar to that of high-temperature superconductors as well as other strange metal materials.

  14. Dual superconducting properties of the QCD vacuum

    E-Print Network [OSTI]

    A. D'Alessandro; M. D'Elia

    2005-10-27

    A consistent description of the confining QCD vacuum as a dual superconductor requires a determination of fundamental parameters such as the superconductor correlation length $\\xi$ and the field penetration depth $\\lambda$, which determine whether the superconductor is of type I or type II. We illustrate preliminary results of a lattice determination of $\\xi$ for the case of pure Yang-Mills with two colors, obtained by measuring the temporal correlator of a disorder parameter detecting dual superconductivity.

  15. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  16. Robust manipulation of superconducting qubits in the presence of fluctuations

    E-Print Network [OSTI]

    Daoyi Dong; Chunlin Chen; Bo Qi; Ian R. Petersen; Franco Nori

    2014-08-07

    Superconducting quantum systems are promising candidates for quantum information processing due to their scalability and design flexibility. However, the existence of defects, fluctuations, and inaccuracies is unavoidable for practical superconducting quantum circuits. In this paper, a sampling-based learning control (SLC) method is used to guide the design of control fields for manipulating superconducting quantum systems. Numerical results for one-qubit systems and coupled two-qubit systems show that the "smart" fields learned using the SLC method can achieve robust manipulation of superconducting qubits even in the presence of large fluctuations and inaccuracies.

  17. Minicourse in Recife Title Spectral methods in superconductivity by ...

    E-Print Network [OSTI]

    2008-02-27

    potential plays an important role in the understanding of the mechanism of the onset of superconductivity for a sample submitted to an external magnetic field.

  18. Superconducting properties in tantalum decorated three-dimensional...

    Office of Scientific and Technical Information (OSTI)

    properties in tantalum decorated three-dimensional graphene and carbon structures Citation Details In-Document Search Title: Superconducting properties in tantalum...

  19. Magnetic pinning of flux lattice in superconducting-nanomagnet hybrids

    E-Print Network [OSTI]

    2011-01-01

    of flux lattice in superconducting-nanomagnet hybrids D.This plays a key role in superconductor properties such as ?ingre- dients in superconductor based applications. The

  20. VACUUM IMPREGNATION WITH EPOXY OF LARGE SUPERCONDUCTING MAGNET STRUCTURES

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    Achieved (A) Maximum Superconductor Matrix Current DensityZone (Quench) in a Superconductor by Local Energy Release"High Current Density Superconducting Solenoids for Use in

  1. New Superconducting Magnet Will Lead to Next Generation of Wind...

    Energy Savers [EERE]

    DOE funded AML's design for a superconducting generator for large-scale, high-efficiency offshore wind turbines. AML worked with its partners, Emerson Electric Corporation, Creare...

  2. Intertwining of Superconductivity and Magnetism | U.S. DOE Office...

    Office of Science (SC) Website

    Intertwining of Superconductivity and Magnetism Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy...

  3. Damping and support in high-temperature superconducting levitation systems

    DOE Patents [OSTI]

    Hull, John R. (Sammamish, WA); McIver, Carl R. (Everett, WA); Mittleider, John A. (Kent, WA)

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  4. Vital Tool in Superconductivity Studies | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short Title Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011 In 2008, the totally unexpected discovery of a New class of superconductors,...

  5. A young person's view of the Superconducting Super Collider

    SciTech Connect (OSTI)

    Moya, A.

    1990-08-01

    This report gives a simple description of the Superconducting Super Collider, how it works, and what it is used for. (LSP)

  6. Ultrasonic signatures at the superconducting and the pseudogap...

    Office of Scientific and Technical Information (OSTI)

    NEUTRONS; PHASE DIAGRAMS; SCATTERING; SUPERCONDUCTIVITY; SUPERCONDUCTORS; THERMODYNAMICS; ULTRASONIC WAVES Word Cloud More Like This Full Text File size NAView Full Text...

  7. J. Robert Schrieffer and the BCS Theory of Superconductivity

    Office of Scientific and Technical Information (OSTI)

    Walls; Physical Review B, Vol. 57, Issue 22: 14433-14439, June 1, 1998 Top Additional Web Pages: Landmarks: Superconductivity Explained, American Physical Society (APS) John...

  8. High Power Superconducting Continuous Wave Linacs for Protons...

    Office of Science (SC) Website

    Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of...

  9. Anomalous Zeeman response of the coexisting superconducting and...

    Office of Scientific and Technical Information (OSTI)

    Anomalous Zeeman response of the coexisting superconducting and spin-density-wave phases as a probe of extended s -wave pairing in ferropnictide superconductors Prev Next ...

  10. Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY...

    Office of Scientific and Technical Information (OSTI)

    Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND...

  11. Cosmological constraints on superconducting dark energy models

    E-Print Network [OSTI]

    Zoltán Keresztes; László Á. Gergely; Tiberiu Harko; Shi-Dong Liang

    2015-09-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential $V$ is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In another words dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively are confronted with Type IA Supernovae and Hubble parameter data. In the electric case good fit is obtained along a narrow inclined stripe in the $\\Omega _{m}-\\Omega _{V}$ parameter plane, which includes the $\\Lambda $CDM limit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either i) parameter ranges of the superconducting dark energy allowing for the standard baryonic plus dark matter or ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector. The cosmological data is best matched when the matter decouples from both the scalar and vector sectors of dark energy, hence favoring matter conservation as opposed to particle creation in an irreversible process.

  12. Superconductivity, superfluidity and zero-point oscillations

    E-Print Network [OSTI]

    B. V. Vasiliev

    2013-06-29

    Currently it is thought that in order to explain the phenomenon of superconductivity is necessary to understand the mechanism of formation of electron pairs. However, the paired electrons cannot form a superconducting condensate. They perform disorderly zero-point oscillations and there are no attractive forces in their ensemble. To create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. For this reason, the ordering of zero-point oscillations in the electron gas is the cause of superconductivity and the parameters characterizing this order determine the properties of superconductors. The model of condensation of zero-point oscillations creates the possibility to obtain estimates for the critical parameters of elementary superconductors, which are also in the satisfactory agreement with measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained due to the ordering of zero-point fluctuations. Thus it is established that the both related phenomena are based on the same physical mechanism.

  13. Color superconducting quark matter in compact stars

    E-Print Network [OSTI]

    D. B. Blaschke; T. Klahn; F. Sandin

    2007-12-02

    Recent indications for high neutron star masses (M \\sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.

  14. Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition

    E-Print Network [OSTI]

    Ivry, Yachin

    Thin superconducting films form a unique platform for geometrically confined, strongly interacting electrons. They allow an inherent competition between disorder and superconductivity, which in turn enables the intriguing ...

  15. THE USE OF HIGH CURRENT DENSITY SUPERCONDUCTING COILS IN FUSION DEVICES

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01

    the charge rate of the superconductinp coil is limited byfor tubular cooled superconducting magnets. The use of aal. , Epoxy Resins for Superconducting Magnet Encapsulation,

  16. THE MEASUREMENT AND THEORETICAL CALCULATION OF QUENCH VELOCITIES WITHIN LARGE FULLY EPOXY IMPREGNATED SUPERCONDUCTING COILS

    E-Print Network [OSTI]

    Eberhard, P.H.

    2010-01-01

    Quenching of Technical Superconductors by Heat and Magneticamic Aspects of the Superconductive Transition Process,"in J. William Superconductivity and It's Applications. [10

  17. CONSTRUCTION AND TESTING OF THE TWO METER DIAMETER TPC THIN SUPERCONDUCTING SOLENOID

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01

    DIAMETER TPC THIN SUPERCONDUCTING SOLENOID . 'i.A. Green,an Aluminum Stabilized Superconductor", Cryogenics 17, Vol.and Construction of a Superconducting Stabilized Aluminum

  18. Suppressible pinning of Abrikosov vortices : effects of magnetic vortex arrays on thin superconducting films

    E-Print Network [OSTI]

    Smith, Kevin Daniel

    2008-01-01

    penetration through the superconductive film as it relatesThus, to sustain superconductivity throughout the materialthe mixed state, type-II superconductors have characteristic

  19. Polaronic Effect and Its Impact on T c for Novel Layered Superconducting Systems

    E-Print Network [OSTI]

    Kresin, Vladimir

    2010-01-01

    is bene?cial for superconductivity? As is known, polaronicproperties of novel superconductors, especially the high-T cc for Novel Layered Superconducting Systems Vladimir Kresin

  20. Magnetism and superconductivi[t]y in Pr-based filled skutterudite arsenides

    E-Print Network [OSTI]

    Sayles, Todd Allen

    2008-01-01

    1.5 Superconductivity . . . . . . . . . . . . . . . . . . .and M. B. Maple, ”Superconductivity and non-Fermi liquidSAN DIEGO Magnetism and Superconductiviy in Pr-based Filled

  1. Discrete Fourier Transform Javier Montoya

    E-Print Network [OSTI]

    Giger, Christine

    Discrete Fourier Transform Javier Montoya Photogrammetry and Remote Sensing ETH Zurich March 16, 2012 1 Introduction The Discrete form of the Fourier transform is known as Discrete Fourier Transform domain using the Inverse Discrete Fourier Transform (IDFT): f(x) = 1 N N-1 x=0 F(u)ej 2 N ux for u = 0, 1

  2. Laplace Transform May 7, 2008

    E-Print Network [OSTI]

    Mead, Jodi L.

    MATH 333 Laplace Transform Lab 9 May 7, 2008 In this lab we will compute the Laplace transform symbolically and the inverse Laplace transform both symbolically and numerically. Symbolic representation The command syms assigns a variable to be symbolic, laplace(f) finds the Laplace transform of a function f

  3. TO TRANSFORM BIOMEDICAL ENGINEERING

    E-Print Network [OSTI]

    Bermúdez, José Luis

    IT'S TIME TO TRANSFORM BIOMEDICAL ENGINEERING EDUCATION #12;Charles H. & Bettye Barclay Professor Head, Department of Biomedical Engineering Texas A&M University We're dedicated to solving the world in biomedical engineering research and education ­ and we're well on our way. Our faculty continues to engineer

  4. ACCOUNTING ROADMAP TRANSFORMING LIVES

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    ACCOUNTING ROADMAP TO SUCCESS THE TRANSFORMING LIVES COLLEGE OF BUSINESS Department of Accounting #12;TABLEOFCONTENTS Greetings from Accounting Department Chair 2 What is Accounting? 4 Successful Accounting Career Paths 8 Careers in Managerial Accounting 9 Careers in Government/Not-for-Profit (GNP

  5. Chemical Transformations in Wetlands

    E-Print Network [OSTI]

    Gray, Matthew

    ) as a byproduct. Methane "Swamp gas" Natural Greenhouse Gas CH4 Release (mg C/m2 d) Bogs (150) Marshes (90 associated with breakdown of organic C and nitrogenous waste and for respiration! NOTE: Microbial populations. CO2 + H2O H2CO3 Reduction of Ferric Iron Hydroxides #12;3 Nitrogen Transformations First e- Acceptor

  6. Probabilistically Accurate Program Transformations

    E-Print Network [OSTI]

    Rinard, Martin

    of loop perforation (which transforms loops to execute fewer iterations) to a set of computational the probabilistic guarantees for those bounds. 1.1 Loop Perforation In this paper, we focus on loop perforation demonstrate the util- ity and effectiveness of loop perforation in reducing the amount of time (and/or other

  7. A superconducting bolometer with strong electrothermal feedback Adrian T. Leea)

    E-Print Network [OSTI]

    Richards, Paul L.

    5 July 1996 We present a theoretical analysis and experimental evaluation of a transition-edge superconducting bolometer for detecting infrared and millimeter waves. The superconducting film is voltage biased maintains the sensor temperature within the transition, gives a current responsivity that is simply

  8. TRANSITION-EDGE SUPERCONDUCTING ANTENNA-COUPLED BOLOMETER

    E-Print Network [OSTI]

    , such as Plank and Boomerang. The SAMBA architecture allows for a high density of pixels in the focal plane, Anastasios Vayonakis, Jonas Zmuidzinas California Institute of Technology, Pasadena, CA 91125, USA James J superconducting bolometer (TES). The coupling architecture involves propagating the signal along superconducting

  9. Temperature control of Fano resonances and transmission in superconducting metamaterials

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Temperature control of Fano resonances and transmission in superconducting metamaterials V *vaf@orc.soton.ac.uk Abstract: Losses are the main evil that limits the use of metamaterials to the metamaterial structures. An exception is superconducting metamaterials, where Joule losses can be uniquely

  10. A new boson-fermion model of superconductivity

    E-Print Network [OSTI]

    Tian De Cao

    2012-10-09

    It is shown that the superconducting energy gap necessarily lead to the disappearance of some quasi-electrons, thus we suggest a new boson-fermion Hamiltonian to describe superconductivity. The new supercurrent equations are derived with this Hamiltonian. Some new results can be found besides the zero resistance effect, the Meissner effect and the magnetic flux quantum can be explained.

  11. Permanent magnet design for high-speed superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  12. Superconducting magnetic energy storage for asynchronous electrical systems

    DOE Patents [OSTI]

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  13. Superconducting articles, and methods for forming and using same

    DOE Patents [OSTI]

    Knoll, Allan Robert (Guilderland, NY); Lenseth, Kenneth Patrick (Wynantskill, NY)

    2007-01-09

    A superconducting tape is disclosed, including a substrate having a first surface and a second surface opposite the first surface, the substrate including a plurality of indicia provided on the first surface spaced apart along a length of the substrate; and a superconductor layer overlying the second surface. Also disclosed are components incorporating superconducting tapes, methods for manufacturing same, and methods for using same.

  14. EIS-0138-S: Superconducting Super Collider, Supplemental, Waxahatchie, Texas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this supplementary statement to analyze the environmental impacts of design modifications to the Superconducting Super Collider that were made following the publication of the Record of Decision that selected Ellis County, Texas, as the location of the laboratory facility. This statement supplements DOE/EIS-0138, Superconducting Super Collider.

  15. Damping in high-temperature superconducting levitation systems

    DOE Patents [OSTI]

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  16. Crossover from a pseudogap state to a superconducting state

    E-Print Network [OSTI]

    Tian De Cao

    2011-02-10

    On the basis of our calculation we deduce that the particular electronic structure of cuprate superconductors confines Cooper pairs to be firstly formed in the antinodal region which is far from the Fermi surface, and these pairs are incoherent and result in the pseudogap state. With the change of doping or temperature, some pairs are formed in the nodal region which locates the Fermi surface, and these pairs are coherent and lead to superconductivity. Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface. It is also shown that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure, and non-s wave symmetry gap favors the high-temperature superconductivity. Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.

  17. Superconducting shielded core reactor with reduced AC losses

    DOE Patents [OSTI]

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  18. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOE Patents [OSTI]

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  19. Nanoscale constrictions in superconducting coplanar waveguide resonators

    SciTech Connect (OSTI)

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando; Sesé, Javier; Atkinson, James; Barco, Enrique del; Sánchez-Azqueta, Carlos; Majer, Johannes

    2014-10-20

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50?nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  20. Conceptual Design for Superconducting Planar Helical Undulator

    SciTech Connect (OSTI)

    Sasaki, Shigemi

    2004-05-12

    A preliminary consideration was made on a short-period superconducting planar helical undulator (SCHU) for circularly polarized radiation. The SCHU consists of coils and iron poles/yokes. There is no magnetic structure in the horizontal plane of the electron orbit. The SCHU would provide the large horizontal aperture needed to allow injection into the storage ring. The expected field strength is at least 30% larger than that by an APPLE-type permanent-magnet device with the same gap and the same period.

  1. BNl 703 MHz superconducting RF cavity testing

    SciTech Connect (OSTI)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  2. Lattice Vibrations and Superconductivity in Layered Structures 

    E-Print Network [OSTI]

    Allen, Roland E.; Alldredg, GP; WETTE, FWD.

    1970-01-01

    VOLUME 2, NUMBER 7 1 OCTOB ER, 1970 Lattice Vibrations and Superconductivity in Layered Structures* B. E. Allen, G. P. Alldredge, and F. W. de bette DePartment of Physics, University of Texas, Austin, Texas 78712 (Received 18 May 1970) In order...-layer films with masses m and M. 2 2570 LATTICE VIBRATIONS AND SUPE RCONDUCTIVITY IN ' ' ' 2571 tion in the o. direction (a = x, y, or z) for a particle in this monolayer vibrating in the mode with fre- quency e, and the other symbols have been defined...

  3. Quantum State Synthesis of Superconducting Resonators

    E-Print Network [OSTI]

    Roshan Sharma; Frederick W. Strauch

    2015-03-07

    We present a theoretical analysis of different methods to synthesize entangled states of two superconducting resonators. These methods use experimentally demonstrated interactions of resonators with artificial atoms, and offer efficient routes to generate nonclassical states. We analyze the theoretical structure of these algorithms and their average performance for arbitrary states and for deterministically preparing NOON states. Using a new state synthesis algorithm, we show that NOON states can be prepared in a time linear in the desired photon number and without any state-selective interactions.

  4. Dual Superconductivity in G2 group

    E-Print Network [OSTI]

    G. Cossu; M. D'Elia; A. Di Giacomo; B. Lucini; C. Pica

    2006-09-28

    We investigate the dual superconductivity mechanism in the exceptional group $G_2$. This is a centerless group (no 't Hooft flux vortices are allowed) and we check for the presence of a magnetic monopole condensate in the confined phase by measuring on the lattice a disorder parameter related to the vacuum expectation value of an operator carrying magnetic charge. The behaviour of the disorder parameter is consistent with the dual superconductor picture. A first step of an analysis on the thermodynamical properties of the theory is conducted by mean of this operator.

  5. Vacuum coupling of rotating superconducting rotor

    DOE Patents [OSTI]

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  6. Transformable topological mechanical metamaterials

    E-Print Network [OSTI]

    D. Zeb Rocklin; Shangnan Zhou; Kai Sun; Xiaoming Mao

    2015-10-21

    Mechanical metamaterials are engineered materials that gain their remarkable mechanical properties, such as negative Poisson's ratios, negative compressibility, phononic bandgaps, and topological phonon modes, from their structure rather than composition. Here we propose a new design principle, based on a uniform soft deformation of the whole structure, to allow metamaterials to be immediately and reversibly transformed between states with contrasting mechanical and acoustic properties. These properties are protected by the topological structure of the phonon band of the whole structure and are thus highly robust against disorder and noise. We discuss the general classification of all structures that exhibit such soft deformations, and provide specific examples to demonstrate how to utilize soft deformations to transform a system between different regimes such that remarkable changes in their properties, including edge stiffness and speed of sound, can be achieved.

  7. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  8. Topological Change of the Fermi Surface in Low-Density Rashba Gases: Application to Superconductivity

    E-Print Network [OSTI]

    Cappelluti, Emmanuele

    to Superconductivity E. Cappelluti,1,2 C. Grimaldi,3,4 and F. Marsiglio4,5 1 SMC-INFM, CNR-INFM, via dei Taurini 19 consequences on the onset of the superconducting instability. We show that the superconducting critical with strong spin- orbit coupling are good candidates for enhanced superconductivity. DOI: 10.1103/Phys

  9. Development of the conventional facilities of the Superconducting Super Collider. Revision 1

    SciTech Connect (OSTI)

    Toohig, T.E.

    1994-02-01

    This report discusses an overview of the construction of facilities at the Superconducting Super Collider.

  10. Design of the Prototypical Cryomodule for the EUROTRANS Superconducting Linac for Nuclear Waste Transmutation

    E-Print Network [OSTI]

    Barbanotti, S; Blache, P; Commeaux, C; Duthil, P; Panzeri, N; Pierini, P; Rampnoux, E; Souli, M

    2008-01-01

    Design of the Prototypical Cryomodule for the EUROTRANS Superconducting Linac for Nuclear Waste Transmutation

  11. CERN 6 Tesla superconducting persistent dipole/Filming an experiment/Synchrotron radiation from protons

    E-Print Network [OSTI]

    1979-01-01

    CERN 6 Tesla superconducting persistent dipole/Filming an experiment/Synchrotron radiation from protons

  12. FOURIER TRANSFORM MULTIPLE QUANTUM NMR

    E-Print Network [OSTI]

    Drobny, G.

    2011-01-01

    of transition observed in Fourier transform multiple quantumDecember 18-19, 1979 FOURIER TRANSFORM MULTIPLE QUANTUM NMRof London, December 1978. FOURIER TRANSFO~~ MULTIPLE QUANTUM

  13. Transformative Wave Technologies Kent, Washington

    E-Print Network [OSTI]

    California at Davis, University of

    Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

  14. Superconducting 112 MHz QWR electron gun

    SciTech Connect (OSTI)

    Belomestnykh, S.; Ben-Zvi, I.; Boulware, C.H.; Chang, X.; Grimm, T.L.; Rao, T.; Siegel, B.; Skaritka, J.; Than, R.; Winowski, M.; Wu, Q.; Xin, T.; Xue, L.

    2011-07-25

    Brookhaven National Laboratory and Niowave, Inc. have designed and fabricated a superconducting 112 MHz quarter-wave resonator (QWR) electron gun. The first cold test of the QWR cryomodule has been completed at Niowave. The paper describes the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule. Future experiments include studies of different photocathodes and use for the coherent electron cooling proof-of-principle experiment. Two cathode stalk options, one for multi-alkali photocathodes and the other one for a diamond-amplified photocathode, are discussed. A quarter-wave resonator concept of superconducting RF (SRF) electron gun was proposed at BNL for electron cooling hadron beams in RHIC. QWRs can be made sufficiently compact even at low RF frequencies (long wavelengths). The long wavelength allows to produce long electron bunches, thus minimizing space charge effects and enabling high bunch charge. Also, such guns should be suitable for experiments requiring high average current electron beams. A 112 MHz QWR gun was designed, fabricated, and cold-tested in collaboration between BNL and Niowave. This is the lowest frequency SRF gun ever tested successfully. In this paper we describe the gun design and fabrication, present the cold test results, and outline our plans. This gun will also serve as a prototype for a future SRF gun to be used for coherent electron cooling of hadrons in eRHIC.

  15. Extended Supersymmetry in Gapped and Superconducting Graphene

    E-Print Network [OSTI]

    V. K. Oikonomou

    2015-06-27

    In view of the many quantum field theoretical descriptions of graphene in $2+1$ dimensions, we present another field theoretical feature of graphene, in the presence of defects. Particularly, we shall be interested in gapped graphene in the presence of a domain wall and also for superconducting graphene in the presence of a vortex. As we explicitly demonstrate, the gapped graphene electrons that are localized on the domain wall are associated with four $N=2$ one dimensional supersymmetries, with each pair combining to form an extended $N=4$ supersymmetry with non-trivial topological charges. The case of superconducting graphene is more involved, with the electrons localized on the vortex being associated with $n$ one dimensional supersymmetries, which in turn combine to form an $N=2n$ extended supersymmetry with no-trivial topological charges. As we shall prove, all supersymmetries are unbroken, a feature closely related to the number of the localized fermions and also to the exact form of the associated operators. In addition, the corresponding Witten index is invariant under compact and odd perturbations.

  16. Status of the SUNY superconducting RFQ

    SciTech Connect (OSTI)

    Jain, A.; Ben-Zvi, I.; Paul, P.; Wang, H. (Brookhaven National Lab., Upton, NY (United States)); Lombardi, A. (Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionale di Legnaro)

    1991-01-01

    A RFQ resonator is presently being developed at SUNY. This resonator is a prototype for a chain of six short ({approximately}0.5m long), superconducting (Pb plated Cu), 50 MHz resonators designed to accelerate beam from {beta} = 0.01 to 0.05. The chain accepts a prebunched beam to save on superconducting length. The resonators are of four-rods type with vane-like electrodes. The prototype resonator is designed to accelerate ions of q/A = 1/6 from {beta} = 0.030 to 0.036, operating at a peak surface electric field of 16 MV/m. The electrodes have a rather high modulation parameter of 4 and a wide aperture of 1.57 cm radius. These values are chosen to maximize the accelerating field (E{sub a}) for a given peak surface electric field (E{sub s}). At the design value of E{sub s} = 16 MV/m, the resonator is estimated to have E{sub a} = 2.0 MV/m, stored energy of 4 J, peak surface magnetic field of 360 Gauss, and inter-vane voltage of 0.42 MV. Results of RF tests on this prototype resonator will be presented. 7 refs., 3 figs.

  17. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  18. Semiconductor-inspired superconducting quantum computing

    E-Print Network [OSTI]

    Yun-Pil Shim; Charles Tahan

    2015-07-28

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some almost magical and very useful properties which can be utilized for spin qubit based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control with minimal overhead (zero overhead in 2-qubit gates), and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is especially suited to qubits based on variable super-semi junctions.

  19. Fourier Transform Infrared (FTIR) Spectroscopy

    E-Print Network [OSTI]

    Gerwert, Klaus

    Fourier Transform Infrared (FTIR) Spectroscopy Klaus Gerwert, Lehrstuhl fu¨r Biophysik, Ruhr, Germany Based in part on the previous version of this Encyclopedia of Life Sciences (ELS) article, Fourier Transform IR by Johannes Orphal. Fourier transform infrared (FTIR) spectroscopy is an experimental technique

  20. LORENTZ TRANSFORMATIONS AND STATISTICAL MECHANICS

    E-Print Network [OSTI]

    of Lorentz transformations corresponding to radiation made its ap­ pearance. We have yet to see a description of these ``radiation'' transformations in the Physics literature. The complexification of the Lorentz Transformations Mathematics Subject Classification. 57R45, 17B90, 15A63. Key words and phrases. exponential map, singularity

  1. LORENTZ TRANSFORMATIONS AND STATISTICAL MECHANICS

    E-Print Network [OSTI]

    transformations corresponding to radiation made its ap- pearance. We have yet to see a description of these "radiation" transformations in the Physics literature. The complexification of the Lorentz Transformations Mathematics Subject Classification. 57R45, 17B90, 15A63. Key words and phrases. exponential map, singularity

  2. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    E-Print Network [OSTI]

    Kimura, H.

    2010-01-01

    +? with a Conventional Superconducting Tip Hikari Kimura,1,2between a conventional superconducting scanning tunnelinginhomogeneity in the superconductivity of BSCCO. The

  3. Probing the Superconducting Order Parameter of High-Tc Superconductor Bi2Sr2CaCu2O8+? by Scanning Josephson Tunneling Microscopy

    E-Print Network [OSTI]

    Kimura, Hikari

    2009-01-01

    Turner, Principles of Superconductive Devices and Circuits (P. G. de Gennes, Superconductivity , edited by R. D. Parks (Tinkham, Introduction to Superconductivity (McGraw-Hill, New

  4. Method for forming bismuth-based superconducting ceramics

    DOE Patents [OSTI]

    Maroni, Victor A.; Merchant, Nazarali N.; Parrella, Ronald D.

    2005-05-17

    A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815.degree. C. and about 835.degree. C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.

  5. The Industrial Transformation of Subarctic Canada

    E-Print Network [OSTI]

    Mathoor, Vineeth

    2011-01-01

    the pace and impact of industrial transformation in theReview: The Industrial Transformation of Subarctic Canada ByIndia Piper, Liza. The Industrial Transformation of

  6. On the Mechanism of Above Room Temperature Superconductivity and Superfluidity by Relativistic Quantum Mechanics

    E-Print Network [OSTI]

    Reginald B. Little

    2015-04-23

    A comprehensive theory of superconductivity (SC) and superfluidity (SF) is presented of new types III and IV at temperatures into millions of degrees involving phase transitions of fermions in heat reservoirs to form general relativistic triple quasi-particles of 3 fermions interacting to boson-fermion pairs. Types 0, I, and II SC/SF are deduced from such triples as: thermally dressed, relativistic fermionic vortices; spin coupled, dressed, fermionic vortical pairs (diamagnetic bosons); and spinrevorbitally coupled, dressed fermionic, vortical pairs (ferromagnetic bosons). All known SC, SF and trends in critical temperatures (Tc) are thereby explained. The recently observed SC/SF in nano-graphene systems is explained. The above room temperature SC/SF is predicted and modeled by transformations of intense thermal boson populations of heat reservoirs to relativistic mass, weight, spin and magnetism for further reasoning over compression to electricity, weak phenomena and strong phenomena for connecting general relativism and quantum mechanics.

  7. Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison

    SciTech Connect (OSTI)

    Kelley, Nathan; Corsaro, Pietro

    2004-12-01

    Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

  8. System and method for cooling a superconducting rotary machine

    DOE Patents [OSTI]

    Ackermann, Robert Adolf (Schenectady, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrui (Clifton Park, NY); Bray, James William (Niskayuna, NY)

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  9. System and method for cooling a super-conducting device

    DOE Patents [OSTI]

    Bray, James William (Niskayuna, NY); Steinbach, Albert Eugene (Schenectady, NY); Dawson, Richard Nils (Voorheesville, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrul (Clifton Park, NY)

    2008-01-08

    A system and method for cooling a superconductive rotor coil. The system comprises a rotatable shaft coupled to the superconductive rotor coil. The rotatable shaft may comprise an axial passageway extending through the rotatable shaft and a first passageway extending through a wall of the rotatable shaft to the axial passageway. The axial passageway and the first passageway are operable to convey a cryogenic fluid to the superconductive rotor coil through the wall of the rotatable shaft. A cryogenic transfer coupling may be provided to supply cryogenic fluid to the first passageway.

  10. Solid state optical interconnect between distant superconducting quantum chips

    E-Print Network [OSTI]

    Keyu Xia; Jason Twamley

    2014-08-26

    We propose a design for a quantum interface exploiting the electron spins in crystals to swap the quantum states between the optical and microwave. Using sideband driving of a superconducting flux qubit and a combined cavity/solid-state spin ensemble Raman transition, we demonstrate how a stimulated Raman adiabatic passage (STIRAP)-type operation can swap the quantum state between a superconducting flux qubit and an optical cavity mode with a fidelity higher than $90\\%$. We further consider two distant superconducting qubits with their respective interfaces joined by an optical fiber and show a quantum transfer fidelity exceeding $90\\%$ between the two distant qubits.

  11. Silver-bearing, high-temperature, superconducting (HTS) paint

    SciTech Connect (OSTI)

    Ferrando, W.A.

    1990-02-15

    A substantial set of device applications awaits development of a workable, durable, high-temperature superconducting (HTS) paint. Such a paint should be truly superconducting with its critical temperature T sub c>77K. For most of these applications, a high critical current (J sub c) is not required, although probably desirable. A process is described which can be used to produce silver-bearing HTS paint coatings on many engineering materials. Preliminary tests have shown good adherence to several ceramics and the ability to meet the superconducting criteria. Moreover, the coatings withstand multiple thermal cycling and stability under laboratory ambient storage conditions for periods of at least several months.

  12. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect (OSTI)

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  13. Competition between superconductivity and spin density wave

    E-Print Network [OSTI]

    Tian De Cao

    2012-08-25

    The Hubbard model has been investigated widely by many authors, while this work may be new in two aspects. One, we focus on the possible effects of the positions of the gaps associated with the pairing and the spin density wave. Two, we suggest that the models with different parameters are appropriate for different materials (or a material in different doped regions). This will lead to some new insights into the high temperature superconductors. It is shown that the SDW can appear at some temperature region when the on-site Coulomb interaction is larger, while the SC requires a decreased U at a lower temperature. This can qualitatively explain the relationship between superconducting and pseudogap states of Cu-based superconductors in underdoped and optimally doped regions. The superinsulator is also discussed.

  14. Ginzburg-Landau Approach to Holographic Superconductivity

    E-Print Network [OSTI]

    Aldo Dector

    2014-12-01

    We construct a family of minimal phenomenological models for holographic superconductors in d=4+1 AdS spacetime and study the effect of scalar and gauge field fluctuations. By making a Ginzburg-Landau interpretation of the dual field theory, we determine through holographic techniques a phenomenological Ginzburg-Landau Lagrangian and the temperature dependence of physical quantities in the superconducting phase. We obtain insight on the behaviour of the Ginzburg-Landau parameter and whether the systems behaves as a Type I or Type II superconductor. Finally, we apply a constant external magnetic field in a perturbative approach following previous work by D'Hoker and Kraus, and obtain droplet solutions which signal the appearance of the Meissner effect.

  15. Self field triggered superconducting fault current limiter

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D. (Rexford, NY)

    2008-02-19

    A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

  16. Light superconducting strings in the Galaxy

    E-Print Network [OSTI]

    Francesc Ferrer; Tanmay Vachaspati

    2006-08-08

    Observations of the Milky Way by the SPI/INTEGRAL satellite have confirmed the presence of a strong 511 KeV gamma-ray line emission from the bulge, which require an intense source of positrons in the galactic center. These observations are hard to account for by conventional astrophysical scenarios, whereas other proposals, such as light DM, face stringent constraints from the diffuse gamma-ray background. Here we suggest that light superconducting strings could be the source of the observed 511 KeV emission. The associated particle physics, at the ~ 1 TeV scale, is within reach of planned accelerator experiments, while the distinguishing spatial distribution, proportional to the galactic magnetic field, could be mapped by SPI or by future, more sensitive, satellite missions.

  17. Cosmological constraints on superconducting dark energy models

    E-Print Network [OSTI]

    Keresztes, Zoltán; Harko, Tiberiu; Liang, Shi-Dong

    2015-01-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential $V$ is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In another words dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively are confronted with Type IA Supernovae and Hubble parameter data. In the electric case good fit is obtained along a narrow inclined stripe in the $\\Omega _{m}-\\Omega _{V}$ parameter plane, which includes the $\\Lambda $CDM limit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution...

  18. Method of preparing composite superconducting wire

    DOE Patents [OSTI]

    Verhoeven, John D. (Ames, IA); Gibson, Edwin D. (Ames, IA); Finnemore, Douglas K. (Ames, IA); Ostenson, Jerome E. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Owen, Charles V. (Ames, IA)

    1985-08-06

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  19. The Lichnerowicz-Weitzenboeck formula and superconductivity

    SciTech Connect (OSTI)

    Vargas-Paredes, Alfredo A.; Doria, Mauro M. [Departamento de Fisica dos Solidos, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (Brazil)] [Departamento de Fisica dos Solidos, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (Brazil); Neto, Jose Abdala Helayeel [Centro Brasileiro de Pesquisas Fisicas, 22290-160 Rio de Janeiro RJ (Brazil)] [Centro Brasileiro de Pesquisas Fisicas, 22290-160 Rio de Janeiro RJ (Brazil)

    2013-01-15

    We derive the Lichnerowicz-Weitzenboeck formula for the two-component order parameter superconductor, which provides a twofold view of the kinetic energy of the superconductor. For the one component order parameter superconductor we review the connection between the Lichnerowicz-Weitzenboeck formula and the Ginzburg-Landau theory. For the two-component case we claim that this formula opens a venue to describe inhomogeneous superconducting states intertwined by spin correlations and charged dislocation. In this case the Lichnerowicz-Weitzenboeck formula displays local rotational and electromagnetic gauge symmetry (SU(2) Circled-Times U(1)) and relies on local commuting momentum and spin operators. The order parameter lives in a space with curvature and torsion described by Elie Cartan geometrical formalism. The Lichnerowickz-Weitzenboeck formula leads to first order differential equations that are a three-dimensional version of the Seiberg-Witten equations.

  20. LU transformation invariant operators and LU transformation invariant

    E-Print Network [OSTI]

    Xin-wei Zha; Chun-min Zhang

    2007-02-06

    We proposed a concept of LU transformation invariant operators. By using this operator, arbitrary multi-qubit states LU transformation invariant and SLOCC invariant could be easily obtained. And we find that presences two kinds of invariant operators and corresponding invariants. One kind of operators yields LU invariants and the other operators results in SLOCC invariants. For three-qubit states, all independence LU transformation invariant are obtained. Furthermore, by this system method, arbitrary multi-qubit states invariants can be given.

  1. Superconductivity, the Structure Scale of the Universe, Tenth Edition (Elastic Resonant Symmetric Medium by Self-Energy)

    E-Print Network [OSTI]

    Richard D. Saam

    2007-01-09

    A theoretical framework supported by literature reported experimental evidence (Homes, Harshman along with Voyager, Hubble and EGRET space platforms and others) is presented which indicates that superconductivity is a self energy phenomenon and congruent with the concept of the Charge Conjugation, Parity Change and Time Reversal (CPT) theorem. A resonant symmetric structure is proposed as an extension of Bardeen Cooper and Schrieffer (BCS) theory, which suspends Lorentz transforms at superluminal velocities in the context of the de Broglie hypothesis. A momentum and energy conserving (elastic) CPT resonant structural lattice scalable over 15 orders of magnitude from nuclear to universe dimensions and associated superconducting theory is postulated whereby nuclear (quark) weak and strong forces, electromagnetic and gravitational forces are mediated by a particle of resonant velocity transformed mass (mt) (110.123 x electron mass or 56 Mev/c2), The universe mass and density are based on an isotropic homogeneous media filling the vacuum of and could be considered a candidate for dark matter/energy. The model predicts a deceleration value consistent with observed Pioneer 10 and 11 deep space translational and rotational deceleration and consistent with the notion that, An object moving through momentum space will slow down.

  2. Critical magnetic field of surface superconductivity in lead

    SciTech Connect (OSTI)

    Khlyustikov, I. N., E-mail: khly@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute of Physical Problems (Russian Federation)

    2011-12-15

    The critical superconductivity field H{sub c3} is measured on lead single crystals. It is shown that the temperature dependence of H{sub c3}/H{sub c} in the vicinity of superconducting transition temperature T{sub c} is essentially nonlinear. Relative changes in the value of H{sub c3}/H{sub c} reach approximately 30%, which cannot be described by the Ginzburg-Landau theory. The experimental temperature dependences lead to the conclusion that the surface superconducting transition temperature noticeably exceeds the superconducting transition temperature in the bulk of the semiconductor. The differences in the critical temperatures and in the Ginzburg-Landau parameters for lead are estimated.

  3. Electrothermal feedback in superconducting nanowire single-photon detectors

    E-Print Network [OSTI]

    Kerman, Andrew J.

    We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback ...

  4. Geometry-dependent critical currents in superconducting nanocircuits

    E-Print Network [OSTI]

    Clem, John R.

    In this paper, we calculate the critical currents in thin superconducting strips with sharp right-angle turns, 180? turnarounds, and more complicated geometries, where all the line widths are much smaller than the Pearl ...

  5. Membrane-integrated superconducting nanowire single-photon detectors

    E-Print Network [OSTI]

    Najafi, Faraz

    We integrated superconducting nanowire single-photon detectors on sub-400-nm-thick silicon nitride membranes, which can then be transferred and aligned to photonic structures on a secondary chip with sub-micron placement accuracy.

  6. Afterpulsing and instability in superconducting nanowire avalanche photodetectors

    E-Print Network [OSTI]

    Marsili, Francesco

    We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 30?nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance and discovered that ...

  7. Efficiently Coupling Light to Superconducting Nanowire Single-Photon Detectors

    E-Print Network [OSTI]

    Hu, Xiaolong

    We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, ...

  8. Superconducting-nanowire single-photon-detector linear array

    E-Print Network [OSTI]

    Zhao, Qingyuan

    We designed, fabricated, and tested a one-dimensional array of superconducting-nanowire single-photon detectors, integrated with on-chip inductors and resistors. The architecture is suitable for monolithic integration on ...

  9. Spontaneous vortex phase and pinning in ferromagnetic-superconducting systems 

    E-Print Network [OSTI]

    Kayali, Mohammad Amin

    2004-09-30

    of vortices is possible mostly in a close vicinity of the superconducting transition temperature Ts. For every case, the threshold value of the magnetization at which vortices start to be spontaneously created in the SC is calculated as a function...

  10. Strain-induced time-reversal odd superconductivity in graphene

    E-Print Network [OSTI]

    Bitan Roy; Vladimir Juricic

    2014-07-31

    Time-reversal symmetry breaking superconductors are exotic phases of matter with fascinating properties, which are, however, encountered rather sparsely. Here we identify the possibility of realizing such a superconducting ground state that exhibits an $f+is$ pairing symmetry in strained graphene. Although the underlying attractive interactions need to be sufficiently strong and comparable in pristine graphene to support such pairing state, we argue that strain can be conducive for its formation even for weak interactions. We show that quantum-critical behavior near the transition is controlled by a multicritical point, characterized by various critical exponents computed here in the framework of an $\\epsilon$-expansion near four spacetime dimensions. Furthermore, a vortex in this mixed superconducting state hosts a pair of Majorana fermions supporting a quartet of insulating and superconducting orders, among which topologically nontrivial quantum spin Hall insulator. These findings suggest that strained graphene could provide a platform for the realization of exotic superconducting states of Dirac fermions.

  11. Coherence characterization with a superconducting flux qubit through NMR approaches

    E-Print Network [OSTI]

    Yan, Fei, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    This thesis discusses a series of experimental studies that investigate the coherence properties of a superconducting persistent-current or flux qubit, a promising candidate for developing a scalable quantum processor. A ...

  12. Spontaneous brillouin scattering quench diagnostics for large superconducting magnets

    E-Print Network [OSTI]

    Mahar, Scott B

    2008-01-01

    Large superconducting magnets used in fusion reactors, as well as other applications, need a diagnostic that can non-invasively measure the temperature and strain throughout the magnet in real-time. A new fiber optic sensor ...

  13. Luminescence and Squeezing of a Superconducting Light Emitting Diode

    E-Print Network [OSTI]

    Hlobil, Patrik

    2015-01-01

    We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

  14. Luminescence and Squeezing of a Superconducting Light Emitting Diode

    E-Print Network [OSTI]

    Patrik Hlobil; Peter P. Orth

    2015-05-11

    We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

  15. Inhomogeneous color superconductivity and the cooling of compact stars

    E-Print Network [OSTI]

    M. Ruggieri

    2007-04-13

    In this talk I discuss the inhomogeneous (LOFF) color superconductive phases of Quantum Chromodynamics (QCD). In particular, I show the effect of a core of LOFF phase on the cooling of a compact star.

  16. Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character of the excitation spectrum is generally assumed to be linked to the "d-wave" symmetry of the superconducting state. In the high-Tc cuprates, this dichotomous gap...

  17. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOE Patents [OSTI]

    Hilbert, C.; Martinis, J.M.; Clarke, J.

    1984-04-27

    A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

  18. Interlayer Coherence and Superconducting Condensate in the c...

    Office of Scientific and Technical Information (OSTI)

    Interlayer Coherence and Superconducting Condensate in the c-Axis Response of Optimally Doped Ba(Fe1-xCox)2As2 High-Tc Superconductor Using Infrared Spectroscopy Citation Details...

  19. Rhetorical strategies in the campaign for the Superconducting Super Collider 

    E-Print Network [OSTI]

    Taylor, Karen Michelle

    1996-01-01

    The campaign supporting the development and construction of the Superconducting Super Collider provides opportunities to further investigate the rhetoric of science as it borders on political rhetoric. Aristotelian rhetorical theory is used....

  20. Superfluid helium cryogenic systems for superconducting RF cavities...

    Office of Scientific and Technical Information (OSTI)

    (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium,...

  1. Characterization of Nb?Sn superconducting strand under pure bending

    E-Print Network [OSTI]

    Harris, David L., S.M. Massachusetts Institute of Technology

    2005-01-01

    Characterizing the strain-dependent behavior of technological Nb?Sn superconducting strand has been an important subject of research for the past 25 years. Most of the effort has focused on understanding the uniaxial tension ...

  2. Superconducting generators for large off shore wind turbines 

    E-Print Network [OSTI]

    Keysan, Ozan

    2014-06-30

    This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty ...

  3. Levitation pressure and friction losses in superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A superconducting bearing having at least one permanent magnet magnetized with a vertical polarization. The lower or stator portion of the bearing includes an array of high-temperature superconducting elements which are comprised of a plurality of annular rings. An annular ring is located below each permanent magnet and an annular ring is offset horizontally from at least one of the permanent magnets. The rings are composed of individual high-temperature superconducting elements located circumferentially along the ring. By constructing the horizontally-offset high-temperature superconducting ring so that the c-axis is oriented in a radial direction, a higher levitation force can be achieved. Such an orientation will also provide substantially lower rotational drag losses in the bearing.

  4. Photoinduced changes of the chemical potential in superconducting...

    Office of Scientific and Technical Information (OSTI)

    Photoinduced changes of the chemical potential in superconducting Bi 2 Sr 2 CaCu 2 O 8 + Citation Details In-Document Search This content will become publicly available on...

  5. Fourier transform and related integral transforms in superspace

    E-Print Network [OSTI]

    Hendrik De Bie

    2008-05-13

    In this paper extensions of the classical Fourier, fractional Fourier and Radon transforms to superspace are studied. Previously, a Fourier transform in superspace was already studied, but with a different kernel. In this work, the fermionic part of the Fourier kernel has a natural symplectic structure, derived using a Clifford analysis approach. Several basic properties of these three transforms are studied. Using suitable generalizations of the Hermite polynomials to superspace (see [H. De Bie, F. Sommen, Hermite and Gegenbauer polynomials in superspace using Clifford analysis, J. Phys. A 40 (2007) 10441-10456]) an eigenfunction basis for the Fourier transform is constructed.

  6. Electro-thermal simulation of superconducting nanowire avalanche photodetectors

    SciTech Connect (OSTI)

    Marsili, F.; Najafi, F.; Herder, C.; Berggren, K. K.

    2011-01-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  7. Electro thermal simulation of superconducting nanowire avalanche photodetectors

    E-Print Network [OSTI]

    Francesco Marsili; Faraz Najafi; Charles Herder; Karl K. Berggren

    2010-12-17

    We developed an electro thermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  8. A small-bore high-field superconducting quadrupole magnet

    SciTech Connect (OSTI)

    Barlow, D.B.; Kraus, R.H.; Lobb, C.T.; Menzel, M.T. ); Walstrom, P.L. )

    1990-01-01

    A prototype superconducting quadrupole magnet was designed and built for use in superconducting coupled-cavity linacs where the use of permanent magnets is ruled out by consideration of trapped flux losses. The magnet has a clear bore diameter of 1.8 cm and outside diameter of 11 cm and length of 11 cm. The magnet was operated at a temperature of 4.2 K and obtained a peak quadrupole field gradient of 320 T/m.

  9. Cooling of superconducting devices by liquid storage and refrigeration unit

    DOE Patents [OSTI]

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  10. 2D barrier in a superconducting niobium square

    SciTech Connect (OSTI)

    Joya, Miryam R. Barba-ortega, J.; Sardella, Edson

    2014-11-05

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  11. Wire rope superconducting cable for diurnal load leveling SMES

    SciTech Connect (OSTI)

    Costello, G.A.

    1980-01-01

    The design of a wire rope cable for a superconducting magnetic energy storage (SMES) unit is discussed. The superconducting wires in the rope permit the passage of large currents in the relatively small conductors of the windings and hence cause large electromagnetic forces to act on the rope. The diameter of the rope, from a strength point of view, can be considerably reduced by supporting the rope at various points along its length.

  12. 7-forming, superconducting filaments through bicomponent dry spinning

    DOE Patents [OSTI]

    Tuominen, Olli P. (Ogden, UT); Morgan, Carol W. (Asheville, NC); Burlone, Dominick A. (Asheville, NC); Blankenship, Keith V. (Asheville, NC)

    2001-01-01

    Fibers which contain potentially superconducting material are dry spun by the steps of preparing a suspension of potentially superconducting powder in a thickened solvent; preparing a solution of fiber-forming polymer; supplying the suspension and the solution to a spinning apparatus; in the spinning apparatus, arranging the solution and the suspension in a bicomponent arrangement; extruding the arranged solution and suspension from a spinneret as a bicomponent filament; and removing the solvent from the filament.

  13. Road to room-temperature superconductivity: A universal model

    E-Print Network [OSTI]

    Manfred Bucher

    2013-03-11

    In a semiclassical view superconductivity is attributed exclusively to the advance of atoms' outer s electrons through the nuclei of neighbor atoms in a solid. The necessary progression of holes in the opposite direction has the electric and magnetic effect as if two electrons were advancing instead of each actual one. Superconductivity ceases when the associated lateral oscillation of the outer s electrons extends between neighbor atoms. If such overswing occurs already at T = 0, then the material is a normal conductor. Otherwise, lateral overswing can be caused by lattice vibrations at a critical temperature Tc or by a critical magnetic field Bc. Lateral electron oscillations are reduced - and Tc is increased - when the atoms of the outer s electrons are squeezed, be it in the bulk crystal, in a thin film, or under external pressure on the sample. The model is applied to alkali metals and alkali-doped fullerenes. Aluminum serves as an example of a simple metal with superconductivity. Application of the model to transition metals, intertransitional alloys and compounds of transition metals with other elements sheds light on the pattern of their critical temperature. More examples of the squeeze effect are provided by the superconductivity of PdH, MgB2, borocarbides, ferropnictides, and organic charge-transfer salts. The model also provides the superconduction mechanism in the oxide superconductors, exemplified by YBa2Cu3O7. Finally the model suggests which steps to take in order to reach superconductivity at room temperature and above.

  14. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 21, NO. 3, JUNE 2011 839 Integration of Optical Waveguides With Single

    E-Print Network [OSTI]

    Baba, Toshihiko

    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 21, NO. 3, JUNE 2011 839 Integration, SFQ circuits, superconducting integrated circuits. I. INTRODUCTION THE performance of CMOS integrated [9]. Superconducting optoelectronic circuits that integrate both kinds of circuits have been

  15. Proposed Giaever transformer to probe the pseudogap phase of the cuprates

    SciTech Connect (OSTI)

    Levchenko, Alex; Norman, Michael R

    2011-03-14

    We develop a theory of the rectification effect in a double-layer system where both layers are superconductors or one of the layers is a normal metal. The Coulomb interaction is assumed to provide the dominant coupling between the layers. We find that superconducting fluctuations strongly enhance the drag conductivity, with rectification most pronounced when both layers are superconductors. In view of their distinct dependence on temperature near {Tc} and layer separation, drag measurements based on a Giaever transformer could distinguish whether rectification occurs due to fluctuating pairs or inductively coupled fluctuating vortices.

  16. INFLUENCE OF TOE ELECTRON-PHONON COUPLING ON SUPERCONDUCTING CONTACT AND THE PROPERTIES OF SUPERCONDUCTOR-SEMIMETAL (OR SEMICONDUCTOR) SYSTEMS

    E-Print Network [OSTI]

    Kresin, Vladimir Z.

    2012-01-01

    AND THE PROPERTIES OF SUPERCONDUCTQR-SEMIMETAL (OR SEMISchricffer, Theory of Superconductivity. W. Benjamin, Inc.McMillan, J. , Rowell, Superconductivity, vol. 1, Ed. R.

  17. LARGE SUPERCONDUCTING DETECTOR MAGNETS WITH ULTRA THIN COILS FOR USE IN HIGH ENERGY ACCELERATORS AND STORAGE RINGS

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01

    and Construction of a SuperconductingAluminum Stabilized·LBL-53S0, Hay 1977. Superconducting Magnet," CLyogenicsthe development of thin superconductiog solenoid magnets for

  18. LORENTZ TRANSFORMATIONS AND STATISTICAL MECHANICS

    E-Print Network [OSTI]

    class of Lorentz transformations corresponding to radiation made its * *ap- pearance. We have yet to see a description of these "radiation" transformations* * in the Physics literature, 15A63. Key words and phrases. exponential map, singularity, electro-magnetism, ener* *gy

  19. Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    E-Print Network [OSTI]

    Najafi, Faraz

    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade-switching superconducting single-photon detectors) based on 30-nm-wide nanowires. At bias currents ...

  20. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, William J. (Berkeley, CA); Maple, M. Brian (Del Mar, CA)

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  1. Growth and characterization of superconducting spinel oxide LiTi2O4 thin films

    E-Print Network [OSTI]

    Chopdekar, R.V.

    2009-01-01

    2004). [37] F. Gomory, Superconductor Science and TechnologyHabermeier, Journal of Superconductivity 13, 871 (2000). [SrTiO 3?? and LTO both superconduct and both have mixed-

  2. 1012 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 3, JUNE 2009 Microwave Packaging for Voltage

    E-Print Network [OSTI]

    Popovic, Zoya

    of circuits based upon superconductor-normal metal-superconductor (SNS) Josephson junction (JJ) technology1012 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 3, JUNE 2009 Microwave Packaging, Josephson device packaging, supercon- ducting device packaging, superconducting integrated circuits

  3. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    E-Print Network [OSTI]

    Lee, W.S.

    2008-01-01

    a sudden onset ofthe superconductinggap at Ts near the nodethEt the extrapolated superconduct- ing gap at the antinodethe rlodal region or the superconduct- ing condensate;thus,

  4. Volume 120, number 7 PHYSICSLETFERSA 9 March 1987 PHENOMENOLOGICALMODEL OF SUPERCONDUCTIVITY IN U

    E-Print Network [OSTI]

    Svozil, Karl

    Volume 120, number 7 PHYSICSLETFERSA 9 March 1987 PHENOMENOLOGICALMODEL OF SUPERCONDUCTIVITY IN U 1 1987 A phenomenological model taking into account the interaction between superconductivity superconductors (HSF) nonmagnetic impurity results inthe formation of an indicate that both compounds can

  5. PUBLISHED ONLINE: 29 JUNE 2014 | DOI: 10.1038/NPHYS3008 Dissipative superconducting state of

    E-Print Network [OSTI]

    Loss, Daniel

    : superconducting nanowires with super- conducting leads. We provide evidence that in such systems, normal current machines to Large Hadron Collider magnets. But is it indeed the case that superconducting order

  6. Excitation Fields in a Superconducting Global String

    E-Print Network [OSTI]

    J. R. Morris

    1995-09-28

    A model of a straight superconducting global cosmic string is examined in a setting wherein the string supports a charge/current pulse described by a travelling wave along the string. Linearized field equations are obtained for fluctuations of the scalar and vector fields of the theory, and a set of approximate particular solutions are found for the case in which the linear charge density and the current of the string have equal magnitudes. Although the equations of motion seem to suggest that the scalar and vector excitation fields are massive inside the string core, the particular solutions show that they behave as effectively massless fields which propagate at the speed of light along the string along with the primary charge/current pulse. The effect of the mass parameter is to modulate the radial profile of the excitation fields. The vector excitation field generates radial and angular components for both the electric and magnetic fields, but the particular solutions do not describe the emission or absorption of electromagnetic radiation from the string.

  7. Method of constructing a superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1981-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  8. TOWARDS FAST-PULSED SUPERCONDUCTING SYNCHROTRON MAGNETS.

    SciTech Connect (OSTI)

    MORITZ,G.; MUEHLE,C.; ANERELLA,M.; GHOSH,A.; SAMPSON,W.; WANDERER,P.; WILLEN,E.; AGAPOV,N.; KHODZHIBAGIYAN,H.; KOVALENKO,A.; HASSENZAHL,W.V.; WILSON,M.N.

    2001-06-18

    The concept for the new GSI accelerator facilities is based on a large synchrotron designed for operation at BR=200 Tm and with the short cycle-time of about one second to achieve high average beam intensities. Superconducting magnets may reduce considerably investment and operating costs in comparison with conventional magnets. A R and D program was initiated to develop these magnets for a maximum field of 2-4 Tesla and a ramp rate of 4 T/s. In collaboration with JINR (Dubna), the window-frame type Nuclotron dipole, which has been operated with 4 T/s at a maximum field of 2 Tesla, shall be developed to reduce heat losses and to improve the magnetic field quality. Another collaboration with BNL (Brookhaven) was established to develop the one-layer-coil cos{theta}-type RHIC arc dipole designed for operation at 3.5 Tesla with a rather slow ramp-rate of 0.07 T/s towards the design ramp-rate of 4 T/s. The design concepts for both R and D programs are reported.

  9. Magnetohydrodynamics in Superconducting-Superfluid Neutron Stars

    E-Print Network [OSTI]

    Gregory Mendell

    1997-09-09

    MHD equations are presented for the mixture of superfluid neutrons, superconducting protons, and normal electrons believed to exist in the outer cores of neutron stars. The dissipative effects of electron viscosity and mutual friction due to electron-vortex scattering are also included. It is shown that Alfven waves are replaced by cyclotron- vortex waves that have not been previously derived from MHD theory. The cyclotron- vortex waves are analogous to Alfven waves with the tension due to the magnetic energy density replaced by the vortex energy density. The equations are then put into a simplified form useful for studying the effects of the interior magnetic field on the dynamics. Of particular interest is the crust-core coupling time which can be inferred from pulsar glitch observations. The hypothesis that cyclotron-vortex waves play a significant role in the core spin-up during a glitch is used to place limits on the interior magnetic field. The results are compared with those of other studies.

  10. Superconductivity for Large Scale Wind Turbines

    SciTech Connect (OSTI)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  11. Cryostat design for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Nicol, T.H.

    1990-09-01

    The cryostat of an SSC dipole magnet consists of all magnet components except the cold mass assembly. It serves to support the cold mass accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation (MLI) system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their 25 year expected life. This paper describes the design of the current SSC collider dipole magnet cryostat and includes discussions on the thermal, structural, and dynamic considerations involved in the development of each of the major systems. 7 refs., 4 figs.

  12. Phase Structure and Instability Problem in Color Superconductivity

    E-Print Network [OSTI]

    Kenji Fukushima

    2005-10-22

    We address the phase structure of color superconducting quark matter at high quark density. Under the electric and color neutrality conditions there appear various phases as a result of the Fermi surface mismatch among different quark flavors induced by finite strange quark mass; the color-flavor locked (CFL) phase where quarks are all energy gapped, the u-quark superconducting (uSC) phase where u-quarks are paired with either d- or s-quarks, the d-quark superconducting (dSC) phase that is the d-quark analogue of the uSC phase, the two-flavor superconducting (2SC) phase where u- and d-quarks are paired, and the unpaired quark matter (UQM) that is normal quark matter without pairing. Besides these possibilities, when the Fermi surface mismatch is large enough to surpass the gap energy, the gapless superconducting phases are expected. We focus our discussion on the chromomagnetic instability problem related to the gapless CFL (gCFL) onset and explore the instability regions on the phase diagram as a function of the temperature and the quark chemical potential. We sketch how to reach stable physical states inside the instability regions.

  13. THE EFFECTS OF FILAMENT MAGNETIZATION IN SUPERCONDUCTING MAGNETS AS CALCULATED BY POISSION

    E-Print Network [OSTI]

    Caspi, S.

    2010-01-01

    29·0ctober 3, 1986 THE EFFECTS OF FILAMENT MAGNETIZATION IN244 THE EFFECTS OF FILAMENT MAGNETIZATION IN SUPERCONDUCTING

  14. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-05-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  15. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-08-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  16. UCSB final report for the CSQ program: Review of decoherence and materials physics for superconducting qubits

    E-Print Network [OSTI]

    Martinis, John M.

    for superconducting qubits John M. Martinis and A. Megrant University of California Santa Barbara (Dated: October 18, 2014) We review progress at UCSB on understanding the physics of decoherence in superconducting qubits report for a five-year program at IARPA on coherent superconducting qubits (CSQ). It summarizes our

  17. ENHANCEMENT OF SUPERCONDUCTING Tc IN Pd-H LIKE COMPOUNDS BY OPTICAL PHONONS

    E-Print Network [OSTI]

    Boyer, Edmond

    1227 ENHANCEMENT OF SUPERCONDUCTING Tc IN Pd-H LIKE COMPOUNDS BY OPTICAL PHONONS J. P. BURGER and D.450 1. Introduction. - The high superconducting tran- sition temperatures recently observed in Pd [1 interaction inhibiting superconductivity in pure Pd. As the density of states in Pd-H is rather similar [5

  18. Supplementary Information for "Rolling quantum dice with a superconducting qubit" R. Barends,1,

    E-Print Network [OSTI]

    Martinis, John M.

    Supplementary Information for "Rolling quantum dice with a superconducting qubit" R. Barends,1, J to this work. [1] Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault of a superconducting qubit. Phys. Rev. A 82, 042339 (2010). [4] Chow, J. M. et al. Implementing optimal control pulse

  19. ENHANCEMENT OF THE SUPERCONDUCTING TRANSITION TEMPERATURES IN ION-IMPLANTED ALUMINIUM ALLOYS (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    L-287 ENHANCEMENT OF THE SUPERCONDUCTING TRANSITION TEMPERATURES IN ION-IMPLANTED ALUMINIUM ALLOYS helium temperatures, have maximum superconducting transition temperatures Tc of 4.2 K (C), 7.35 K (Ge 1976, Classification Physics Abstracts 7.188 - 8.362 One of the crucial problems in superconductivity

  20. Ferropnictide superconductors, i.e., superconductors that contain Fe and As, have superconducting transition

    E-Print Network [OSTI]

    Weston, Ken

    Ferropnictide superconductors, i.e., superconductors that contain Fe and As, have superconducting of these materials could not carry a large superconducting current because grain boundaries reduce the critical Hellstrom (DMR-Award 1006584) and Gregory S. Boebinger (DMR-Award 0654118) Applied Superconductivity Center

  1. BNL has always been a leader in the world of superconducting

    E-Print Network [OSTI]

    the Bulletin BNL has always been a leader in the world of superconducting magnets, which) (-452o Farenheit) become superconducting, that is, lose essentially all resistance to electricity superconducting at higher temperatures. These mate- rials can operate at the relatively high temperature of 77 K

  2. Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz Michael 94720 Received 10 October 2000; accepted for publication 14 December 2000 A dc superconducting quantum, for example, superconducting transition-edge sensors for infrared, optical, and ultraviolet wavelengths,2

  3. Superconductivity in Strong Spin Orbital Coupling Compound Sb2Se3

    E-Print Network [OSTI]

    Shen, Guoyin

    Superconductivity in Strong Spin Orbital Coupling Compound Sb2Se3 P. P. Kong1 , F. Sun1,3 , L. Y induce Sb2Se3 into a topological nontrivial state. Here, we report on the discovery of superconductivity superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition

  4. Superconductivity: The Meissner Effect, Persistent Currents and the Josephson MIT Department of Physics

    E-Print Network [OSTI]

    Seager, Sara

    to the superconducting state of several bulk samples of Type I and II superconductors is observed in measurementsSuperconductivity: The Meissner Effect, Persistent Currents and the Josephson Effects MIT Department of Physics (Dated: February 8, 2011) Several phenomena associated with superconductivity

  5. Quantum key distribution with high-speed superconducting single-photon detectors

    E-Print Network [OSTI]

    Quantum key distribution with high-speed superconducting single-photon detectors Robert H. Hadfield Abstract: We explore the potential of high-speed nanowire superconducting single-photon detectors, gating is essential to reduce the high dark count rate. Emerging superconducting detector technologies

  6. Analysis of measurement errors for a superconducting phase qubit Qin Zhang,1 Abraham G. Kofman,1,

    E-Print Network [OSTI]

    Martinis, John M.

    Analysis of measurement errors for a superconducting phase qubit Qin Zhang,1 Abraham G. Kofman,1 of a superconducting flux- biased phase qubit. Insufficiently long measurement pulse may lead to nonadiabatic- veloping superconducting Josephson-junction circuits for quantum computation. A wide variety

  7. State preservation by repetitive error detection in a superconducting quantum circuit J. Kelly,1,

    E-Print Network [OSTI]

    Martinis, John M.

    State preservation by repetitive error detection in a superconducting quantum circuit J. Kelly,1 , and superconducting circuits11­13 have demonstrated multi-qubit states that are first-order toler- ant to one type of error. Recently, experiments with ion traps and superconducting circuits have shown the simultaneous de

  8. Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing

    E-Print Network [OSTI]

    Martinis, John M.

    Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum circuits, and is compatible with microfabrication. For superconducting qubits the surface code7 99%. Here, we demonstrate a universal set of logic gates in a superconducting multi-qubit processor

  9. Analysis of a tunable coupler for superconducting phase qubits Ricardo A. Pinto and Alexander N. Korotkov*

    E-Print Network [OSTI]

    Martinis, John M.

    Analysis of a tunable coupler for superconducting phase qubits Ricardo A. Pinto and Alexander N a theoretical analysis of the recently realized tunable coupler for superconducting phase qubits R. C. Bialczak s : 03.67.Lx, 85.25.Cp I. INTRODUCTION Superconducting qubits1 are potential building blocks of a quantum

  10. Quantum state characterization of a fast tunable superconducting resonator Z. L. Wang,1

    E-Print Network [OSTI]

    Martinis, John M.

    Quantum state characterization of a fast tunable superconducting resonator Z. L. Wang,1 Y. P. Zhong-tunable superconducting coplanar waveguide resonator, with a tuning range of half a gigahertz and a switching time of 1 ns. The resonator is made tunable by inserting a superconducting quantum interference device in the center strip

  11. Supplementary Material for "Fabrication and Characterization of Aluminum Airbridges for Superconducting Microwave Circuits"

    E-Print Network [OSTI]

    Martinis, John M.

    for Superconducting Microwave Circuits" Zijun Chen,1 A. Megrant,1, 2 J. Kelly,1 R. Barends,1 J. Bochmann,1 Yu Chen,1 B and calculations, primarily for practical design considerations when building superconducting circuits using- able superconducting Josephson qubits built in an archi- tecture similar to the CPW resonators

  12. PHYSICAL REVIEW B 90, 144504 (2014) Compressed sensing quantum process tomography for superconducting quantum gates

    E-Print Network [OSTI]

    Martinis, John M.

    2014-01-01

    for superconducting quantum gates Andrey V. Rodionov,1 Andrzej Veitia,1 R. Barends,2 J. Kelly,2 Daniel Sank,2 J quantum gates based on superconducting Xmon and phase qubits. Using experimental data for a two and Monte Carlo process certification have been demonstrated experimentally for superconducting qubit gates

  13. Long coherence times for Rydberg qubits on a superconducting atom chip

    E-Print Network [OSTI]

    Vallette, Bruno

    Long coherence times for Rydberg qubits on a superconducting atom chip Physical Review A 90, 040502 on superconducting atom chip QuantumGDR 2014 1/17 #12;Introduction Introduction Poisson distribution ¯n 1 long data acquisition time Thanh Long NGUYEN (LKB) Rydberg atom on superconducting atom chip QuantumGDR 2014 2/17 CQED

  14. Accepted Manuscript Superconductivity in Entirely End-bonded Multi-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Accepted Manuscript Superconductivity in Entirely End-bonded Multi-Walled Carbon Nanotubes I, Superconductivity in Entirely End-bonded Multi-Walled Carbon Nanotubes, Physica C (2007), doi: 10.1016/ j.physc.2007 disclaimers that apply to the journal pertain. #12;ACCEPTED MANUSCRIPT Physica C 1 Superconductivity

  15. Sputtered TiN films for superconducting coplanar waveguide resonators S. Ohya,1, a)

    E-Print Network [OSTI]

    Martinis, John M.

    Sputtered TiN films for superconducting coplanar waveguide resonators S. Ohya,1, a) B. Chiaro,2 A control the energy of these particles to obtain high-quality TiN films. Superconducting coplanar waveguideN in larger circuits. I. INTRODUCTION Superconducting coplanar-waveguide (SCPW) res- onators are used

  16. Superconductivity, nonadiabaticity and strong correlation in the light of recent experiments

    E-Print Network [OSTI]

    Cappelluti, Emmanuele

    Superconductivity, nonadiabaticity and strong correlation in the light of recent experiments L of information about the nature of the superconducting state, even thought many questions are still open. The Nonadiabatic Theory of Superconductivity represents a complex generalization of the ME theory which is natural

  17. High-Tc Superconductivity in Entirely End-bonded Multi-walled nanotubes

    E-Print Network [OSTI]

    Maruyama, Shigeo

    High-Tc Superconductivity in Entirely End-bonded Multi-walled nanotubes Junji Haruyama 1 , Izumi the emergence of superconductivity, such as Tomonaga-Luttinger liquid states and Peierls transition. Carbon nanotubes (CNs) are one of the best candidates for investigating the possibility of 1D superconductivity

  18. Superconductivity-induced phonon anomalies in high-Tc superconductors: A Raman intensity study

    E-Print Network [OSTI]

    Sipe,J. E.

    Superconductivity-induced phonon anomalies in high-Tc superconductors: A Raman intensity study O. V of a number of Raman-active phonons below the superconducting transition temperature in YBa2Cu3O7 x , Bi2Sr2Ca to obtain information about the superconducting state.4 Several years ago, Friedl et al.5 ob- served

  19. Hard superconducting nitrides Xiao-Jia Chen*, Viktor V. Struzhkin*, Zhigang Wu*, Maddury Somayazulu

    E-Print Network [OSTI]

    Wu, Zhigang

    Hard superconducting nitrides Xiao-Jia Chen*, Viktor V. Struzhkin*, Zhigang Wu*, Maddury Somayazulu, and hardness of selected superconducting transition-metal nitrides reveals inter- esting correlations among with the neutron scattering data. The cubic -NbN superconducting phase possesses a bulk modulus of 348 GPa

  20. Jorge Berger and Jacob Rubinstein On the zero set of the wave function in superconductivity

    E-Print Network [OSTI]

    Jorge Berger and Jacob Rubinstein On the zero set of the wave function in superconductivity October) model of superconductivity concerns an order parameter u which is a complex valued function of the absolute value of u measures the density of the superconducting electrons, while the phase of u is related