National Library of Energy BETA

Sample records for fcc fluid catalytic

  1. Control of a catalytic fluid cracker

    SciTech Connect (OSTI)

    Arbel, A.; Huang, Z.; Rinard, I.; Shinnar, R.

    1993-12-13

    Control offers an important tool for savings in refineries, mainly by integration of process models into on-line control. This paper is part of a research effort to better understand problems of partial control; control of a Fluid Catalytic Cracker (FCC) is used as example. Goal is to understand better the control problems of an FCC in context of model based control of a refinery, and to understand the general problem of designing partial control systems.

  2. Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meirer, F.; Kalirai, S.; Weker, J. Nelson; Liu, Y.; Andrews, J. C.; Weckhuysen, B. M.

    2015-04-14

    Metal accumulation at the catalyst particle surface plays a role in particle agglutination during fluid catalytic cracking.

  3. A numerical study of short residence time FCC riser flows with a new flow/kinetics modeling technique.

    SciTech Connect (OSTI)

    Chang, S. L.

    1998-08-25

    Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. New and modified processes are constantly developed by refinery companies to improve their global competitiveness and meet more stringent environmental regulations. Short residence time FCC riser reactor is one of the advanced processes that the refining industry is actively pursuing because it can improve the yield selectivity and efficiency of an FCC unit. However, as the residence time becomes shorter, the impact of the mixing between catalyst and feed oil at the feed injection region on the product yield becomes more significant. Currently, most FCC computer models used by the refineries perform sophisticated kinetic calculations on simplified flow field and can not be used to evaluate the impact of fluid mixing on the performance of an FCC unit. Argonne National Laboratory (AFL) is developing a computational fluid dynamic (CFD) code ICRKFLO for FCC riser flow modeling. The code, employing hybrid hydrodynamic-chemical kinetic coupling techniques, is used to investigate the effect of operating and design conditions on the product yields of FCC riser reactors. Numerical calculations were made using the code to examine the impacts of the operating and design conditions on the product yields. The controlling parameters under investigation include the residence time, reaction temperature, and catalyst/oil ratio. This paper describes the CFD code, presents computation results, and discusses the effects of operating conditions on the performance of short residence time FCC riser reactors.

  4. FCC LPG olefinicity and branching enhanced by octane catalysts

    SciTech Connect (OSTI)

    Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

    1989-05-29

    Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

  5. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  6. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic

    Office of Scientific and Technical Information (OSTI)

    Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Fluid-Bed Testing of Greatpoint

  7. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic

    Office of Scientific and Technical Information (OSTI)

    Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Fluid-Bed Testing of Greatpoint

  8. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect (OSTI)

    Adeyinka Adeyiga

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  9. Catalytic gasification studies in a pressurized fluid-bed unit

    SciTech Connect (OSTI)

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  10. The effect of feedstock additives on FCC catalyst deactivation

    SciTech Connect (OSTI)

    Hughes, R.; Koon, C.L.; McGhee, B.

    1995-12-31

    Fluid catalytic cracking is a major petroleum refining process and because of this the deactivation of FCC catalysts by coke deposition has been the subject of considerable investigation during the past 50 years. Nevertheless, a lack of understanding of the fundamental understanding of processes leading to coke formation still exists. Basic studies using Zeolites have usually involved excessively high levels of coke deposits compared to normal FCC operation. The present study addresses coke formation at realistic levels of 0.5 to 1.0% w/w using a standard MAT reactor in which concentrations of 1% and 10% of various additives were added to the n-hexadecane feedstock. These additives included, quinoline, phenanthrene, benzofuran, thianaphthene and indene. The coke formed was characterised by mass spectrometry and was significantly aliphatic in nature, the amount formed increasing in the order quinoline, phenanthrene, thianaphthene, benzofuran, indene. Quinoline acts primarily as a poison, whereas the other additives tend to promote coke formation in n-hexadecane cracking.

  11. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (OSTI)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  12. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, Santosh (Cary, NC); Jothimurugesan, Kandaswamy (Hampton, VA)

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  13. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  14. Increasing FCC regenerator catalyst level

    SciTech Connect (OSTI)

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  15. FCC-ee: Energy Calibration

    SciTech Connect (OSTI)

    Koratzinos, M.; Blondel, A.; Gianfelice-Wendt, E.; Zimmermann, F.

    2015-06-02

    The FCC-ee aims to improve on electroweak precision measurements, with goals of 100 ke V on the Z mass and width, and a fraction of MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the center-of-mass energy when operating at the Z peak and WW threshold. This can be achieved by making systematic use of resonant depolarization. A number of issues have been identified, due in particular to the long polarization times. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.

  16. Temperature Dependence of Dynamic Deformation in FCC Metals,...

    Office of Scientific and Technical Information (OSTI)

    Temperature Dependence of Dynamic Deformation in FCC Metals, Aluminum and Invar Citation Details In-Document Search Title: Temperature Dependence of Dynamic Deformation in FCC ...

  17. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  18. Concentric catalytic combustor

    DOE Patents [OSTI]

    Bruck, Gerald J.; Laster, Walter R.

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  19. Heavy oil catalytic cracking process and apparatus (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Heavy oil catalytic cracking process and apparatus Citation Details In-Document Search Title: Heavy oil catalytic cracking process and apparatus This patent describes a fluidized catalytic cracking process which operates with a hot stripper to improve stripping of spent catalyst from the FCC process. The catalyst from the hot stripper is cooled by direct contact heat exchange with a source or cooled regenerated catalyst. Cooled catalyst may contact hot, stripped catalyst in the base

  20. Temperature Dependence of Dynamic Deformation in FCC Metals, Aluminum and

    Office of Scientific and Technical Information (OSTI)

    Invar (Conference) | SciTech Connect Conference: Temperature Dependence of Dynamic Deformation in FCC Metals, Aluminum and Invar Citation Details In-Document Search Title: Temperature Dependence of Dynamic Deformation in FCC Metals, Aluminum and Invar Authors: Chen, L ; Swift, D C ; Austin, R A ; Florando, J N ; Hawreliak, J ; Lazicki, A ; Saculla, M D ; Eakins, D ; Bernier, J V ; Kumar, M Publication Date: 2015-09-23 OSTI Identifier: 1239232 Report Number(s): LLNL-PROC-679036 DOE Contract

  1. Method and apparatus for a catalytic firebox reactor

    DOE Patents [OSTI]

    Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  2. A study of the spray injection Reynolds number effects on gasoline yields of an FCC riser reactor

    SciTech Connect (OSTI)

    Bowman, B. J.; Zhou, C. Q.; Chang, S. L.; Lottes, S. A.

    2000-04-03

    A computational analysis of the combined effects of feed oil injection parameters in a commercial-scale fluidized catalytic cracking riser reactor was performed using a three-phase, multiple species kinetic cracking computer code. The analysis showed that the injection operating parameters (droplet diameter and injection velocity) had strong impacts on the gasoline yields of the FCC unit. A spray injection Reynolds number combining the two parameters was defined. A correlation between the spray injection Reynolds number and the gasoline product yields for various feed injection conditions was developed. A range of spray injection Reynolds number for the maximum gasoline yield was identified.

  3. Steady state model of an industrial FCC unit

    SciTech Connect (OSTI)

    Lopez-Isunza, F.; Ancheyta-Juarez, J.

    1996-12-31

    A reactor model has been developed to simulate the steady-state of an industrial fluid catalytic cracking unit using a three-lump kinetic expression with parameters estimated from experiments in a microactivity test reactor. The model considers a transported bed reactor (riser) where gas-oil and catalyst are in contact to perform the endothermic cracking reactions, interacting with a two-phase moving bed regenerator with recirculation where the combustion of the coke deposited on the catalyst takes place. The model is used to find best operating conditions for maximizing gasoline yield in terms of gas-oil feed temperature (To) and recycled catalyst to gas-oil ratio (C/O). 12 refs., 4 figs.

  4. Nucleation of fcc Ta when heating thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janish, Matthew T.; Mook, William M.; Carter, C. Barry

    2014-10-25

    Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.

  5. Magnetism of j = 1/2 moments on the fcc lattice in double perovskite...

    Office of Scientific and Technical Information (OSTI)

    Magnetism of j 12 moments on the fcc lattice in double perovskite Mott insulators Citation Details In-Document Search Title: Magnetism of j 12 moments on the fcc lattice in...

  6. A new high pressure and temperature equation of state of fcc...

    Office of Scientific and Technical Information (OSTI)

    new high pressure and temperature equation of state of fcc cobalt Citation Details In-Document Search Title: A new high pressure and temperature equation of state of fcc cobalt ...

  7. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    SciTech Connect (OSTI)

    Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.

    1994-05-12

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  8. Production of Renewable Fuels from Biomass by FCC Co-processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Renewable Fuels from Biomass by FCC Co-processing Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and ...

  9. Piloted rich-catalytic lean-burn hybrid combustor

    DOE Patents [OSTI]

    Newburry, Donald Maurice

    2002-01-01

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  10. The importance of FCC catalyst selection on LPG profitability

    SciTech Connect (OSTI)

    Keyworth, D.A.; Gilman, R.; Pearce, J.R. )

    1989-01-01

    Recently the value of LPG in chemical operations downstream of the FCC unit has increased. Such downstream operations utilize propylene not only in alkylate, but also in rapid growth petrochemical applications such as for a raw material in the manufacture of polypropylene and propylene oxide. Isobutane and the butenes (particularly butene-2 in sulfuric acid catalyzed alkylation units) are prized for alkylate feed. The profit potential and incentives to use other LPG components such as isobutene to make MTBE is now increased because of legislative actions and increased octane performance demand; and because of the greater isobutene content in the LPG from the new FCC octane catalysts. A low non-framework alumina (NFA) zeolite studied made a more olefinic LPG with higher iso-to normal C4 ratio than the other zeolites. Pilot plant data has also shown the new low NFA zeolite gave not only outstanding motor octane (MON) performance, but produced an LPG with better propylene to propane ratio, more isobutene, more n-butenes and more C4 branching than other RE promoted zeolite catalysts. Commercial results have verified the improved performance and profitability for the new low-NFA type zeolite catalysts. Three commercial examples are described.

  11. Raney nickel catalytic device

    DOE Patents [OSTI]

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  12. Germanium FCC structure from a colloidal crystal template

    SciTech Connect (OSTI)

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  13. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte

    Office of Scientific and Technical Information (OSTI)

    Carlo study (Journal Article) | SciTech Connect Journal Article: Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study Citation Details In-Document Search Title: Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant

  14. X-ray diffraction and Mössbauer spectroscopy study of fcc iron...

    Office of Scientific and Technical Information (OSTI)

    for the composition of the Earth;s core Citation Details In-Document Search Title: ... for the composition of the Earth;s core The phase fcc FeHsub x (x approx 1) ...

  15. Correlating Spatial Heterogeneities in Porosity and Permeability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid catalytic cracking (FCC) is a refining process for converting large andor heavy molecules of oil feedstock into smaller and lighter hydrocarbons such as gasoline. During the ...

  16. Mapping Metals Incorporation of a Single Catalyst Particle Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid catalytic cracking (FCC) is the refining process for converting large andor heavy molecules of oil feedstock into smaller and lighter hydrocarbons, such as gasoline. The ...

  17. Microsoft Word - MappingMetals bh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid catalytic cracking (FCC) is the refining process for converting large andor heavy molecules of oil feedstock into smaller and lighter hydrocarbons, such as gasoline....

  18. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  19. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    SciTech Connect (OSTI)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher density of nanometer sized carbides on the boundaries. This project will focus on void swelling but advances in processing of austenitic steels are likely to also improve the radiation response of the mechanical properties.

  20. On the structural stability and catalytic properties of smectities pillared with RE-Al, Al-Ga polyoxications

    SciTech Connect (OSTI)

    Caballero, L.; Dominguez, J.M.; De los Santos, J.L.

    1995-12-01

    Pillaring of Smectite type clays offers the possibility to develop highly porous catalytic materials with surface acid properties, (1) their me in hydrotreating and FCC hydrocarbon processes has been extensively discussed (2) and still some research on the stabilization of the clays structure is being carried out. Therefore, the aim of the present work was to investigate thermal stability of Montmorillonite type clays, by means of pillaring with distinct polyoxications and by ion-exchanging and treating the clays under several conditions.

  1. Catalytic cracking process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  2. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  3. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  4. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies E. Thomas (Tom) Habib, Jr., Director, Customer Research Partnerships, W.R. Grace & Co. PDF icon biomass13_habib_2-d.pdf More Documents & Publications Opportunities for Biomass-Based Fuels and Products

  5. Catalytic Reforming Downstream Processing of Fresh Feed Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 2,837 2,690 2,748 2,812 2,668 2,629 2010-2016 PADD 1 160 185 192 172 192 183 2010-2016 East Coast 144 171 176 155 175 167

  6. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  7. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  8. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  9. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  10. Catalytic hydrotreating process

    DOE Patents [OSTI]

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  11. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  12. Catalytic conversion of LPG

    SciTech Connect (OSTI)

    Pujado, P.R.; Vora, B.V.; Mowry, J.R.; Anderson, R.F.

    1986-01-01

    The low reactivity of light paraffins has long hindered their utilization as petrochemical feedstocks. Except for their use in ethylene crackers, LPG fractions have traditionally been consumed as fuel. New catalytic processes now being commercialized open new avenues for the utilization of LPG as sources of valuable petrochemical intermediates. This paper discusses processes for the dehydrogenation and aromatization of LPG.

  13. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  14. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  15. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  16. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  17. Fascinating Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fascinating Fluids Fascinating Fluids From liquids to gases, we take on this most fascinating compound with hands-on activities for children and adults alike. We are made of fluids, mostly water, arguably the most interesting compound in the universe. Think About This Liquids Fluids are amazing. Fluids flow. Liquids have variable shapes but almost constant volumes. Gases Gases take the shape of their containers and can be squeezed and stretched relatively easily. Sand What is fine sand? It is a

  18. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  19. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid,

    Broader source: Energy.gov (indexed) [DOE]

    and Selective Catalytic Reduction Technologies on the AFDC | Department of Energy Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an upcoming Deisel Exhaust Fluid Locator. PDF icon deer08_brodt-giles.pdf More Documents & Publications The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow EPA Diesel Update Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

  20. Catalytic reforming methods

    DOE Patents [OSTI]

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  1. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    SciTech Connect (OSTI)

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out for the purpose of understanding the predicted trends.

  2. Novel Catalytic Membrane Reactors

    SciTech Connect (OSTI)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  3. Electronic structure and vibrational entropies of fcc Au-Fe alloys

    SciTech Connect (OSTI)

    Munoz, Jorge A.; Lucas, Matthew; Mauger, L; Halevy, I; Horwath, J; Semiatin, S L; Xiao, Yuming; Stone, Matthew B; Abernathy, Douglas L; Fultz, B.

    2013-01-01

    Phonon density of states (DOS) curves were measured on alloys of face-centered-cubic (fcc) Au-Fe using nuclear resonant inelastic x-ray scattering (NRIXS) and inelastic neutron scattering (INS). The NRIXS and INS results were combined to obtain the total phonon DOS and the partial phonon DOS curves of Au and Fe atoms. The 57Fe partial phonon DOS of the dilute alloy Au0.97 57Fe0.03 shows a localized mode centered 4.3% above the cutoff energy of the phonons in pure Au. The Mannheim model for impurity modes accurately reproduced this partial phonon DOS using the fcc Au phonon DOS with a ratio of host-host to impurity-host force constants of 1.55. First-principles calculations validated the assumption of first-nearest-neighbor forces in the Mannheim model and gave a similar ratio of force constants. The high energy local mode broadens with increasing Fe composition, but this has a small effect on the composition dependence of the vibrational entropy. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon DOS with Fe concentration. This stiffening is attributed to two main effects: 1) an increase in electron density in the free-electron-like states, and 2) stronger sd-hybridization. These two effects are comparable in magnitude.

  4. Catalytic Solutions Inc CSI | Open Energy Information

    Open Energy Info (EERE)

    Place: Oxnard, California Zip: 93033 Product: Developer of the breakthrough catalytic coating technology and the Mixed Phase Catalyst (MPCTM), and also manufacturer of catalytic...

  5. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials

  6. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  7. Fascinating Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fascinating Fluids Fluids are amazing. Fluids flow. Liquids have variable shapes but almost constant volumes. Gases take the shape of their containers, and can be squeezed and stretched relatively easily. We are made of fluids, mostly water, arguably the most interesting compound in the universe. What is fine sand? It is a solid, but it can behave like a liquid, flowing yet maintaining its volume. What is Jello tm ? It is certainly not a solid! Smoke has solids in it, but it is not solid either.

  8. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; LeSar, Richard

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  9. Self-Diffusion of Small Clusters on fcc Metal (111) Surfaces

    SciTech Connect (OSTI)

    Chang, C. M. [National Center for High-Performance Computing, Hsinchu, Taiwan 30043, Republic of China (China)] [National Center for High-Performance Computing, Hsinchu, Taiwan 30043, Republic of China (China); Wei, C. M. [Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China (China)] [Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China (China); Chen, S. P. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2000-07-31

    We use ab initio density-functional theory supplemented with the embedded-atom method to study the self-diffusion of small clusters on the (111) surface of eight fcc metals. A zigzag motion is found to be important in the dimer and tetramer diffusions. The dimer diffuses by a zigzag and concerted motion. The trimer diffuses by a concerted three-atom motion. The tetramer diffuses through a zigzag motion where only two atoms move simultaneously in each step. Thus, instead of increasing, the migration energy is lowered (or stays constant) for the tetramer as compared to that for the trimer. This novel break of the upwards trend in migration energy is predicted to be a general phenomenon. (c) 2000 The American Physical Society.

  10. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    SciTech Connect (OSTI)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords

  11. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  12. Studies of Dynamic Properties of Shock Compressed FCC Crystals by in Situ Dynamic X-Ray Diffraction

    SciTech Connect (OSTI)

    Baldis, H.; Kalantar, D.H.; Remington, B.A.; Belak, J.; Colvin, J.; Boehly, T.R.; Meyers, M.A.; Wark, J.S.; Paisley, D.; Hollan, B.; Lomdahl, P.; German, T.

    2001-08-14

    There were 5 laser experiments conducted to date in FY-01 under the ongoing project to study the response of single crystal fcc materials under shock compression. An additional 10 laser shots are planned for August, 2001. This work has focused on developing capability to record diffraction from multiple lattice planes during the passage of a shock through a thin foil of single crystal copper, while simultaneously performing separate shock sample recovery experiments to study the residual deformation structure in the recovered samples.

  13. Molecular catalytic hydrogenation of aromatic hydrocarbons and...

    Office of Scientific and Technical Information (OSTI)

    catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions. ... NAPHTHALENE; CHRYSENE; ORGANOMETALLIC COMPOUNDS; CATALYTIC EFFECTS; RHODIUM COMPOUNDS; ...

  14. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  15. Catalytic membranes for fuel cells

    DOE Patents [OSTI]

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  16. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Infrared Mapping Helps Optimize Catalytic Reactions Print Wednesday, 20 August 2014 07:59 A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ

  17. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  18. Catalytic Device International LLC | Open Energy Information

    Open Energy Info (EERE)

    Pleasanton, California Product: California-based, firm focused on portable, heat-on-demand products. References: Catalytic Device International LLC1 This article is a stub....

  19. BioCatalytics | Open Energy Information

    Open Energy Info (EERE)

    Biomass Product: BioCatalytics Inc. provides a broadest range of enzymes for chemical synthesis, especially biomass to biofuel enzymes along with the resources and technology to...

  20. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  1. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, George E.; Merritt, Bernard T.; Hsiao, Mark C.; Wallman, P. Henrik; Penetrante, Bernardino M.

    1998-01-01

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO.sub.x reduction in oxygen-rich vehicle engine exhausts.

  2. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  3. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  4. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  5. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  6. Molecular catalytic hydrogenation of aromatic hydrocarbons and

    Office of Scientific and Technical Information (OSTI)

    catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. 01 COAL, LIGNITE, AND PEAT; 40 CHEMISTRY; COAL LIQUIDS;...

  7. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    2004-07-01

    Energy-Efficient Catalytic Hydrogenation Reactions. Hydrogenation reactions are very versatile and account for 10% to 20% of all reactions in the pharmaceutical industry.

  8. Catalytic oxidizers and Title V requirements

    SciTech Connect (OSTI)

    Uberoi, M.; Rach, S.E.

    1999-07-01

    Catalytic oxidizers have been used to reduce VOC emissions from various industries including printing, chemical, paint, coatings, etc. A catalytic oxidizer uses a catalyst to reduce the operating temperature for combustion to approximately 600 F, which is substantially lower than thermal oxidation unit. Title V requirements have renewed the debate on the best methods to assure compliance of catalytic oxidizers, with some suggesting the need for continuous emission monitoring equipment. This paper will discuss the various aspects of catalytic oxidation and consider options such as monitoring inlet/outlet temperatures, delta T across the catalyst, periodic laboratory testing of catalyst samples, and preventive maintenance procedures as means of assuring continuous compliance.

  9. Supercritical fluids: Reactions, materials and applications

    SciTech Connect (OSTI)

    Tumas, W.; Jacobson, G.B.; Josephsohn, N.S.; Brown, G.H.

    1999-04-09

    A number of important processes utilizing supercritical fluids have been either implemented or are emerging for extractions, separations and a wide range of cleaning applications. Supercritical fluids can be reasonable solvents yet share many of the advantages of gases including miscibility with other gases (i.e. hydrogen and oxygen), low viscosities and high diffusivities. Carbon dioxide has the further advantages of being nontoxic, nonflammable, inexpensive and currently unregulated. The use of compressed gases, either as liquids or supercritical fluids, as reaction media offers the opportunity to replace conventional hazardous solvents and also to optimize and potentially control the effect of solvent on chemical and material processing. The last several years has seen a significant growth in advances in chemical synthesis, catalytic transformations and materials synthesis and processing. The authors report on results from an exploratory program at Los Alamos National Laboratory aimed at investigating the use of dense phase fluids, particularly carbon dioxide, as reaction media for homogeneous, heterogeneous and phase-separable catalytic reactions in an effort to develop new, environmentally-friendly methods for chemical synthesis and processing. This approach offers the possibility of opening up substantially different chemical pathways, increasing selectivity at higher reaction rates, facilitating downstream separations and mitigating the need for hazardous solvents. Developing and understanding chemical and catalytic transformations in carbon dioxide could lead to greener chemistry at three levels: (1) Solvent replacement; (2) Better chemistry (e.g. higher reactivity, selectivity, less energy consumption); and (3) New chemistry (e.g. novel separations, use of COP{sub 2} as a C-1 source).

  10. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  11. Non-catalytic recuperative reformer

    DOE Patents [OSTI]

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  12. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOE Patents [OSTI]

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  13. Catalytic reactor with improved burner

    DOE Patents [OSTI]

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  14. Method of fabricating a catalytic structure

    DOE Patents [OSTI]

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  15. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  16. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  17. Fabrication of FCC-SiO{sub 2} colloidal crystals using the vertical convective self-assemble method

    SciTech Connect (OSTI)

    Castaeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Mndez-Pinzn, H. A.; Pedroza-Rodrguez, A. M.

    2014-05-15

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO{sub 2} colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 3{sup 3} factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40C.

  18. Microstructures and Mechanical Properties of Compositionally Complex Co-free FeNiMnCr18 FCC Solid Solution Alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Bei, Hongbin

    2015-01-01

    Recently,a structurally-simplebutcompositionally-complex FeNiCoMnCr highentropyalloywasfoundto haveexcellentmechanicalproperties(e.g.,highstrengthandductility).Tounderstandthepotentialof using highentropyalloysasstructuralmaterialsforadvancednuclearreactorandpowerplants,itis necessary tohaveathoroughunderstandingoftheirstructuralstabilityandmechanicalpropertiesde- gradation underneutronirradiation.ThisrequiresustodevelopasimilarmodelalloywithoutCobe- cause materialwithCowillmakepost-neutron-irradiationtestingdifficult duetotheproductionofthe 60Co radioisotope.Toachievethisgoal,aFCC-structuredsingle-phasealloywithacompositionof FeNiMnCr18 wassuccessfullydeveloped.Thisnear-equiatomicFeNiMnCr18 alloy hasgoodmalleability and itsmicrostructurecanbecontrolledbythermomechanicalprocessing.Byrollingandannealing,the as-cast elongated-grained-microstructureisreplacedbyhomogeneousequiaxedgrains.Themechanical properties (e.g.,strengthandductility)oftheFeNiMnCr18 alloy arecomparabletothoseoftheequiatomic FeNiCoMnCr highentropyalloy.Bothstrengthandductilityincreasewithdecreasingdeformation temperature,withthelargestdifferenceoccurringbetween293and77K.Extensivetwin-bandswhich are bundlesofnumerousindividualtwinsareobservedwhenitistensile-fracturedat77K.Notwin bands aredetectedbyEBSDformaterialsdeformedat293Kandhigher.Theunusualtemperature-de- pendencies ofUTSanduniformelongationcouldbecausedbythedevelopmentofthedensetwin substructure, twin-dislocationinteractionsandtheinteractionsbetweenprimaryandsecondarytwin- ning systemswhichresultinamicrostructurerefinement andhencecauseenhancedstrainhardening and postponednecking.

  19. Nanoporous carbon catalytic membranes and method for making the same

    DOE Patents [OSTI]

    Foley, Henry C. (Hockessin, DE); Strano, Michael (Wilmington, DE); Acharya, Madhav (New Castle, DE); Raich, Brenda A. (Houston, TX)

    2002-01-01

    Catalytic membranes comprising highly-dispersed, catalytically-active metals in nanoporous carbon membranes and a novel single-phase process to produce the membranes.

  20. Improvement of catalytic activity in selective oxidation of styrene...

    Office of Scientific and Technical Information (OSTI)

    Improvement of catalytic activity in selective oxidation of styrene with Hsub 2Osub 2 ... Title: Improvement of catalytic activity in selective oxidation of styrene with Hsub ...

  1. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Office of Scientific and Technical Information (OSTI)

    Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway Citation Details In-Document Search Title: Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway This ...

  2. Comparison of Water-Hydrogen Catalytic Exchange Processes Versus...

    Office of Environmental Management (EM)

    Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water Distillation for Water Detritiation Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water ...

  3. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants 2005 Diesel Engine ...

  4. New Developments in Titania-Based Catalysts for Selective Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments in Titania-Based Catalysts for Selective Catalytic Reduction of NOx New Developments in Titania-Based Catalysts for Selective Catalytic Reduction of NOx Presentation ...

  5. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  6. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and optimization of the catalytic reaction. Research conducted by: E. Gross, X.-Z. Shu, S. Alayoglu, F.D. Toste, and G.A. Somorjai (Univ. of California, Berkeley), and H.A....

  7. Catalytic converter for automotive exhaust system

    SciTech Connect (OSTI)

    Merry, R.P.

    1986-10-14

    This patent describes a catalytic converter having a metallic casing, a unitary, solid ceramic catalytic element disposed within the casing, and resilient means disposed between the catalytic element and the metallic casing for positioning the catalytic element and for absorbing mechanical and thermal shock. The improvement described here comprises: the resilient means being a flexible intumescent planar sheet corrugated with a generally sinusoidal wave pattern along both its lengthwise edges. The corrugations are generally parallel and regular and are comprised of substantially equal ridges and hollows having a perimeter to frequency ratio in a range of 2.44 to 4.88 and amplitude in a range of 12 to 50% of the width of the sheet.

  8. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  9. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  10. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  11. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  12. Innovative Catalytic Converter Wins National Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Catalytic Converter Wins National Award For more information contact: e:mail: Public Affairs Golden, Colo., July 25, 1996—A new catalytic converter design that could dramatically reduce automobile emissions and urban air pollution has been named one of the years most important technological breakthroughs. Research and Development Magazine selected the converter—developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Benteler Industries Inc. of

  13. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  14. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  15. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  16. Department of Chemistry | Center for Catalytic Hydrocarbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    Functionalization Department of Chemistry Faculty & Research Outreach Programs Graduate Studies Events & Seminars Undergraduate Studies Contact Us Faculty & Research > Research Centers & Programs > Center for Catalytic Hydrocarbon Functionalization CCHF Center for Catalytic Hydrocarbon Functionalization Catalysts are central to the efficient and clean utilization of energy resources, and they impact all aspects of the energy sector. With the University of Virginia as

  17. Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

  18. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  19. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  20. Catalytic Upgrading Sugars To Hydrocarbons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sugars To Hydrocarbons Catalytic Upgrading Sugars To Hydrocarbons PDF on catalytic bioenergy process PDF icon Catalytic Upgrading Sugars To Hydrocarbons More Documents & Publications Biological Conversion of Sugars To Hydrocarbons Technology Pathway Selection Effort Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

  1. Heavy oil catalytic cracking apparatus (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Heavy oil catalytic cracking apparatus Citation Details In-Document Search Title: Heavy oil catalytic cracking apparatus This patent describes an apparatus for the fluidized catalytic cracking of a heavy hydrocarbon feed comprising hydrocarbons having a boiling point above about 650{degrees} F to lighter products by contact the feed with catalytic cracking catalyst. It comprises a catalytic cracking reactor means; a separation means connective with the reactor outlet; a primary stripping means

  2. Exotic magnetism on the quasi-FCC lattices of the d3 double perovskites La2NaB'O6 (B' = Ru, Os)

    SciTech Connect (OSTI)

    Aczel, Adam A; Baker, Peter J.; Bugaris, Dan; Yeon, Jeongho; Zur Loye, Hans-Conrad; Guidi, T.; Adroja, D. T.

    2014-01-01

    We find evidence for long-range and short-range ($\\zeta$~$=$~70~\\AA~at 4~K) incommensurate magnetic order on the quasi-face-centered-cubic (FCC) lattices of the monoclinic double perovskites La$_2$NaRuO$_6$ and La$_2$NaOsO$_6$ respectively. Incommensurate magnetic order on the FCC lattice has not been predicted by mean field theory, but may arise via a delicate balance of inequivalent nearest neighbour and next nearest neighbour exchange interactions. In the Ru system with long-range order, inelastic neutron scattering also reveals a spin gap $\\Delta$~$\\sim$~2.75~meV. Magnetic anisotropy is generally minimized in the more familiar octahedrally-coordinated $3d^3$ systems, so the large gap observed for La$_2$NaRuO$_6$ may result from the significantly enhanced value of spin-orbit coupling in this $4d^3$ material.

  3. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energys National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  4. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  5. GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open...

    Open Energy Info (EERE)

    FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE:...

  6. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  7. Environmentally safe fluid extractor

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  8. Environmentally safe fluid extractor

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  9. Electric fluid pump

    SciTech Connect (OSTI)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  10. Fluid force transducer

    DOE Patents [OSTI]

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  11. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  12. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2006-05-30

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  13. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.

    2007-09-25

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  14. Fluid cooled electrical assembly

    DOE Patents [OSTI]

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  15. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  16. A coke/soot formation model for multiphase reacting flow simulation

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q. |

    1997-03-01

    Coke is a by-product in petroleum fluid catalytic cracking (FCC) processes. The concentration of coke in an FCC riser reactor is a critical parameter used to evaluate the riser performance. A coke formation and transport model was developed. It was incorporated into a computational fluid dynamic (CFD) computer code, ICRKFLO, to simulate the coke formation processes in an FCC riser reactor. Based on a similar process, a soot formation model can be derived from the coke formation model and used for diesel combustion processes, where soot is emitted as one of the primary pollutants.

  17. Method of making a catalytic converter

    SciTech Connect (OSTI)

    Bailey, C.H.; De Palma, T.V.; Dillon, J.E.

    1982-08-10

    Arrangement for resiliently mounting a ceramic monolithic type catalytic converter element in a metal housing with a blanket of knit wire mesh material includes at least one circumferential band of high temperature intumescent material containing ceramic fibers positioned within the wire mesh blanket which prevents virtually all bypass leakage around the element and substantially reduces the temperature of the wire mesh.

  18. Production of LPG olefins by catalytic dehydrogenation

    SciTech Connect (OSTI)

    Pujado, P.R.; Vora, B.V.

    1984-09-01

    Catalytic dehydrogenation allows for the production of specific olefins thus avoiding the large capital and operating expenses associated with the recovery and processing of the many by-products from pyrolysis units. The chemistry of the process is discussed along with the process economics.

  19. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOE Patents [OSTI]

    Mizuno, Noritaka (Sapporo, JP); Lyon, David K. (Bend, OR); Finke, Richard G. (Eugene, OR)

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  20. A Photosynthetic Hydrogel for Catalytic Hydrogen Production | ANSER Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne-Northwestern National Laboratory A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production

  1. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  2. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  3. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  4. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  5. Electrorheological fluids and methods

    DOE Patents [OSTI]

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  6. FCC Lab Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Spectrum is the -oxygen that wireless broadband needs to thrive 38 Standard Smartphone ... Smartphones Standard Wireless Telephones Smartphone sales to overtake standard phones by ...

  7. FLUID CONTROLLING MEANS

    DOE Patents [OSTI]

    Pouliot, H.N.

    1960-11-01

    A device is described for releasing fluid from a container and delivering it to an outlet conduit. An explosive squib moves a piston so as to cut a wall section from the conduit and to punch a hole in the container, whereby a fluid may pass from the container into the conduit. A deformable sleeve retains the piston in its final position.

  8. Fluid delivery control system

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  9. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  10. Pulsating catalytic combustion of gaseous fuels

    SciTech Connect (OSTI)

    Gal-Ed, R.

    1988-01-01

    This study investigated the feasibility of operating catalytic combustors under pulsating conditions and the circumstances under which acoustic pulsations increase the combustion efficiencies and output of catalytic combustors. An experimental catalytic combustor was developed, and a theoretical model of acoustic motions in non-isothermal, low match number, duct flow was used to predict the acoustic behavior of the combustor. The effects of pulsations were determined by comparing temperature and species concentration data measured during operation with pulsations at different frequencies and pressure amplitudes to similar data measured during non-pulsating combustion. Experiments conducted with lean mixtures of methane or propane with air revealed that acoustic pulsations affected the temperature distribution along the combustor at flow Reynolds numbers less than 17,500. Excitation of pulsations during methane combustion caused shifts in the location of the combustion, and sometimes the onset of extinction of gas phase reactions. This occurred when several catalyst segments were located in the combustion section between an upstream pressure node and a downstream velocity node, defined here as an in phase location. Propane mixtures were used to investigate possible improvements in combustor's performance. Burning propane mixtures on a single catalyst segment at an in phase location showed that the excitation of acoustic pulsations increased the combustion efficiency by 10 to 50%. The changes in the operation of catalytic combustors caused by acoustic waves are explained by acoustic streaming. When the catalyst surfaces are at an in phase location, rotational flows caused by acoustic streaming enhance the reactants and products diffusion rate to and from the catalyst surfaces, respectively, improving combustion efficiency.

  11. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  12. Preface: Challenges for Catalytic Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Nova, Isabella; Epling, Bill; Peden, Charles HF

    2014-03-31

    This special issue of Catalysis Today continues the tradition established since the 18th NAM in Cancun, 2003, of publishing the highlights coming from these catalytic after-treatment technologies sessions, where this volume contains 18 papers based on oral and poster presentations of the 23rd NAM, 2013. The guest editors would like to thank all of the catalyst scientists and engineers who presented in the "Emission control" sessions, and especially the authors who contributed to this special issue of Catalysis Today.

  13. Mapping Metals Incorporation of a Single Catalyst Particle Using Element

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific X-ray Nanotomography | Stanford Synchrotron Radiation Lightsource Mapping Metals Incorporation of a Single Catalyst Particle Using Element Specific X-ray Nanotomography Tuesday, March 31, 2015 Fluid catalytic cracking (FCC) is the refining process for converting large and/or heavy molecules of oil feedstock into smaller and lighter hydrocarbons, such as gasoline. The workhorse of the FCC process is a tiny catalyst particle of 50-150 µm diameter that consists of a complex mixture of

  14. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Hughs, Chance G.; Todd, Steven N.

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  15. FLUID SELECTING APPARATUS

    DOE Patents [OSTI]

    Stinson, W.J.

    1958-09-16

    A valve designed to selectively sample fluids from a number of sources is described. The valve comprises a rotatable operating lever connected through a bellows seal to a rotatable assembly containing a needle valve, bearings, and a rotational lock. The needle valve is connected through a flexible tube to the sample fluid outlet. By rotating the lever the needle valve is placed over . one of several fluid sources and locked in position so that the fluid is traasferred through the flexible tubing and outlet to a remote sampling system. The fluids from the nonselected sources are exhausted to a waste line. This valve constitutes a simple, dependable means of selecting a sample from one of several scurces.

  16. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  17. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  18. Epitaxial growth of fcc-Co{sub x}Ni{sub 100-x} thin films on MgO(110) single-crystal substrates

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-12-15

    Co{sub x}Ni{sub 100-x} (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co{sub x}Ni{sub 100-x} film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co{sub x}Ni{sub 100-x} films are in agreement within +-0.5% with the values of the respective bulk Co{sub x}Ni{sub 100-x} crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110){sub fcc} film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  19. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  20. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  1. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  2. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  3. Heavy oil catalytic cracking process and apparatus (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Heavy oil catalytic cracking process and apparatus Citation Details In-Document Search Title: Heavy oil catalytic cracking process and apparatus This paper describes a fluidized catalytic cracking process for catalytic cracking of a feed comprising hydrocarbons having a boiling point about 750 F. It comprises: a catalytically cracking the feed in a catalytic cracking zone riser reactor having a height in excess of 30 meters at catalytic cracking conditions by contacting the feed with

  4. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  5. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Sugars to Hydrocarbons Technology Pathway Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway

  6. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Ex-Situ Catalytic Fast Pyrolysis Technology Pathway Citation Details In-Document Search Title: Ex-Situ Catalytic Fast Pyrolysis Technology Pathway This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have

  7. In-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect In-Situ Catalytic Fast Pyrolysis Technology Pathway Citation Details In-Document Search Title: In-Situ Catalytic Fast Pyrolysis Technology Pathway This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have

  8. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway Citation Details In-Document Search Title: Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs

  9. 15.02.10 RH Transparent Catalytic - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparent Catalytic Nickel Oxide Protecting Films for Photoanodes Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. PNAS 112 ( 12), 3612-3617, DOI: 10.1073/ pnas . 1423034112 (2015). Scientific Achievement Reactively sputtered NiOx layer provides a transparent, anti-reflective, conductive, chemically stable, inherently catalytic coating that stabilizes many efficient and technologically important

  10. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon acep_02_peden.pdf More Documents & Publications Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials

  11. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified. In-Situ Catalytic Fast Pyrolysis Technology Pathway...

  12. New Catalytic Approach Builds Molecules with Specific Functionality...

    Office of Science (SC) Website

    The Center for Catalytic Hydrocarbon Functionalization (CCHF), a DOE funded Energy Frontier Research Center, is developing efficient catalysts for conversion of hydrocarbons into ...

  13. Passive Catalytic Approach to Low Temperature NOx Emission Abatement

    Broader source: Energy.gov [DOE]

    Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle

  14. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Office of Scientific and Technical Information (OSTI)

    Technical barriers and key research needs that should be pursued for the catalytic ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 59 ...

  15. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide range of gaseous opportunity fuels. Fact...

  16. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, George E.; Merritt, Bernard T.; Hsiao, Mark C.; Wallman, P. Henrik; Penetrante, Bernardino M.

    1999-01-01

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO.sub.x reduction in oxygen-rich vehicle engine exhausts.

  17. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  18. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction

  19. Chemistry, phase formation, and catalytic activity of thinpalladium...

    Office of Scientific and Technical Information (OSTI)

    Title: Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition The chemistry, ...

  20. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The off- gas composition should also be better characterized to verify its suitability as a hydrogen plant feedstock. * Establish optimum catalytic pyrolysis oil properties. A key ...

  1. DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins...

    Office of Scientific and Technical Information (OSTI)

    DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation Citation Details ...

  2. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  3. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Next Generation Manufacturing Processes project to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a ...

  4. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  5. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C.

    1997-01-01

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  6. Boiler using combustible fluid

    DOE Patents [OSTI]

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  7. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  8. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  9. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, Eric R.; Perl, Martin L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  10. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  11. Fluid lubricated bearing construction

    DOE Patents [OSTI]

    Dunning, John R.; Boorse, Henry A.; Boeker, Gilbert F.

    1976-01-01

    1. A fluid lubricated thrust bearing assembly comprising, in combination, a first bearing member having a plain bearing surface, a second bearing member having a bearing surface confronting the bearing surface of said first bearing member and provided with at least one spiral groove extending inwardly from the periphery of said second bearing member, one of said bearing members having an axial fluid-tight well, a source of fluid lubricant adjacent to the periphery of said second bearing member, and means for relatively rotating said bearing members to cause said lubricant to be drawn through said groove and to flow between said bearing surfaces, whereby a sufficient pressure is built up between said bearing surfaces and in said well to tend to separate said bearing surfaces.

  12. Completion and workover fluid

    SciTech Connect (OSTI)

    Block, J.

    1985-09-17

    An aqueous completion or workover fluid for oil or gas wells having at least two solid components. One component is a hydroxy containing aluminum compound represented by the formula AlO(OH).xH/sub 2/O. The second component is a fluid loss control agent which can be either a cross-linked polyvinyl alcohol or a cross-linked hydroxyalkyl cellulose reaction product. An acid soluble weighting agent can be added for wells having higher down hole pressures. Examples of the weighting agents include iron carbonates, iron oxides, calcium carbonates, dolomite, sodium or calcium chloride, zinc bromide and calcium bromide. After use, the fluid can be displaced from the well with acid, e.g. 15% HCl, and the cake previously deposited on the bore-hole wall is dissolved by the acid so that no damaging residue remains.

  13. Two-fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid tearing instability in force-free magnetic configuration V. V. Mirnov, C. C. Hegna, and S. C. Prager Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Wisconsin 53706 (Received 30 December 2003; accepted 25 May 2004; published online 26 August 2004) In general, the linear two-fluid tearing instabilities are driven by shear Alfvén (SA), compressional Alfvén (CA), and slow magnetoacoustic (MA) modes modified on short scales by

  14. Make the most of catalytic hydrogenations

    SciTech Connect (OSTI)

    Landert, J.P.; Scubla, T. [Biazzi S.A., Chailly-Montreux (Switzerland)

    1995-03-01

    Liquid-phase catalytic hydrogenation is one of the most useful and versatile reactions available for organic synthesis. Because it is environmentally clean, it has replaced other reduction processes, such as the Bechamp reaction, and zinc and sulfide reductions. Moreover, the economics are favorable, provided that raw materials free of catalyst poisons are used. The hydrogenation reaction is very selective with appropriate catalysts and can often be carried out without a solvent. Applications include reduction of unsaturated carbon compounds to saturated derivatives (for example, in vegetable-oil processing), carbonyl compounds to alcohols (such as sorbitol), and nitrocompounds to amines. the reactions are usually run in batch reactors to rapidly reach complete conversion and allow quick change-over of products. The paper describes the basics of hydrogenation; steering clear of process hazards; scale-up and optimization; and system design in practice.

  15. Catalytic cartridge SO.sub.3 decomposer

    DOE Patents [OSTI]

    Galloway, Terry R. (Berkeley, CA)

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  16. Catalytic cartridge SO.sub.3 decomposer

    DOE Patents [OSTI]

    Galloway, Terry R. (Berkeley, CA)

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  17. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  18. Catalytic cartridge SO/sub 3/ decomposer

    DOE Patents [OSTI]

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  19. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  20. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  1. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  2. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  3. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  4. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  5. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  6. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  7. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  8. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  9. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  10. Production of MHD fluid

    DOE Patents [OSTI]

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  11. computational fluid dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computational fluid dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  12. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect (OSTI)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  13. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  14. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  15. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  16. Shale Gas Development Challenges: Fracture Fluids | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Fluids Shale Gas Development Challenges: Fracture Fluids PDF icon Shale Gas Development Challenges: Fracture Fluids More Documents & Publications Natural Gas from Shale: ...

  17. Method for catalytic destruction of organic materials

    DOE Patents [OSTI]

    Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

    1997-05-20

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

  18. Method for catalytic destruction of organic materials

    DOE Patents [OSTI]

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1997-01-01

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

  19. Supercritical fluid reverse micelle separation

    DOE Patents [OSTI]

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  20. Supercritical fluid reverse micelle separation

    DOE Patents [OSTI]

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  1. Fractionation and Catalytic Upgrading of Bio-Oil Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BETO) 2015 Project Peer Review Fractionation and Catalytic Upgrading of Bio-Oil FY13 DE-FOA-000 CHASE March 2015 Technology Area Review PI: Daniel E. Resasco - co-PI: ...

  2. Bio-oil Quality Improvement and Catalytic Hydrotreating of Bio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.3.1.302 Bio-oil Quality Improvement and Catalytic Hydrotreating of Bio-oils - PNNL March 24, 2015 Conversion R & D PI: Alan Zacher Presenter: Mariefel V. Olarte Pacific ...

  3. Printing 3D Catalytic Devices | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printing 3D Catalytic Devices An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. Ames Laboratory scientist Igor...

  4. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping; Tracy, C. Edwin; Pitts, J. Roland; Lee, Se-Hee

    2007-06-19

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  5. Control of Substrate Access to the Active Site and Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Substrate Access to the Active Site and Catalytic Mechanism of Methane and Toluene Monooxygenases Friday, June 22, 2012 - 3:30pm SSRL Main Conference Room 137-322 Prof....

  6. Fluid bed material transfer method

    DOE Patents [OSTI]

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  7. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of

    Office of Scientific and Technical Information (OSTI)

    mixed polymer waste streams to sequentially recover monomers or other high value products (Patent) | SciTech Connect Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products Citation Details In-Document Search Title: Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products A process of

  8. DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy

    Office of Scientific and Technical Information (OSTI)

    Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation (Journal Article) | SciTech Connect DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation Citation Details In-Document Search Title: DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation A DFT study of

  9. Catalytic Conversion of Bioethanol to Hydrocarbons - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Startup America Startup America Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Catalytic Conversion of Bioethanol to Hydrocarbons Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00219_ID2414.pdf (629 KB) Technology Marketing SummaryA method for catalytically converting an alcohol to a hydrocarbon without requiring

  10. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  11. Reactive and Catalytic Air Purification Materials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Reactive and Catalytic Air Purification Materials Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication AirPurification (546 KB) Technology Marketing SummarySorbents for the removal of toxic in-dustrial gases such as ammonia and phosgene. The materials offer reactive and/or catalytic sites within a high surface

  12. Briefly Bound to Activate: Transient Binding of a Second Catalytic

    Office of Scientific and Technical Information (OSTI)

    Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis Citation Details In-Document Search Title: Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis We have

  13. Bifunctional Catalysts for the Selective Catalytic Reduction of NO by

    Broader source: Energy.gov (indexed) [DOE]

    Hydrocarbons | Department of Energy 3 DEER Conference Presentation: Argonne National Laboratory PDF icon 2003_deer_marshall.pdf More Documents & Publications Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  14. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Broader source: Energy.gov (indexed) [DOE]

    Reduction Materials | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_25_peden.pdf More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and

  15. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.

    2000-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  16. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.

    2002-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  17. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  18. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for ...

  19. Borehole Fluid Conductivity Model

    Energy Science and Technology Software Center (OSTI)

    2004-03-15

    Dynamic wellbore electrical conductivity logs provide a valuable means to determine the flow characteristics of fractures intersectin a wellbore, in order to study the hydrologic behavior of fractured rocks. To expedite the analysis of log data, a computer program called BORE II has been deveoloped that considers multiple inflow or outflow points along the wellbore, including the case of horizontal flow across the wellbore, BORE II calculates the evolution of fluid electrical conducivity (FEC) profilesmorein a wellbore or wellbore section, which may be pumped at a low rate, and compares model results to log data in a variety of ways. FEC variations may arise from inflow under natural-state conditions or due to tracer injected in a neighboring well (interference tests). BORE II has an interactive, graphical user interface and runs on a personal computer under the Windows operating system. BORE II is a modification and extension of older codes called BORE and BOREXT, which considered inflow points only. Finite difference solution of the one-dimensional advection-diffusion equation with explicit time stepping; feed points treated as prescribed-mass sources or sinks; assume quadratic relationship between fluid electrical conductivity and ion consentration. Graphical user interface; interactive modification of model parameters and graphical display of model results and filed data in a variety of ways. Can examine horizontal flow or arbitarily complicated combination of upflow, downflow, and horizontal flow. Feed point flow rate and/or concentration may vary in time.less

  20. Fluid lubricated bearing assembly

    DOE Patents [OSTI]

    Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.

    1976-01-01

    1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.

  1. Fluid injection microvalve

    DOE Patents [OSTI]

    Renzi, Ronald F.

    2005-11-22

    A microvalve for extracting small volume samples into analytical devices, e.g., high pressure liquid chromatography (HPLC) column, includes: a first body having a first interior surface and two or more outlet ports at the first interior surface that are in fluid communication with two or more first channels; a second body having a second interior surface and two or more inlet ports at the second interior surface that are in fluid communication with two or more second channels wherein the outlet ports of the first body are coaxial with the corresponding inlet ports of the second body such that there are at least two sets of coaxial port outlets and port inlets; a plate member, which has a substantially planar first mating surface and a substantially planar second mating surface, that is slidably positioned between the first interior surface and the second interior surface wherein the plate member has at least one aperture that traverses the height of the plate member, and wherein the aperture can be positioned to be coaxial with any of the at least two sets of coaxial port outlets and port inlets; and means for securing the first surface of the first body against the first mating surface and for securing the second surface of the second body against the second mating surface.

  2. Ultrasonic fluid quality sensor system

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2002-10-08

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  3. Ultrasonic Fluid Quality Sensor System

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2003-10-21

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  4. FLUID CONTACTOR APPARATUS

    DOE Patents [OSTI]

    Spence, R.; Streeton, R.J.W.

    1956-04-17

    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  5. Fluid relief and check valve

    DOE Patents [OSTI]

    Blaedel, K.L.; Lord, S.C.; Murray, I.

    1986-07-17

    A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.

  6. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  7. Method for measuring recovery of catalytic elements from fuel cells

    DOE Patents [OSTI]

    Shore, Lawrence; Matlin, Ramail

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  8. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A.

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  9. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect (OSTI)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  10. Effective perfect fluids in cosmology

    SciTech Connect (OSTI)

    Ballesteros, Guillermo; Bellazzini, Brando E-mail: brando.bellazzini@pd.infn.it

    2013-04-01

    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  11. New process model proves accurate in tests on catalytic reformer

    SciTech Connect (OSTI)

    Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. )

    1994-07-25

    A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

  12. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  13. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  14. Computational Fluid Dynamics Library

    Energy Science and Technology Software Center (OSTI)

    2005-03-04

    CFDLib05 is the Los Alamos Computational Fluid Dynamics LIBrary. This is a collection of hydrocodes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conservation lawsmore » is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary.« less

  15. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore » which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  16. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore »which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  17. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D.

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  18. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  19. Fluid Flow Phenomena during Welding

    SciTech Connect (OSTI)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  20. High-density fluid compositions

    SciTech Connect (OSTI)

    Sanders, D.C.

    1981-09-29

    Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.

  1. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOE Patents [OSTI]

    MacArthur, James B.; McLean, Joseph B.; Comolli, Alfred G.

    1989-01-01

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  2. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Broader source: Energy.gov [DOE]

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  3. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Broader source: Energy.gov [DOE]

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  4. ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS

    SciTech Connect (OSTI)

    Lance L. Smith

    2004-03-01

    Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using PCI's two-stage (catalytic / gas-phase) combustion process for syngas fuel. In this process, the first stage is a Rich-Catalytic Lean-burn (RCL{trademark}) catalytic reactor, wherein a fuel-rich mixture contacts the catalyst and reacts while final and excess combustion air cool the catalyst. The second stage is a gas-phase combustor, wherein the catalyst cooling air mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During the reporting period, PCI successfully achieved NOx = 0.011 lbs/MMBtu at 10 atm pressure (corresponding to 2.0 ppm NOx corrected to 15% O{sub 2} dry) with near-zero CO emissions, surpassing the project goal of < 0.03 lbs/MMBtu NOx. These emissions levels were achieved at scaled (10 atm, sub-scale) baseload conditions corresponding to Tampa Electric's Polk Power Station operation on 100% syngas (no co-firing of natural gas).

  5. Particle sorter comprising a fluid displacer in a closed-loop fluid circuit

    DOE Patents [OSTI]

    Perroud, Thomas D.; Patel, Kamlesh D.; Renzi, Ronald F.

    2012-04-24

    Disclosed herein are methods and devices utilizing a fluid displacer in a closed-loop fluid circuit.

  6. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect (OSTI)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  7. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOE Patents [OSTI]

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  8. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation...

    Office of Scientific and Technical Information (OSTI)

    Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation Citation Details ... This content will become publicly available on September 21, 2016 Title: Complex catalytic ...

  9. The Catalytic Subunit of the SWR1 Remodeler Is a Histone Chaperone...

    Office of Scientific and Technical Information (OSTI)

    The Catalytic Subunit of the SWR1 Remodeler Is a Histone Chaperone for the H2A.Z-H2B Dimer Citation Details In-Document Search Title: The Catalytic Subunit of the SWR1 Remodeler Is ...

  10. 5 Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine Cycles: Comparison to Reference Methods 5 Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine Cycles: ...

  11. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using ...

  12. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts to create bio-oils, which are ...

  13. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    Office of Energy Efficiency and Renewable Energy (EERE)

    Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

  14. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  15. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    SciTech Connect (OSTI)

    Kim, Moon-Jung; Lee, Byung Cheon; Hwang, Kwang Yeon; Gladyshev, Vadim N.; Kim, Hwa-Young

    2015-06-12

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. {sup 75}Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K{sub m} than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue.

  16. Process and apparatus for preheating heavy feed to a catalytic cracking

    Office of Scientific and Technical Information (OSTI)

    unit (Patent) | SciTech Connect Process and apparatus for preheating heavy feed to a catalytic cracking unit Citation Details In-Document Search Title: Process and apparatus for preheating heavy feed to a catalytic cracking unit This patent describes an improvement in a catalytic cracking process wherein a heavy hydrocarbon feed comprising hydrocarbons having a boiling point above about 650{degrees}F is catalytically cracked to cracked products. It comprises preheating at least a portion of

  17. Fluid Dynamics with Free Surfaces

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    RIPPLE is a two-dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles.

  18. The handbook of fluid dynamics

    SciTech Connect (OSTI)

    Johnson, R.W.

    1998-07-01

    This book provides professionals in the field of fluid dynamics with a comprehensive guide and resource. The book balances three traditional areas of fluid mechanics--theoretical, computational, and experimental--and expounds on basic science and engineering techniques. Each chapter introduces a topic, discusses the primary issues related to this subject, outlines approaches taken by experts, and supplies references for further information. Topics discussed include: (1) basic engineering fluid dynamics; (2) classical fluid dynamics; (3) turbulence modeling; (4) reacting flows; (5) multiphase flows; (6) flow and porous media; (7) high Reynolds number asymptotic theories; (8) finite difference method; (9) finite volume method; (10) finite element methods; (11) spectral element methods for incompressible flows; (12) experimental methods, such as hot-wire anemometry, laser-Doppler velocimetry, and flow visualization; and (13) applications, such as axial-flow compressor and fan aerodynamics, turbomachinery, airfoils and wings, atmospheric flows, and mesoscale oceanic flows.

  19. High-Energy-Density Plasmas, Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities High-Energy-Density Plasmas, Fluids science-innovationassetsimagesicon-science.jpg High-Energy-Density Plasmas, Fluids National security depends on science and ...

  20. CONTENTS Chemical Control of Fluid Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Control of Fluid Flow and Contaminant Release in Shale Microfractures ... Oil & Natural Gas Program Newsletter Fall 2015 1 Chemical Control of Fluid Flow and ...

  1. Fluid Inclusion Analysis | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area (2004) Coso Geothermal Area 2004 2004 GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID GEOLOGY AND MINERAL PARAGENESIS STUDY WITHIN THE COSO-EGS...

  2. Variable flexure-based fluid filter

    DOE Patents [OSTI]

    Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  3. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  4. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pyrolysis | Department of Energy Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts to create bio-oils, which are then used to produce biofuel blendstocks. PDF icon Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis More Documents & Publications Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis

  5. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOE Patents [OSTI]

    Shore, Lawrence; Matlin, Ramail; Heinz, Robert

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  6. Catalytic production of metal carbonyls from metal oxides

    DOE Patents [OSTI]

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  7. Catalytic production of metal carbonyls from metal oxides

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  8. Role of surface generated radicals in catalytic combustion

    SciTech Connect (OSTI)

    Santavicca, D.A.; Stein, Y.; Royce, B.S.H.

    1984-04-01

    The role of surface generated OH radicals in determining the catalytic ignition characteristics for propane oxidation on platinum were studied. The experiments were conducted in a stacked-plate, catalyst bed. Transient measurements, during catalytic ignition, of the catalyst's axial temperature profile were made and the effect of equivalence ratio, inlet temperature and inlet velocity was investigated. These measurements will provide insights which will be useful in planning and interpreting to OH measurements. Attempts to measure OH concentration in the catalyst bed using resonance absorption spectroscopy were unsuccessful, indicating that OH concentrations are below 10 to the 16th power/cc but still possibly above equilibrium values. Measurements are currently underway using forward scatter laser induced fluorescence which should extend the OH detection limits several orders of magnitude below the equilibrium concentrations.

  9. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  10. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  11. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  12. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  13. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  14. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOE Patents [OSTI]

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  15. DEVELOPMENT OF NEW DRILLING FLUIDS

    SciTech Connect (OSTI)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  16. Ultracentrifuge for separating fluid mixtures

    DOE Patents [OSTI]

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  17. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  18. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  19. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Attempting to Image EGS Fracture & Fluid Networks; Employing joint Geophysical Imaging Technologies.

  20. Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation

    DOE Patents [OSTI]

    Elliott, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2003-05-27

    The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.

  1. CATALYTIC CONVERSION OF ORGANIC COMPOUNDS USING PENETRATING RADIATION

    DOE Patents [OSTI]

    Caffrey, J.M. Jr.

    1961-10-01

    A method of hydrogenating an olefinic hydrocarbon by irradiating a substrate catalyst and increasing its catalytic activity is described. Ferric oxide with about 0.005% by weight of at least one oxide of a metal selected from the group consisting of aluminum, magnesium, nickel, zirconium, and manganese incorporated therein is irradiated. Then an alkane is placed upon the surface of the catalyst and irradiated in an atmosphere of hydrogen. Any olefin produced from this radiolysis becomes hydrogenated. (AEC)

  2. Biological and Catalytic Conversion of Sugars and Lignin | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological and Catalytic Conversion of Sugars and Lignin Our research group, comprised of staff scientists, postdoctoral associates, students, and technicians, develops biological and chemical catalysts for cost-effective production of fuels and chemicals from terrestrial biomass. Two side-by-side images. The left figure illustrates the domains of the synthase enzyme, represented as "surfaces" or "blobs," embedded in a lipid bilayer, represented as yellow multi-jointed

  3. Design and Synthesis of Catalytic Metal-Organic Framework Materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Design and Synthesis of Catalytic Metal-Organic Framework Materials May 17, 2016 11:00AM to 12:00PM Presenter Omar Farha, Northwestern University Location Building 200 Type Seminar Series CSE Seminar Abstract: Metal-organic frameworks (MOFs) are an emerging class of solid-state materials built up from metal-based nodes and organic linkers. They exhibit permanent porosity and unprecedented surface areas that can readily be tuned through coordination chemistry at

  4. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  5. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  6. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Broader source: Energy.gov (indexed) [DOE]

    Reduction Materials, and Development of Zeolite-Based Hydrocarbon AdsorberMaterials | Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace055_peden_2011_o.pdf More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials Deactivation Mechanisms of Base Metal/Zeolite Urea

  7. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Broader source: Energy.gov (indexed) [DOE]

    Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials | Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace055_peden_2012_o.pdf More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials Deactivation Mechanisms of Base Metal/Zeolite

  8. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect (OSTI)

    Lu, Yi

    2003-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  9. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect (OSTI)

    Lu, Yi

    2002-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  10. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    SciTech Connect (OSTI)

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose; Adzic, Radoslav; Bare, Simon R.; Hulbert, Steve L.; Karim, Ayman; Mullins, David R.; Overbury, Steve

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  11. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram

    2012-11-02

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  12. Fluid-solid contact vessel having fluid distributors therein

    DOE Patents [OSTI]

    Jones, Jr., John B.

    1980-09-09

    Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.

  13. Transport coefficients of gluonic fluid

    SciTech Connect (OSTI)

    Das, Santosh K.; Alam, Jan-e

    2011-06-01

    The shear ({eta}) and bulk ({zeta}) viscous coefficients have been evaluated for a gluonic fluid. The elastic, gg{yields}gg and the inelastic, number nonconserving, gg{yields}ggg processes have been considered as the dominant perturbative processes in evaluating the viscous coefficients to entropy density (s) ratios. Recently the processes: gg{yields}ggg has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The {eta} and {zeta} have been evaluated for gluonic fluid with the formula recently derived. At large {alpha}{sub s} the value of {eta}/s approaches its lower bound, {approx}1/4{pi}.

  14. Wellbottom fluid implosion treatment system

    DOE Patents [OSTI]

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  15. Well completion and servicing fluid

    SciTech Connect (OSTI)

    Grimsley, R.L.

    1990-09-25

    This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.

  16. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  17. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  18. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, Steven N.; Walters, Robert N.

    1996-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  19. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  20. General Transient Fluid Flow Algorithm

    Energy Science and Technology Software Center (OSTI)

    1992-03-12

    SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less

  1. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  2. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  3. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOE Patents [OSTI]

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  4. Method for low temperature catalytic production of hydrogen

    DOE Patents [OSTI]

    Mahajan, Devinder

    2003-07-22

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  5. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOE Patents [OSTI]

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  6. Catalytic pyrolysis of plastic wastes - Towards an economically viable process

    SciTech Connect (OSTI)

    McIntosh, M.J.; Arzoumanidis, G.G.; Brockmeier, F.E.

    1996-07-01

    The ultimate goal of our project is an economically viable pyrolysis process to recover useful fuels and/or chemicals from plastics- containing wastes. This paper reports the effects of various promoted and unpromoted binary oxide catalysts on yields and compositions of liquid organic products, as measured in a small laboratory pyrolysis reactor. On the basis of these results, a commercial scale catalytic pyrolysis reactor was simulated by the Aspen software and rough costs were estimated. The results suggest that such a process has potential economic viability.

  7. Plasma-assisted catalytic ionization using porous nickel plate

    SciTech Connect (OSTI)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-09-15

    Hydrogen atomic pair ions, i.e., H{sup +} and H{sup -} ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H{sup -} ions.

  8. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  9. Method and apparatus for decoupled thermo-catalytic pollution control

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2006-07-11

    A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.

  10. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOE Patents [OSTI]

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-09-29

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.

  11. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels This fact sheet provides an overview of the Next Generation Manufacturing Processes project to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide range of gaseous opportunity fuels. PDF icon Fact sheet - Enabling Clean Consumption of Low Btu and Reactive Fuels

  12. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOE Patents [OSTI]

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-03-17

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  13. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of catalytic activity on an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more efficient by facilitating chemical reactions. Each catalyst being studied is only about 200 nanometers in

  14. Enhanced thermal and gas flow performance in a three-way catalytic

    Broader source: Energy.gov (indexed) [DOE]

    converter through use of insulation within the ceramic monolith | Department of Energy Emissions performance comparison of conventional catalytic converter with multi-channel catalytic converter (ceramic fiber insulation layers introduced into ceramic monolith of three-way catalytic converter) PDF icon deer11_ley.pdf More Documents & Publications NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Emissions Control for Lean Gasoline Engines Monolithic Metal Oxide based

  15. Aqueous cutting fluid for machining fissionable materials

    DOE Patents [OSTI]

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  16. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  17. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  18. Apparatus for unloading pressurized fluid

    DOE Patents [OSTI]

    Rehberger, Kevin M.

    1994-01-01

    An apparatus for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device.

  19. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2001-01-01

    A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

  20. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pyrolysis | Department of Energy In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis The in-situ catalytic fast pyrolysis pathway involves rapidly heating biomass with a catalyst to create bio-oils, which can be used to produce biofuel blendstocks. PDF icon Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis More Documents & Publications Bioenergy Technologies Office R&D Pathways: Ex-Situ

  1. Hydrocarbon selective catalytic reduction catalyst for NO.sub.x emissions control

    DOE Patents [OSTI]

    Furbeck, Howard; Koermer, Gerald; Moini, Ahmad

    2016-04-12

    The present disclosure provides an AgBi catalyst over alumina suitable for performing hydrocarbon selective catalytic reduction (HC-SCR).

  2. Enhanced thermal and gas flow performance in a three-way catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Emissions performance comparison of conventional ...

  3. Measurement of diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol

    Broader source: Energy.gov [DOE]

    Evaluation and comparison of the measurements of diesel solid nanoparticle emissions using the European Particle Measurement Programme (PMP) system and catalytic stripper

  4. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber ...

  5. Fluid Dynamics and Solid Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Fluid Dynamics and Solid Mechanics Basic and applied research in theoretical continuum dynamics, modern hydrodynamic theory, materials modeling, global climate modeling, numerical algorithm development, and large-scale computational simulations. Global climate modeling simulation The Art of Climate Modeling Global climate change ParaView visualization READ MORE Multiscale modeling Multiscale Modeling Strain contours illustrate the process of shear localization in metallic materials Projectile

  6. Ultrasonic fluid densitometer for process control

    DOE Patents [OSTI]

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  7. Specialized Materials and Fluids and Power Plants

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

  8. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  9. Intensified Fischer-Tropsch Synthesis Process with Microchannel Catalytic Reactors

    SciTech Connect (OSTI)

    Cao, Chunshe; Hu, Jianli; Li, Shari; Wilcox, Wayne A.; Wang, Yong

    2009-02-28

    A microchannel catalytic reactor with improved heat and mass transport has been used for Fischer-Tropsch synthesis to produce fuels and chemicals. This type of novel reactor takes advantages of highly active and selective catalysts with increased site density so that the FT synthesis process can be intensified. It was demonstrated that this microchannel reactor based process can be carried out at gas hourly space velocity (GHSV) as high as 60,000 hr-1 to achieve greater than 60% of one-pass CO conversion while maintaining low methane selectivity (<10%) and high chain growth probability(>0.9). Such superior FT synthesis performance has not ever been reported in the prior open literatures. The overall productivity to heavy hydrocarbons has been significantly improved over the conventional reactor technology. In this study, performance data were obtained in a wide range of pressure (10atm-35atm) and hydrogen to carbon monoxide ratio (1-2.5). The catalytic system was characterized by BET, scanning electron microcopy (SEM), transmission electron microcopy(TEM), and H2 chemisorption. A three dimensional pseudo-homogeneous model were used to simulate temperature profiles in the exothermic reaction system in order to optimize the reactor design and intensify the synthesis process. Intraparticle non-isothermal characteristics are also analyzed for the FT synthesis catalyst.

  10. Correlating Spatial Heterogeneities in Porosity and Permeability with Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poisoning within an Individual Catalyst Particle using X-ray Microscopy | Stanford Synchrotron Radiation Lightsource Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference Room 137-226 Presented by Darius Morris, Stanford Synchrotron Radiation Lightsource Fluid catalytic cracking (FCC) is a refining process for converting large and/or heavy

  11. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    Energy Science and Technology Software Center (OSTI)

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  12. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  13. Transient Wellbore Fluid Flow Model

    Energy Science and Technology Software Center (OSTI)

    1982-04-06

    WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less

  14. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  15. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    SciTech Connect (OSTI)

    Agblevor, Foster; Petkovic, Lucia; Bennion, Edward; Quinn, Jason; Moses, John; Newby, Deborah; Ginosar, Daniel

    2014-03-01

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalytic pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.

  16. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Havstad, Mark A.

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  17. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as

    Broader source: Energy.gov (indexed) [DOE]

    Reductants | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_marshall.pdf More Documents & Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis

  18. Fabrication of fuel cell electrodes and other catalytic structures

    DOE Patents [OSTI]

    Smith, J.L.

    1987-02-11

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  19. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  20. Selective catalytic synthesis of functional allenes, cyclopentenones and oxolenes

    SciTech Connect (OSTI)

    Darcel, C.; Bruneau, C.; Dixneuf, P.H.

    1995-12-31

    The most powerful method to produce allene derivatives consists in the selective activation of prop-2-yn-1-carbonates by a Pd(0) catalyst, via allenyl palladium(II) intermediate. This strategy has been used for the selective catalytic synthesis of derivatives. The alkynyl cyclic carbonates have the advantage to be readily prepared directly from CO{sub 2} and contain both propargylic and homopropargylic functionalities. Their activation, under mild conditions, by palladium(0) catalysts, associated with the suitable phosphine ligand, can be oriented to selectively prepare either alkynyl {alpha}-hydroxy allenes, 5-hydroxy alka-2,3-dienoates, functional cyclopentenones or oxolenes via cross coupling, mono-carbonylation, dicarbonylation and Heck-Type reactions respectively.

  1. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  2. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  3. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect (OSTI)

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  4. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  5. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  6. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  7. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  8. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  9. Apparatus for unloading pressurized fluid

    DOE Patents [OSTI]

    Rehberger, K.M.

    1994-01-04

    An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

  10. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect (OSTI)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  11. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  12. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  13. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P.; Purohit, Jwalit J.; Fazio, John M.

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  14. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, Terry D.

    1997-01-01

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  15. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  16. Fluid control structures in microfluidic devices

    DOE Patents [OSTI]

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  17. Value for controlling flow of cryogenic fluid

    DOE Patents [OSTI]

    Knapp, Philip A.

    1996-01-01

    A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

  18. Vibratory pumping of a free fluid stream

    DOE Patents [OSTI]

    Merrigan, Michael A.; Woloshun, Keith A.

    1990-01-01

    A vibratory fluid pump having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments.

  19. Universal Fluid Droplet Ejector - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Universal Fluid Droplet Ejector SLAC National Accelerator Laboratory Contact SLAC About This Technology Technology Marketing SummaryStanford researchers have developed a patented, economical fluid droplet ejector that is capable of varying the vertical and horizontal inter-droplet spacing of a two-dimensional droplet array in real time. This universal design is compatible for a wide variety of fluids because it

  20. Vibratory pumping of a free fluid stream

    DOE Patents [OSTI]

    Merrigan, M.A.; Woloshun, K.A.

    1990-11-13

    A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.

  1. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  2. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  3. Pressurized-fluid-operated engine

    SciTech Connect (OSTI)

    Holleyman, J.E.

    1990-01-30

    This patent describes a pressurized-fluid-operated reciprocating engine for providing output power by use of a pressurized gas that expands within the engine without combustion. It comprises: an engine block having a plurality of cylinders within which respective pistons are reciprocatable to provide a rotary power output; gas inlet means connected with the engine block for introducing a pressurized gas into the respective cylinders in a predetermined, timed relationship to provide a smooth power output from the engine; gas outlet means connected with the engine block for conveying exhaust gas from the respective cylinders after the gas expanded to move the pistons within the cylinders; and recirculation means extending between the inlet means and the outlet means for recirculation a predetermined quantity of exhaust gas. The recirculation means including ejector means for drawing exhaust gas into the recirculation means.

  4. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    SciTech Connect (OSTI)

    Koopman, D.

    2009-07-10

    Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence of this complex during Savannah River Site (SRS) waste processing does not exist. Ruthenium does not appear to become active for hydrogen generation until nitrite destruction is nearly complete (perhaps less nitrite than Ru in the system). Catalytic activity of Ru during nitrite destruction is significantly lower than that of either Rh or Pd. Ru appears to start activating as Rh is deactivating from its maximum catalytic activity for hydrogen generation. The slow activation of the Ru, as inferred from the slow rate of increase in hydrogen generation that occurs after initiation, may imply that some species (perhaps Ru itself) has some bound nitrite on it. Ru, rather than Rh, is primarily responsible for the hydrogen generation in the SME cycle when the hydrogen levels are high enough to be noteworthy. Mercury has a role in catalytic hydrogen generation. Two potentially distinct roles have been identified. The most dramatic effect of Hg on hydrogen generation occurs between runs with and without any Hg. When a small amount of Hg is present, it has a major inhibiting effect on Rh-catalyzed H{sub 2} generation. The Rh-Ru-Hg matrix study showed that increasing mercury from 0.5 to 2.5 wt% in the SRAT receipt total solids did not improve the inhibiting effect significantly. The next most readily identified role for Hg is the impact it has on accelerating NO production from nitrite ion. This reaction shifts the time that the ideal concentration of nitrite relative to Rh occurs, and consequently causes the most active nitro-Rh species to form sooner. The potential consequences of this shift in timing are expected to be a function of other factors such as amount of excess acid, Rh concentration, etc. Graphical data from the Rh-Ru-Hg study suggested that Hg might also be responsible for partially inhibiting Ru-catalysis initially, but that the inhibition was not sustained through the SRAT and SME cycles. Continued processing led to a subsequent increase in hydrogen generation that was often abrupt and that frequently more than doubled the hydrogen generation rate. This phenomenon may have been a function of the extent of Hg stripping versus the initial Ru concentration in these tests. Palladium is an active catalyst, and activates during (or prior to) nitrite destruction to promote N{sub 2}O formation followed by a very small amount of hydrogen. Pd then appears to deactivate. Data to date indicate that Pd should not be a species of primary concern relative to Rh and Ru for hydrogen generation. Pd was a very mild catalyst for hydrogen generation compared to Rh and Ru in the simulated waste system. Pd was comparable to Rh in enhancing N{sub 2}O production when present at equal concentration. Pd, however, is almost always present at less than a quarter of the Rh concentration in S

  5. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  6. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surfaces. In Thrust 3, we are determining how the unique properities of interfacial fluids couple with reactive surface sites to control reaction pathways, selectivity, and...

  7. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Info (EERE)

    DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  8. Fluid casting of particle-based articles

    DOE Patents [OSTI]

    Menchhofer, P.

    1995-03-28

    A method is disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product. 1 figure.

  9. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  10. Fluid casting of particle-based articles

    DOE Patents [OSTI]

    Menchhofer, Paul

    1995-01-01

    A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

  11. Heat Transfer Fluids Containing Nanoparticles | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Fluids Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal ...

  12. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  13. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.

    2008-03-18

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  14. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2005-04-05

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  15. Mesoporous silica nanoparticles for biomedical and catalytical applications

    SciTech Connect (OSTI)

    Sun, Xiaoxing

    2011-05-15

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an alternative of the traditional Friedel-Crafts reaction. And we will compare the turnover numbers of MSN supported material with homogenous catalyst to evaluate the catalytical efficiency of our material.

  16. Fluid dynamic effects on precision cleaning with supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  17. System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port

    DOE Patents [OSTI]

    Sullivan, Scott C; Fansler, Douglas

    2014-10-14

    A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

  18. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  19. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  20. Review - basic research needs in fluid mechanics

    SciTech Connect (OSTI)

    Jones, O.C. Jr.; Kreith, F.; White, F.M.

    1981-12-01

    A small segment of the engineering community was surveyed to obtain their judgement regarding the long-range needs for basic research in fluid mechanics. It is the purpose of this paper to provide a summary of a more detailed report, which identifies basic research needed in fluid mechanics. 12 refs.

  1. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect (OSTI)

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  2. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    SciTech Connect (OSTI)

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  3. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect (OSTI)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  4. Pilot-plant automation for catalytic hydrotreating of heavy residua

    SciTech Connect (OSTI)

    Akimoto, O.; Iwamoto, Y.; Kodama, S.; Takeuchi, C.

    1983-08-01

    The research and development center of Chiyoda Chemical Engineering and Construction Co. has been investigating the catalytic hydrotreating of heavy residua via pilot plant technology. Chiyoda's 52 microreactors. bench-scale test units and pilot plants are each used depending on the purpose of the process development for heavy oil upgrading. The microreactors are effective for catalyst screening. Heavier fractions such as asphaltene and sludge materials often disturbed steady state operation. Many unique devices for the test units and improvement of operation procedures make extended operation easy as well as increasing reliability. The computerized data acquisition and data filing systems minimize the work not only for operators but for all research personnel. Currently, about 40 pilot plant units are continuously running while the others are in preparation. Fully automated operation requires only three for data checking at night. In the daytime, seven operators take care of feed supply, product removal and condition changes. For start-up and shut-down, one operator can handle three microreactos, but only one bench-scale unit or pilot plant. Planning is underway for an improved start-up system for the pilot plants using personal computers. This system automatically sets feed rate and raises reactor temperature. (JMT)

  5. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    SciTech Connect (OSTI)

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called in vitro selection to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specific for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.

  6. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  7. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    SciTech Connect (OSTI)

    Sherly, K. B.; Rakesh, K.

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}?8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  8. Extreme pressure fluid sample transfer pump

    DOE Patents [OSTI]

    Halverson, Justin E.; Bowman, Wilfred W.

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  9. Systems, compositions, and methods for fluid purification

    DOE Patents [OSTI]

    Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik

    2015-12-22

    Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.

  10. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis; Renner, Michael John

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  11. Fluid processing device and method

    DOE Patents [OSTI]

    Whyatt, Greg A. (West Richland, WA); Davis, James M. (Richland, WA)

    2006-02-07

    A fluid processing unit having first and second interleaved flow paths in a cross flow configuration is disclosed. The first flow paths are substantially longer than the second flow paths such that the pressure drop in the second flow paths can be maintained at a relatively low level and temperature variations across the second flow paths are reduced. One or more of the flow paths can be microchannels. When used as a vaporizer and/or superheater, the longer first flow paths include an upstream liquid flow portion and a downstream vapor flow portion of enlarged cross sectional area. A substantial pressure drop is maintained through the upstream liquid flow portion for which one or more tortuous flow channels can be utilized. The unit is a thin panel, having a width substantially less its length or height, and is manufactured together with other thin units in a bonded stack of thin metal sheets. The individual units are then separated from the stack after bonding.

  12. Catalytic and reactive polypeptides and methods for their preparation and use

    DOE Patents [OSTI]

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  13. Impact of Biodiesel-based Na on the Selective Catalytic Reduction...

    Office of Scientific and Technical Information (OSTI)

    of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by NH3 Over Cu-zeolite Catalysts Citation Details In-Document Search Title: Impact of Biodiesel-based Na on the ...

  14. A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites for Low-Temperature SCR of NOx Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research ...

  15. Process for catalytic cracking of heavy hydrocarbon feed to lighter products

    SciTech Connect (OSTI)

    Herbst, J.A.; Owen, H.; Schipper, P.H.

    1990-05-29

    This patent describes a process for catalytic cracking of a feed of hydrocarbons boiling in the gas oil and heavier boiling range to lighter products by contacting the feed at catalytic cracking conditions and catalytically cracking the feed to lighter products with a cracking catalyst. It comprises: a mixture of separate particles of: a bulk conversion cracking catalyst containing at least one component with an equivalent pore size of at least about 7 angstroms in a matrix, the bulk conversion cracking catalyst having fluidization properties which permit use in a fluidized or moving bed catalytic cracking reactor; a light paraffin upgrading catalyst comprising at least one zeolite having a constraint index of 1--12 and paraffin cracking/isomerization activity; and, a light paraffin upgrading catalyst comprising at least one zeolite having a constraint index of 1--12 and paraffin aromatization activity; and wherein the upgrading catalysts have substantially the same fluidization properties as the bulk conversion cracking catalyst.

  16. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  17. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  18. Incorporation of Catalytic Compounds in the Porosity of SiC Wall...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Porosity of SiC Wall Flow Filters - 4 Way Catalyst and DeNOx Application examples Incorporation of Catalytic Compounds in the Porosity of SiC Wall Flow Filters - 4 Way ...

  19. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The in-situ catalytic fast pyrolysis pathway involves rapidly heating biomass with a catalyst to create bio-oils, which can be used to produce biofuel blendstocks. PDF icon ...

  20. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  1. Inverted fractionation apparatus and use in a heavy oil catalytic cracking

    Office of Scientific and Technical Information (OSTI)

    process (Patent) | SciTech Connect Inverted fractionation apparatus and use in a heavy oil catalytic cracking process Citation Details In-Document Search Title: Inverted fractionation apparatus and use in a heavy oil catalytic cracking process This patent describes a process for fractionating a superheated, cracked vapor stream having a temperature above about 750{degrees} F. and comprising a full boiling range cracked product stream including normally gaseous hydrocarbons, at least normally

  2. Catalytic Conversion of Biomass-derived Feedstock (HMF) into Value Added

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemicals and Biofuels - Energy Innovation Portal Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock (HMF) into Value Added Chemicals and Biofuels Colorado State University Contact CSU About This Technology Technology Marketing Summary A catalytic reaction system by which the biomass-derived feedstock chemical HMF can be upgraded into a higher carbon content

  3. In situ XAS Characterization of Catalytic Nano-Materials with Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Fuel Cells and Batteries | Stanford Synchrotron Radiation Lightsource XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying Jia, Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA The development of novel electrode materials is hindered by the lack of fundamental understanding of the precise structural effects on the catalytic activity and

  4. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Precision Combustion, Inc. will develop a unique, fuel-flexible Rich Catalytic Lean-Burn (RCL) injector with catalytic combustor capable of enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels. This will broaden the range of opportunity fuels that can be utilized to include low- and ultralow-Btu gases, such as digester and blast furnace gases, and fuels containing reactive species, such as refinery, wellhead, and industrial byproduct gases.

  5. Heat exchanger with intermediate evaporating and condensing fluid

    DOE Patents [OSTI]

    Fraas, Arthur P.

    1978-01-01

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes.

  6. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOE Patents [OSTI]

    Comolli, Alfred G.; Lee, Lap-Keung

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  7. Reducing cold-start emissions by catalytic converter thermal management

    SciTech Connect (OSTI)

    Burch, S D; Potter, T F; Keyser, M A; Brady, M J; Michaels, K F

    1995-01-01

    Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m{sup 2}K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146{degrees}C after the 23-hour cold soak at 27{degrees}C. Compared to the same converter at ambient conditions, overall emissions of CO and HC were reduced by 52 % and 29 %, to 0.27 and 0.037 g/mile, respectively. The maximum converter temperature during the FTP cycle was 720{degrees}C. This limited testing was performed with a nearly-fresh palladium-only catalyst, but demonstrates the potential of this vacuum insulation approach for emissions reduction and thermal control. Further testing is ongoing. An initial assessment of several production issues is made, including high-volume fabrication challenges, durability, and cost.

  8. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  9. Fluid properties determine flow line blockage potential

    SciTech Connect (OSTI)

    Hunt, A.

    1996-07-15

    A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.

  10. Apparatus And Method For Fluid Analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.

    2003-05-13

    The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.

  11. Apparatus and method for fluid analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.

    2004-11-02

    The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.

  12. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  13. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  14. Hamiltonian description of the ideal fluid

    SciTech Connect (OSTI)

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.

  15. Geothermal energy production with supercritical fluids

    DOE Patents [OSTI]

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  16. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  17. Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis 1) To determine if analyses of fluid propene and propane species in fluid inclusions can be used to interpret fluid type, history, or process....

  18. Method and apparatus for fluid dispersion

    DOE Patents [OSTI]

    Stone, Howard A.; Anna, Shelley L.; Bontoux, Nathalie; Link, Darren Roy; Weitz, David A.; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow R.; Whitesides, George M.

    2012-12-25

    A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.

  19. Method and apparatus for fluid dispersion

    DOE Patents [OSTI]

    Stone, Howard A; Anna, Shelley L; Bontoux, Nathalie; Link, Darren Roy; Weitz, David A; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow R; Whitesides, George M

    2015-03-24

    A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.

  20. Method and apparatus for fluid dispersion

    DOE Patents [OSTI]

    Stone, Howard A.; Anna, Shelley L.; Bontoux, Nathalie; Link, Darren R.; Weitz, David A.; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow; Whitesides, George M.

    2010-05-04

    A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.

  1. Reactive flash volatilization of fluid fuels

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.

    2013-01-08

    The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.

  2. On the fluid mechanics of fires

    SciTech Connect (OSTI)

    TIESZEN,SHELDON R.

    2000-02-29

    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  3. Clay-based geothermal drilling fluids

    SciTech Connect (OSTI)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  4. Controlling Subsurface Fractures and Fluid Flow: A Basic Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling ...

  5. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this ...

  6. Modeling fluid flow in deformation bands with stabilized localization...

    Office of Scientific and Technical Information (OSTI)

    Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...

  7. Category:Fluid Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    Fluid Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Fluid Lab Analysis page? For detailed information on exploration...

  8. Volatiles in hydrothermal fluids- A mass spectrometric study...

    Open Energy Info (EERE)

    Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 PDF icon cfdroadmap.pdf More Documents & Publications 3-D Combustion ...

  10. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen...

    Office of Scientific and Technical Information (OSTI)

    Fluid Phase Chemical Hydrogen Storage for Automotive Applications Citation Details In-Document Search Title: Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen ...

  11. Characterization of fluid distributions in porous media by NMR...

    Office of Scientific and Technical Information (OSTI)

    Characterization of fluid distributions in porous media by NMR techniques Citation Details In-Document Search Title: Characterization of fluid distributions in porous media by NMR ...

  12. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced ...

  13. Fracture Network and Fluid Flow Imaging for EGS Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from ...

  14. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS ...

  15. International Collaborations on Fluid Flows in Fractured Crystalline...

    Office of Scientific and Technical Information (OSTI)

    International Collaborations on Fluid Flows in Fractured Crystalline Rocks: FY14 Progress Report. Citation Details In-Document Search Title: International Collaborations on Fluid ...

  16. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  17. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal ... Electric Power Generation from Coproduced Fluids from Oil and Gas Wells 3 | US DOE ...

  18. Property:FluidMechanicsMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Property Name FluidMechanicsMeasurement Property Type String Description MHK Fluid Mechanics Measurement Categories Used in FormTemplate MHKSensor Allows Values Differential...

  19. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar ...

  20. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  1. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation Advanced ...

  2. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based...

    Office of Scientific and Technical Information (OSTI)

    Conference: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ... Title: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ...

  3. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly 2005 Diesel Engine ...

  4. Fluid driven torsional dipole seismic source

    DOE Patents [OSTI]

    Hardee, Harry C.

    1991-01-01

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  5. Computational fluid dynamics improves liner cementing operation

    SciTech Connect (OSTI)

    Barton, N.A.; Archer, G.L. ); Seymour, D.A. )

    1994-09-26

    The use of computational fluid dynamics (CFD), an analytical tool for studying fluid mechanics, helped plan the successful cementing of a critical liner in a North Sea extended reach well. The results from CFD analysis increased the confidence in the primary cementing of the liner. CFD modeling was used to quantify the effects of increasing the displacement rate and of rotating the liner on the mud flow distribution in the annulus around the liner.

  6. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  7. Water as a thermoacoustic working fluid

    SciTech Connect (OSTI)

    Swift, G.W.

    1988-01-01

    This short report, addressed only to the thermoacoustic cognoscenti, discusses thermodynamic and transport properties of water with emphasis on water's virtues as a thermoacoustic working fluid. Short-stack-approximation calculations are presented, showing that water is a good working fluid. A very rough design for a sound source using water is also presented as a starting point for discussing the merits and difficulties of this technology. 4 figs.

  8. Collapsible sheath fluid reservoirs for flow cytometers

    DOE Patents [OSTI]

    Mark, Graham A. (Los Alamos, NM)

    2000-01-01

    The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.

  9. computational-fluid-dynamics-student-thesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid Dynamics Student Thesis Abstract DEVELOPMENT OF A THREE-DIMENSIONAL SCOURING METHODOLOGY AND ITS IMPLEMENTATION IN A COMMERCIAL CFD CODE FOR OPEN CHANNEL FLOW OVER A FLOODED BRIDGE DECK The Computational Fluid Dynamics staff at TRACC is supporting three students from Northern Illinois University who are working for a Masters degree. The CFD staff is directing the thesis research and working with them on three projects: (1) a three-dimensional scour computation methodology for pressure flow

  10. Fluid Submersible Sensing Device - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Fluid Submersible Sensing Device Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication WO2010151470A1.pdf (476 KB) Technology Marketing Summary The present invention relates to a fluid submersible sensing device and, more particularly, to such a device having sensing structure provided within a

  11. Stirling engine with air working fluid

    DOE Patents [OSTI]

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  12. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOE Patents [OSTI]

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  13. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  14. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  15. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    DOE Patents [OSTI]

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  16. Pump for molten metal or other fluid

    DOE Patents [OSTI]

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  17. High gliding fluid power generation system with fluid component separation and multiple condensers

    SciTech Connect (OSTI)

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  18. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  19. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  20. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  1. Land subsidence caused by fluid removal

    SciTech Connect (OSTI)

    Allen, D.R.

    1988-01-01

    Subsidence caused by the removal of both fluids and solids is a world-wide environmental problem. The extraction of coal, natural gas, oil, fresh water, brine, etc, have all caused subsidence at various times and locations. Although subsidence related to oil and geothermal field operations is relatively rare, it has caused severe problems in the past and currently. In porous media, the surface is held stable by underground support from the matrix rocks and the pore fluids. Upon the production of reservoir fluids, pore fluid pressure drops and the portion of geostatic loading borne by the pore fluids is transferred to rock matrix. This increase in load causes both elastic and inelastic deformation of the skeletal structure of the reservoir being produced. Pore volume is lost, the reservoir decreases in the vertical dimension, and subsidence might occur at the surface. As soon as subsidence is detected, most observers try to estimate the maximum that might occur. This prediction has proved to be a very difficult proposition owing to geologic complexities and unknown petrophysical data. Seven examples of subsidence in oil and geothermal operations show many similarities, such as high porosity, large fluid removal, limited arching in the structure, large width to depth ratios, usually poor cementation, grabens and normal faulting, and coincidence of time and place of fluid removal and subsidence. None of these are critical, but the result in a field that has most of these properties often is surface subsidence. Reservoir compaction in situ has been measured by two methods: (1) casing joint length changes and (2) the location of radioactive bullets shot into the formation. Casing joint measurements, although having accuracy limitations, usually furnish data as to the degree of compaction without previous planning.

  2. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  3. Ultrasonic fluid flow measurement method and apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

  4. Ultrasonic fluid flow measurement method and apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-10-12

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

  5. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect (OSTI)

    Schwartz, Viviane [ORNL; Baskova, Svetlana [ORNL; Armstrong, Timothy R. [ORNL

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  6. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect (OSTI)

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  7. Drilling Fluids Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Drilling Fluids Market Analysis Home There are currently no posts in this category. Syndicate content...

  8. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  9. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys

    SciTech Connect (OSTI)

    Shan, Shiyao; Petkov, Valeri; Yang, Lefu; Luo, Jin; Joseph, Pharrah; Mayzel, Dina; Prasai, Binay; Wang, Lingyan; Engelhard, Mark H.; Zhong, Chuan-Jian

    2014-05-05

    Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly-active and stable catalysts. However the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium-nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable a maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.

  10. Short residence time coal liquefaction process including catalytic hydrogenation

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

  11. Short residence time coal liquefaction process including catalytic hydrogenation

    DOE Patents [OSTI]

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

  12. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammels, Anthony F.

    2000-01-01

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  13. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  14. The Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Peterson, Keith L.; Muzatko, Danielle S.; Alderson, Eric V.; Hart, Todd R.; Neuenschwander, Gary G.

    2004-03-25

    Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to value-added chemical products. Trace components include inorganic elements such as alkali metals and alkaline earths, phosphorus or sulfur, aluminum or silicon, chloride, or transition metals. Protein components in biomass feedstocks can lead to formation of peptide fractions (from hydrolysis) or ammonium ions (from more severe breakdown) both of which might interfere with catalysis. The effects of these components on catalytic hydrogenation processing has been studied in batch reactor processing tests

  15. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation Citation Details In-Document Search This content will become publicly available on September 21, 2016 Title: Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiOx monolayer film

  16. Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) Print Text Size: A A A FeedbackShare Page C3Bio Header Director Maureen McCann Lead Institution Purdue University Year Established 2009 Mission To

  17. Catalytic Templating Approaches for Three-Dimensional Hollow Carbon/Graphene Oxide Nano-Architectures

    SciTech Connect (OSTI)

    Moon, Gun-Hee; Shin, Yongsoon; Choi, Daiwon; Arey, Bruce W.; Exarhos, Gregory J.; Wang, Chong M.; Choi, Wonyong; Liu, Jun

    2013-01-01

    We report a catalytic templating method to synthesize well-controlled, three-dimensional (3D) nano-architectures with graphene oxide sheets. The 3D composites are prepared via self-assembly of carbon, GO, and spherical alumina-coated silica (ACS) templates during a catalytic reaction porcess. By changing the GO content, we can systematically tune the architecture from layered composites to 3D hollow structures to microporous materials. The composites show a synergistic effect with significantly superior properties than either pure carbon or r-GO prepared with a significant enhancement to its capacitance at high current density.

  18. ,"Catalytic Reforming Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","2/2016","1/15/2010" ,"Release Date:","4/29/2016" ,"Next Release

  19. The Catalytic Subunit of the SWR1 Remodeler Is a Histone Chaperone for the

    Office of Scientific and Technical Information (OSTI)

    H2A.Z-H2B Dimer (Journal Article) | SciTech Connect The Catalytic Subunit of the SWR1 Remodeler Is a Histone Chaperone for the H2A.Z-H2B Dimer Citation Details In-Document Search Title: The Catalytic Subunit of the SWR1 Remodeler Is a Histone Chaperone for the H2A.Z-H2B Dimer Authors: Hong, Jingjun ; Feng, Hanqiao ; Wang, Feng ; Ranjan, Anand ; Chen, Jianhong ; Jiang, Jiansheng ; Ghirlando, Rodolfo ; Xiao, T. Sam ; Wu, Carl ; Bai, Yawen [1] ; HHMI) [2] + Show Author Affiliations (NIH) (

  20. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOE Patents [OSTI]

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.