National Library of Energy BETA

Sample records for favar extended model

  1. Extended optical model for fission

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  2. Top decays in extended models

    SciTech Connect (OSTI)

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  3. Fidelity study of superconductivity in extended Hubbard models...

    Office of Scientific and Technical Information (OSTI)

    Fidelity study of superconductivity in extended Hubbard models Title: Fidelity study of superconductivity in extended Hubbard models Authors: Plonka, N. ; Jia, C. J. ; Wang, Y. ; ...

  4. Fidelity study of superconductivity in extended Hubbard models...

    Office of Scientific and Technical Information (OSTI)

    Fidelity study of superconductivity in extended Hubbard models Citation Details In-Document Search Title: Fidelity study of superconductivity in extended Hubbard models Authors: ...

  5. Cosmological constraints on extended Galileon models

    SciTech Connect (OSTI)

    Felice, Antonio De; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp

    2012-03-01

    The extended Galileon models possess tracker solutions with de Sitter attractors along which the dark energy equation of state is constant during the matter-dominated epoch, i.e. w{sub DE} = ?1?s, where s is a positive constant. Even with this phantom equation of state there are viable parameter spaces in which the ghosts and Laplacian instabilities are absent. Using the observational data of the supernovae type Ia, the cosmic microwave background (CMB), and baryon acoustic oscillations, we place constraints on the tracker solutions at the background level and find that the parameter s is constrained to be s = 0.034{sub ?0.034}{sup +0.327} (95 % CL) in the flat Universe. In order to break the degeneracy between the models we also study the evolution of cosmological density perturbations relevant to the large-scale structure (LSS) and the Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the model parameters, the LSS and the ISW effect is either positively or negatively correlated. It is then possible to constrain viable parameter spaces further from the observational data of the ISW-LSS cross-correlation as well as from the matter power spectrum.

  6. Extended model for Richtmyer-Meshkov mix

    SciTech Connect (OSTI)

    Mikaelian, K O

    2009-11-18

    We examine four Richtmyer-Meshkov (RM) experiments on shock-generated turbulent mix and find them to be in good agreement with our earlier simple model in which the growth rate h of the mixing layer following a shock or reshock is constant and given by 2{alpha}A{Delta}v, independent of initial conditions h{sub 0}. Here A is the Atwood number ({rho}{sub B}-{rho}{sub A})/({rho}{sub B} + {rho}{sub A}), {rho}{sub A,B} are the densities of the two fluids, {Delta}V is the jump in velocity induced by the shock or reshock, and {alpha} is the constant measured in Rayleigh-Taylor (RT) experiments: {alpha}{sup bubble} {approx} 0.05-0.07, {alpha}{sup spike} {approx} (1.8-2.5){alpha}{sup bubble} for A {approx} 0.7-1.0. In the extended model the growth rate beings to day after a time t*, when h = h*, slowing down from h = h{sub 0} + 2{alpha}A{Delta}vt to h {approx} t{sup {theta}} behavior, with {theta}{sup bubble} {approx} 0.25 and {theta}{sup spike} {approx} 0.36 for A {approx} 0.7. They ascribe this change-over to loss of memory of the direction of the shock or reshock, signaling transition from highly directional to isotropic turbulence. In the simplest extension of the model h*/h{sub 0} is independent of {Delta}v and depends only on A. They find that h*/h{sub 0} {approx} 2.5-3.5 for A {approx} 0.7-1.0.

  7. Rare top quark decays in extended models

    SciTech Connect (OSTI)

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2006-09-25

    Flavor changing neutral currents (FCNC) decays t {yields} H0 + c, t {yields} Z + c, and H0 {yields} t + c-bar are discussed in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions where FCNC decays may take place at tree-level and are only suppressed by the mixing between ordinary top and charm quarks, which is poorly constraint by current experimental values. The non-manifest case is also briefly discussed.

  8. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    SciTech Connect (OSTI)

    Borghero, F.; Demontis, F.; Pennisi, S.

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  9. Modeling Cyber Conflicts Using an Extended Petri Net Formalism

    SciTech Connect (OSTI)

    Zakrzewska, Anita N; Ferragut, Erik M

    2011-01-01

    When threatened by automated attacks, critical systems that require human-controlled responses have difficulty making optimal responses and adapting protections in real- time and may therefore be overwhelmed. Consequently, experts have called for the development of automatic real-time reaction capabilities. However, a technical gap exists in the modeling and analysis of cyber conflicts to automatically understand the repercussions of responses. There is a need for modeling cyber assets that accounts for concurrent behavior, incomplete information, and payoff functions. Furthermore, we address this need by extending the Petri net formalism to allow real-time cyber conflicts to be modeled in a way that is expressive and concise. This formalism includes transitions controlled by players as well as firing rates attached to transitions. This allows us to model both player actions and factors that are beyond the control of players in real-time. We show that our formalism is able to represent situational aware- ness, concurrent actions, incomplete information and objective functions. These factors make it well-suited to modeling cyber conflicts in a way that allows for useful analysis. MITRE has compiled the Common Attack Pattern Enumera- tion and Classification (CAPEC), an extensive list of cyber attacks at various levels of abstraction. CAPEC includes factors such as attack prerequisites, possible countermeasures, and attack goals. These elements are vital to understanding cyber attacks and to generating the corresponding real-time responses. We demonstrate that the formalism can be used to extract precise models of cyber attacks from CAPEC. Several case studies show that our Petri net formalism is more expressive than other models, such as attack graphs, for modeling cyber conflicts and that it is amenable to exploring cyber strategies.

  10. Dark matter in B-L extended MSSM models

    SciTech Connect (OSTI)

    Khalil, S.; Okada, H.

    2009-04-15

    We analyze the dark matter problem in the context of the supersymmetric U(1){sub B-L} model. In this model, the lightest neutralino can be the B-L gaugino Z-tilde{sub B-L} or the extra Higgsinos {chi}-tilde{sub 1,2} dominated. We compute the thermal relic abundance of these particles and show that, unlike the lightest neutralino in the MSSM, they can account for the observed relic abundance with no conflict with other phenomenological constraints. The prospects for their direct detection, if they are part of our galactic halo, are also discussed.

  11. Hyper-Kaehler sigma models in extended superspace

    SciTech Connect (OSTI)

    Ketov, S.V.; Lokhvitskii, B.B.; Tyutin, I.V.

    1987-11-01

    A self-interaction is constructed for generalized tensor multiplets and the relaxed matter hypermultiplet in N = 2, d = 4 superspace. An explicit formulation is given for a large class of new two-dimensional N = 4 sigma models with hyper-Kaehler metric, and the canceling of all ultraviolet divergences in all orders of perturbation theory is proved for them.

  12. A parametric study of the drift-tearing mode using an extended-magnetohydrodynamic model

    SciTech Connect (OSTI)

    King, Jacob R.; Kruger, S. E.

    2014-10-24

    The linear, collisional, constant-ψ drift-tearing mode is analyzed for different regimes of the plasma-β, ion-skin-depth parameter space with an unreduced, extended-magnetohydrodynamic model. Here, new dispersion relations are found at moderate plasma β and previous drift-tearing results are classified as applicable at small plasma β.

  13. A parametric study of the drift-tearing mode using an extended-magnetohydrodynamic model

    SciTech Connect (OSTI)

    King, J. R.; Kruger, S. E.

    2014-10-15

    The linear, collisional, constant-ψ drift-tearing mode is analyzed for different regimes of the plasma-β, ion-skin-depth parameter space with an unreduced, extended-magnetohydrodynamic model. New dispersion relations are found at moderate plasma β and previous drift-tearing results are classified as applicable at small plasma β.

  14. Extended micro hot fusion model for burst activity in deuterated solids

    SciTech Connect (OSTI)

    Kuehne, R.W.; Sioda, R.E.

    1995-03-01

    An extended micro hot fusion scenario attempts to explain the burst processes of cold fusion reports and unsuccessful experiments. A heuristic model requires only 10 m{sup 3} of palladium deuteride to release a power of 1 GW for a long time. This might facilitate future commercial use of cold fusion. 40 refs.

  15. Comparison of the extended linear {sigma} model and chiral perturbation theory

    SciTech Connect (OSTI)

    Alvarez, W.P.; Kubodera, K.; Myhrer, F.

    2005-09-01

    The pion-nucleon-scattering amplitudes are calculated in tree approximation with the use of the extended linear sigma model (ELSM) as well as heavy-baryon chiral perturbation theory (HB{chi}PT), and the nonrelativistic forms of the ELSM results are compared with those of HB{chi}PT. We find that the amplitudes obtained in ELSM do not agree with those derived from the more fundamental effective approach, HB{chi}PT.

  16. Extended Glauber Model of Antiproton-Nucleus Annihilation for All Energies and Mass Numbers

    SciTech Connect (OSTI)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2014-01-01

    Previous analytical formulas in the Glauber model for high-energy nucleus-nucleus collisions developed by Wong are utilized and extended to study Antiproton-nucleus annihilations for both high and low energies, after taking into account the effects of Coulomb and nuclear interactions, and the change of the antiproton momentum inside a nucleus. The extended analytical formulas capture the main features of the experimental antiproton-nucleus annihilation cross sections for all energies and mass numbers. At high antiproton energies, they exhibit the granular property for the lightest nuclei and the black-disk limit for the heavy nuclei. At low antiproton energies, they display the effect of the antiproton momentum increase due to the nuclear interaction for the light nuclei, and the effect of the magnification due to the attractive Coulomb interaction for the heavy nuclei.

  17. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    SciTech Connect (OSTI)

    Hamlin, Nathaniel D.; Seyler, Charles E.

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohms law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  18. Supersolid and solitonic phases in the one-dimensional extended Bose-Hubbard model

    SciTech Connect (OSTI)

    Mishra, Tapan; Pai, Ramesh V.; Ramanan, S.; Luthra, Meetu Sethi; Das, B. P.

    2009-10-15

    We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.

  19. Dissecting jets and missing energy searches using $n$-body extended simplified models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cohen, Timothy; Dolan, Matthew J.; El Hedri, Sonia; Hirschauer, James; Tran, Nhan; Whitbeck, Andrew

    2016-08-04

    Simplified Models are a useful way to characterize new physics scenarios for the LHC. Particle decays are often represented using non-renormalizable operators that involve the minimal number of fields required by symmetries. Generalizing to a wider class of decay operators allows one to model a variety of final states. This approach, which we dub the $n$-body extension of Simplified Models, provides a unifying treatment of the signal phase space resulting from a variety of signals. In this paper, we present the first application of this framework in the context of multijet plus missing energy searches. The main result of thismore » work is a global performance study with the goal of identifying which set of observables yields the best discriminating power against the largest Standard Model backgrounds for a wide range of signal jet multiplicities. Our analysis compares combinations of one, two and three variables, placing emphasis on the enhanced sensitivity gain resulting from non-trivial correlations. Utilizing boosted decision trees, we compare and classify the performance of missing energy, energy scale and energy structure observables. We demonstrate that including an observable from each of these three classes is required to achieve optimal performance. In conclusion, this work additionally serves to establish the utility of $n$-body extended Simplified Models as a diagnostic for unpacking the relative merits of different search strategies, thereby motivating their application to new physics signatures beyond jets and missing energy.« less

  20. Optical properties of MX chain materials: An extended Peierls-Hubbard model

    SciTech Connect (OSTI)

    Bishop, A.R.; Batistic, I.; Gammel, J.T.; Saxena, A.

    1991-01-01

    We describe theoretical modeling of both pure (MX) and mixed-halide (MX{sub x}X{prime}{sub 1-x}) halogen (X)-bridged transition metal (M) linear chain complexes in terms of an extended Peierls-Hubbard, tight-binding Hamiltonian with 3/4-filling of two-bands. Both inter- and intra-site electron-phonon coupling are included. Electronic (optical absorption), lattice dynamic (IR, Raman) and spin (ESR) signatures are obtained for the ground states, localized excited states produced by impurities, doping or photo-excitation -- excitons, polarons, bipolarons, solitons; and the edge states (which occur in mixed-halide crystals, e.g. PtCl{sub x}Br{sub 1-x}). Adiabatic molecular dynamics is used to explore photodecay channels in pure and impure systems for ground states as well as in the presence of pre-existing polaronic states. 12 refs., 3 figs., 1 tab.

  1. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    SciTech Connect (OSTI)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Strauss, H.R.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data.

  2. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    SciTech Connect (OSTI)

    Judi, David R.; Mcpherson, Timothy N.

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  3. Extending the radial diffusion model of Falthammar to non-dipole background field

    SciTech Connect (OSTI)

    Cunningham, Gregory Scott

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  4. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    SciTech Connect (OSTI)

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  5. Extended-soft-core baryon-baryon model. II. Hyperon-nucleon interaction

    SciTech Connect (OSTI)

    Rijken, Th.A.; Yamamoto, Y.

    2006-04-15

    The YN results are presented from the extended soft-core (ESC) interactions. They consist of local and nonlocal potentials because of (i) one-boson exchanges (OBE), which are the members of nonets of pseudoscalar, vector, scalar, and axial mesons; (ii) diffractive exchanges; (iii) two-pseudoscalar exchange; and (iv) meson-pair exchange (MPE). Both the OBE and pair vertices are regulated by Gaussian form factors producing potentials with a soft behavior near the origin. The assignment of the cutoff masses for the baryon-baryon-meson (BBM) vertices is dependent on the SU(3) classification of the exchanged mesons for OBE and a similar scheme for MPE. The particular version of the ESC model, called ESC04 [T. A. Rijken, Phys. Rev. C 73, 044007 (2006)], describes nucleon-nucleon (NN) and hyperon-nucleon (YN) interactions in a unified way using broken SU(3) symmetry. Novel ingredients are the inclusion of (i) the axial-vector meson potentials and (ii) a zero in the scalar- and axial-vector meson form factors. These innovations made it possible for the first time to keep the parameters of the model close to the predictions of the {sup 3}P{sub 0} quark-antiquark creation model. This is also the case for the F/(F+D) ratios. Furthermore, the introduction of the zero helped to avoid the occurrence of unwanted bound states. Broken SU(3) symmetry serves to connect the NN and the YN channels, which leaves after fitting NN only a few free parameters for the determination of the YN interactions. In particular, the meson-baryon coupling constants are calculated via SU(3) using the coupling constants of the NN analysis as input. Here, as a novel feature, medium-strong flavor-symmetry breaking (FSB) of the coupling constants was allowed, using the {sup 3}P{sub 0} model with a Gell-Mann-Okubo hypercharge breaking for the BBM coupling. Very good fits for ESC model with and without FSB were obtained. The charge-symmetry breaking in the {lambda}p and {lambda}n channels, which is an SU(2

  6. The Agricultural Policy/Environmental Extender (Apex) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses

    SciTech Connect (OSTI)

    Gassman, Philip W.; Williams, Jimmy R.; Wang, Xiuying; Saleh, Ali; Osei, Edward; Hauck, Larry; Izaurralde, Roberto C.; Flowers, Joan

    2010-06-01

    The Agricultural Policy Environmental eXtender (APEX) model was developed by the Blacklands Research and Extension Center in Temple, Texas. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes, including whole farms and small watersheds.

  7. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  8. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  9. Speed Limit of Magnetic Recording

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Luciana Juvenal (Federal Reserve Bank of St. Louis and International Monetary Fund) Ivan Petrella (Birkbeck College, University of London) Motivation Introduction Econometric Method Data and Speci...cation VAR and FAVAR Extended Model Conclusion Appendix Disclaimer The views expressed are those of the individual authors and do not necessarily re‡ect o¢ cial positions of the Federal Reserve Bank of St. Louis, the Federal Reserve System, the Board of Governors, or the International

  10. Extended step characteristic model for quarter-core gamma heating calculations

    SciTech Connect (OSTI)

    DeHart, M.D.; Webb, R.L. )

    1993-01-01

    Discrete ordinates codes are seldom used in lattice or core calculation, because of their limitation to simple geometries, which can be represented using an orthogonal mesh in a given coordinate system. Rough geometric approximations are often applied to obtain an estimate for a flux distribution. However, other methods, such as integral transport or Monte Carlo approaches, are generally more suited to irregular geometries. Each of these methods has its own weaknesses: integral transport methods are limited to problems in which the angular variation of the flux is isotropic or linearly anisotropic; Monte Carlo methods can be time consuming. The extended step characteristic (ESC) method has been developed to apply the discrete ordinates approximation to complicated geometries for which other methods provide less satisfactory solutions. The CENTAUR code has been developed to solve the two-dimensional transport equation using the ESC approach. This paper presents results of CENTAUR calculations for a quarter-core gamma redistribution problem for the Savannah River site (SRS) K reactor, under drained tank conditions following a postulated double-ended guillotine break loss-of-coolant accident. The calculations were used to confirm TWOTRAN calculations, which were based on a coarse approximation of the core geometry. A comparison of the results serves to demonstrate the capabilities and efficiency of the ESC approach.

  11. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles. Interim Task Report

    SciTech Connect (OSTI)

    Bossard, J.A.; Peck, R.E.; Schmidt, D.K.

    1993-03-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  12. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    SciTech Connect (OSTI)

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.

  13. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    SciTech Connect (OSTI)

    Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-15

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.

  14. Rate of reduction of ore-carbon composites: Part II. Modeling of reduction in extended composites

    SciTech Connect (OSTI)

    Fortini, O.M.; Fruehan, R.J.

    2005-12-01

    A new process for ironmaking was proposed using a rotary hearth furnace and an iron bath smelter to produce iron employing wood charcoal as an energy source and reductant. This paper examines reactions in composite pellet samples with sizes close to sizes used in industrial practice (10 to 16 min in diameter). A model was constructed using the combined kinetic mechanism developed in Part I of this series of articles along with equations for the computation of pellet temperature and shrinkage during the reaction. The analysis of reaction rates measured for pellets with wood charcoal showed that heat transfer plays a significant role in their overall rate of reaction at elevated temperatures. The slower rates measured in pellets containing coal char show that the intrinsic kinetics of carbon oxidation is more significant than heat transfer. Model calculations suggest that the rates are highly sensitive to the thermal conductivity of pellets containing wood charcoal and are less sensitive to the external conditions of heat transfer. It was seen that the changes in pellet surface area and diameter due to shrinkage introduce little change on reaction rates. The model developed provides an adequate description of pellets of wood charcoal up to circa 90% of reduction. Experimentally determined rates of reduction of iron oxide by wood charcoal were approximately 5 to 10 times faster than rates measured in pellets with coal char.

  15. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less

  16. Antikaons in the extended relativistic mean-field models for neutron star

    SciTech Connect (OSTI)

    Gupta, Neha; Arumugam, P.

    2012-10-20

    We review the role of antikaons in recent versions of relativistic mean field models and focus on the interactions in which all parameters are obtained by fitting finite nuclear data and successfully applied to reproduce a variety of nuclear and neutron star (NS) properties. We show that the recently observed 1.97 solar mass NS can be explained in three ways: (i) A stiffer EoS with both antikaons (K{sup -}, K-bar {sup 0}), (ii) a relatively softer EoS with K{sup -} and (iii) a softer EoS with nucleon phase only.

  17. Extended defense systems :I. adversary-defender modeling grammar for vulnerability analysis and threat assessment.

    SciTech Connect (OSTI)

    Merkle, Peter Benedict

    2006-03-01

    Vulnerability analysis and threat assessment require systematic treatments of adversary and defender characteristics. This work addresses the need for a formal grammar for the modeling and analysis of adversary and defender engagements of interest to the National Nuclear Security Administration (NNSA). Analytical methods treating both linguistic and numerical information should ensure that neither aspect has disproportionate influence on assessment outcomes. The adversary-defender modeling (ADM) grammar employs classical set theory and notation. It is designed to incorporate contributions from subject matter experts in all relevant disciplines, without bias. The Attack Scenario Space U{sub S} is the set universe of all scenarios possible under physical laws. An attack scenario is a postulated event consisting of the active engagement of at least one adversary with at least one defended target. Target Information Space I{sub S} is the universe of information about targets and defenders. Adversary and defender groups are described by their respective Character super-sets, (A){sub P} and (D){sub F}. Each super-set contains six elements: Objectives, Knowledge, Veracity, Plans, Resources, and Skills. The Objectives are the desired end-state outcomes. Knowledge is comprised of empirical and theoretical a priori knowledge and emergent knowledge (learned during an attack), while Veracity is the correspondence of Knowledge with fact or outcome. Plans are ordered activity-task sequences (tuples) with logical contingencies. Resources are the a priori and opportunistic physical assets and intangible attributes applied to the execution of associated Plans elements. Skills for both adversary and defender include the assumed general and task competencies for the associated plan set, the realized value of competence in execution or exercise, and the opponent's planning assumption of the task competence.

  18. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  19. Pseudospin S = 1 formalism and skyrmion-like excitations in the three-body constrained extended Bose–Hubbard model

    SciTech Connect (OSTI)

    Moskvin, A. S.

    2015-09-15

    We discuss the most prominent and intensively studied S = 1 pseudospin formalism for the extended bosonic Hubbard model (EBHM) with the on-site Hilbert space truncated to the three lowest occupation states n = 0, 1, 2. The EBHM Hamiltonian is a paradigmatic model for the highly topical field of ultracold gases in optical lattices. The generalized non-Heisenberg effective pseudospin Hamiltonian does provide a deep link with a boson system and a physically clear description of “the myriad of phases,” from uniform Mott insulating phases and density waves to two types of superfluids and supersolids. We argue that the 2D pseudospin system is prone to a topological phase separation and focus on several types of unconventional skyrmion-like topological structures in 2D boson systems, which have not been analyzed until now. The structures are characterized by a complicated interplay of insulating and two superfluid phases with a single- boson and two-boson condensation, respectively.

  20. Prediction of Lumen Output and Chromaticity Shift in LEDs Using Kalman Filter and Extended Kalman Filter Based Models

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Davis, J Lynn

    2014-06-24

    Abstract— Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have

  1. Extended-soft-core baryon-baryon model. I. Nucleon-nucleon scattering with the ESC04 interaction

    SciTech Connect (OSTI)

    Rijken, Th.A.

    2006-04-15

    The NN results are presented from the extended-soft-core (ESC) interactions. They consist of local and nonlocal potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of pseudoscalar, vector, scalar, and axial mesons (ii) diffractive exchanges (iii) two-pseudoscalar exchanges (PS-PS), and (iv) meson-pair exchanges (MPE). We describe a fit to the pp and np data for 0{<=}T{sub lab}{<=}350 MeV, having a typical {chi}{sup 2}/N{sub data}=1.155. Here, we used {approx}20 quasi-free physical parameters, which are coupling constants and cutoff masses. A remarkable feature of the couplings is that we were able to require them to follow rather closely the pattern predicted by the {sup 3}P{sub 0} quark-pair-creation (QPC) model. As a result the 11 OBE couplings are rather constrained, i.e., quasi free. Also, the deuteron binding energy and the several NN scattering lengths are fitted.

  2. The self-trapping transition in the non-half-filled strongly correlated extended Holstein-Hubbard model in two-dimensions

    SciTech Connect (OSTI)

    Sankar, I. V. Chatterjee, Ashok

    2014-04-24

    The two-dimensional extended Holstein-Hubbard model (EHH) has been considered at strong correlation regime in the non-half-filled band case to understand the self-trapping transition of electrons in strongly correlated electron system. We have used the method of optimized canonical transformations to transform an EHH model into an effective extended Hubbard (EEH) model. In the strong on-site correlation limit an EH model can be transformed into a t-J model which is finally solved using Hartree-Fock approximation (HFA). We found that, for non-half-filled band case, the transition is abrupt in the adiabatic region whereas it is continuous in the anti-adiabatic region.

  3. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  4. On the separability of the extended molecule: Constructing the best localized molecular orbitals for an organic molecule bridging two model electrodes

    SciTech Connect (OSTI)

    Moreira, Rodrigo A.; Melo, Celso P. de

    2014-09-28

    Based on a quantum chemical valence formalism that allows the rigorous construction of best-localized molecular orbitals on specific parts of an extended system, we examined the separability of individual components of model systems relevant to the description of electron transport in molecular devices. We started by examining how to construct the maximally localized electronic density at the tip of a realistic model of a gold electrode. By varying the number of gold atoms included in the local region where to project the total electronic density, we quantitatively assess how many molecular orbitals are entirely localized in that region. We then considered a 1,4-benzene-di-thiol molecule connected to two model gold electrodes and examined how to localize the electronic density of the total system in the extended molecule, a fractional entity comprising the organic molecule plus an increasing number of the closest metal atoms. We were able to identify in a rigorous manner the existence of three physically different electronic populations, each one corresponding to a distinct set of molecular orbitals. First, there are those entirely localized in the extended molecule, then there is a second group of those completely distributed in the gold atoms external to that region, and, finally, there are those delocalized over the entire system. This latter group can be associated to the shared electronic population between the extended molecule and the rest of the system. We suggest that the treatment here presented could be useful in the theoretical analysis of the electronic transport in nanodevices whenever the use of localized molecular states are required by the physics of the specific problem, such as in cases of weak coupling and super-exchange limits.

  5. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    SciTech Connect (OSTI)

    Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.

  6. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    SciTech Connect (OSTI)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; Wang, J. D.; Hao, J. M.

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widely used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.

  7. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; et al

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  8. Extendable pipe crawler

    DOE Patents [OSTI]

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  9. Extendable pipe crawler

    DOE Patents [OSTI]

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  10. Okmulgee Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ONG-C2M2) | Department of Energy Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) was established as a result of the Administration's efforts to improve electricity subsector cybersecurity capabilities, and to

  11. On energy conservation in extended magnetohydrodynamics

    SciTech Connect (OSTI)

    Kimura, Keiji; Morrison, P. J.

    2014-08-15

    A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.

  12. THE EXTENDED VIRGO CLUSTER CATALOG

    SciTech Connect (OSTI)

    Kim, Suk; Rey, Soo-Chang; Lee, Youngdae; Chung, Jiwon; Pak, Mina; Yi, Wonhyeong; Lee, Woong; Jerjen, Helmut; Lisker, Thorsten; Sung, Eon-Chang

    2015-01-01

    We present a new catalog of galaxies in the wider region of the Virgo cluster, based on the Sloan Digital Sky Survey (SDSS) Data Release 7. The Extended Virgo Cluster Catalog (EVCC) covers an area of 725 deg{sup 2} or 60.1 Mpc{sup 2}. It is 5.2 times larger than the footprint of the classical Virgo Cluster Catalog (VCC) and reaches out to 3.5 times the virial radius of the Virgo cluster. We selected 1324 spectroscopically targeted galaxies with radial velocities less than 3000 km s{sup –1}. In addition, 265 galaxies that have been overlooked in the SDSS spectroscopic survey but have available redshifts in the NASA Extragalactic Database are also included. Our selection process secured a total of 1589 galaxies, 676 of which are not included in the VCC. The certain and possible cluster members are defined by means of redshift comparison with a cluster infall model. We employed two independent and complementary galaxy classification schemes: the traditional morphological classification based on the visual inspection of optical images and a characterization of galaxies from their spectroscopic features. SDSS u, g, r, i, and z passband photometry of all EVCC galaxies was performed using Source Extractor. We compare the EVCC galaxies with the VCC in terms of morphology, spatial distribution, and luminosity function. The EVCC defines a comprehensive galaxy sample covering a wider range in galaxy density that is significantly different from the inner region of the Virgo cluster. It will be the foundation for forthcoming galaxy evolution studies in the extended Virgo cluster region, complementing ongoing and planned Virgo cluster surveys at various wavelengths.

  13. EXTENDED MAGNETOHYDRODYNAMIC MODELING OF PLASMA RELAXATION DYNAMICS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in terms of the lower order moments via closure relations. Closure relations are always approximate, and the search for ... we will see, it does not enter directly into the evolution ...

  14. Modeling mesoscopic phenomena in extended dynamical systems

    SciTech Connect (OSTI)

    Bishop, A.; Lomdahl, P.; Jensen, N.G.; Cai, D.S. [Los Alamos National Lab., NM (United States); Mertenz, F. [Bayreuth Univ. (Germany); Konno, Hidetoshi [Tsukuba Univ., Ibaraki (Japan); Salkola, M. [Stanford Univ., CA (United States)

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). We have obtained classes of nonlinear solutions on curved geometries that demonstrate a novel interplay between topology and geometric frustration relevant for nanoscale systems. We have analyzed the nature and stability of localized oscillatory nonlinear excitations (multi-phonon bound states) on discrete nonlinear chains, including demonstrations of successful perturbation theories, existence of quasiperiodic excitations, response to external statistical time-dependent fields and point impurities, robustness in the presence of quantum fluctuations, and effects of boundary conditions. We have demonstrated multi-timescale effects for nonlinear Schroedinger descriptions and shown the success of memory function approaches for going beyond these approximations. In addition we have developed a generalized rate-equation framework that allows analysis of the important creation/annihilation processes in driven nonlinear, nonequilibiium systems.

  15. Extender for securing a closure

    SciTech Connect (OSTI)

    Thomas, II, Patrick A.

    2012-10-02

    An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.

  16. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  17. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  18. Lightweight extendable and retractable pole

    DOE Patents [OSTI]

    Warren, John L.; Brandt, James E.

    1994-01-01

    A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole.

  19. Lightweight extendable and retractable pole

    DOE Patents [OSTI]

    Warren, J.L.; Brandt, J.E.

    1994-08-02

    A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole. 18 figs.

  20. Impact of Extended Daylight Saving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extended Daylight Saving Time on National Energy Consumption TECHNICAL DOCUMENTATION FOR REPORT TO CONGRESS Energy Policy Act of 2005, Section 110 Prepared for U.S. Department of Energy Office of Energy Efficiency and Renewable Energy By David B. Belzer (Pacific Northwest National Laboratory), Stanton W. Hadley (Oak Ridge National Laboratory), and Shih-Miao Chin (Oak Ridge National Laboratory) October 2008 U.S. Department of Energy Energy Efficiency and Renewable Energy Page Intentionally Left

  1. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  2. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  3. Pair extended coupled cluster doubles

    SciTech Connect (OSTI)

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  4. Extended foil capacitor with radially spoked electrodes

    DOE Patents [OSTI]

    Foster, James C.

    1990-01-01

    An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.

  5. Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter

    SciTech Connect (OSTI)

    Zhou, Ning; Meng, Da; Lu, Shuai

    2013-11-11

    In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PFs performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.

  6. UV-extending ghost inflation

    SciTech Connect (OSTI)

    Ivanov, Mikhail M.; Sibiryakov, Sergey E-mail: sergey.sibiryakov@cern.ch

    2014-05-01

    We present a setup that provides a partial UV-completion of the ghost inflation model up to a scale which can be almost as high as the Planck mass. This is achieved by coupling the inflaton to the Lorentz-violating sector described by the Einstein-aether theory or its khronometric version. Compared to previous works on ghost inflation our setup allows to go beyond the study of small perturbations and include the background dynamics in a unified framework. In the specific regime when the expansion of the Universe is dominated by the kinetic energy of the inflaton we find that the model predicts rather high tensor-to-scalar ratio r ∼ 0.02÷0.2 and non-Gaussianity of equilateral type with f{sub NL} in the range from -50 to -5.

  7. Framework for Address Cooperative Extended Transactions

    Energy Science and Technology Software Center (OSTI)

    1997-12-01

    The Framework for Addressing Cooperative Extended Transactions (FACET) is an object-oriented software framework for building models of complex, cooperative behaviors of agents. it can be used to implement simulation models of societal processes such as the complex interplay of participating individuals and organizations engaged in multiple concurrent transactions in pursuit of their various goals. These transactions can be patterned on, for example, clinical guidelines and procedures, business practices, government and corporate policies, etc. FACET canmore » also address other complex behaviors such as biological life cycles or manufacturing processes. FACET includes generic software objects representing the fundamental classes of agent -- Person and Organization - with mechanisms for resource management, including resolution of conflicting requests for participation and/or use of the agent's resources. The FACET infrastructure supports stochastic behavioral elements and coping mechanisms by which specified special conditions and events can cause an active cooperative process to be preempted, diverting the participants onto appropriate alternative behavioral pathways.« less

  8. Installation of New Extended Facility in Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Installation of New Extended Facility in Progress In April 2002, the ARM extended facility near Seminole, Oklahoma, ceased operation after the leased land under it was sold to new owners. The facility's equipment was removed from the site and placed in storage while a search for a new location began. When a new site was found near Earlsboro, Oklahoma, the approval process for relocation was set in motion. Extended facility sites are instrumented to collect data on solar radiation and its

  9. Strong Phase Transition within the U(1)-extended MSSM

    SciTech Connect (OSTI)

    Ahriche, Amine

    2010-10-31

    In this work, the electroweak phase transition (EWPT) strength has been investigated within the U(1) extended Minimal Supersymmetric Standard Model (UMSSM) without introducing any exotic fields. We found that the EWPT could be strongly first order for reasonable values of the lightest Higgs and neutralino masses.

  10. Extending the Operating Lives of Materials

    ScienceCinema (OSTI)

    Paul Jablonski

    2010-09-01

    Metallurgist Paul Jablonski discusses his role in developing processes that extend the operating temperatures and operating lives of materials used in energy applications.

  11. Extending the utility of a radioactive material package

    SciTech Connect (OSTI)

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2015-06-04

    Once a package has been certified for the transportation of DOT Hazard Class 7 – Radioactive Material in compliance with the requirements of 10 CFR 71, it is often most economical to extend its utility through the addition of content-specific configuration control features or the addition of shielding materials. The SRNL Model 9977 Package’s authorization was expanded from its original single to twenty contents in this manner; and most recently, the 9977 was evaluated for a high-gamma source content. This paper discusses the need for and the proposed shielding modifications to the package for extending the utility of the package for this purpose.

  12. Extended ensemble Kalman filters for data assimilation in hierarchical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state-space models | Argonne Leadership Computing Facility Extended ensemble Kalman filters for data assimilation in hierarchical state-space models Event Sponsor: Mathematics and Computer Science Division LANS Seminar Start Date: Jul 29 2016 - 10:30am Building/Room: Building 240/Room 1404-1405 Location: Argonne National Laboratory Speaker(s): Matthias Katzfuss Speaker(s) Title: Texas A&M University Host: Emil Constantinescu Event Website:

  13. Clinton Extends Moratorium on Nuclear Weapons Testing | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing ...

  14. Apparatus and methods for a human extender

    DOE Patents [OSTI]

    Jansen, John F.

    2001-01-01

    A human extender controller for interface between a human operator and a physical object through a physical plant. The human extender controller uses an inner-feedback loop to increase the equivalent damping of the operating system to stabilize the system when it contacts with the environment and reduces the impact of the environment variation by utilizing a high feedback gain, determined by a root locus sketch. Because the stability of the human extender controller of the present invention is greatly enhanced over that of the prior art, the present invention is able to achieve a force reflection ratio 500 to 1 and capable of handling loads above the two (2) ton range.

  15. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  16. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  17. eXtended MetaData Registry

    Energy Science and Technology Software Center (OSTI)

    2006-10-25

    The purpose of the eXtended MetaData Registry (XMDR) prototype is to demonstrate the feasibility and utility of constructing an extended metadata registry, i.e., one which encompasses richer classification support, facilities for including terminologies, and better support for formal specification of semantics. The prototype registry will also serve as a reference implementation for the revised versions of ISO 11179, Parts 2 and 3 to help guide production implementations.

  18. DOE Extends Portsmouth Infrastructure Support Services Contract |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portsmouth Infrastructure Support Services Contract DOE Extends Portsmouth Infrastructure Support Services Contract July 17, 2015 - 12:00pm Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today announced that it is extending its contract for Infrastructure Support Services at the Portsmouth Gaseous Diffusion Plant site for a period of six months. The contract period for the current

  19. 60-DAY Federal Register Notice - Extended

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extension [6450-01-P] DEPARTMENT OF ENERGY Agency Information Collection Extension AGENCY: U.S. Department of Energy ACTION: Notice and Request for Comments SUMMARY: The Department of Energy (DOE), pursuant to the Paperwork Reduction Act of 1995), intends to extend for three years, an information collection request with the Office of Management and Budget (OMB). Comments are invited on: (a) whether the extended collection of information is necessary for the proper performance of the functions of

  20. Center for Extended Lifetime Energy Storage Technologies (CELESTE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center for Extended Lifetime Energy Storage TEchnologies CELESTE Jim Misewich, Ph.D Esther S. Takeuchi, Ph.D.. Associate Laboratory Director SUNY Distinguished Professor Brookhaven National Laboratory Stony Brook University Messages National Needs for Electrical Energy Storage Transportation needs Grid needs Opportunity $120M DOE Energy Innovation Hub Competition (FOA-0000559) Brookhaven Track Record as Model for Hub GE and utilization of NSLS for Durathon TM Vision for CELESTE Leverage >$1B

  1. Extended range radiation dose-rate monitor

    DOE Patents [OSTI]

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  2. Parallel Access of Out-Of-Core Dense Extendible Arrays

    SciTech Connect (OSTI)

    Otoo, Ekow J; Rotem, Doron

    2007-07-26

    Datasets used in scientific and engineering applications are often modeled as dense multi-dimensional arrays. For very large datasets, the corresponding array models are typically stored out-of-core as array files. The array elements are mapped onto linear consecutive locations that correspond to the linear ordering of the multi-dimensional indices. Two conventional mappings used are the row-major order and the column-major order of multi-dimensional arrays. Such conventional mappings of dense array files highly limit the performance of applications and the extendibility of the dataset. Firstly, an array file that is organized in say row-major order causes applications that subsequently access the data in column-major order, to have abysmal performance. Secondly, any subsequent expansion of the array file is limited to only one dimension. Expansions of such out-of-core conventional arrays along arbitrary dimensions, require storage reorganization that can be very expensive. Wepresent a solution for storing out-of-core dense extendible arrays that resolve the two limitations. The method uses a mapping function F*(), together with information maintained in axial vectors, to compute the linear address of an extendible array element when passed its k-dimensional index. We also give the inverse function, F-1*() for deriving the k-dimensional index when given the linear address. We show how the mapping function, in combination with MPI-IO and a parallel file system, allows for the growth of the extendible array without reorganization and no significant performance degradation of applications accessing elements in any desired order. We give methods for reading and writing sub-arrays into and out of parallel applications that run on a cluster of workstations. The axial-vectors are replicated and maintained in each node that accesses sub-array elements.

  3. drbohlke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Luciana Juvenal y Federal Reserve Bank of St. Louis Ivan Petrella z Birkbeck, University of London 26 June 2012 Abstract The run-up in oil prices since 2004 coincided with growing investment in commod- ity markets and increased price comovement among di¤erent commodities. We assess whether speculation in the oil market played a role in driving this salient empirical pattern. We identify oil shocks from a large dataset using a factor-augmented vector autoregressive (FAVAR) model. This

  4. draft41.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Market Luciana Juvenal y Federal Reserve Bank of St. Louis Ivan Petrella z Birkbeck, University of London 26 June 2012 Abstract The run-up in oil prices since 2004 coincided with growing investment in commod- ity markets and increased price comovement among di¤erent commodities. We assess whether speculation in the oil market played a role in driving this salient empirical pattern. We identify oil shocks from a large dataset using a factor-augmented vector autoregressive (FAVAR) model. This

  5. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing moratorium for at least 15 months

  6. Junction conditions in extended Teleparallel gravities

    SciTech Connect (OSTI)

    De la Cruz-Dombriz, lvaro; Dunsby, Peter K.S.; Sez-Gmez, Diego E-mail: peter.dunsby@uct.ac.za

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  7. Synchronization in networks of spatially extended systems

    SciTech Connect (OSTI)

    Filatova, Anastasiya E.; Hramov, Alexander E.; Koronovskii, Alexey A.; Boccaletti, Stefano

    2008-06-15

    Synchronization processes in networks of spatially extended dynamical systems are analytically and numerically studied. We focus on the relevant case of networks whose elements (or nodes) are spatially extended dynamical systems, with the nodes being connected with each other by scalar signals. The stability of the synchronous spatio-temporal state for a generic network is analytically assessed by means of an extension of the master stability function approach. We find an excellent agreement between the theoretical predictions and the data obtained by means of numerical calculations. The efficiency and reliability of this method is illustrated numerically with networks of beam-plasma chaotic systems (Pierce diodes). We discuss also how the revealed regularities are expected to take place in other relevant physical and biological circumstances.

  8. On Extended-Term Dynamic Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation Ricky Concepcion, Ryan Elliott Sandia National Laboratories Albuquerque, NM 87185 {rconcep, rtellio}@sandia.gov Matt Donnelly Montana Tech Butte, MT 59701 mdonnelly@mtech.edu Juan Sanchez-Gasca GE Energy Schenectady, NY 12345 juan1.sanchez@ge.com Abstract-The uncontrolled intermittent availability of renew- able energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative

  9. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  10. Energy Department Extends Acceptance Policy for Spent Nuclear...

    National Nuclear Security Administration (NNSA)

    Energy Department Extends Acceptance Policy for Spent Nuclear Fuel from Foreign Research Reactors December 06, 2004 Energy Department Extends Acceptance Policy for Spent Nuclear ...

  11. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Energy Savers [EERE]

    Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - ...

  12. Developing a Regulatory Framework for Extended Storage and Transportat...

    Office of Environmental Management (EM)

    Final Test Plan Gap Analysis to Support Extended Storage of Used Nuclear Fuel Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation...

  13. Energy Department Extends Contract for Cleanup of Portsmouth...

    Office of Environmental Management (EM)

    Energy Department Extends Contract for Cleanup of Portsmouth Gaseous Diffusion Plant Energy Department Extends Contract for Cleanup of Portsmouth Gaseous Diffusion Plant March 28, ...

  14. Praxair extending hydrogen pipeline in Southeast Texas

    SciTech Connect (OSTI)

    Not Available

    1992-08-24

    This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

  15. Extended life aluminide fuel. Final report

    SciTech Connect (OSTI)

    Miller, L.G.; Beeston, J.M.

    1986-06-01

    As the price of fuel fabrication, shipment of both new and spent fuel, and fuel reprocessing continue to rise at a rapid rate, researchers look for alternate methods to keep reactor fuel costs within their limited funding. Extended fuel element lifetimes, without jeopardizing reactor safety, can reduce fuel costs by up to a factor of two. The Extended Life Aluminide (ELAF) program was started at the Idaho National Engineering Laboratory (INEL) as a joint project of the United States Department of Energy (DOE), the University of Missouri, and the Massachusetts Institute of Technology research reactors. Fuel plates of Advanced Test Reactor (ATR) type construction were fabricated at Atomics International and irradiated in the ATR at the INEL. Four fuel matrix compositions were tested (i.e., 50 vol% UAl/sub x/ cores for reference, and 40, 45 and 50 vol% UAl/sub 2/ cores). The 50 vol% UAl/sub 2/ cores contained up to 3 grams U-235 per cm/sup 3/ of core. Three plates of each composition were irradiated to peak burnup levels of 3 x 10/sup 21/ fission/cm/sup 3/ of core. The only observed damage was due to external corrosion at similar rates experienced by UAl/sub x/ fuel elements in test reactors.

  16. Pumpdown assistance extends coiled tubing reach

    SciTech Connect (OSTI)

    Tailby, R.J. )

    1992-07-01

    One of the most challenging coiled tubing applications to emerge in the last few years is horizontal well maintenance. When wireline cannot be used, techniques that offer some of the same flexibility, availability and relatively low cost must be used. During this same period, however, drilling technology has also made huge strides in horizontal and extended-reach areas. Wells are now being drilled with horizontal lengths in excess of 6,000 ft and measured depths of more than 22,000 ft. This paper reports that although horizontal wells are definitely here to stay, many operators have had to reevaluate their positions after being confronted with the problem of recompleting these wells to eliminate excessive water or gas production. A full workover with workstring using either a drilling rig or snubbing unit can be expensive and may lead to lost production because of limited rig availability. Coiled tubing has successfully been used in most cases thus far, but it has length and horizontal reach limitations that drilling technology will soon overtake. Within the constraints of current technology and tube capabilities, coiled tubing does not have the buckling resistance or reel capacity to service today's longest horizontal and extended reach wells or those planned and foreseen in the future. Even if coiled tubing can reach TD, operations requiring downward force are severely restricted.

  17. EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Johnson, S.; Cordaro, J.; Holland, M.; Jones, V.

    2010-06-17

    Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability to refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.

  18. Reconnection in compressible plasmas: Extended conversion region

    SciTech Connect (OSTI)

    Birn, J.; Hesse, M.; Zenitani, S.

    2011-11-15

    The classical Sweet-Parker approach to steady-state magnetic reconnection is extended into the regime of large resistivity (small magnetic Reynolds or Lundquist number) when the aspect ratio between the outflow and inflow scale, {delta} = d/L, approaches unity. In a previous paper [Paper I, Hesse et al., Phys. Plasmas 18, 042104 (2011)], the vicinity of the dissipation site (''diffusion region'') was investigated. In this paper, the approach is extended to cover larger sites, in which the energy transfer and conversion is not confined to the diffusion region. Consistent with the results of Paper I, we find that increasing aspect ratio {delta} is associated with increasing compression, increasing reconnection rate for low {beta}, but slightly decreasing rate for higher {beta}, decreasing outflow speed, and increasing outflow magnetic field. These trends are stronger for lower {beta}. Deviations from the traditional Sweet-Parker limit {delta}{yields} 0 become significant for R{sub m}<{approx}10, where R{sub m} is the magnetic Reynolds number (Lundquist number) based on the half-thickness of the current layer responsible for the Ohmic dissipation. They are also more significant for small {gamma}, that is, for increasing compressibility. In contrast to the results of Paper I, but consistent with earlier results for {delta}<<1, we find that in this limit the outflow speed is given by the Alfven speed {nu}{sub A} in the inflow region and the energy conversion is given by an even split of Poynting flux into enthalpy flux and bulk kinetic energy flux. However, with increasing {delta} the conversion to enthalpy flux becomes more and more dominant.

  19. The search for extended air showers at the Jicamarca Radio Observatory

    SciTech Connect (OSTI)

    Wahl, D.; Chau, J.; Galindo, F.; Huaman, A.; Solano, C. J.

    2009-04-30

    This paper presents the status of the project to detect extended air showers at the Jicamarca Radio Observatory. We report on detected anomalous signals and present a toy model to estimate at what altitudes we might expect to see air shower signals. According to this model, a significant number of high altitude horizontal air showers could be observed by radar techniques.

  20. Extended Forward Sensitivity Analysis for Uncertainty Quantification

    SciTech Connect (OSTI)

    Haihua Zhao; Vincent A. Mousseau

    2011-09-01

    Verification and validation (V&V) are playing more important roles to quantify uncertainties and realize high fidelity simulations in engineering system analyses, such as transients happened in a complex nuclear reactor system. Traditional V&V in the reactor system analysis focused more on the validation part or did not differentiate verification and validation. The traditional approach to uncertainty quantification is based on a 'black box' approach. The simulation tool is treated as an unknown signal generator, a distribution of inputs according to assumed probability density functions is sent in and the distribution of the outputs is measured and correlated back to the original input distribution. The 'black box' method mixes numerical errors with all other uncertainties. It is also not efficient to perform sensitivity analysis. Contrary to the 'black box' method, a more efficient sensitivity approach can take advantage of intimate knowledge of the simulation code. In these types of approaches equations for the propagation of uncertainty are constructed and the sensitivities are directly solved for as variables in the simulation. This paper presents the forward sensitivity analysis as a method to help uncertainty qualification. By including time step and potentially spatial step as special sensitivity parameters, the forward sensitivity method is extended as one method to quantify numerical errors. Note that by integrating local truncation errors over the whole system through the forward sensitivity analysis process, the generated time step and spatial step sensitivity information reflect global numerical errors. The discretization errors can be systematically compared against uncertainties due to other physical parameters. This extension makes the forward sensitivity method a much more powerful tool to help uncertainty qualification. By knowing the relative sensitivity of time and space steps with other interested physical parameters, the simulation is allowed

  1. Extended Deterrence, Nuclear Proliferation, and START III

    SciTech Connect (OSTI)

    Speed, R.D.

    2000-06-20

    Early in the Cold War, the United States adopted a policy of ''extended nuclear deterrence'' to protect its allies by threatening a nuclear strike against any state that attacks these allies. This threat can (in principle) be used to try to deter an enemy attack using conventional weapons or one using nuclear, chemical, or biological weapons. The credibility of a nuclear threat has long been subject to debate and is dependent on many complex geopolitical factors, not the least of which is the military capabilities of the opposing sides. The ending of the Cold War has led to a significant decrease in the number of strategic nuclear weapons deployed by the United States and Russia. START II, which was recently ratified by the Russian Duma, will (if implemented) reduce the number deployed strategic nuclear weapons on each side to 3500, compared to a level of over 11,000 at the end of the Cold War in 1991. The tentative limit established by Presidents Clinton and Yeltsin for START III would reduce the strategic force level to 2000-2500. However, the Russians (along with a number of arms control advocates) now argue that the level should be reduced even further--to 1500 warheads or less. The conventional view is that ''deep cuts'' in nuclear weapons are necessary to discourage nuclear proliferation. Thus, as part of the bargain to get the non-nuclear states to agree to the renewal of the Nuclear Non-Proliferation Treaty, the United States pledged to work towards greater reductions in strategic forces. Without movement in the direction of deep cuts, it is thought by many analysts that some countries may decide to build their own nuclear weapons. Indeed, this was part of the rationale India used to justify its own nuclear weapons program. However, there is also some concern that deep cuts (to 1500 or lower) in the U.S. strategic nuclear arsenal could have the opposite effect. The fear is that such cuts might undermine extended deterrence and cause a crisis in confidence

  2. Building America New Homes Case Study: Advanced Extended Plate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Homes Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House Building America New Homes Case Study: Advanced Extended Plate and Beam Wall System in a ...

  3. Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes Home > Research > ANSER Research Highlights > Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes

  4. H-Prize Draft Guideline Comments Deadline Extended to Monday...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H-Prize Draft Guideline Comments Deadline Extended to Monday, April 28 H-Prize Draft Guideline Comments Deadline Extended to Monday, April 28 April 22, 2014 - 2:00pm Addthis The ...

  5. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM...

    Office of Scientific and Technical Information (OSTI)

    EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) Citation Details In-Document Search Title: EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) ...

  6. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Energy Savers [EERE]

    Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress ... on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. ...

  7. IP-Based Video Modem Extender Requirements

    SciTech Connect (OSTI)

    Pierson, L G; Boorman, T M; Howe, R E

    2003-12-16

    Visualization is one of the keys to understanding large complex data sets such as those generated by the large computing resources purchased and developed by the Advanced Simulation and Computing program (aka ASCI). In order to be convenient to researchers, visualization data must be distributed to offices and large complex visualization theaters. Currently, local distribution of the visual data is accomplished by distance limited modems and RGB switches that simply do not scale to hundreds of users across the local, metropolitan, and WAN distances without incurring large costs in fiber plant installation and maintenance. Wide Area application over the DOE Complex is infeasible using these limited distance RGB extenders. On the other hand, Internet Protocols (IP) over Ethernet is a scalable well-proven technology that can distribute large volumes of data over these distances. Visual data has been distributed at lower resolutions over IP in industrial applications. This document describes requirements of the ASCI program in visual signal distribution for the purpose of identifying industrial partners willing to develop products to meet ASCI's needs.

  8. Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes This presentation does not contain any proprietary, confidential, or otherwise restricted information ...

  9. Extending theories on muon-specific interactions

    SciTech Connect (OSTI)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  10. Extending theories on muon-specific interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  11. Coupled and extended quintessence: Theoretical differences and structure formation

    SciTech Connect (OSTI)

    Pettorino, Valeria [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany); Baccigalupi, Carlo [SISSA/ISAS, Via Beirut 4, I-34014 Trieste, and INFN, Sezione di Trieste, Via Valerio 2, I-34127 Trieste (Italy)

    2008-05-15

    The case of a coupling between dark energy and matter [coupled quintessence (CQ)] or gravity [extended quintessence (EQ)] has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar-tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows one to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in a markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding quintessence ones where the coupling is absent and to the ordinary cosmologies with a cosmological constant and cold dark matter ({lambda}CDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of nonlinear structures, like cluster concentration, as well as on the weak lensing shear on large scales. Finally, we specialize our study for interfacing linear dynamics and N-body simulations in these cosmologies, giving a recipe for the corrections to be included in N-body codes in order to take into account the modifications to the expansion rate, growth of structures, and strength of gravity.

  12. Dynamic Analysis of Wind Turbine Planetary Gears Using an Extended Harmonic Balance Approach: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; Parker, R. G.

    2012-06-01

    The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.

  13. Extending Sensor Calibration Intervals in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Shumaker, Brent; Hashemian, Hash

    2012-11-15

    Currently in the USA, sensor recalibration is required at every refueling outage, and it has emerged as a critical path item for shortening outage duration. International application of calibration monitoring, such as at the Sizewell B plant in UK, has shown that sensors may operate for eight years, or longer, within calibration tolerances. Online monitoring can be employed to identify those sensors which require calibration, allowing for calibration of only those sensors which need it. The US NRC accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no plants have been granted the necessary license amendment to apply it. This project addresses key issues in advanced recalibration methodologies and provides the science base to enable adoption of best practices for applying online monitoring, resulting in a public domain standardized methodology for sensor calibration interval extension. Research to develop this methodology will focus on three key areas: (1) quantification of uncertainty in modeling techniques used for calibration monitoring, with a particular focus on non-redundant sensor models; (2) accurate determination of acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and (3) the use of virtual sensor estimates to replace identified faulty sensors to extend operation to the next convenient maintenance opportunity.

  14. Extreme neutron stars from Extended Theories of Gravity

    SciTech Connect (OSTI)

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M>4M{sub ?} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ?{sub c}?1.52.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 68נ10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  15. Application of the IBERDROLA RETRAN Licensing Methodology to the Confrentes BWR-6 110% Extended Power Uprate

    SciTech Connect (OSTI)

    Fuente, Rafael de la; Iglesias, Javier; Sedano, Pablo G.; Mata, Pedro

    2003-04-15

    IBERDROLA (Spanish utility) and IBERDROLA INGENIERIA (engineering branch) have been developing during the last 2 yr the 110% Extended Power Uprate Project for Cofrentes BWR-6. IBERDROLA has available an in-house design and licensing reload methodology that has been approved in advance by the Spanish Nuclear Regulatory Authority. This methodology has been applied to perform the nuclear design and the reload licensing analysis for Cofrentes cycles 12 and 13 and to develop a significant number of safety analyses of the Cofrentes Extended Power.Because the scope of the licensing process of the Cofrentes Extended Power Uprate exceeds the range of analysis included in the Cofrentes generic reload licensing process, it has been required to extend the applicability of the Cofrentes RETRAN model to the analysis of new transients. This is the case of the total loss of feedwater (TLFW) transient.The content of this paper shows the benefits of having an in-house design and licensing methodology and describes the process to extend the applicability of the Cofrentes RETRAN model to the analysis of new transients, particularly in this paper the TLFW transient.

  16. Department of Energy Extends Renewable Energy Loan Guarantee Solicitation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Extends Renewable Energy Loan Guarantee Solicitation Department of Energy Extends Renewable Energy Loan Guarantee Solicitation August 20, 2010 - 12:00am Addthis WASHINGTON, DC - Secretary Steven Chu announced today that the Department of Energy is extending the application deadline for the July 2009 energy efficiency, renewable energy and advanced transmission and distribution technologies solicitation. The Round 8, Part 1 application deadline is October 5, 2010. This

  17. Spotlight on Seattle, Washington: Community Partnerships Work to Extend

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Reach | Department of Energy Seattle, Washington: Community Partnerships Work to Extend Program Reach Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. Spotlight on Seattle, Washington (4.72 MB) More Documents & Publications Seattle Summary of Reported Data Better

  18. Energy Department Extends Contract for Cleanup of Portsmouth Gaseous

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diffusion Plant | Department of Energy Extends Contract for Cleanup of Portsmouth Gaseous Diffusion Plant Energy Department Extends Contract for Cleanup of Portsmouth Gaseous Diffusion Plant March 28, 2016 - 9:00pm Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today announced that it has exercised its option to extend the contract for decontamination and decommissioning (D&D) of the Portsmouth Gaseous

  19. Impact of Extended Daylight Saving Time on National Energy Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress | Department of Energy Report to Congress Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. Report to Congress (285 KB) More Documents & Publications Impact of Extended Daylight Saving Time on National Energy Consumption, Technical

  20. Impact of Extended Daylight Saving Time on National Energy Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Documentation | Department of Energy Technical Documentation Impact of Extended Daylight Saving Time on National Energy Consumption, Technical Documentation This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the national energy consumption in the United States. Technical Documentation for Report to Congress (3.65 MB) More Documents & Publications Impact of Extended

  1. Department of Energy Extends Renewable Energy Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy is extending the application deadline for the July 2009 energy efficiency, renewable energy and advanced transmission and distribution technologies solicitation. The...

  2. PPPL extends system for suppressing instabilities to long-pulse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and on the Korea Superconducting Tokamak Advanced Research (KSTAR) facility in South Korea - and now is revising the KSTAR design to operate during extended plasma experiments. ...

  3. Notice of OMB Action Approving DOE Submission to Extend Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of OMB Action Approving DOE Submission to Extend Information Collection Request Title: OE Recovery Act Financial Assistance Grants The Office of Management and Budget (OMB) ...

  4. Agencies extend deadline for draft Record of Decision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho News Release For Immediate Release Date: June 2, 2008 Media Contact: Danielle Miller, (208) 526-5709 Agencies extend deadline for draft Record of Decision for Radioactive...

  5. Extended Formulations in Mixed-integer Convex Programming | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the...

  6. Department of Energy Extends Public Comment Period | Department...

    Office of Environmental Management (EM)

    Administration Nevada Site Office is extending the public comment period for the Draft Site-Wide Environmental Impact Statement (SWEIS) for the Nevada National Security ...

  7. Upper crustal faulting in an obliquely extending orogen, structural...

    Open Energy Info (EERE)

    faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search OpenEI...

  8. Energy Department And University of California Extend Management...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Library Press Releases Energy Department And University of California Extend ... Energy Department And University of ...

  9. CEQ Extends Comment Period on Revised Draft Guidance on Consideration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews CEQ Extends Comment Period on Revised Draft Guidance on Consideration of Greenhouse Gas ...

  10. RACORO Extended-Term Aircraft Observations of Boundary-Layer...

    Office of Scientific and Technical Information (OSTI)

    the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative ... SURFACES; THERMAL RADIATION; USA; WATER RACORO Extended-Term; Aircraft ...

  11. Acquisition Planning--Extending A Management and Operating Contract...

    Energy Savers [EERE]

    Operating Contract Without Full and Open Competition; and Site and Utilization Management Planning Acquisition Planning--Extending A Management and Operating Contract Without ...

  12. EIS-0403: Notice to Extend Public Comment Period | Department...

    Broader source: Energy.gov (indexed) [DOE]

    States The Department of Energy and the Bureau of Land Management (BLM) (the Agencies) extended the public comment period for the Programmatic Environmental Impact Statement to...

  13. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    national energy consumption in the United States. Technical Documentation for Report to ... Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress

  14. Acquisition Letter on Contractor Domestic Extended Personnel Assignments

    Broader source: Energy.gov [DOE]

    The attached Acquisition Letter has been issued to provide guidance on the Department's policy governing reimbursement of costs associated with contractor domestic extended personnel assignments.

  15. Book of Extended Abstracts IWCE 2014

    SciTech Connect (OSTI)

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Vasileska, Dragica; Ringhofer, Christian

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finitedifference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a twodimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  16. The Extended X-ray Nebula of PSR J1420-6048

    SciTech Connect (OSTI)

    Van Etten, Adam; Romani, Roger W.; /Stanford U., Phys. Dept.

    2011-08-19

    The vicinity of the unidentified EGRET source 3EG J1420-6038 has undergone extensive study in the search for counterparts, revealing the energetic young pulsar PSR J1420-6048 and its surrounding wind nebula as a likely candidate for at least part of the emission from this bright and extended gamma-ray source. We report on new Suzaku observations of PSR J1420-6048, along with analysis of archival XMM Newton data. The low background of Suzaku permits mapping of the extended X-ray nebula, indicating a tail stretching {approx} 8 minutes north of the pulsar. The X-ray data, along with archival radio and VHE data, hint at a pulsar birthsite to the North, and yield insights into its evolution and the properties of the ambient medium. We further explore such properties by modeling the spectral energy distribution (SED) of the extended nebula.

  17. WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY

    SciTech Connect (OSTI)

    Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun; Lee, Sang-Gak E-mail: wskang@khu.ac.kr E-mail: sanggak@snu.ac.kr

    2013-10-01

    In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based on our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.

  18. Notice of Intent Extended for Fuel Cell Technologies Incubator FOA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Notice of Intent Extended for Fuel Cell Technologies Incubator FOA Notice of Intent Extended for Fuel Cell Technologies Incubator FOA April 15, 2014 - 2:00pm Addthis EERE has extended this notice of intent. The updated FOA issue date is on or about May 7, 2014. The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Innovations in Fuel Cell and

  19. Extended length microchannels for high density high throughput electrophoresis systems

    DOE Patents [OSTI]

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  20. Department of Energy Announces Intent to Extend Hanford Site Contract |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intent to Extend Hanford Site Contract Department of Energy Announces Intent to Extend Hanford Site Contract April 25, 2012 - 12:00pm Addthis Media Contact Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, Wash. - The Department of Energy (DOE) plans to extend CH2M HILL Plateau Remediation Company's contract for environmental cleanup at the Hanford Site by another five years. In 2008, following a competitive bid, DOE awarded CH2M HILL a cost-plus,

  1. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March, and in the fall by changing its end date from the last Sunday in October to ... day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. ...

  2. Successful Oil and Gas Technology Transfer Program Extended to 2015

    Broader source: Energy.gov [DOE]

    The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy.

  3. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect (OSTI)

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption.

  4. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect (OSTI)

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the national energy consumption.

  5. Status Update: Extended Storage and Transportation Waste Confidence...

    Office of Environmental Management (EM)

    Status Update: Extended Storage and Transportation Waste Confidence Presentation made by David W. Pstrak for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY. ...

  6. PPPL extends system for suppressing instabilities to long-pulse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The revised KSTAR unit will extend such research to long-pulse plasma experiments when work on the water-cooled mirrors is completed later this year. Contact Info PPPL Office of ...

  7. Application Deadline Extended to Jan. 8, 2016: Opportunity from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from U.S. DOE to participate in ISO 50001SEP pilot Application Deadline Extended to Jan. 8, 2016: Opportunity from U.S. DOE to participate in ISO 50001SEP pilot December 1, 2015 ...

  8. Microsoft BPA proposal extends Port Townsend Paper contract nine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug. 17, 2012 CONTACT: Mike Hansen, 503-230-4328 503-230-5131 BPA proposal extends Port Townsend Paper contract nine years Proposal subject to public review Portland, Ore. -...

  9. Deadline Extended for RFI Regarding Hydrogen Infrastructure and FCEVs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Regarding Hydrogen Infrastructure and FCEVs Deadline Extended for RFI Regarding Hydrogen Infrastructure and FCEVs February 4, 2014 - 12:00am Addthis DOE has extended the submission deadline for this Request for Information. Responses must be submitted by 5:00 p.m. Eastern Time on February 28, 2014. The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding

  10. Deadline Extended for RFI on Biological Hydrogen Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Biological Hydrogen Production Deadline Extended for RFI on Biological Hydrogen Production February 26, 2014 - 12:00am Addthis DOE has extended the submission deadline for this Request for Information. Responses must be submitted by 5:00 p.m. Eastern Time on March 14, 2014. The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding biological hydrogen production research

  11. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, J.S.

    1999-03-23

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

  12. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, John S.

    1999-01-01

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  13. Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 pivovar_nrel_kickoff.pdf (1.9 MB) More Documents & Publications DOE's Fuel Cell Catalyst R&D Activities Fuel Cell Projects Kickoff Meeting PEMFC R&D at the DOE Fuel Cell Technologies Program

  14. Dr. Bhaskaran Gopalakrishnan Extends the Reach of the West Virginia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Industrial Assessment Center | Department of Energy Technical Assistance » Industrial Assessment Centers (IACs) » Dr. Bhaskaran Gopalakrishnan Extends the Reach of the West Virginia University Industrial Assessment Center Dr. Bhaskaran Gopalakrishnan Extends the Reach of the West Virginia University Industrial Assessment Center Discussing energy audit results — Dr. Bhaskaran Gopalakrishnan (left) and Dr. Ed Crowe (right, Engineering Scientist at West Virginia University)

  15. Acquisition Planning--Extending A Management and Operating Contract Without

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full and Open Competition; and Site and Utilization Management Planning | Department of Energy Planning--Extending A Management and Operating Contract Without Full and Open Competition; and Site and Utilization Management Planning Acquisition Planning--Extending A Management and Operating Contract Without Full and Open Competition; and Site and Utilization Management Planning PF2009-13.pdf (337.25 KB) PF2009-13a - Acquisition Letter 2009-03 - Acquisition Planning (130.37 KB) More Documents

  16. LEP: Extending stockpile life | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LEP: Extending stockpile ... LEP: Extending stockpile life Posted: February 7, 2013 - 6:10pm | Y-12 Report | Volume 9, Issue 2 | 2013 The Life Extension Program allows safe, effective weapons to remain in the stockpile well beyond their original service life. Nuclear weapons are intricate and, in a sense, handmade devices that cannot be stored indefinitely - and be expected to function - without ongoing care and maintenance. Weapon components periodically require evaluation and replacement.

  17. Extend the Operating Life of Your Motor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extend the Operating Life of Your Motor Extend the Operating Life of Your Motor Certain components of motors degrade with time and operating stress. Electrical insulation weakens over time with exposure to voltage unbalance, over and undervoltage, voltage disturbances, and temperature. Contact between moving surfaces causes wear. Wear is affected by dirt, moisture, and corrosive fumes and is greatly accelerated when lubricant is misapplied, becomes overheated or contaminated, or is not replaced

  18. LANS Board of Governors extends Community Commitment Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS Board of Governors extends Community Commitment Plan LANS Board of Governors extends Community Commitment Plan $3 million of the company's management fee invested each year in education, economic development and community giving. September 18, 2012 Aerial view of Los Alamos National Laboratory main complex Aerial view of Los Alamos National Laboratory main complex. Contact Director of Government Affairs Patrick D. Woehrle (505) 665-7778 "LANL is a vital member of the Northern New

  19. DOE Extends Advanced Mixed Waste Treatment Project Contract | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Mixed Waste Treatment Project Contract DOE Extends Advanced Mixed Waste Treatment Project Contract September 29, 2015 - 6:00pm Addthis Media Contact Danielle Miller, 208-526-5709 Idaho Falls, ID - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for the Advanced Mixed Waste Treatment Project at the Idaho Site for a period of 6 months. The contract period for the current contractor, Idaho Treatment Group

  20. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 10:00am Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities

  1. Extended Battery Life in Electric Vehicles | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE, Ford, University of Michigan Extend Battery Life for EVs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE, Ford, University of Michigan Extend Battery Life for EVs In what could propel electric vehicles (EVs) miles down the road toward commercial viability, GE researchers, in partnership with Ford Motor Company

  2. DOE Extends Idaho Cleanup Project Contract | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Cleanup Project Contract DOE Extends Idaho Cleanup Project Contract September 29, 2015 - 6:00pm Addthis Media Contact Danielle Miller, 208-526-5709 Idaho Falls, ID - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for the Idaho Cleanup Project at the Idaho Site for a period of 6 months. The contract period for the current contractor, CH2M-WG Idaho, LLC, had been scheduled to expire on September 30, 2015. Today's contract

  3. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    SciTech Connect (OSTI)

    Niklasson, Anders M. N. Cawkwell, Marc J.

    2014-10-28

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  4. Filter holder assembly having extended collar spacer ring

    DOE Patents [OSTI]

    Alvin, Mary Anne (Pittsburgh, PA); Bruck, Gerald J. (Murrysville, PA)

    2002-01-01

    A filter holder assembly is provided that utilizes a fail-safe regenerator unit with an annular spacer ring having an extended metal collar for containment and positioning of a compliant ceramic gasket used in the assembly. The filter holder assembly is disclosed for use with advanced composite, filament wound, and metal candle filters.

  5. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Analysis, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia Develops Stochastic ...

  6. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monte Carlo modeling it was found that for noisy signals with a significant background component, accuracy is improved by fitting the total emission data which includes the...

  7. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power ...

  8. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid ...

  9. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Actuarial Practice" Read More Permalink New Project Is the ACME of Computer Science to Address Climate Change Analysis, Climate, Global Climate & Energy, Modeling, ...

  10. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Though adequate for modeling mean transport, this approach does not address ... Microphysics such as diffusive transport and chemical kinetics are represented by ...

  11. Calibrating Multi-machine Power System Parameters with the Extended Kalman Filter

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Sun, Yannan; Huang, Zhenyu; Du, Pengwei; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2012-07-24

    Large-scale renewable resources and novel smart-grid technologies continue to increase the complexity of power systems. As power systems continue to become more complex, accurate modeling for planning and operation becomes a necessity. Inaccurate system models would result in an unreliable assessment of system security conditions and could cause large-scale blackouts. This motivates the need for model parameter calibration, since some or all of the model parameters could be unknown or inaccurate. In this paper, the extended Kalman filter is used to calibrate the parameters of a multi-machine power system. The calibration performance is tested under varying fault locations, parameter errors and measurement noise giving an insight into how many generators and which generators could be difficult to calibrate.

  12. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2...

  13. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the ...

  14. Extended space expectation values in quantum dynamical system evolutions

    SciTech Connect (OSTI)

    Demiralp, Metin

    2014-10-06

    The time variant power series expansion for the expectation value of a given quantum dynamical operator is well-known and well-investigated issue in quantum dynamics. However, depending on the operator and Hamiltonian singularities this expansion either may not exist or may not converge for all time instances except the beginning of the evolution. This work focuses on this issue and seeks certain cures for the negativities. We work in the extended space obtained by adding all images of the initial wave function under the system Hamiltonians positive integer powers. This requires the introduction of certain appropriately defined weight operators. The resulting better convergence in the temporal power series urges us to call the new defined entities extended space expectation values even though they are constructed over certain weight operators and are somehow pseudo expectation values.

  15. NREL Launches Partnership with Solarmer Energy to Extend Lifetime of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Solar Cells - News Releases | NREL Launches Partnership with Solarmer Energy to Extend Lifetime of Plastic Solar Cells June 21, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Solarmer Energy, Inc., have signed a Cooperative Research and Development Agreement (CRADA) to collaborate on improving the lifetime of plastic solar cells, a promising new solar conversion technology. The joint research covered by the CRADA will explore the lifetime

  16. ELAF failed fuel plate examination. [Extended Life Aluminide Fuel

    SciTech Connect (OSTI)

    Beeston, J.M.; Miller, L.G.; Brown, K.R.; McGinty, D.M.

    1984-10-01

    A fuel plate examination was conducted in the hot cell and canal to determine the possible failure modes for three plates leaking fission products. The plates were irradiated in the Extended Life Aluminide Fuel (ELAF) program in support of university research reactor goals to increase the limits presently allowed. The examination indicated pitting corrosion to be the failure mode. Other failure modes such as: (a) nonbonded swelling, (b) excessive fuel swelling, and (c) overheating of the plates were not observed.

  17. Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticle Size Control by Extending LaMer's Mechanism - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  18. Extending Juvenile Stage of Plants for Biofuels and Feedstocks - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Extending Juvenile Stage of Plants for Biofuels and Feedstocks Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Juvenile and adult grass tissue dramatically differs in anatomy, chemistry and ability to withstand stresses. Juvenile plants cannot flower and their leaves are better able to resist cold and drought. Moreover, they may be easier to process for biofuels and more digestible when used as feed. The genes

  19. DOE Extends Public Comment Period for Uranium Program Environmental Impact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement | Department of Energy Uranium Program Environmental Impact Statement DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement April 18, 2013 - 1:08pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the public comment period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)

  20. Class Deviation – Extending the Biobased Product Reporting Requirement

    Broader source: Energy.gov [DOE]

    The Civilian Agency Acquisition Council (CAAC) issued Civilian Agency Acquisition Letter 2013-01 to encourage agencies to extend the reporting deadline contained in paragraph (c)(2) of the clause at FAR 52.223-2, Affirmative Procurement of Biobased Products Under Service and Construction Contracts, from October 31, 2012 to December 31, 2012. This Policy Flash forwards the approved DOE class deviation and the Civilian Agency Acquisition Letter 2013-01.

  1. COLLOQUIUM: Extending the Ice Core Record of Atmospheric Composition and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Global Carbon and Oxygen Cycles Beyond 1 Million Years | Princeton Plasma Physics Lab 1, 2016, 2:15pm to 3:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Extending the Ice Core Record of Atmospheric Composition and the Global Carbon and Oxygen Cycles Beyond 1 Million Years Professor John Higgins Princeton University Ice cores serve as a critical archive of past environmental conditions, providing constraints on global atmospheric composition and the climate of polar regions.

  2. Studies of phase transitions and quantum chaos relationships in extended Casten triangle of IBM-1

    SciTech Connect (OSTI)

    Proskurins, J.; Andrejevs, A.; Krasta, T.; Tambergs, J. [University of Latvia, Institute of Solid State Physics (Latvia)], E-mail: juris_tambergs@yahoo.com

    2006-07-15

    A precise solution of the classical energy functional E(N, {eta}, {chi}; {beta}) minimum problem with respect to deformation parameter {beta} is obtained for the simplified Casten version of the standard interacting boson model (IBM-1) Hamiltonian. The first-order phase transition lines as well as the critical points of X(5), -X(5), and E(5) symmetries are considered. The dynamical criteria of quantum chaos-the basis state fragmentation width and the wave function entropy - are studied for the ({eta}, {chi}) parameter space of the extended Casten triangle, and the possible relationships between these criteria and phase transition lines are discussed.

  3. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    SciTech Connect (OSTI)

    Zheng, Y. |; Shirley, D.A.

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  4. Extending gear life in a coal pulverizer gearbox

    SciTech Connect (OSTI)

    Hansen, T.

    2007-08-15

    A coal-fired power plant in the Western United States experienced short gearbox life in the 13 coal pulverizers operating at the plant. Wear on the bronze bull gear faces was suspected to have been caused by high particulate loading of coal dust and dirt in the gear oil, catalytic reaction between gear oil additives and some of the particulates generated, and high levels of copper in the gear oil. By addressing particulate ingress, adding filtration and switching to a synthetic gear oil, significant benefits were made to the power plant and gear oil life was extended. 2 photos., 1 tab.

  5. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  6. EXTENDED! Science on Saturday: Using Physics and Chemistry to Understand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Genome | Princeton Plasma Physics Lab March 19, 2016, 9:30am Science On Saturday PPPL, MBG Auditorium EXTENDED! Science on Saturday: Using Physics and Chemistry to Understand the Genome Professor Mary Jo Ondrechen Northeastern University Abstract: PDF icon 03 Ondrechen-1.pdf ***ATTENTION*** Join us as Dr. Ondrechen gives her talk at our final lecture of the series on March 19, 2016- same time, same place! Science_on_Saturday19Mar2016_MJOndrechen Contact Information Coordinator(s): Ms.

  7. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOE Patents [OSTI]

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  8. DOE Extends Paducah Infrastructure Support Services Contract | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy March 20, 2015 - 3:30pm Addthis Media Contact: Brad Mitzelfelt, 859-219-4035, brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today announced that it is extending its contract for Infrastructure Support Services at the Paducah Gaseous Diffusion Plant for a period of three months. The contract period for the current contractor, Swift & Staley, Inc. (SSI), had been scheduled to expire on March 30, 2015. This contract extension, valued at

  9. DOE Extends Paducah Infrastructure Support Services Contract | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy September 15, 2015 - 5:00pm Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Infrastructure Support Services at the Paducah Gaseous Diffusion Plant for a period of 2.5 months. The contract period for the current contractor, Swift & Staley, Inc. (SSI), had been scheduled to expire on September 15, 2015. Today's

  10. Application Of The Iberdrola Licensing Methodology To The Cofrentes BWR-6 110% Extended Power Up-rate

    SciTech Connect (OSTI)

    Mata, Pedro; Fuente, Rafael de la; Iglesias, Javier; Sedano, Pablo G.

    2002-07-01

    Iberdrola (spanish utility) and Iberdrola Ingenieria (engineering branch) have been developing during the last two years the 110% Extended Power Up-rate Project (EPU 110%) for Cofrentes BWR-6. IBERDROLA has available an in-house design and licensing reload methodology that has been approved by the Spanish Nuclear Regulatory Authority. This methodology has been already used to perform the nuclear design and the reload licensing analysis for Cofrentes cycles 12 to 14. The methodology has been also applied to develop a significant number of safety analysis of the Cofrentes Extended Power Up-rate including: Reactor Heat Balance, Core and Fuel performance, Thermal Hydraulic Stability, ECCS LOCA Evaluation, Transient Analysis, Anticipated Transient Without Scram (ATWS) and Station Blackout (SBO) Since the scope of the licensing process of the Cofrentes Extended Power Up-rate exceeds the range of analysis included in the Cofrentes generic reload licensing process, it has been required to extend the applicability of the Cofrentes licensing methodology to the analysis of new transients. This is the case of the TLFW transient. The content of this paper shows the benefits of having an in-house design and licensing methodology, and describes the process to extend the applicability of the methodology to the analysis of new transients. The case of analysis of Total Loss of Feedwater with the Cofrentes Retran Model is included as an example of this process. (authors)

  11. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    SciTech Connect (OSTI)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  12. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians

    SciTech Connect (OSTI)

    Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.

    2013-10-15

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: Self-adjoint extension theory and contact interactions. Application of self-adjoint extensions to supersymmetry. Contact interactions in finite volume with Robin boundary condition.

  13. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  14. Transient Analyses for a Molten Salt Transmutation Reactor Using the Extended SIMMER-III Code

    SciTech Connect (OSTI)

    Wang, Shisheng; Rineiski, Andrei; Maschek, Werner; Ignatiev, Victor

    2006-07-01

    Recent developments extending the capabilities of the SIMMER-III code for the dealing with transient and accidents in Molten Salt Reactors (MSRs) are presented. These extensions refer to the movable precursor modeling within the space-time dependent neutronics framework of SIMMER-III, to the molten salt flow modeling, and to new equations of state for various salts. An important new SIMMER-III feature is that the space-time distribution of the various precursor families with different decay constants can be computed and took into account in neutron/reactivity balance calculations and, if necessary, visualized. The system is coded and tested for a molten salt transmuter. This new feature is also of interest in core disruptive accidents of fast reactors when the core melts and the molten fuel is redistributed. (authors)

  15. Stimulated Raman adiabatic passage in an extended ladder system

    SciTech Connect (OSTI)

    Niu Yingyu; Wang Rong; Qiu Minghui [School of Science, Dalian Jiaotong University, Dalian 116028 (China)

    2011-08-15

    The rovibrational dynamics of an extended ladder stimulated Raman adiabatic passage (STIRAP) system through permanent dipole moment transitions is investigated theoretically using the time-dependent quantum-wave-packet method for the ground electronic state of the HF molecule. The calculated results show that nearly 100% of the population can be transferred to the target state through (1+2), (1+3), and (2+2) STIRAP schemes. By choosing a suitable excitation pathway, the effects of the background states on the final population of the target state can be removed. For the multiphoton STIRAP process, the one-photon overtone pump scheme is more efficient than the two-photon pump scheme in controlling the population transfer to the target state.

  16. Plant improvements extend life of McWilliams Station

    SciTech Connect (OSTI)

    Meyer, R.; Balsbaugh, R.; Korinek, K.

    1995-12-31

    A combined-cycle conversion project at Alabama Electric Cooperative (AEC) will extend the life of its gas- and coal-fired McWilliams Station. The conversion will allow the plant to generate power for the next 30 years and boost its system intermediate and peaking capacity. Station capacity will increase from 42 MW to 151 MW (net), and the heat rate will improve from 15,000 to 9,000 Btu/kW-hr (HHV). Thanks to AEC`s preventive maintenance program, overhauls to the equipment remaining in service were unnecessary. Except for slight modifications, most systems will remain as they have for the last 40 years. This paper will describe the plant`s original construction and the changes made to sustain it.

  17. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    SciTech Connect (OSTI)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bouwens, R.; Cattaneo, A.; Croton, D.; Dave, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.; and others

    2013-05-20

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg{sup 2} to a depth of 26 AB mag (3{sigma}) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 {mu}m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 {+-} 1.0 and 4.4 {+-} 0.8 nW m{sup -2} sr{sup -1} at 3.6 and 4.5 {mu}m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  18. Dissipative soliton-like plasmon-polariton pulses in extended medium

    SciTech Connect (OSTI)

    Zabolotskii, A. A.

    2012-05-15

    The propagation of the coupled state of the electron density perturbation in an extended metallic medium and the excitation of a two-level resonant medium are analyzed. The one- and two-photon transitions in the resonant medium are considered. The electron density perturbation is described using the hydrodynamic approximation. The formation of plasmon-polariton pulses is analyzed in the case when losses in the extended medium are compensated for by the pumping of the two-level dielectric medium. Numerical analysis carried out for the two models revealed that the losses in a soliton-like pulse in a thin metallic medium can be compensated for due to the energy transfer from the amplifying medium to electron density waves. It is shown that the dispersion of a medium containing a two-level component may considerably affect the characteristics of the pulses. The possibility of effectively controlling the evolution of soliton-like pulses by varying an external electromagnetic field and the characteristics of the matrix is demonstrated.

  19. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    SciTech Connect (OSTI)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez-Gonzalez, Jesus S

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  20. Master plate production for the tile calorimeter extended barrel modules.

    SciTech Connect (OSTI)

    Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J.; Wood, K.

    1999-03-10

    Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an R&D program to demonstrate the feasibility and cost effectiveness of die stamping these plates by constructing a die and stamping approximately 2000 plates for use in construction of three full size prototype modules. This was extremely successful and die stamping was selected by the group for production of these plates. When the prototype die was constructed it was matched to the calorimeter envelope at that time. This subsequently changed. However with some minor adjustments in the design envelope and a small compromise in terms of instrumented volume, it became possible to use this same die for the production of all master plates for the Tile Calorimeter. Following an extensive series of discussions and an evaluation of the performance of the stamping presses available to our collaborators in Europe, it was decided to ship the US die to CERN for use in stamping master plates for the barrel section of the calorimeter. This was done under the supervision of CERN and JINR, Dubna, and carried out at the TATRA truck plant at Koprivinice, Czech Republic. It was a great success. Approximately 41,000 plates were stamped and fully met specification. Moreover, the production time was significantly reduced by avoiding the need of constructing and then qualifying a second die for use in Europe. This also precluded small geometrical differences between the barrel and

  1. What You Need to Know About the Extended Federal Tax Credits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What You Need to Know About the Extended Federal Tax Credits for Energy Efficiency What You Need to Know About the Extended Federal Tax Credits for Energy Efficiency February 27, ...

  2. 70 years making the world safer: extended | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safer: extended The mp4 video format is not supported by this browser. Download video Time: 12:38 min. Extended version with narration. This video shows our roles in making the ...

  3. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Norris, Jay P.; Gehrels, Neil

    2010-07-01

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities {approx}10{sup -2} counts cm{sup -2} s{sup -1}, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, R{sub int}, ranges over a factor of 25, R{sub int} {approx} 3 x 10{sup -3} to 8 x 10{sup -2}. In comparison, for the average of the 39 bursts without an EE component, the 2{sigma} upper limit is R{sub int} < 8 x 10{sup -4}. These results suggest that a physical threshold effect operates near R{sub int} {approx} few x 10{sup -3} below which the EE component is not manifest.

  4. Matrix isolation apparatus with extended sample collection capability

    DOE Patents [OSTI]

    Reedy, Gerald T.

    1987-01-01

    A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.

  5. Very extended shapes in 108Cd: evidence for the occupation of 'hyper-intruder' orbitals

    SciTech Connect (OSTI)

    Gorgen, A.; Clark, R.M.; Fallon, P.; Cromaz, M.; Deleplanque, M.A.; Diamond, R.M.; Lane, G.J.; Lee, I.Y.; Macchiavelli, A.O.; Ramos, R.G.; Stephens, F.S.; Svensson, C.E.; Vetter, K.; Ward, D.; Carpenter, M.P.; Janssens, R.V.F.; Wadsworth, R.

    2002-07-01

    High-spin states in {sup 108}Cd were studied following the reaction {sup 64} Ni({sup 48}Ca,4n) at a beam energy of 207 MeV. Gamma rays were detected using the Gammasphere array. Two rotational bands have been observed at very high angular momentum. Measurements of fractional Doppler shifts yielded lower limits for the quadrupole moments and showed that the observed structures are at least as deformed as the superdeformed structures e.g. in the A {approx} 150 region, and possibly exceed a 2:1 axis ratio. The existence of very extended shapes has been predicted by cranked Strutinsky calculations, and recent projected shell model calculations suggest that the {pi}i{sub 13/2}hyper-intruder orbital is occupied in these newly observed bands.

  6. NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547

    SciTech Connect (OSTI)

    Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H.; Pan, Y.

    2012-07-01

    Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

  7. Effective field theory of gravity for extended objects

    SciTech Connect (OSTI)

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-05-15

    Using effective field theory (EFT) methods we present a Lagrangian formalism which describes the dynamics of nonrelativistic extended objects coupled to gravity. The formalism is relevant to understanding the gravitational radiation power spectra emitted by binary star systems, an important class of candidate signals for gravitational wave observatories such as LIGO or VIRGO. The EFT allows for a clean separation of the three relevant scales: r{sub s}, the size of the compact objects, r, the orbital radius, and r/v, the wavelength of the physical radiation (where the velocity v is the expansion parameter). In the EFT, radiation is systematically included in the v expansion without the need to separate integrals into near zones and radiation zones. Using the EFT, we show that the renormalization of ultraviolet divergences which arise at v{sup 6} in post-Newtonian (PN) calculations requires the presence of two nonminimal worldline gravitational couplings linear in the Ricci curvature. However, these operators can be removed by a redefinition of the metric tensor, so that the divergences arising at v{sup 6} have no physically observable effect. Because in the EFT finite size features are encoded in the coefficients of nonminimal couplings, this implies a simple proof of the decoupling of internal structure for spinless objects to at least order v{sup 6}. Neglecting absorptive effects, we find that the power counting rules of the EFT indicate that the next set of short distance operators, which are quadratic in the curvature and are associated with tidal deformations, does not play a role until order v{sup 10}. These operators, which encapsulate finite size properties of the sources, have coefficients that can be fixed by a matching calculation. By including the most general set of such operators, the EFT allows one to work within a point-particle theory to arbitrary orders in v.

  8. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  9. The Search for High Energy Extended Emission by Fermi-LAT from Swift-Localized Gamma-Ray Bursts

    SciTech Connect (OSTI)

    Chiang, J.; /Stanford U., HEPL /SLAC; Racusin, J.L.; /NASA, Goddard

    2012-05-01

    The brighter Fermi-LAT bursts have exhibited emission at energies >0.1 GeV that persists as late as {approx}2 ks after the prompt phase has nominally ended. This so-called 'extended emission' could arise from continued activity of the prompt burst mechanism or it could be the start of a high energy afterglow component. The high energy extended emission seen by the LAT has typically followed a t{sup -}{gamma} power-law temporal decay where {gamma} {approx} 1.2-1.7 and has shown no strong indication of spectral evolution. In contrast, the prompt burst emission generally displays strong spectral variability and more complex temporal changes in the LAT band. This differing behavior suggests that the extended emission likely corresponds to an early afterglow phase produced by an external shock. In this study, we look for evidence of high energy extended emission from 145 Swift-localized GRBs that have occurred since the launch of Fermi. A majority of these bursts were either outside of the LAT field-of-view or were otherwise not detected by the LAT during the prompt phase. However, because of the scanning operation of the Fermi satellite, the long-lived extended emission of these bursts may be detectable in the LAT data on the {approx}few ks time scale. We will look for emission from individual bursts and will perform a stacking analysis in order to set bounds on this emission for the sample as a whole. The detection of such emission would have implications for afterglow models and for the overall energy budget of GRBs.

  10. Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report.

    SciTech Connect (OSTI)

    Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack; Voth, Thomas Eugene; Cox, James

    2014-09-01

    Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include explod- ing bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are im- practical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The em- pirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which sat- isfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

  11. Computational extended magneto-hydrodynamical study of shock structure generated by flows past an obstacle

    SciTech Connect (OSTI)

    Zhao, Xuan; Seyler, C. E.

    2015-07-15

    The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock, magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number M{sub f} and the ratio of thermal pressure to magnetic pressure β, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.

  12. Prospects for GeV-TeV detection of short gamma-ray bursts with extended emission

    SciTech Connect (OSTI)

    Veres, P.; Mszros, P., E-mail: veres@gwu.edu [Department of Astronomy and Astrophysics Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2014-06-01

    We discuss the GeV to TeV photon emission of gamma-ray bursts (GRBs) within the refreshed shock and the continuous injection scenarios, motivated by the observation of extended emission in a substantial fraction of short GRBs. In the first model we assume that the central engine promptly emits material with a range of Lorentz factors. When the fastest shell starts to decelerate, it drives a forward shock into the ambient medium and a reverse shock into the ejecta. These shocks are reenergized by the slower and later arriving material. In the second model we assume that there is a continued ejection of material over an extended time, and the continuously arriving new material keeps reenergizing the shocks formed by the preceding shells of ejecta. We calculate the synchrotron and synchrotron self-Compton radiation components for the forward and reverse shocks and find that prospective and current GeV-TeV range instruments such as CTA, HAWC, VERITAS, MAGIC, and HESS have a good chance of detecting afterglows of short bursts with extended emission, assuming a reasonable response time.

  13. Extending the frontiers of mass spectrometric instrumentation and methods

    SciTech Connect (OSTI)

    Schieffer, Gregg

    2010-12-15

    The focus of this dissertation is two-fold: developing novel analysis methods using mass spectrometry and the implementation and characterization of a novel ion mobility mass spectrometry instrumentation. The novel mass spectrometry combines ion trap for ion/ion reactions coupled to an ion mobility cell. The long term goal of this instrumentation is to use ion/ion reactions to probe the structure of gas phase biomolecule ions. The three ion source - ion trap - ion mobility - qTOF mass spectrometer (IT - IM - TOF MS) instrument is described. The analysis of the degradation products in coal (Chapter 2) and the imaging plant metabolites (Appendix III) fall under the methods development category. These projects use existing commercial instrumentation (JEOL AccuTOF MS and Thermo Finnigan LCQ IT, respectively) for the mass analysis of the degraded coal products and the plant metabolites, respectively. The coal degradation paper discusses the use of the DART ion source for fast and easy sample analysis. The sample preparation consisted of a simple 50 fold dilution of the soluble coal products in water and placing the liquid in front of the heated gas stream. This is the first time the DART ion source has been used for analysis of coal. Steven Raders under the guidance of John Verkade came up with the coal degradation projects. Raders performed the coal degradation reactions, worked up the products, and sent them to me. Gregg Schieffer developed the method and wrote the paper demonstrating the use of the DART ion source for the fast and easy sample analysis. The plant metabolite imaging project extends the use of colloidal graphite as a sample coating for atmospheric pressure LDI. DC Perdian and I closely worked together to make this project work. Perdian focused on building the LDI setup whereas Schieffer focused on the MSn analysis of the metabolites. Both Perdian and I took the data featured in the paper. Perdian was the primary writer of the paper and used it as a

  14. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    SciTech Connect (OSTI)

    Vogelmann, A. M.; McFarquhar, Greg; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, G.; Long, Charles N.; Jonsson, Haf; Bucholtz, Anthony; Collins, Donald R.; Diskin, G. S.; Gerber, H.; Lawson, Paul; Woods, Roy; Andrews, Elizabeth; Yang, Hee-Jung; Chiu, Christine J.; Hartsock, Daniel; Hubbe, John M.; Lo, Chaomei; Marshak, A.; Monroe, Justin; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.; Toto, Tami

    2012-06-30

    A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and enables evaluating a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 75% of the flights occurring in cumulus and stratocumulus. Preliminary analyses show how these data are being used to analyze cloud-aerosol relationships, determine the aerosol sizes that are responsible for nucleating cloud drops, characterize the horizontal variability of the cloud radiative impacts, and evaluate air-borne and surface-based cloud property retrievals. We discuss how conducting an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

  15. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    SciTech Connect (OSTI)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; Anders, David; Martineau, Richard

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC) system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.

  16. Finite element analysis of an extended end-plate connection using the T-stub approach

    SciTech Connect (OSTI)

    Muresan, Ioana Cristina; Balc, Roxana

    2015-03-10

    Beam-to-column end-plate bolted connections are usually used as moment-resistant connections in steel framed structures. For this joint type, the deformability is governed by the deformation capacity of the column flange and end-plate under tension and elongation of the bolts. All these elements around the beam tension flange form the tension region of the joint, which can be modeled by means of equivalent T-stubs. In this paper a beam-to-column end-plate bolted connection is substituted with a T-stub of appropriate effective length and it is analyzed using the commercially available finite element software ABAQUS. The performance of the model is validated by comparing the behavior of the T-stub from the numerical simulation with the behavior of the connection as a whole. The moment-rotation curve of the T-stub obtained from the numerical simulation is compared with the behavior of the whole extended end-plate connection, obtained by numerical simulation, experimental tests and analytical approach.

  17. Extending Higgs inflation with TeV scale new physics

    SciTech Connect (OSTI)

    He, Hong-Jian; Xianyu, Zhong-Zhi

    2014-10-10

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ deviations, and generally gives a negligible tensor-to-scalar ratio r∼10{sup −3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S . The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)−O(10{sup −3}) , consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s}≃0.96 . It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  18. Extending Higgs inflation with TeV scale new physics

    SciTech Connect (OSTI)

    He, Hong-Jian; Xianyu, Zhong-Zhi E-mail: xianyuzhongzhi@gmail.com

    2014-10-01

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2? deviations, and generally gives a negligible tensor-to-scalar ratio r?10{sup -3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S. The presence of singlets (T,S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)-O(10{sup -3}), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s}?0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  19. RFI Deadline Extended and Pre-Solicitation Workshop Announced on Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Needs | Department of Energy RFI Deadline Extended and Pre-Solicitation Workshop Announced on Fuel Cell Research and Development Needs RFI Deadline Extended and Pre-Solicitation Workshop Announced on Fuel Cell Research and Development Needs May 30, 2014 - 5:36pm Addthis DOE has extended the RFI response deadline to June 9, 2014. The U.S. Department of Energy's Fuel Cell Technologies Office (DOE's FCTO) has issued a request for information (RFI) seeking feedback from

  20. DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site to September 2016 | Department of Energy to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016 DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016 September 6, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Aiken, SC -- The Department of Energy's (DOE) Savannah River Operations Office today exercised its option to extend the current Savannah River Site Management and

  1. DOE Extends Public Comment Period for the Draft Uranium Leasing Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programmatic Environmental Impact Statement | Department of Energy Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement DOE Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement April 17, 2013 - 8:21am Addthis DOE Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement The U.S. Department of Energy (DOE) today announced

  2. Code verification for the eXtended Finite Element Method (XFEM...

    Office of Scientific and Technical Information (OSTI)

    Title: Code verification for the eXtended Finite Element Method (XFEM): the compound cohesionless impact problem. Abstract not provided. Authors: Niederhaus, John Henry ; Voth, ...

  3. U.S. Department of Energy to Extend Pacific Northwest National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management and Operating Contract U.S. Department of Energy to Extend Pacific Northwest National Laboratory Management and Operating Contract October 3, 2008 - 4:14pm ...

  4. EIS-0385: Notice to Extend the Public Scoping Period and Reschedule...

    Broader source: Energy.gov (indexed) [DOE]

    Due to the extraordinary circumstances created by Hurricane Katrina in the region where the proposed action and public scoping meetings will take place, DOE has extended the...

  5. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect (OSTI)

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  6. Final Report for "Extending BOUT++ for Solution of Edge Plasma Equations for Use in Whole Device Simulation of Tokamaks"

    SciTech Connect (OSTI)

    Ammar H Hakim

    2011-10-20

    In this Phase I project we have extended the BOUT++ code to solve edge fluid equations. We added a simple neutral fluid model, created a mesh generator as well as collected a set of difficult test problems for benchmarking edge codes. The work in this project should be useful as a starting point to build a complete set of edge fluid equations in BOUT++ that would enhance its ability to not only perform edge turbulence calculations, but also allow the coupled transport-turbulence equations evolved in an efficient manner.

  7. A Population Health Model for Integrated Assessment Models

    SciTech Connect (OSTI)

    Pitcher, Hugh M.; Ebi, Kristie L.; Brenkert, Antoinette L.

    2008-05-01

    This paper presents the initial results of a project to develop a population health model so we can extend the scenarios included in the IPCC's Special Report on Emissions Scenarios to include population health status.

  8. Simulation Study of an Extended Density DC Glow Toroidal Plasma Source

    SciTech Connect (OSTI)

    Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.

    2006-12-04

    Conventional wisdom assigns the DC glow discharge regime to plasma currents below {approx}500 mA values, beyond which the discharge falls into the anomalous glow and the turbulent arc regimes. However, we have found evidence that, during toroidal discharges, this barrier can be ostensibly extended up to 800 mA. Thus, a computer simulation has been applied to the evolution of the main electrical characteristics of such a glow discharge plasma in a toroidal vessel in order to design and construct a respective voltage/current controlled source. This should be able to generate a DC plasma in the glow regime with which currents in the range 10-3-100 A can be experimented and 109-1010 cm-3 plasma densities can be achieved to PIII optimization purposes. The plasma is modelled as a voltage-controlled current source able to be turned on whenever the breakdown voltage is reached across the gap between the anode and the vessel wall. The simulation outcome fits well our experimental measurements showing that the plasma current obeys power laws that are dependent on the power current and other control variables such as the gas pressure.

  9. Exact seismic velocities for VTI and HTI media and extendedThomsen Formulas for stronger anisotropies

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14

    I explore a different type of approximation to the exactanisotropic wave velocities as a function of incidence angle invertically transversely isotropic (VTI) media. This method extends theThomsen weak anisotropy approach to stronger anisotropy withoutsignificantly affecting the simplicity of the formulas. One importantimprovement is that the peak of the quasi-SV-wave speed vsv(theta) islocated at the correct incidence angle theta= theta max, rather thanalways being at the position theta = 45o, which universally holds forThomsen's approximation although max theta = 45o is actually nevercorrect for any VTI anisotropic medium. The magnitudes of all the wavespeeds are also more closely approximated for all values of the incidenceangle. Furthermore, the value of theta max (which is needed in the newformulas) can be deduced from the same data that are typically used inthe weak anisotropy data analysis. The two examples presented are basedon systems having vertical fractures. The first set of model fractureshas their axes of symmetry randomly oriented in the horizontal plane.Such a system is then isotropic in the horizontal plane and, therefore,exhibits vertical transverse isotropic (VTI) symmetry. The second set offractures also has axes of symmetry in the horizontal plane, but it isassumed these axes are aligned so that the system exhibits horizontaltransverse isotropic (HTI) symmetry. Both types of systems are easilytreated with the new wave speed formulation.

  10. EXTENDED HARD X-RAY EMISSION FROM THE VELA PULSAR WIND NEBULA

    SciTech Connect (OSTI)

    Mattana, F.; Terrier, R.; Zurita Heras, J. A.; Goetz, D.; Caballero, I.; Soldi, S.; Schanne, S.; Ponti, G.; Falanga, M.; Renaud, M.

    2011-12-10

    The nebula powered by the Vela pulsar is one of the best examples of an evolved pulsar wind nebula, allowing access to the particle injection history and the interaction with the supernova ejecta. We report on the INTEGRAL discovery of extended emission above 18 keV from the Vela nebula. The northern side has no known counterparts and it appears larger and more significant than the southern one, which is in turn partially coincident with the cocoon, the soft X-ray, and TeV filament toward the center of the remnant. We also present the spectrum of the Vela nebula in the 18-400 keV energy range as measured by IBIS/ISGRI and SPI on board the INTEGRAL satellite. The apparent discrepancy between IBIS/ISGRI, SPI, and previous measurements is understood in terms of the point-spread function, supporting the hypothesis of a nebula more diffuse than previously thought. A break at {approx}25 keV is found in the spectrum within 6' from the pulsar after including the Suzaku XIS data. Interpreted as a cooling break, this points out that the inner nebula is composed of electrons injected in the last {approx}2000 years. Broadband modeling also implies a magnetic field higher than 10 {mu}G in this region. Finally, we discuss the nature of the northern emission, which might be due to fresh particles injected after the passage of the reverse shock.

  11. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    SciTech Connect (OSTI)

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.

  12. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  13. Building America New Homes Case Study: Advanced Extended Plate and Beam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wall System in a Cold-Climate House | Department of Energy New Homes Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House Building America New Homes Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The

  14. H-Prize Draft Guideline Comments Deadline Extended to Monday, April 28 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy H-Prize Draft Guideline Comments Deadline Extended to Monday, April 28 H-Prize Draft Guideline Comments Deadline Extended to Monday, April 28 April 22, 2014 - 2:00pm Addthis The deadline for comments on the H-Prize draft guidelines has been extended to Monday, April 28. Send any feedback or suggestions on how we can improve the competition to hprize@go.doe.gov. For more on the H-Prize, which is administered for the Energy Department by the Hydrogen Education Foundation,

  15. DOE extends the Idaho Cleanup Project Contract for Three Years | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy extends the Idaho Cleanup Project Contract for Three Years DOE extends the Idaho Cleanup Project Contract for Three Years September 25, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 Idaho Falls, ID - The U.S. Department of Energy has extended by three years its contract with the company currently operating the Idaho Cleanup Project at the department's Idaho Site. CH2M-WG Idaho, LLC's (CWI) period of performance on the current contract

  16. NNSA Announces Plans to Extend BWXT Y-12 Contract for Operation of the Y-12

    National Nuclear Security Administration (NNSA)

    National Security Complex | National Nuclear Security Administration | (NNSA) Plans to Extend BWXT Y-12 Contract for Operation of the Y-12 National Security Complex June 02, 2005 PDF icon NR04-05.pdf

  17. Impact of Extended Daylight Saving Time on national energy consumption: Report to Congress

    SciTech Connect (OSTI)

    None, None

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption.

  18. Deadline to Review Draft M&V Guidelines Extended to December...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Management Program (FEMP) is extending its request for public comment on ... FEMP has reopened the comment period and requests that new comments on this draft be sent ...

  19. DOE Extends Comment Period on Certification and Enforcement Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    In response to a formal request, the Department has extended to October 29, 2010, the deadline for submission of comments in response to the Notice or Proposed Rulemaking on the certification and...

  20. Isospin effects in N ≈ Z nuclei in extended density functional...

    Office of Scientific and Technical Information (OSTI)

    N Z nuclei in extended density functional theory Citation Details In-Document Search This content will become publicly available on January 25, 2017 Title: Isospin effects in N ...

  1. Report on Assessment of Environmentally-­Assisted Fatigue for LWR Extended Service Conditions

    Broader source: Energy.gov [DOE]

    This report provides an update on the assessment of environmentally-assisted fatigue for light water reactor (LWR) extended service conditions. The report is a deliverable in FY11 under the work...

  2. Extended Life Program asks 'How do you make your buildings last?' |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Extended Life Program asks 'How do you make your buildings last?' Tuesday, April 26, 2016 - 10:31am Building 9204-2E is one of the Y¬12 buildings that the Extended Life Program would help. The challenge is this: Preserve two key processing facilities at Y-12 National Security Complex. These two facilities will house all nuclear material processing activities not incorporated into the Uranium Processing Facility design. To better understand

  3. Deadline for Energy Execs Applications Extended to March 20 - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Deadline for Energy Execs Applications Extended to March 20 March 6, 2013 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) has extended the application window for the 2013 Executive Energy Leadership Academy to March 20. "Energy Execs" is a leadership program focused on educating business, community, and government leaders about achieving clean energy solutions using energy efficiency and renewable energy technologies. Energy Execs offers

  4. Extending the Temperature Range of Electric Submersible Pumps to 338 °C -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hotline IV - High-temperature ESP; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Extending the Temperature Range of Electric Submersible Pumps to 338 °C - Hotline IV - High-temperature ESP; 2010 Geothermal Technology Program Peer Review Report Extending the Temperature Range of Electric Submersible Pumps to 338 °C - Hotline IV - High-temperature ESP; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review

  5. Extended Life Program asks 'How do you make your buildings last?' |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration | (NNSA) Extended Life Program asks 'How do you make your buildings last?' Tuesday, April 26, 2016 - 10:31am Building 9204-2E is one of the Y¬12 buildings that the Extended Life Program would help. The challenge is this: Preserve two key processing facilities at Y-12 National Security Complex. These two facilities will house all nuclear material processing activities not incorporated into the Uranium Processing Facility design. To better understand

  6. DOE Extends Comment Period for Reply Comments on Reducing Regulatory Burden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Extends Comment Period for Reply Comments on Reducing Regulatory Burden DOE Extends Comment Period for Reply Comments on Reducing Regulatory Burden March 31, 2011 - 5:13pm Addthis The Department of Energy today announces an extension of the reply comment period for its Request for Information implementing Executive Order 13563, seeking public comment on how best to review its existing regulations. The Department is interested in receiving comment on the suggestions and

  7. DOE Extends Public Comment Period for the Draft Uranium Leasing Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programmatic Environmental Impact Statement | Department of Energy the Draft Uranium Leasing Program Programmatic Environmental Impact Statement DOE Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement June 3, 2013 - 3:05pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov May 29, 2013 DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement The U.S.

  8. DOE Issues ESPC IDIQ Solicitation: Deadline for Response Extended to May

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13, 2015 | Department of Energy DOE Issues ESPC IDIQ Solicitation: Deadline for Response Extended to May 13, 2015 DOE Issues ESPC IDIQ Solicitation: Deadline for Response Extended to May 13, 2015 March 24, 2015 - 9:34am Addthis The U.S. Department of Energy (DOE) today released a request for proposals (RFP) solicitation for the implementation of energy savings performance contracts (ESPCs) at U.S. federal government sites worldwide. The intent is to award indefinite delivery, indefinite

  9. Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised July 2011 Version 2 Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Getting Started 1 Seattle Moves the Needle With the Help of Its Partners Seattle's Community Power Works (CPW) program has engaged a vast network of partners to build on existing capacity and knowledge, extending the reach of its program in a short period of time. By evaluating potential partnerships and identifying strategic opportuni- ties to augment and enhance local ideas and

  10. SunLine Begins Extended Testing of Hybrid Fuel Cell Bus | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Begins Extended Testing of Hybrid Fuel Cell Bus SunLine Begins Extended Testing of Hybrid Fuel Cell Bus DOE Hydrogen Program (Fact Sheet) 43203.pdf (742.85 KB) More Documents & Publications SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects

  11. Extended-life nuclear air cleaning filters via dynamic exclusion prefilters

    SciTech Connect (OSTI)

    Wright, S.R.; Crouch, H.S.; Bond, J.H.

    1997-08-01

    The primary objective of this investigation was to ascertain if a dynamic, self-cleaning particulate exclusion precleaner, designed for relatively large dust removal (2 to 100+ {mu}m diameter particles) from helicopter turbine inlets, could be extended to submicron filtration. The improved device could be used as a prefilter for HEPA filtration systems, significantly increasing service life. In nuclear air cleaning, its use would reduce the amount of nuclear particulate matter that would otherwise be entrapped in the HEPA filter cartridge/panel, causing fouling and increased back pressure, as well as requiring subsequent disposal of the contaminated media at considerable expense. A unique (patent-pending) mechanical separation device has recently been developed to extract particulate matter from fluid process streams based on a proprietary concept called Boundary Layer Momentum Transfer (BLMT). The device creates multiple boundary layers that actively exclude particles from entering the perimeter of the device, while allowing air to traverse the boundaries relatively unimpeded. A modified two-dimensional (2-D) computerized flow simulation model was used to assist in the prototype design. Empirical results are presented from particle breakthrough and AP experiments obtained from a reduced-scale prototype filter. Particles larger than 0.23 {mu}m were actively excluded by the prototype, but at a higher pressure drop than anticipated. Experimental data collected indicates that the filter housing and the inlet flow configuration may contribute significantly to improvements in device particle separation capabilities. Furthermore, preliminary experiments have shown that other downstream pressure drop considerations (besides those just across the spinning filtration disks) must be included to accurately portray the AP across the device. Further detailed quantitative investigations on a larger scale (1,000 CFM) prototype are warranted. 3 refs., 5 figs., 2 tabs.

  12. Using Cloud-Resolving Model Simulations of Deep Convection to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so extending them to a global model with many different environments is not straightforward. For example, deep convection creates abundant cloudiness and yet little is known...

  13. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    SciTech Connect (OSTI)

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings

  14. 2014-09-24 Issuance: Energy Conservation Program for Manufactured Housing; Notice to Extend Term and Public Meetings

    Broader source: Energy.gov [DOE]

    This document is the Energy Conservation Program for Manufactured Housing; Notice to Extend Term and Public Meetings.

  15. NEAR-INFRARED H{sub 2} AND CONTINUUM SURVEY OF EXTENDED GREEN OBJECTS

    SciTech Connect (OSTI)

    Lee, Hsu-Tai; Takami, Michihiro; Duan, Hao-Yuan; Karr, Jennifer; Su, Yu-Nung; Liu, Sheng-Yuan; Yeh, Cosmos C.; Froebrich, Dirk

    2012-05-01

    The Spitzer GLIMPSE survey has revealed a number of 'Extended Green Objects' (EGOs) that display extended emission at 4.5 {mu}m. These EGOs are potential candidates for high-mass protostellar outflows. We used high-resolution (<1'') H{sub 2} 1-0 S(1) line, K-, and H-band images from the United Kingdom Infrared Telescope to study 34 EGOs to investigate their nature. We found that 12 EGOs exhibit H{sub 2} outflows (two with chains of H{sub 2} knotty structures, five with extended H{sub 2} bipolar structures, three with extended H{sub 2} lobes, and two with pairs of H{sub 2} knots). Of the 12 EGOs with H{sub 2} outflows, three exhibit similar morphologies between the 4.5 {mu}m and H{sub 2} emission. However, the remaining nine EGOs show that the H{sub 2} features are more extended than the continuum features, and the H{sub 2} emission is seldom associated with continuum emission. Furthermore, the morphologies of the near-infrared continuum and 4.5 {mu}m emission are similar to each other for those EGOs with K-band emission, implying that at least part of the IRAC-band continuum emission of EGOs comes from scattered light from the embedded young stellar objects.

  16. Potential problem areas: extended storage of low-level radioactive waste

    SciTech Connect (OSTI)

    Siskind, B.

    1985-01-01

    If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. In particular, the range of storage alternatives considered and being implemented by the nuclear power plant utilities is described. The properties of the waste forms and waste containers are discussed. An overview is given of the performance of the waste package and its contents during storage (e.g., radiolytic gas generation, corrosion) and of the effects of extended storage on the performance of the waste package after storage (e.g., radiation-induced embrittlement of polyethylene, the weakening of steel containers by corrosion). Additional information and actions required to address these concerns, including possible mitigative measures, are discussed. 26 refs., 1 tab.

  17. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  18. Information and meaning revisiting Shannon's theory of communication and extending it to address todays technical problems.

    SciTech Connect (OSTI)

    Bauer, Travis LaDell

    2009-12-01

    This paper has three goals. The first is to review Shannon's theory of information and the subsequent advances leading to today's statistics-based text analysis algorithms, showing that the semantics of the text is neglected. The second goal is to propose an extension of Shannon's original model that can take into account semantics, where the 'semantics' of a message is understood in terms of the intended or actual changes on the recipient of a message. The third goal is to propose several lines of research that naturally fall out of the proposed model. Each computational approach to solving some problem rests on an underlying model or set of models that describe how key phenomena in the real world are represented and how they are manipulated. These models are both liberating and constraining. They are liberating in that they suggest a path of development for new tools and algorithms. They are constraining in that they intentionally ignore other potential paths of development. Modern statistical-based text analysis algorithms have a specific intellectual history and set of underlying models rooted in Shannon's theory of communication. For Shannon, language is treated as a stochastic generator of symbol sequences. Shannon himself, subsequently Weaver, and at least one of his predecessors are all explicit in their decision to exclude semantics from their models. This rejection of semantics as 'irrelevant to the engineering problem' is elegant and combined with developments particularly by Salton and subsequently by Latent Semantic Analysis, has led to a whole collection of powerful algorithms and an industry for data mining technologies. However, the kinds of problems currently facing us go beyond what can be accounted for by this stochastic model. Today's problems increasingly focus on the semantics of specific pieces of information. And although progress is being made with the old models, it seems natural to develop or extend information theory to account for

  19. What You Need to Know About the Extended Federal Tax Credits for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy You Need to Know About the Extended Federal Tax Credits for Energy Efficiency What You Need to Know About the Extended Federal Tax Credits for Energy Efficiency February 27, 2013 - 4:14pm Addthis You may qualify for tax credits for energy-efficient purchases. | Photo courtesy of ©iStockphoto.com/Tsuji You may qualify for tax credits for energy-efficient purchases. | Photo courtesy of ©iStockphoto.com/Tsuji Erik Hyrkas Erik Hyrkas Media Relations

  20. Application Deadline Extended to Jan. 8, 2016: Opportunity from U.S. DOE to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    participate in ISO 50001/SEP pilot | Department of Energy Technical Assistance » Superior Energy Performance » Application Deadline Extended to Jan. 8, 2016: Opportunity from U.S. DOE to participate in ISO 50001/SEP pilot Application Deadline Extended to Jan. 8, 2016: Opportunity from U.S. DOE to participate in ISO 50001/SEP pilot December 1, 2015 - 2:23pm Addthis The DOE Advanced Manufacturing Office announces a unique opportunity for companies to participate in a pilot program that will

  1. Devices with extended area structures for mass transfer processing of fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  2. THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH

    SciTech Connect (OSTI)

    Weiss, A.; Kovacs, A.; Menten, K. M.; Coppin, K.; Smail, Ian; Greve, T. R.; Walter, F.; Dannerbauer, H.; Dunlop, J. S.; Ivison, R. J.; Knudsen, K. K.; Bertoldi, F.; Alexander, D. M.; Brandt, W. N.; Chapman, S. C.; Cox, P.; De Breuck, C.; Gawiser, E.; Lutz, D.; Koekemoer, A. M.

    2009-12-20

    We present a sensitive 870 mum survey of the Extended Chandra Deep Field South (ECDFS) combining 310 hr of observing time with the Large Apex BOlometer Camera (LABOCA) on the APEX telescope. The LABOCA ECDFS Submillimetre Survey (LESS) covers the full 30' x 30' field size of the ECDFS and has a uniform noise level of sigma{sub 870{sub m}}u{sub m} approx 1.2 mJy beam{sup -1}. LESS is thus the largest contiguous deep submillimeter survey undertaken to date. The noise properties of our map show clear evidence that we are beginning to be affected by confusion noise. We present a catalog of 126 submillimeter galaxies (SMGs) detected with a significance level above 3.7sigma, at which level we expect five false detections given our map area of 1260 arcmin{sup 2}. The ECDFS exhibits a deficit of bright SMGs relative to previously studied blank fields but not of normal star-forming galaxies that dominate the extragalactic background light (EBL). This is in line with the underdensities observed for optically defined high redshift source populations in the ECDFS (BzKs, DRGs, optically bright active galactic nucleus, and massive K-band-selected galaxies). The differential source counts in the full field are well described by a power law with a slope of alpha = -3.2, comparable to the results from other fields. We show that the shape of the source counts is not uniform across the field. Instead, it steepens in regions with low SMG density. Towards the highest overdensities we measure a source-count shape consistent with previous surveys. The integrated 870 mum flux densities of our source-count models down to S{sub 870{sub m}}u{sub m} = 0.5 mJy account for >65% of the estimated EBL from COBE measurements. We have investigated the clustering of SMGs in the ECDFS by means of a two-point correlation function and find evidence for strong clustering on angular scales <1' with a significance of 3.4sigma. Assuming a power-law dependence for the correlation function and a typical

  3. Alert Confidence Fusion in Intrusion Detection Systems with Extended Dempster- Shafer Theory

    SciTech Connect (OSTI)

    Yu, Dong; Frincke, Deborah A.

    2005-03-01

    Extend Dempster-Shafer Theory of Evidence to include differential weightings of alerts drawn from multiple sources. The intent is to support automated (and manual) response to threat by producing more realistic confidence ratings for IDS alerts than is currently available.

  4. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    SciTech Connect (OSTI)

    Perley, D. A.; Metzger, B. D.; Butler, N. R.; Bloom, J. S.; Miller, A. A.; Filippenko, A. V.; Li, W.; Granot, J.; Sakamoto, T.; Gehrels, N.; Ramirez-Ruiz, E.; Bunker, A.; Chen, H.-W.; Glazebrook, K.; Hall, P. B.; Hurley, K. C.; Kocevski, D.; Norris, J.

    2009-05-10

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However, a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.

  5. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    SciTech Connect (OSTI)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.

  6. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    SciTech Connect (OSTI)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology.

  7. Advanced properties of extended plasmas for efficient high-order harmonic generation

    SciTech Connect (OSTI)

    Ganeev, R. A.; Physics Department, Voronezh State University, Voronezh 394006 ; Suzuki, M.; Kuroda, H.

    2014-05-15

    We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasma jets.

  8. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  9. GaP/Silicon Tandem Solar Cell with Extended Temperature Range - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search GaP/Silicon Tandem Solar Cell with Extended Temperature Range NASA Glenn Research Center (http://www.nasa.gov/centers/glenn/home/index.html) National Aeronautics and Space Administration Contact NASA About This Technology Technology Marketing SummaryNASA Glenn Research Center (GRC) innovators have developed unique, tandem photovoltaic cells (or "solar

  10. PPPL extends system for suppressing instabilities to long-pulse experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on KSTAR | Princeton Plasma Physics Lab PPPL extends system for suppressing instabilities to long-pulse experiments on KSTAR By John Greenwald March 18, 2014 Tweet Widget Google Plus One Share on Facebook A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. (Photo by PPPL) A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. PPPL collaborations have been instrumental in developing a system to

  11. PPPL extends system for suppressing instabilities to long-pulse experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on KSTAR | Princeton Plasma Physics Lab PPPL extends system for suppressing instabilities to long-pulse experiments on KSTAR By John Greenwald March 19, 2014 Tweet Widget Google Plus One Share on Facebook A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. (Photo by PPPL) A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. PPPL collaborations have been instrumental in developing a system to

  12. Extended storage of low-level radioactive waste: potential problem areas

    SciTech Connect (OSTI)

    Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

    1985-01-01

    If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. The issue of extended storage of LLRW is addressed in order to determine for the Nuclear Regulatory Commission the areas of concern and the actions recommended to resolve these concerns. The focus is on the properties and behavior of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: 1. Behavior of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. 2. Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced oxidative embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion by the waste). The additional information and actions required to address these concerns are discussed and, in particular, it is concluded that further information is needed on the rates of corrosion of container material by Class A wastes and on the apparent dose-rate dependence of radiolytic processes in Class B and C waste packages. Modifications to the guidance for solidified wastes and high-integrity containers in NRC's Technical Position on Waste Form are recommended. 27 references.

  13. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    SciTech Connect (OSTI)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Duellmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Hessberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.; and others

    2013-03-19

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  14. DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569

    SciTech Connect (OSTI)

    Johnson, Megan

    2013-06-15

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.

  15. Computation of the spectrum of spatial Lyapunov exponents for the spatially extended beam-plasma systems and electron-wave devices

    SciTech Connect (OSTI)

    Hramov, Alexander E.; Koronovskii, Alexey A.; Maximenko, Vladimir A.; Moskalenko, Olga I.

    2012-08-15

    The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum of the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.

  16. DISCOVERY OF EXTENDED X-RAY EMISSION AROUND THE HIGHLY MAGNETIC RRAT J1819-1458

    SciTech Connect (OSTI)

    Rea, N.; McLaughlin, M. A.; Gaensler, B. M.; Slane, P. O.; Stella, L.; Israel, G. L.; Reynolds, S. P.; Burgay, M.; Possenti, A.; Chatterjee, S.

    2009-09-20

    We report on the discovery of extended X-ray emission around the high magnetic field rotating radio transient J1819-1458. Using a 30 ks Chandra ACIS-S observation, we found significant evidence for extended X-ray emission with a peculiar shape: a compact region out to {approx}5.''5, and more diffuse emission extending out to {approx}13'' from the source. The most plausible interpretation is a nebula somehow powered by the pulsar, although the small number of counts prevents a conclusive answer on the nature of this emission. RRAT J1819-1458's spin-down energy loss rate (E-dot{sub rot}{approx}3 x 10{sup 32} erg s{sup -1}) is much lower than that of other pulsars with observed spin-down-powered pulsar wind nebulae (PWNe), and implies a rather high X-ray efficiency of eta{sub X}ident toL{sub pwn:0.5-8keV}/E-dot{sub rot}{approx}0.2 at converting spin-down power into the PWN X-ray emission. This suggests the need of an additional source of energy rather than the spin-down power alone, such as the high magnetic energy of this source. Furthermore, this Chandra observation allowed us to refine the positional accuracy of RRAT J1819-1458 to a radius of {approx}0.''3, and confirms the presence of X-ray pulsations and the {approx}1 keV absorption line, previously observed in the X-ray emission of this source.

  17. Operational Challenges of Extended Dry Storage of Spent Nuclear Fuel - 12550

    SciTech Connect (OSTI)

    Nichol, M.

    2012-07-01

    As a result of the termination of the Yucca Mountain used fuel repository program and a continuing climate of uncertainty in the national policy for nuclear fuel disposition, the likelihood has increased that extended storage, defined as more than 60 years, and subsequent transportation of used nuclear fuel after periods of extended storage may become necessary. Whether at the nation's 104 nuclear energy facilities, or at one or more consolidated interim storage facilities, the operational challenges of extended storage and transportation will depend upon the future US policy for Used Fuel Management and the future Regulatory Framework for EST, both of which should be developed with consideration of their operational impacts. Risk insights into the regulatory framework may conclude that dry storage and transportation operations should focus primarily on ensuring canister integrity. Assurance of cladding integrity may not be beneficial from an overall risk perspective. If assurance of canister integrity becomes more important, then mitigation techniques for potential canister degradation mechanisms will be the primary source of operational focus. If cladding integrity remains as an important focus, then operational challenges to assure it would require much more effort. Fundamental shifts in the approach to design a repository and optimize the back-end of the fuel cycle will need to occur in order to address the realities of the changes that have taken place over the last 30 years. Direct disposal of existing dual purpose storage and transportation casks will be essential to optimizing the back end of the fuel cycle. The federal used fuel management should focus on siting and designing a repository that meets this objective along with the development of CIS, and possibly recycling. An integrated approach to developing US policy and the regulatory framework must consider the potential operational challenges that they would create. Therefore, it should be integral to

  18. The extended Zel'dovich mass functions of clusters and isolated clusters in the presence of primordial non-gaussianity

    SciTech Connect (OSTI)

    Lim, Seunghwan; Lee, Jounghun E-mail: jounghun@astro.snu.ac.kr

    2014-09-10

    We present new formulae for the mass functions of the clusters and the isolated clusters with non-Gaussian initial conditions. For this study, we adopt the extended Zel'dovich (EZL) model as a basic framework, focusing on the case of primordial non-Gaussianity of the local type whose degree is quantified by a single parameter, f {sub nl}. By making a quantitative comparison with the N-body results, we first demonstrate that the EZL formula with the constant values of three fitting parameters still works remarkably well for the local f {sub nl} case. We also modify the EZL formula to find an analytic expression for the mass function of isolated clusters, which turns out to have only one fitting parameter other than the overall normalization factor and showed that the modified EZL formula with a constant value of the fitting parameter matches excellently the N-body results with various values of f {sub nl} at various redshifts. Given the simplicity of the generalized EZL formulae and their good agreements with the numerical results, we finally conclude that the EZL mass functions of the massive clusters and isolated clusters should be useful as an analytic guideline to constrain the scale dependence of the primordial non-Gaussianity of the local type.

  19. GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY STEREO SECCHI COR1

    SciTech Connect (OSTI)

    Kwon, Ryun-Young; Kramar, Maxim; Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.; Chae, Jongchul; Zhang, Jie

    2013-10-10

    We present global coronal seismology for the first time, which allows us to determine inhomogeneous magnetic field strength in the extended corona. From the measurements of the propagation speed of a fast magnetosonic wave associated with a coronal mass ejection (CME) and the coronal background density distribution derived from the polarized radiances observed by the STEREO SECCHI COR1, we determined the magnetic field strengths along the trajectories of the wave at different heliocentric distances. We found that the results have an uncertainty less than 40%, and are consistent with values determined with a potential field model and reported in previous works. The characteristics of the coronal medium we found are that (1) the density, magnetic field strength, and plasma ? are lower in the coronal hole region than in streamers; (2) the magnetic field strength decreases slowly with height but the electron density decreases rapidly so that the local fast magnetosonic speed increases while plasma ? falls off with height; and (3) the variations of the local fast magnetosonic speed and plasma ? are dominated by variations in the electron density rather than the magnetic field strength. These results imply that Moreton and EIT waves are downward-reflected fast magnetosonic waves from the upper solar corona, rather than freely propagating fast magnetosonic waves in a certain atmospheric layer. In addition, the azimuthal components of CMEs and the driven waves may play an important role in various manifestations of shocks, such as type II radio bursts and solar energetic particle events.

  20. U.S. Gap Analysis to Support Extended Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Hanson, Brady D.; Alsaed, Abdelhalim -.; Stockman, Christine T.; Sorenson, Ken B.

    2012-06-27

    Dry storage of used nuclear fuel in the United States will continue until a disposition pathway is chosen and implemented. As such, the duration of dry storage will be much longer than originally anticipated. This paper reviews the methodology used in and the results of an analysis to determine the technical data gaps that need to be addressed to assure the continued safe and secure storage of used nuclear fuel for extended periods. Six high priority and eleven medium priority mechanisms were identified that may degrade the safety functions of the dry storage structures, systems, and components.

  1. Economics of sunflower oil as an extender or substitute for diesel fuel

    SciTech Connect (OSTI)

    Helgeson, D.L.; Schaffner, L.W.

    1982-05-01

    The economics of sunflower oil as an extender or substitute for diesel fuel in US agriculture, with particular emphasis on North Dakota, is examined. A study of the spot market prices indicates that crude sunflower oil has moved closer competitively with bulk diesel prices. On the question of energy efficiency, it is estimated, that using current production and processing estimates, there is a positive net energy ratio of 5.78 to 1. Processing can take place at the commercial leveL, in intermediate sized plants or on-farm. Costs were analyzed for three sizes of farm presses. (Refs. 6).

  2. Extended Storage for Research and Test Reactor Spent Fuel for 2006 and Beyond

    SciTech Connect (OSTI)

    Hurt, William Lon; Moore, K.M.; Shaber, Eric Lee; Mizia, Ronald Eugene

    1999-10-01

    This paper will examine issues associated with extended storage of a variety of spent nuclear fuels. Recent experiences at the Idaho National Engineering and Environmental Laboratory and Hanford sites will be described. Particular attention will be given to storage of damaged or degraded fuel. The first section will address a survey of corrosion experience regarding wet storage of spent nuclear fuel. The second section will examine issues associated with movement from wet to dry storage. This paper also examines technology development needs to support storage and ultimate disposition.

  3. General Purpose Kernel Integration Shielding Code System-Point and Extended Gamma-Ray Sources.

    Energy Science and Technology Software Center (OSTI)

    1981-06-11

    PELSHIE3 calculates dose rates from gamma-emitting sources with different source geometries and shielding configurations. Eight source geometries are provided and are called by means of geometry index numbers. Gamma-emission characteristics for 134 isotopes, attenuation coefficients for 57 elements or shielding materials and Berger build-up parameters for 17 shielding materials can be obtained from a direct access data library by specifying only the appropriate library numbers. A different option allows these data to be read frommore » cards. For extended sources, constant source strengths as well as exponential and Bessel function source strength distributions are allowed in most cases.« less

  4. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    SciTech Connect (OSTI)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C/sub 4/H/sub 4/S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact.

  5. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect (OSTI)

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  6. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    SciTech Connect (OSTI)

    Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir

    2016-01-01

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.

  7. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect (OSTI)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  8. Examination of Zircaloy-clad spent fuel after extended pool storage

    SciTech Connect (OSTI)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed.

  9. Molecular hydrogen maps of extended planetary nebulae - the Dumbbell, the Ring, and NGC 2346

    SciTech Connect (OSTI)

    Zuckerman, B.; Gatley, I.

    1988-01-01

    The 3.8-m United Kingdom Infrared Telecsope at Mauna Kea was used to obtain complete H2 maps of three extended planetary nebulae (PNs) that are representative of two of the most common PN morphologies, bow tie and bipolar ring: the Dumbbell (NGC 6853), the Ring (NGC 6720), and the NG 2346, are discussed. The results of map analysis indicates that the S(1) emission from H2 closely follows the optical morphology of the three nebulae. The H2 emission is more extended than the main emitting mass of ionized gas and, in NGCC 2346, there is evidence for a dense torus of hot H2 surrounding the central star. The H2 emissionl appears to be shock-excited. Examinations of existing H2 measurements indicate that strong H2 emission is preferentially present in PNs that lie at small galactic latitude, implying that massive main-sequence stars produce ionization-bounded PNs, whereas low-mass stars produce density-bounded PNs. Thus, maps of H2 emission may not only be used to determine whether a given PN is ionization-bounded or density-bounded, but also to estimate the mass of the progenitor star. 83 references.

  10. THE EXTENDED NARROW-LINE REGION OF TWO TYPE-I QUASI-STELLAR OBJECTS

    SciTech Connect (OSTI)

    Oh, Semyeong; Woo, Jong-Hak; Bennert, Vardha N.; Jungwiert, Bruno; Leipski, Christian; Albrecht, Marcus E-mail: woo@astro.snu.ac.kr E-mail: bruno@ig.cas.cz E-mail: leipski@mpia-hd.mpg.de

    2013-04-20

    We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kiloparsec scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large-scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization parameter decreases with radial distance, similar to the case of Seyfert galaxies, For PG1012+008, we determine the stellar-velocity dispersion of the host galaxy. Combined with the black hole mass, we find that the luminous radio-quiet QSO follows the local M{sub BH}-{sigma}{sub *} relation of active galactic nuclei.

  11. Stellar metallicity of the extended disk and distance of the spiral galaxy NGC 3621

    SciTech Connect (OSTI)

    Kudritzki, Rolf-Peter; Bresolin, Fabio; Hosek, Matthew W. Jr.; Urbaneja, Miguel A.; Przybilla, Norbert E-mail: bresolin@ifa.hawaii.edu E-mail: Miguel.Urbaneja-Perez@uibk.ac.at

    2014-06-10

    Low resolution (?4.5 ) ESO VLT/FORS spectra of blue supergiant stars are analyzed to determine stellar metallicities (based on elements such as iron, titanium, and magnesium) in the extended disk of the spiral galaxy, NGC 3621. Mildly subsolar metallicity (0.30 dex) is found for the outer objects beyond 7 kpc, independent of galactocentric radius and compatible with the absence of a metallicity gradient, confirming the results of a recent investigation of interstellar medium H II region gas oxygen abundances. The stellar metallicities are slightly higher than those from the H II regions when based on measurements of the weak forbidden auroral oxygen line at 4363 but lower than the ones obtained with the R {sub 23} strong line method. It is shown that the present level of metallicity in the extended disk cannot be the result of chemical evolution over the age of the disk with the present rate of in situ star formation. Additional mechanisms must be involved. In addition to metallicity, stellar effective temperatures, gravities, interstellar reddening, and bolometric magnitudes are determined. After the application of individual reddening corrections for each target, the flux-weighted gravity-luminosity relationship of blue supergiant stars is used to obtain a distance modulus of 29.07 0.09 mag (distance D = 6.52 0.28 Mpc). This new distance is discussed in relation to Cepheid and the tip of the red giant branch distances.

  12. Extended space expectation values of position related operators for hydrogen-like quantum system evolutions

    SciTech Connect (OSTI)

    Kalay, Berfin; Demiralp, Metin

    2014-10-06

    The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integer powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin.

  13. Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, Renewable Energy, Research & Capabilities, Wind Energy, Wind News Virtual LIDAR Model Helps Researchers ...

  14. STAR FORMATION IN THE EXTENDED GASEOUS DISK OF THE ISOLATED GALAXY CIG 96

    SciTech Connect (OSTI)

    Espada, D.; Sabater, J.; Verdes-Montenegro, L.; Sulentic, J.; Munoz-Mateos, J. C.; Gil de Paz, A.; Verley, S.; Leon, S.

    2011-07-20

    We study the Kennicutt-Schmidt star formation law and efficiency in the gaseous disk of the isolated galaxy CIG 96 (NGC 864), with special emphasis on its unusually large atomic gas (H I) disk (r{sub Hmathsci}/r{sub 25} = 3.5, r{sub 25} = 1.'85). We present deep Galaxy Evolution Explorer near- and far-UV observations, used as a recent star formation tracer, and we compare them with new, high-resolution (16''or 1.6 kpc) Very Large Array H I observations. The UV and H I maps show good spatial correlation outside the inner 1', where the H I phase dominates over H{sub 2}. Star-forming regions in the extended gaseous disk are mainly located along the enhanced H I emission within two (relatively) symmetric, giant gaseous spiral arm-like features, which emulate an H I pseudo-ring at r {approx_equal} 3'. Inside this structure, two smaller gaseous spiral arms extend from the northeast and southwest of the optical disk and connect to the previously mentioned H I pseudo-ring. Interestingly, we find that the (atomic) Kennicutt-Schmidt power-law index systematically decreases with radius, from N {approx_equal} 3.0 {+-} 0.3 in the inner disk (0.'8-1.'7) to N = 1.6 {+-} 0.5 in the outskirts of the gaseous disk (3.'3-4.'2). Although the star formation efficiency (SFE), the star formation rate per unit of gas, decreases with radius where the H I component dominates as is common in galaxies, we find that there is a break of the correlation at r = 1.5r{sub 25}. At radii 1.5r{sub 25} < r < 3.5r{sub 25}, mostly within the H I pseudo-ring structure, regions exist whose SFE remains nearly constant, SFE {approx_equal} 10{sup -11} yr{sup -1}. We discuss possible mechanisms that might be triggering the star formation in the outskirts of this galaxy, and we suggest that the constant SFE for such large radii (r > 2r{sub 25}) and at such low surface densities might be a common characteristic in extended UV disk galaxies.

  15. True coincidence summing corrections for an extended energy range HPGe detector

    SciTech Connect (OSTI)

    Venegas-Argumedo, Y.; Montero-Cabrera, M. E.

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  16. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect (OSTI)

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  17. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, M.W.

    1995-12-19

    A method is disclosed using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient. 5 figs.

  18. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, Mark W.

    1995-01-01

    Method using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient.

  19. Use of coiled tubing during the Wytch Farm extended-reach drilling project

    SciTech Connect (OSTI)

    Summers, T.; Larsen, H.A.; Redway, M.; Hill, G.

    1995-05-01

    The largest onshore oil field in western Europe is in an environmentally sensitive coastal area in southern England. Initial development of the field in the late 1970`s focused on accessing reserves underlying the onshore section of the reservoir. In 1989, various development options were screened to access the offshore section of the reservoir, containing {approx} 80 million bbl of recoverable oil. In 1991, the decision was made to access these reserves through extended-reach drilling (ERD) from an existing onshore wellsite. This development is currently under way, with 3 of 11 planned wells already drilled and producing. This paper describes the application of coiled tubing (CT) in the logging and completion phases of the ERD wells drilled to date. Conclusions are made as to the value of coiled tubing in ERD wells to minimize rig time and the current limits of technology.

  20. The use of coiled tubing during the Wytch Farm extended reach drilling project

    SciTech Connect (OSTI)

    Summers, T.; Larsen, H.A.; Redway, M.; Hill, G.

    1994-12-31

    The largest onshore oilfield in Western Europe is situated in an environmentally sensitive coastal area on the south coast of England. Initial development of the field in the late 1970`s focused on accessing reserves underlying the onshore section of the reservoir. In 1989, various development options were screened to access the offshore section of the reservoir, containing some 80 million barrels of recoverable oil. In 1991, the decision was made to access these reserves through extended reach drilling (ERD) from an existing onshore well-site. This development is currently underway, with three out of a planned eleven wells already drilled and producing. This paper will describe the application of Coiled Tubing in the logging and completion phases of the ERD wells drilled to date.

  1. Extended overpower transient testing of LMFBR oxide pins in EBR-II

    SciTech Connect (OSTI)

    Tsai, H.; Neimark, L.A.; Tani, S.; Shibahara, I.

    1985-01-01

    As part of a joint effort between the Power Reactor and Nuclear Fuel Development Corporation of Japan and the US Department of Energy, a series of five extended slow overpower transient tests are being conducted in the Experimental Breeder Reactor-II (EBR-II) on preirradiated mixed oxide fuel and blanket pins. In the first two tests conducted in the series, fuel and blanket pins were subjected to a 0.1%/s power ramp to approx. 60% overpower before the transient termination. None of the test pins breached during the transient. A significant cladding breaching margin over the normal PPS trip setting of approx. 12 to 15% was thus demonstrated for the 0.1%/s ramp. The transient-induced pin cladding strains, caused principally by fuel-cladding mechanical interaction, were small but measurable.

  2. Characterization of high level nuclear waste glass samples following extended melter idling

    SciTech Connect (OSTI)

    Fox, K.

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  3. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  4. REVISED AND EXTENDED ANALYSIS OF FIVE TIMES IONIZED XENON, Xe VI

    SciTech Connect (OSTI)

    Gallardo, M.; Raineri, M.; Reyna Almandos, J.; Pagan, C. J. B.; Abrahão, R. A. E-mail: cesarpagan@fee.unicamp.br

    2015-01-01

    A capillary discharge tube was used to record the Xe spectrum in the 400-5500 Å  region. A set of 243 lines of the Xe VI spectrum was observed, and 146 of them were classified for the first time. For all known lines, we calculated the weighted oscillator strengths (gf) and weighted transition probabilities (gA) using the configuration interaction in a relativistic Hartree-Fock approach. The energy matrix was calculated using energy parameters adjusted to fit the experimental energy levels. Core polarization effects were taken into account in our calculations. Experimental energy values and calculated lifetimes are also presented for a set of 88 levels. From these levels, 32 were classified for the first time and 33 had their values revised. Our analysis of the 5s5p5d and 5s5p6s configurations was extended in order to clarify discrepancies among previous works.

  5. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect (OSTI)

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d {sup 4}({sup 5} D)5g, 3d {sup 4}({sup 5} D)6g, and 3d {sup 4}({sup 5}D)6h configurations, we derive an improved ionization energy of 132971.02 ± 0.12 cm{sup –1} (16.486305 ± 0.000015 eV)

  6. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  7. Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers

    SciTech Connect (OSTI)

    1998-08-01

    The theme of this workshop is Supporting the Transition to World Class Manufacturing. This workshop provides a forum for an informal exchange of information between researchers in the photovoltaic and non-photovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helps establish a knowledge base that can be used for improving device fabrication processes to enhance solar-cell performance and reduce cell costs. It also provides an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research. The workshop format features invited review presentations, panel discussions, and two poster sessions. The poster sessions create an opportunity for both university and industrial researchers to present their latest results and provide a natural forum for extended discussions and technical exchanges.

  8. Notice of OMB Action Approving DOE Submission to Extend Information Collection Request Title: OE Recovery Act Financial Assistance Grants

    Broader source: Energy.gov [DOE]

    The Office of Management and Budget (OMB) has issued a Notice of OMB Action approving the Department of Energy's request to extend for three years the Information Collection Request Title: OE...

  9. Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0

    Broader source: Energy.gov [DOE]

    The report is intended to help assess and establish the technical basis for extended long‐term storage and transportation of used nuclear fuel.  It provides: 1) an overview of the ISFSI license...

  10. A 95 GHz CLASS I METHANOL MASER SURVEY TOWARD GLIMPSE EXTENDED GREEN OBJECTS (EGOs)

    SciTech Connect (OSTI)

    Chen Xi; Shen Zhiqiang; Gan Conggui; Ellingsen, Simon P.; Titmarsh, Anita

    2011-09-01

    We report the results of a systematic survey for 95 GHz class I methanol masers toward a new sample of 192 massive young stellar object candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey. The observations were made with the Australia Telescope National Facility (ATNF) Mopra 22 m radio telescope and resulted in the detection of 105 new 95 GHz class I methanol masers. For 92 of the sources our observations provide the first identification of a class I maser transition associated with these objects (i.e., they are new class I methanol maser sources). Our survey proves that there is indeed a high detection rate (55%) of class I methanol masers toward EGOs. Comparison of the GLIMPSE point sources associated with EGOs with and without class I methanol maser detections shows that they have similar mid-IR colors, with the majority meeting the color selection criteria -0.6 < [5.8]-[8.0] < 1.4 and 0.5 < [3.6]-[4.5] < 4.0. Investigations of the Infrared Array Camera and Multiband Imaging Photometer for Spitzer 24 {mu}m colors and the associated millimeter dust clump properties (mass and density) of the EGOs for the sub-samples based on the class of methanol masers they are associated with suggest that the stellar mass range associated with class I methanol masers extends to lower masses than for class II methanol masers, or alternatively class I methanol masers may be associated with more than one evolutionary phase during the formation of a high-mass star.

  11. A periodic energy decomposition analysis method for the investigation of chemical bonding in extended systems

    SciTech Connect (OSTI)

    Raupach, Marc; Tonner, Ralf

    2015-05-21

    The development and first applications of a new periodic energy decomposition analysis (pEDA) scheme for extended systems based on the Kohn-Sham approach to density functional theory are described. The pEDA decomposes the bonding energy between two fragments (e.g., the adsorption energy of a molecule on a surface) into several well-defined terms: preparation, electrostatic, Pauli repulsion, and orbital relaxation energies. This is complemented by consideration of dispersion interactions via a pairwise scheme. One major extension toward a previous implementation [Philipsen and Baerends, J. Phys. Chem. B 110, 12470 (2006)] lies in the separate discussion of electrostatic and Pauli and the addition of a dispersion term. The pEDA presented here for an implementation based on atomic orbitals can handle restricted and unrestricted fragments for 0D to 3D systems considering periodic boundary conditions with and without the determination of fragment occupations. For the latter case, reciprocal space sampling is enabled. The new method gives comparable results to established schemes for molecular systems and shows good convergence with respect to the basis set (TZ2P), the integration accuracy, and k-space sampling. Four typical bonding scenarios for surface-adsorbate complexes were chosen to highlight the performance of the method representing insulating (CO on MgO(001)), metallic (H{sub 2} on M(001), M = Pd, Cu), and semiconducting (CO and C{sub 2}H{sub 2} on Si(001)) substrates. These examples cover diverse substrates as well as bonding scenarios ranging from weakly interacting to covalent (shared electron and donor acceptor) bonding. The results presented lend confidence that the pEDA will be a powerful tool for the analysis of surface-adsorbate bonding in the future, enabling the transfer of concepts like ionic and covalent bonding, donor-acceptor interaction, steric repulsion, and others to extended systems.

  12. Crystal Structure of a Super Leucine Zipper an Extended Two-Stranded Super Long Coiled Coil

    SciTech Connect (OSTI)

    J Diao

    2011-12-31

    Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 {angstrom} resolution. The peptide monomer shows a helix trunk with short curved N- and C-termini. In the crystal, two monomers cross in 35{sup o} and form an X-shaped dimer, and each X-shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two-stranded, parallel, super long coiled coil rather than a discrete, two-helix coiled coil of the wild-type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild-type leucine zipper, the N-terminus of the mutant has a dramatic conformational change and the C-terminus has one more residue Glu 32 determined. The mutant X-shaped dimer has a large crossing angle of 35{sup o} instead of 18{sup o} in the wild-type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self-assembling protein fibers.

  13. Arranging Prescription Drug Coverage for Extended Stays (Travel or Long-Term Work Assignments) When Outside the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arranging Prescription Drug Coverage for Extended Stays (Travel or Long-Term Work Assignments) When Outside the United States Planning an extended vacation or working abroad? rx_lanl_override_0311 Maintaining prescription coverage and accessing care for long-term stays abroad What you need to know about override requests and obtaining Rx drugs. Your BCBSNM prescription drug coverage limits override requests to a 90-day supply. Override requests cannot be approved - and are not available -

  14. Lack of correlation between extended pH monitoring and scintigraphy in the evaluation of infants with gastroesophageal reflux

    SciTech Connect (OSTI)

    Tolia, V.; Calhoun, J.A.; Kuhns, L.R.; Kauffman, R.E. )

    1990-05-01

    Sixty-nine infants younger than 1 year of age, with symptoms of persistent vomiting, recurrent choking, apnea, persistent cough, or stridor, were evaluated for gastroesophageal reflux. All infants underwent extended intraesophageal pH monitoring for 16 to 24 hours as well as gastroesophageal scintigraphy with technetium 99m sulfur colloid to study the correlation between the two tests. Forty-eight infants exhibited reflux with extended pH monitoring whereas 46 infants showed reflux with scintigraphy. However, the diagnosis of reflux in individual patients by extended pH monitoring corresponded poorly with the diagnosis of reflux in the same patients by scintigraphy. Similarly, no correlation was observed between extended pH monitoring and scintigraphy results, whether expressed as percent gastric emptying or as gastroesophageal reflux ratio. We conclude that extended pH monitoring and scintigraphy measure different pathophysiologic phenomena and detect reflux under different conditions. The ability of these tests to detect reflux may be complementary and they may be of greatest value when used together to enhance the sensitivity and specificity of the diagnostic evaluation. Extended pH monitoring and scintigraphy should not be used interchangeably to monitor gastroesophageal reflux.

  15. Extend EnergyPlus to Support Evaluation, Design, and Operation of Low Energy Buildings

    SciTech Connect (OSTI)

    Cho, Heejin; Wang, Weimin; Makhmalbaf, Atefe; Yun, Kyung Tae; Glazer, Jason; Scheier, Larry; Srivastava, Viraj; Gowri, Krishnan

    2011-12-21

    During FY10-11, Pacific Northwest National Laboratory in collaboration with the EnergyPlus development team implemented the following high priority enhancements to support the simulation of high performance buildings: (1) Improve Autosizing of Heating, Ventilation, and Air Conditioning (HVAC) Components; (2) Life-Cycle Costing to Evaluate Energy Efficiency Upgrades; (3) Develop New Model to Capture Transformer Losses; (4) Enhance the Model for Electric Battery Storage; and (5) Develop New Model for Chiller-Tower Optimization. This report summarizes the technical background, new feature development and implementation details, and testing and validation process for these enhancements. The autosizing, life-cycle costing and transformer model enhancements/developments were included in EnergyPlus release Version 6.0, and the electric battery model development will be included in Version 7.0. The model development of chiller-tower optimization will be included in a later version (after Version 7.0).

  16. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-02-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse

  17. ESBWR response to an extended station blackout/loss of all AC power

    SciTech Connect (OSTI)

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event

  18. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-01-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse

  19. Setting the renormalization scale in pQCD: Comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach

    SciTech Connect (OSTI)

    Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang; Brodsky, Stanley J.; Mojaza, Matin

    2015-05-26

    A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach to all orders. In this paper we discuss two distinct methods. One is based on the Principle of Maximum Conformality (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the sequential extended BLM (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the ?0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R

  20. Three-dimensional Dendritic Needle Network model with application...

    Office of Scientific and Technical Information (OSTI)

    We present a three-dimensional (3D) extension of a previously proposed multi-scale ... of a given thickness, one can directly extend the DNN approach to 3D modeling. ...

  1. Design, implementation and testing of extended and mixed precisionBLAS

    SciTech Connect (OSTI)

    Li, X.S.; Demmel, J.W.; Bailey, D.H.; Henry, G.; Hida, Y.; Iskandar, J.; Kahan, W.; Kapur, A.; Martin, M.C.; Tung, T.; Yoo, D.J.

    2000-10-20

    This article describes the design rationale, a C implementation, and conformance testing of a subset of the new Standard for the BLAS (Basic Linear Algebra Subroutines): Extended and Mixed Precision BLAS. Permitting higher internal precision and mixed input/output types and precisions allows us to implement some algorithms that are simpler, more accurate, and sometimes faster than possible without these features. The new BLAS are challenging to implement and test because there are many more subroutines than in the existing Standard, and because we must be able to assess whether a higher precision is used for internal computations than is used for either input or output variables. We have therefore developed an automated process of generating and systematically testing these routines. Our methodology is applicable to languages besides C. In particular, our algorithms used in the testing code will be valuable to all other BLAS implementors. Our extra precision routines achieve excellent performance--close to half of the machine peak Megaflop rate even for the Level 2 BLAS, when the data access is stride one.

  2. DISCOVERY OF AN EXTENDED X-RAY JET IN AP LIBRAE

    SciTech Connect (OSTI)

    Kaufmann, S.; Wagner, S. J.; Tibolla, O.

    2013-10-20

    Chandra observations of the low-energy-peaked BL Lac object (LBL) AP Librae (AP Lib) revealed the clear discovery of a non-thermal X-ray jet. AP Lib is the first LBL with an extended non-thermal X-ray jet that shows emission into the very high energy range. The X-ray jet has an extension of ?15''(? 14 kpc). The X-ray jet morphology is similar to the radio jet observed with Very Large Array at 1.36 GHz emerging in the southeast direction and bends by 50 at a distance of 12'' toward the northeast. The intensity profiles of the X-ray emission studied are consistent with those found in the radio range. The spectral analysis reveals that the X-ray spectra of the core and jet region are both inverse-Compton-(IC)-dominated. This adds to a still small sample of BL Lac objects whose X-ray jets are IC-dominated and thus more similar to the high-luminosity Fanaroff-Riley II sources than to the low-luminosity Fanaroff-Riley I objects, which are usually considered to be the parent population of BL Lac objects.

  3. Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2015-08-01

    A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vetted by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.

  4. FITL: Extending LLVM for the Translation of Fault-Injection Directives

    SciTech Connect (OSTI)

    Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    The frequency of hardware errors in HPC systems continues to grow as system designs evolve toward exascale. Tolerating these errors efficiently and effectively will require software-based resilience solutions. With this requirement in mind, recent research has increasingly employed LLVM-based tools to simulate transient hardware faults in order to study the resilience characteristics of specific applications. However, such tools require researchers to configure their experiments at the level of the LLVM intermediate representation (LLVM IR) rather than at the source level of the applications under study. In this paper, we present FITL (Fault-Injection Toolkit for LLVM), a set of LLVM extensions to which it is straightforward to translate source-level pragmas that specify fault injection. While we have designed FITL not to be tied to any particular compiler front end or high-level language, we also describe how we have extended our OpenARC compiler to translate a novel set of fault-injection pragmas for C to FITL. Finally, we present several resilience studies we have conducted using FITL, including a comparison with a source-level fault injector we have built as part of OpenARC.

  5. Extended magnetohydrodynamic simulations of field reversed configuration formation and sustainment with rotating magnetic field current drive

    SciTech Connect (OSTI)

    Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2010-06-15

    Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n=0 B{sub t}heta can develop in the open-field line region, producing a back torque opposing the RMF.

  6. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    SciTech Connect (OSTI)

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; Huh, Ji-Haeng

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark matter particles with elastic spin-independent interactions and neutron to proton coupling ratio f{sub n}/f{sub p}=−0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f{sub n}/f{sub p}=−0.8.

  7. Extending the length and time scales of GramSchmidt Lyapunov vector computations

    SciTech Connect (OSTI)

    Costa, Anthony B.; Green, Jason R.

    2013-08-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal GramSchmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing GramSchmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for LennardJones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the GramSchmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  8. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  9. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry J.; Alessi J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  10. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry, J.; Gerardin, A.; Pereira, H.; Sgobba, S.; Alessi, J.; Faircloth, D.; Kalvas, T.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  11. Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching

    SciTech Connect (OSTI)

    Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min

    2015-09-15

    The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidth of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.

  12. Production summary for extended barrel module fabrication at Argonne for the ATLAS tile calorimeter.

    SciTech Connect (OSTI)

    Guarino, V.; Hill, N.; Petereit, E.; Skrzecz, F.; Wood, K.; Proudfoot, J.; Anderson, S.; Caird, A.; Keyser, C.; Kocenko, L.; Matijas, Z.; Nephew, T.; Stanek, R.; Franchini, F.; High Energy Physics

    2007-11-14

    The Tile Calorimeter is one of the main hadronic calorimeters to be used in the ATLAS experiment at CERN [1,2]. It is a steel/scintillator sampling calorimeter which is built by stacking 64 segments in azimuth and 3 separate cylinders to provide a total structure whose length is approximately 12m and whose diameter is a little over 8.4m. It has a total weight of about 2630 metric tons. Important features of this calorimeter are: A minimum gap (1.5mm) between modules in azimuth; Pockets in the structure to hold the scintillator tiles; Recessed channels at the edges of the module into which the readout fibers will sit; and Holes in the structure through which a radioactive source will pass. The mechanical structure for one of the 3 calorimeter sections, the Extended Barrel (EBA) was constructed at Argonne. A schematic of the calorimeter sampling structure and the layout of one of the 64 segments, termed a module, are shown in figure 1. Each module comprises mechanically of a precision machined, structural girder to which 10 submodules are bolted. One of these submodules, the ITC, has a customized shape to accommodate services for other detector elements. Each submodule weighs 850Kg and the assembled mechanical structure of the module weighs approximately 9000Kg (a fully instrumented Extended Barrel modules weighs {approx}9600Kg). A crucial issue for the tile calorimeter assembly is the minimization of the un-instrumented gap between modules when they are stacked on top of each other during final assembly. The design goal was originally 1mm gap which was eventually relaxed to 1.5mm following a careful evaluation of all tolerances in the construction and assembly process as shown in figure 2 [3]. Submodules for this assembly were produced at 4 locations [4] using tooling and procedures which were largely identical [5]. An important issue was the height of each submodule on the stacking fixture on which they were fabricated as this defines the length along the girder

  13. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect (OSTI)

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  14. General-Purpose Heat Source development: Extended series test program large fragment tests

    SciTech Connect (OSTI)

    Cull, T.A.

    1989-08-01

    General-Purpose Heat Source radioisotope thermoelectric generators (GPHS-RTGs) will provide electric power for the NASA Galileo and European Space Agency Ulysses missions. Each GPHS-RTG comprises two major components: GPHS modules, which provide thermal energy, and a thermoelectric converter, which converts the thermal energy into electric power. Each of the 18 GPHS modules in a GPHS-RTG contains four /sup 238/PuO/sub 2/-fueled capsules. LANL conducted a series of safety verification tests on the GPHS-RTG before the scheduled May 1986 launch of the Galileo spacecraft to assess the ability of the GPHS modules to contain the plutonia in potential accident environments. As a result of the Challenger 51-L accident in January 1986, NASA postponed the launch of Galileo; the launch vehicle was reconfigured and the spacecraft trajectory was modified. These actions prompted NASA to reevaluate potential mission accidents, and an extended series safety test program was initiated. The program included a series of large fragment tests that simulated the collision of solid rocket booster (SRB) fragments, generated in an SRB motor case rupture or resulting from a range safety officer SRB destruct action, with the GPHS-RTG. The tests indicated that fueled clads, inside a converter, will not breach or release fuel after a square (142 cm on a side) SRB fragment impacts flat-on at velocities up to 212 m/s, and that only the leading fueled capsules breach and release fuel after the square SRB fragment impacts the modules, inside the converter, edge-on at 95 m/s. 8 refs., 32 figs., 7 tabs.

  15. GaSb substrates with extended IR wavelength for advanced space based applications

    SciTech Connect (OSTI)

    Allen, Lisa P.; Flint, Patrick; Dallas, Gordon; Bakken, Daniel; Blanchat, Kevin; Brown, Gail J.; Vangala, Shivashankar R.; Goodhue, William D.; Krishnaswami, Kannan

    2009-05-01

    GaSb substrates have advantages that make them attractive for implementation of a wide range of infrared (IR) detectors with higher operating temperatures for stealth and space based applications. A significant aspect that would enable widespread commercial application of GaSb wafers for very long wavelength IR (VLWIR) applications is the capability for transmissivity beyond 15 m. Due largely to the GaSb (antisite) defect and other point defects in undoped GaSb substrates, intrinsic GaSb is still slightly p-type and strongly absorbs in the VLWIR. This requires backside thinning of the GaSb substrate for IR transmissivity. An extremely low n-type GaSb substrate is preferred to eliminate thinning and provide a substrate solution for backside illuminated VLWIR devices. By providing a more homogeneous radial distribution of the melt solute to suppress GaSb formation and controlling the cooling rate, ultra low doped n:GaSb has been achieved. This study examines the surface properties and IR transmission spectra of ultra low doped GaSb substrates at both room and low temperatures. Atomic force microscopy (AFM), homoepitaxy by MBE, and infrared Fourier transform (FTIR) analysis was implemented to examine material quality. As compared with standard low doped GaSb, the ultra low doped substrates show over 50% transmission and consistent wavelength transparency past 23 m with improved %T at low temperature. Homoepitaxy and AFM results indicate the ultra low doped GaSb has a low thermal desorbtion character and qualified morphology. In summary, improvements in room temperature IR transmission and extended wavelength characteristics have been shown consistently for ultra low doped n:GaSb substrates.

  16. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  17. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    SciTech Connect (OSTI)

    Dolbow, John; Zhang, Ziyu; Spencer, Benjamin; Jiang, Wen

    2015-09-01

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capa- bilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed- mode three-dimensional fracture problems with known analytical solutions.

  18. SENSITIVE SEARCH FOR RADIO VARIABLES AND TRANSIENTS IN THE EXTENDED CHANDRA DEEP FIELD SOUTH

    SciTech Connect (OSTI)

    Mooley, K. P.; Kulkarni, S. R.; Horesh, A.; Frail, D. A.; Ofek, E. O.; Miller, N. A.

    2013-05-10

    We report on an analysis of the Extended Chandra Deep Field South (E-CDFS) region using archival data from the Very Large Array, with the goal of studying radio variability and transients at the sub-milliJansky level. The 49 epochs of E-CDFS observations at 1.4 GHz sample timescales from 1 day to 3 months. We find that only a fraction (1%) of unresolved radio sources above 40 {mu}Jy are variable at the 4{sigma} level. There is no evidence that the fractional variability changes along with the known transition of radio-source populations below 1 mJy. Optical identifications of the sources show that the variable radio emission is associated with the central regions of an active galactic nucleus or a star-forming galaxy. After a detailed comparison of the efficacy of various source-finding algorithms, we use the best to carry out a transient search. No transients were found. This implies that the areal density of transients with peak flux density greater than 0.21 mJy is less than 0.37 deg{sup -2} (at a confidence level of 95%). This result is approximately an order of magnitude below the transient rate measured at 5 GHz by Bower et al. but it is consistent with more recent upper limits from Frail et al. Our findings suggest that the radio sky at 1.4 GHz is relatively quiet. For multi-wavelength transient searches, such as the electromagnetic counterparts to gravitational waves, this frequency may be optimal for reducing the high background of false positives.

  19. Performance of fast reactor mixed-oxide fuels pins during extended overpower transients

    SciTech Connect (OSTI)

    Tsai, H.; Neimark, L.A. ); Asaga, T.; Shikakura, S. )

    1991-02-01

    The Operational Reliability Testing (ORT) program, a collaborative effort between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan, was initiated in 1982 to investigate the behavior of mixed-oxide fuel pin under various slow-ramp transient and duty-cycle conditions. In the first phase of the program, a series of four extended overpower transient tests, with severity sufficient to challenge the pin cladding integrity, was conducted. The objectives of the designated TOPI-1A through -1D tests were to establish the cladding breaching threshold and mechanisms, and investigate the thermal and mechanical effects of the transient on pin behavior. The tests were conducted in EBR-2, a normally steady-state reactor. The modes of transient operation in EBR-2 were described in a previous paper. Two ramp rates, 0.1%/s and 10%/s, were selected to provide a comparison of ramp-rate effects on fuel behavior. The test pins chosen for the series covered a range of design and pre-test irradiation parameters. In the first test (1A), all pins maintained their cladding integrity during the 0.1%/s ramp to 60% peak overpower. Fuel pins with aggressive designs, i.e., high fuel- smear density and/or thin cladding, were, therefore, included in the follow-up 1B and 1C tests to enhance the likelihood of achieving cladding breaching. In the meantime, a higher pin overpower capability, to greater than 100%, was established by increasing the reactor power limit from 62.5 to 75 MWt. In this paper, the significant results of the 1B and 1C tests are presented. 4 refs., 5 figs., 1 tab.

  20. Characterization of basin concrete in support of structural integrity demonstration for extended storage

    SciTech Connect (OSTI)

    Duncan, A.

    2014-09-30

    Concrete core samples from C basin were characterized through material testing and analysis to verify the design inputs for structural analysis of the L Basin and to evaluate the type and extent of changes in the material condition of the concrete under extended service for fuel storage. To avoid the impact on operations, core samples were not collected from L area, but rather, several concrete core samples were taken from the C Basin prior to its closure. C basin was selected due to its similar environmental exposure and service history compared to L Basin. The microstructure and chemical composition of the concrete exposed to the water was profiled from the water surface into the wall to evaluate the impact and extent of exposure. No significant leaching of concrete components was observed. Ingress of carbonation or deleterious species was determined to be insignificant. No evidence of alkali-silica reactions (ASR) was observed. Ettringite was observed to form throughout the structure (in air voids or pores); however, the sulfur content was measured to be consistent with the initial concrete that was used to construct the facility. Similar ettringite trends were observed in the interior segments of the core samples. The compressive strength of the concrete at the mid-wall of the basin was measured, and similar microstructural analysis was conducted on these materials post compression testing. The microstructure was determined to be similar to near-surface segments of the core samples. The average strength was 4148 psi, which is well-above the design strength of 2500 psi. The analyses showed that phase alterations and minor cracking in a microstructure did not affect the design specification for the concrete.

  1. Extended abstracts for an international conference on the development of the North and problems of recultivation

    SciTech Connect (OSTI)

    Everett, K.R.

    1994-12-31

    Ecological problems in many regions on Earth are the result of increasing technological pressure on the environment. These problems concern many of us and cause mankind to unite in order to search for means to protect the environment. Scientists, especially are responsible for the protection of the biosphere. The objective of this conference was to discuss the results of studies on the present condition of the environment in the Far North where the industrial pressure is increasing. The participants of this conference also offered and suggested various necessary measures for the protection of the region and restoration of its disturbed sites. The specific structural characteristics of the environment of the Far North, tundra and northern taiga, cause its fragility and vulnerability to anthropogenic impact. The destruction of the thin, weak layer of soil and vegetation cover changes the thermal balance and thus causes the development of erosion process, which in their turn increase the zone of the direct technogenous destruction. Self restoration processes in this harsh climate usually are slow. The preservation of the ecological integrity in the Far North is essential for the stability of the biosphere of the planet. The specifics of the natural conditions must be taken into account so that man will be able to develop the means of intensive agro-technology that can speed up the process of restoration of the biocenosis in the damaged areas. The extended abstracts of the conference reports that constitute this volume contain both theoretical discussions of problems of recultivation as well as accounts of experimental studies and applied explorations.

  2. Extending and automating a Systems-Theoretic hazard analysis for requirements generation and analysis.

    SciTech Connect (OSTI)

    Thomas, John

    2012-05-01

    Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques - such as Fault Tree Analysis (FTA) - that overlook important causes of accidents like flawed requirements, dysfunctional component interactions, and software errors. While proving to be very effective on real systems, no formal structure has been defined for STPA and its application has been ad-hoc with no rigorous procedures or model-based design tools. This report defines a formal mathematical structure underlying STPA and describes a procedure for systematically performing an STPA analysis based on that structure. A method for using the results of the hazard analysis to generate formal safety-critical, model-based system and software requirements is also presented. Techniques to automate both the analysis and the requirements generation are introduced, as well as a method to detect conflicts between the safety and other functional model-based requirements during early development of the system.

  3. A queuing model for road traffic simulation

    SciTech Connect (OSTI)

    Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.

    2015-03-10

    We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme.

  4. EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS

    SciTech Connect (OSTI)

    Shanbhag, Uday V; Basar, Tamer; Meyn, Sean; Mehta, Prashant

    2013-10-08

    Research reported addressed these topics: the development of analytical and algorithmic tools for distributed computation of Nash equilibria; synchronization in mean-field oscillator games, with an emphasis on learning and efficiency analysis; questions that combine learning and computation; questions including stochastic and mean-field games; modeling and control in the context of power markets.

  5. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kyle S. Dawson

    2016-02-04

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density

  6. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  7. The role of universities in energy and environmental R & D: An extended outline

    SciTech Connect (OSTI)

    Drucker, H.

    1995-12-31

    Issues related to university research and development roles in energy and environmental areas are very briefly outlined in the paper. Fundamental issues discussed include basic versus applied science, and applied science versus technology development. Some specific issues appropriate for university research are identified, such as desulfurizing coal and managing mixed wastes in groundwater. The Plant Biotechnology consortium is described as a model that builds on university strengths in basic and applied technology.

  8. Extending the applicability of Redfield theories into highly non-Markovian regimes

    SciTech Connect (OSTI)

    Montoya-Castillo, Andrés; Reichman, David R.; Berkelbach, Timothy C.

    2015-11-21

    We present a new, computationally inexpensive method for the calculation of reduced density matrix dynamics for systems with a potentially large number of subsystem degrees of freedom coupled to a generic bath. The approach consists of propagation of weak-coupling Redfield-like equations for the high-frequency bath degrees of freedom only, while the low-frequency bath modes are dynamically arrested but statistically sampled. We examine the improvements afforded by this approximation by comparing with exact results for the spin-boson model over a wide range of parameter space. We further generalize the method to multi-site models and compare with exact results for a model of the Fenna–Matthews–Olson complex. The results from the method are found to dramatically improve Redfield dynamics in highly non-Markovian regimes, at a similar computational cost. Relaxation of the mode-freezing approximation via classical (Ehrenfest) evolution of the low-frequency modes results in a dynamical hybrid method. We find that this Redfield-based dynamical hybrid approach, which is computationally more expensive than bare Redfield dynamics, yields only a marginal improvement over the simpler approximation of complete mode arrest.

  9. NREL: dGen: Distributed Generation Market Demand Model - Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documentation The Distributed Generation Market Demand (dGen) model documentation summarizes the default data inputs and assumptions for the model. Input data for the model are regularly updated and include recent EIA Annual Energy Outlook projections, state-level net metering and incentive policies, and utility-level retail electricity rates. Note that the dGen model builds on, extends, and provides significant advances over NREL's deprecated SolarDS model. Documentation Outline Introduction

  10. Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Absar, Syeda Mariya; Preston, Benjamin L.

    2015-05-25

    The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impact, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impact, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However,more » the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impact, adaptation and vulnerability, and increasingly integrated assessment modeling, studies are conducted. Our objective for this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor-Actor-Sector framework. Finally, in addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative subnational socioeconomic futures for the assessment of climate change impacts and adaptation.« less

  11. Programmability of the HPCS Languages: A Case Study with a Quantum Chemistry Kernel (Extended Version)

    SciTech Connect (OSTI)

    Shet, Aniruddha G; Elwasif, Wael R; Harrison, Robert J; Bernholdt, David E

    2008-04-01

    As high-end computer systems present users with rapidly increasing numbers of processors, possibly also incorporating attached co-processors, programmers are increasingly challenged to express the necessary levels of concurrency with the dominant parallel programming model, Fortran+MPI+OpenMP (or minor variations). In this paper, we examine the languages developed under the DARPA High-Productivity Computing Systems (HPCS) program (Chapel, Fortress, and X10) as representatives of a different parallel programming model which might be more effective on coming high-performance systems. The application used in this study is the Hartree-Fock method from quantum chemistry, which combines access to distributed data with a task-parallel algorithm and is characterized by significant irregularity in the computational tasks. We present several different implementation strategies for load balancing of the task parallel computation, as well as distributed array operations, in each of the three languages. We conclude that the HPCS languages provide a wide variety of mechanisms for expressing parallelism, which can be combined at multiple levels, making them quite expressive for this problem.

  12. Supplemental grounding of extended emp collectors. Final report, 1 May 1980-31 January 1982

    SciTech Connect (OSTI)

    Denny, H.W.; Acree, D.W.; Melson, G.B.; Millard, D.P.

    1982-01-31

    The external conductors of a facility, particularly long, above ground types, pose a severe EMP threat. A primary purpose of this program was to investigate the premise that supplemental ground connections in these types of conductors could serve to reduce this threat. To support this investigation an External Collector Analysis Model (ECAM) was developed. ECAM was applied to analyzing the EMP-induced current levels appearing at a facility under various conditions of line length, line height, and number of grounds. From the results, approaches to the treatment of external collector penetrations are suggested. In addition to the external collector assessments, preliminary studies of internal collector responses are reported. Supplemental studies of techniques for measuring the responses of earth electrode systems over the EMP power spectrum are described. A successful technique utilizing currently available instrumentation was used to validate a test probe and to evaluate scaled models of various commonly used earth electrode geometries. From the measurements, observations relating to the behavior of various geometries up to 500 MHz are made.

  13. Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.

    SciTech Connect (OSTI)

    Concepcion, Ricky James; Elliott, Ryan Thomas; Donnelly, Matt; Sanchez-Gasca, Juan

    2016-01-01

    The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.

  14. Bell-polynomial approach and N-soliton solution for the extended Lotka-Volterra equation in plasmas

    SciTech Connect (OSTI)

    Qin Bo; Liu Licai; Wang Ming; Lin Zhiqiang; Liu Wenjun; Tian Bo

    2011-04-15

    Symbolically investigated in this paper is the extended Lotka-Volterra (ELV) equation, which can govern the kinetics of the discrete peaks of the weak Langmuir turbulence in plasmas without the linear damping and random noise. Binary Bell polynomials are applied to the bilinearization of the discrete system. Bilinear Baecklund transformation of the ELV equation is constructed. N-soliton solution in terms of the extended Casorati determinant is also presented and verified. Propagation and interaction behaviors of the Langmuir turbulence are analyzed. It is demonstrated that the number of the interacting Langmuir waves can influence the soliton velocity and amplitude as well as the collision phase shift. Graphic illustrations of the solitonic collisions show that the repulsion effects and nonlinear interactions are also associated with the number of the interacting Langmuir waves.

  15. Should utility incumbents be able to extend their brand name to competitive retail markets? An economic perspective

    SciTech Connect (OSTI)

    Abel, J.R.; Clements, M.E.

    1998-06-01

    As retail competition begins, at least for the short run, there should be policy restrictions on an incumbent utility`s ability to extend its brand to an affiliated marketer. However, a utility-affiliated marketer should be permitted to compete in a newly deregulated market using a generic or self-developed brand name. If extending a brand name from an incumbent utility to an affiliated marketer does in fact create real barriers to entry in the retail market, competition will be crippled in this market and consumers will suffer. More important, deregulation will appear to have failed in the electric power market--a consequence with effects reaching past the electricity industry to other industries considering deregulation as a viable policy choice. However, if real barriers to entry are not erected by this type of brand name extension, the industry may suffer from lower quality products, less service, and reduced innovation if policymakers prohibit brand name extension.

  16. Extended Salecker-Wigner formula for optimal accuracy in reading a clock via a massive signal particle

    SciTech Connect (OSTI)

    Kudaka, Shoju; Matsumoto, Shuichi

    2007-07-15

    In order to acquire an extended Salecker-Wigner formula from which to derive the optimal accuracy in reading a clock with a massive particle as the signal, von Neumann's classical measurement is employed, by which simultaneously both position and momentum of the signal particle can be measured approximately. By an appropriate selection of wave function for the initial state of the composite system (a clock and a signal particle), the formula is derived accurately. Valid ranges of the running time of a clock with a given optimal accuracy are also given. The extended formula means that contrary to the Salecker-Wigner formula there exists the possibility of a higher accuracy of time measurement, even if the mass of the clock is very small.

  17. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes

    SciTech Connect (OSTI)

    Nakar, Ehud; Piro, Anthony L.

    2014-06-20

    Early observations of supernova light curves are powerful tools for shedding light on the pre-explosion structures of their progenitors and their mass-loss histories just prior to explosion. Some core-collapse supernovae that are detected during the first days after the explosion prominently show two peaks in the optical bands, including the R and I bands, where the first peak appears to be powered by the cooling of shocked surface material and the second peak is clearly powered by radioactive decay. Such light curves have been explored in detail theoretically for SN 1993J and 2011dh, where it was found that they may be explained by progenitors with extended, low-mass envelopes. Here, we generalize these results. We first explore whether any double-peaked light curve of this type can be generated by a progenitor with a 'standard' density profile, such as a red supergiant or a Wolf-Rayet star. We show that a standard progenitor (1) cannot produce a double-peaked light curve in the R and I bands and (2) cannot exhibit a fast drop in the bolometric luminosity as is seen after the first peak. We then explore the signature of a progenitor with a compact core surrounded by extended, low-mass material. This may be a hydrostatic low-mass envelope or material ejected just prior to the explosion. We show that it naturally produces both of these features. We use this result to provide simple formulae to estimate (1) the mass of the extended material from the time of the first peak, (2) the extended material radius from the luminosity of the first peak, and (3) an upper limit on the core radius from the luminosity minimum between the two peaks.

  18. Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Study of MFRSR-Derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facilities - Comparison with Satellite and Other Ground-Based Measurements M. D. Alexandrov and B. Cairns Columbia University National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. A. Lacis and B. E. Carlson National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Comparison of SGP MFRSR

  19. Comment Period Extended: EA-2005: Chromium Plume Control Interim Measure and Plume-Center Characterization, Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management has extended the Public Comment Period on the Draft Environmental Assessment for Chromium Plume Control Interim Measure And Plume-Center Characterization, Los...

  20. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity

    SciTech Connect (OSTI)

    Amarilla, Leonardo; Eiroa, Ernesto F.; Giribet, Gaston

    2010-06-15

    The Chern-Simons modification to general relativity in four dimensions consists of adding to the Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and this is why this model resists several observational constraints. In contrast, the spinning black hole solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow rotation and small coupling constant. In the present paper, we show that, in this approximation, the null geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term deforms the shape of the shadow.

  1. Extended Sleeve Products Allow Control and Monitoring of Process Fluid Flows Inside Shielding, Behind Walls and Beneath Floors - 13041

    SciTech Connect (OSTI)

    Abbott, Mark W.

    2013-07-01

    Throughout power generation, delivery and waste remediation, the ability to control process streams in difficult or impossible locations becomes increasingly necessary as the complexity of processes increases. Example applications include radioactive environments, inside concrete installations, buried in dirt, or inside a shielded or insulated pipe. In these situations, it is necessary to implement innovative solutions to tackle such issues as valve maintenance, valve control from remote locations, equipment cleaning in hazardous environments, and flow stream analysis. The Extended Sleeve family of products provides a scalable solution to tackle some of the most challenging applications in hazardous environments which require flow stream control and monitoring. The Extended Sleeve family of products is defined in three groups: Extended Sleeve (ESV), Extended Bonnet (EBV) and Instrument Enclosure (IE). Each of the products provides a variation on the same requirements: to provide access to the internals of a valve, or to monitor the fluid passing through the pipeline through shielding around the process pipe. The shielding can be as simple as a grout filled pipe covering a process pipe or as complex as a concrete deck protecting a room in which the valves and pipes pass through at varying elevations. Extended Sleeves are available between roughly 30 inches and 18 feet of distance between the pipeline centerline and the top of the surface to which it mounts. The Extended Sleeve provides features such as ± 1.5 inches of adjustment between the pipeline and deck location, internal flush capabilities, automatic alignment of the internal components during assembly and integrated actuator mounting pads. The Extended Bonnet is a shorter fixed height version of the Extended Sleeve which has a removable deck flange to facilitate installation through walls, and is delivered fully assembled. The Instrument Enclosure utilizes many of the same components as an Extended Sleeve

  2. Extending facility life by combining embankments: permitting energy solutions class a combined disposal cell

    SciTech Connect (OSTI)

    McCandless, S.J.; Shrum, D.B.

    2007-07-01

    EnergySolutions' Class A low-level radioactive waste management operations are limited to a 540-acre section of land in Utah's west desert. In order to optimize the facility lifetime, EnergySolutions has launched an effort to improve the waste disposal utilization of this acreage. A chief component of this effort is the Class A Combined embankment. The Class A Combined embankment incorporates the footprint of both the currently licensed Class A cell and the Class A North cell, and also includes an increase in the overall embankment height. By combining the cells and raising the height of the embankment, disposal capacity is increased by 50% over the two-cell design. This equates to adding a second Class A cell, at approximately 3.8 million cubic yards capacity, without significantly increasing the footprint of disposal operations. In order to justify the design, EnergySolutions commissioned geotechnical and infiltration fate and transport evaluations, modeling, and reports. Cell liner and cover materials, specifications, waste types, and construction methods will not change. EnergySolutions estimates that the Class A Combined cell will add at least 10 years of capacity to the site, improving utilization of the permitted area without unacceptable environmental impacts. (authors)

  3. Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christianson, Andrew D.; Hahn, Steven E.; Fishman, Randy Scott; Parker, David S.; McGuire, Michael A.; Sales, Brian C.; Lumsden, Mark D.; Williams, T. J.; Taylor, A. E.

    2016-05-09

    Here, the high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientationmore » that occurs below 140~K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.« less

  4. Extending the flood record on the Middle Gila River with Holocene stratigraphy

    SciTech Connect (OSTI)

    Huckleberry, G. . Dept. of Geosciences)

    1993-04-01

    Historical changes in flood frequency and magnitude are correlated to changes in channel geometry for the Middle Gila River (MGR) in south-central Arizona. The author has attempted to reconstruct the frequency of large floods on the MGR for the last 1,000 years by looking at the stratigraphic record with the purpose of modeling channel changes during a period of significant local cultural change, i.e., the Hohokam-Pima cultural transition. After distinguishing and mapping geological surfaces in the eastern part of the Gila River Indian Community. The author placed a series of backhoe trenches on late Holocene MGR terraces. He interprets lithological discontinuities within overbank deposits as boundaries separating temporally discrete floods. Detrital charcoal from within the stratigraphy was submitted to the National Science Foundation-University of Arizona AMS facility for radiocarbon analysis. The stratigraphic record indicates that a minimum of four large floods have occurred on the MGR since A.D. 1300. Three of these floods may correspond to large historical floods in 1833, 1868, and 1905. If so, then it appears that MGR flood frequency increased after A.D. 1800. There is no evidence for increased flood frequency and channel transformations during the cultural decline of the Hohokam in the 15th century.

  5. SYNMAG PHOTOMETRY: A FAST TOOL FOR CATALOG-LEVEL MATCHED COLORS OF EXTENDED SOURCES

    SciTech Connect (OSTI)

    Bundy, Kevin; Yasuda, Naoki; Hogg, David W.; Higgs, Tim D.; Nichol, Robert C.; Masters, Karen L.; Lang, Dustin; Wake, David A.

    2012-12-01

    Obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. We present an alternative solution called 'synthetic aperture photometry' that exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures. Because aperture magnitudes are the most widely tabulated flux measurements in survey catalogs, producing synthetic aperture magnitudes (SYNMAGs) enables very fast matched photometry at the catalog level, without reprocessing imaging data. We make our code public and apply it to obtain matched photometry between Sloan Digital Sky Survey ugriz and UKIDSS YJHK imaging, recovering red-sequence colors and photometric redshifts with a scatter and accuracy as good as if not better than FWHM-homogenized photometry from the GAMA Survey. Finally, we list some specific measurements that upcoming surveys could make available to facilitate and ease the use of SYNMAGs.

  6. Preferential Cu precipitation at extended defects in bcc Fe: An atomistic study

    SciTech Connect (OSTI)

    Zhang, Yongfeng; Millett, Paul C.; Tonks, Michael R.; Bai, Xian-Ming; Biner, S. Bulent

    2015-04-01

    As a starting point to understand Cu precipitation in RPV alloys, molecular dynamics and Metropolis Monte-Carlo simulations are carried out to study the effect of lattice defects on Cu precipitation by taking Fe-Cu system as a model alloy. Molecular dynamics simulations show that owing to the high heat of mixing and positive size mismatch, Cu is attracted by vacancy type defects such as vacancies and voids, and tensile stress fields. In accordance, preferential precipitation of Cu is observed in Metropolis Monte-Carlo simulations at dislocations, prismatic loops and voids. The interaction of Cu with a stress field, e.g., that associated with a dislocation or a prismatic loop, is dominated by elastic effect and can be well described by the linear-elasticity theory. For prismatic loops, the attraction to Cu is found to be size-dependent with opposite trends displayed by vacancy and interstitial loops. The size-dependences can be explained by considering the stress fields produced by these loops. The current results will be useful for understanding the effect of neutron irradiation on Cu precipitation in reactor-pressure-vessel steels.

  7. Directory of Energy Information Administration Models 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  8. Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... International Strategy for Water and Land Resources in Iraq Model US-Canada Algae Biofuel ... Generation Cost Simulation Model Iraq Water-Energy-Food Model The USMexico ...

  9. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOE Patents [OSTI]

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  10. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOE Patents [OSTI]

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  11. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  12. Pyomo : Python Optimization Modeling Objects.

    SciTech Connect (OSTI)

    Siirola, John; Laird, Carl Damon; Hart, William Eugene; Watson, Jean-Paul

    2010-11-01

    The Python Optimization Modeling Objects (Pyomo) package [1] is an open source tool for modeling optimization applications within Python. Pyomo provides an objected-oriented approach to optimization modeling, and it can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers. While Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, Pyomo's modeling objects are embedded within a full-featured high-level programming language with a rich set of supporting libraries. Pyomo leverages the capabilities of the Coopr software library [2], which integrates Python packages (including Pyomo) for defining optimizers, modeling optimization applications, and managing computational experiments. A central design principle within Pyomo is extensibility. Pyomo is built upon a flexible component architecture [3] that allows users and developers to readily extend the core Pyomo functionality. Through these interface points, extensions and applications can have direct access to an optimization model's expression objects. This facilitates the rapid development and implementation of new modeling constructs and as well as high-level solution strategies (e.g. using decomposition- and reformulation-based techniques). In this presentation, we will give an overview of the Pyomo modeling environment and model syntax, and present several extensions to the core Pyomo environment, including support for Generalized Disjunctive Programming (Coopr GDP), Stochastic Programming (PySP), a generic Progressive Hedging solver [4], and a tailored implementation of Bender's Decomposition.

  13. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Ly? BLOB 2

    SciTech Connect (OSTI)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.; Matsuda, Yuichi

    2014-05-10

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Ly? blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Ly? emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Ly? emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 10{sup 11} M {sub ?}, and the dark halo mass is at least 2 10{sup 12} M {sub ?}. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas have

  14. Low- and high-order harmonic generation in the extended plasmas produced by laser ablation of zinc and manganese targets

    SciTech Connect (OSTI)

    Ganeev, R. A.; Baba, M.; Suzuki, M.; Yoneya, S.; Kuroda, H.

    2014-12-28

    The systematic studies of the harmonic generation of ultrashort laser pulses in the 5-mm-long Zn and Mn plasmas (i.e., application of nanosecond, picosecond, and femtosecond pulses for ablation, comparison of harmonic generation from atomic, ionic, and cluster-contained species of plasma, variation of plasma length, two-color pump of plasmas, etc.) are presented. The conversion efficiency of the 11th–19th harmonics generated in the Zn plasma was ∼5 × 10{sup −5}. The role of the ionic resonances of Zn near the 9th and 10th harmonics on the enhancement of harmonics is discussed. The enhancement of harmonics was also analyzed using the two-color pump of extended plasmas, which showed similar intensities of the odd and even harmonics along the whole range of generation. The harmonics up to the 107th order were demonstrated in the case of manganese plasma. The comparison of harmonic generation in the 5-mm-long and commonly used short (≤0.5 mm) plasma plumes showed the advanced properties of extended media.

  15. Building America Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House, Mount Joy, Pennsylvania

    SciTech Connect (OSTI)

    2016-01-01

    This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.

  16. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    SciTech Connect (OSTI)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ?{sub ?} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  17. Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration into FAST: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Jonkman, J.; Robertson, A.

    2014-03-01

    Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.

  18. Morris Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ef

  19. Ringwood Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ringwood

  20. Vici Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vicief

  1. Meeker Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  2. Larned Extended Facility #1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    larned

  3. Leroy Extended Facility #3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leroy

  4. MS FORTRAN Extended Libraries

    Energy Science and Technology Software Center (OSTI)

    1986-09-01

    DISPPAK is a set of routines for use with Microsoft FORTRAN programs that allows the flexible display of information on the screen of an IBM PC in both text and graphics modes. The text mode routines allow the cursor to be placed at an arbitrary point on the screen and text to be displayed at the cursor location, making it possible to create menus and other structured displays. A routine to set the color ofmore » the characters that these routines display is also provided. A set of line drawing routines is included for use with IBM''s Color Graphics Adapter or an equivalent board (such as the Enhanced Graphics Adapter in CGA emulation mode). These routines support both pixel coordinates and a user-specified set of real number coordinates. SUBPAK is a function library which allows Microsoft FORTRAN programs to calculate random numbers, issue calls to the operating system, read individual characters from the keyboard, perform Boolean and shift operations, and communicate with the I/O ports of the IBM PC. In addition, peek and poke routines, a routine that returns the address of any variable, and routines that can access the system time and date are included.« less

  5. Extended DCG notation

    SciTech Connect (OSTI)

    Van Roy, P.

    1990-01-01

    This paper describes a preprocessor that simplifies purely applicative programming in Prolog. The preprocessor generalizes Prolog's Definite Clause Grammar (DCG) notation to allow programming with multiple accumulators. It has been an indispensable tool in the development of an optimizing Prolog compiler. Its use is transparent in versions of Prolog that conform to the Edinburgh standard. This paper contains a description of the preprocessor, a user manual, a large example program, and the source code of the preprocessor. This information is also available by anonymous ftp to arpa berkeley edu.

  6. El Reno Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    El Reno

  7. Towanda Extended Facility #6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    towanda_ef_img.jpg

  8. Tyro Kansas Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tyroef_img.jpg

  9. Elk Falls Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elizabeth Spencer About Us Elizabeth Spencer - Communicator, National Renewable Energy Laboratory Elizabeth Spencer is a communicator at DOE's National Renewable Energy Laboratory, which assists EERE in providing technical content for many of its Web sites. Most Recent The Story of a House that Never Stayed Warm: A Well-Insulated Resolution April 8 Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 November 10 Insulation Troubles: A Story of a House That Never Stayed Warm,

  10. Halstead Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Halloween (+7 Days) Halloween (+7 Days) November 7, 2011 - 1:34pm Addthis Drew Bittner Writer/Editor, Office of Energy Efficiency and Renewable Energy Well, it's now a week after All Hallow's Eve. If you're like my family, most of the candy's been eaten and you're down to that last half-crushed chocolate bar or licorice stick, as well as seeing the discarded bits of costume still here and there-my daughter's having a hard time giving up her night as a superhero. Walking around while my girl went

  11. Hillsboro Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hillsboro_ef

  12. Pawhuska Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pawhuska

  13. Plevna Extended Facility #4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plevnaef_img.jpg

  14. Coldwater Extended Facility #8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Cold weather encourages warm hearts in Kansas City Tuesday, January 19, 2016 - 12:00am NNSA Blog Most of us just reach into the closet to pull on a warm coat to shield us from the winter weather, but for thousands of needy children in the Kansas City area who have outgrown their coats, it's not so simple. Thanks to the Coats for Kids program, which provides new and gently used coats for children who need them, many of these children will be toasty warm. Each

  15. Cordell Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cordell

  16. Cyril Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyril

  17. MGA++ Analysis of Low Quantity Samples of U and Pu on an Extended-rage Gamma-ray Detector

    SciTech Connect (OSTI)

    Wang, T; Russ, G P; Williams, R W

    2007-06-04

    The IAEA has expressed a need for improved determination of gamma emitting nuclides in environmental samples collected during inspections of nuclear facilities and to use the MGA++ to determine U and Pu concentrations and isotopic compositions when those elements are present in relatively high concentrations. We are addressing the IAEA needs by evaluating the applicability of extended-range germanium detectors (ERG). In this paper we used 1g U isotopic standards and 100ug Pu liquid standards (1) to determine the performance of MGA++ on this special detector and (2) to estimate the amount of U and Pu necessary in the sample for determination of the isotopics via MGA++ within reasonable accuracy for a week of counting time using this ERG detector.

  18. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    SciTech Connect (OSTI)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.

  19. A multifluid mix model with material strength effects

    SciTech Connect (OSTI)

    Chang, C. H. [Los Alamos National Laboratory; Scannapieco, A. J. [Los Alamos National Laboratory

    2012-04-23

    We present a new multifluid mix model. Its features include material strength effects and pressure and temperature nonequilibrium between mixing materials. It is applicable to both interpenetration and demixing of immiscible fluids and diffusion of miscible fluids. The presented model exhibits the appropriate smooth transition in mathematical form as the mixture evolves from multiphase to molecular mixing, extending its applicability to the intermediate stages in which both types of mixing are present. Virtual mass force and momentum exchange have been generalized for heterogeneous multimaterial mixtures. The compression work has been extended so that the resulting species energy equations are consistent with the pressure force and material strength.

  20. Temperature dependence of the Pd [ital K]-edge extended x-ray-absorption fine structure of PdC[sub [ital x

    SciTech Connect (OSTI)

    McCaulley, J.A. (Hoechst Celanese Research Division, Robert L. Mitchell Technical Center, 86 Morris Avenue, Summit, New Jersey 07901 (United States))

    1993-03-01

    Pd [ital K]-edge extended x-ray-absorption fine-structure (EXAFS) and x-ray-absorption near-edge-structure (XANES) measurements were performed on a Pd carbide phase, PdC[sub [ital x

  1. The Challenges and Opportunities for Extending Plant Genomics to Climate (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Weston, David

    2013-03-01

    David Weston of Oak Ridge National Laboratory on "The challenges and opportunities for extending plant genomics to climate" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  2. Molecular Basis for the Catalytic Specificity of the CTX-M Extended-Spectrum β-Lactamases

    SciTech Connect (OSTI)

    Adamski, Carolyn J.; Cardenas, Ana Maria; Brown, Nicholas G.; Horton, Lori B.; Sankaran, Banumathi; Prasad, B. V. Venkataram; Gilbert, Hiram F.; Palzkill, Timothy

    2014-12-09

    We report that extended-spectrum β-lactamases (ESBLs) pose a threat to public health because of their ability to confer resistance to extended-spectrum cephalosporins such as cefotaxime. The CTX-M β-lactamases are the most widespread ESBL enzymes among antibiotic resistant bacteria. Many of the active site residues are conserved between the CTX-M family and non-ESBL β-lactamases such as TEM-1, but the residues Ser237 and Arg276 are specific to the CTX-M family, suggesting that they may help to define the increased specificity for cefotaxime hydrolysis. To test this hypothesis, site-directed mutagenesis of these positions was performed in the CTX-M-14 β-lactamase. Substitutions of Ser237 and Arg276 with their TEM-1 counterparts, Ala237 and Asn276, had a modest effect on cefotaxime hydrolysis, as did removal of the Arg276 side chain in an R276A mutant. The S237A:R276N and S237A:R276A double mutants, however, exhibited 29- and 14-fold losses in catalytic efficiency for cefotaxime hydrolysis, respectively, while the catalytic efficiency for benzylpenicillin hydrolysis was unchanged. Therefore, together, the Ser237 and Arg276 residues are important contributors to the cefotaximase substrate profile of the enzyme. High-resolution crystal structures of the CTX-M-14 S70G, S70G:S237A, and S70G:S237A:R276A variants alone and in complex with cefotaxime show that residues Ser237 and Arg276 in the wild-type enzyme promote the expansion of the active site to accommodate cefotaxime and favor a conformation of cefotaxime that allows optimal contacts between the enzyme and substrate. In conclusion, the conservation of these residues, linked to their effects on structure and catalysis, imply that their coevolution is an important specificity determinant in the CTX-M family.

  3. Scale Setting Using the Extended Renormalization Group and the Principle of Maximal Conformality: the QCD Coupling at Four Loops

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Wu, Xing-Gang; /SLAC /Chongqing U.

    2012-02-16

    A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The extended renormalization group equations, which express the invariance of physical observables under both the renormalization scale- and scheme-parameter transformations, provide a convenient way for estimating the scale- and scheme-dependence of the physical process. In this paper, we present a solution for the scale-equation of the extended renormalization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal {beta}{sub i} terms in the perturbative expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are independent of the renormalization scheme. Different schemes lead to different effective PMC/BLM scales, but the final results are scheme independent. Conversely, from the requirement of scheme independence, one not only can obtain scheme-independent commensurate scale relations among different observables, but also determine the scale displacements among the PMC/BLM scales which are derived under different schemes. In principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An explicit application for determining the scale setting of R{sub e{sup +}e{sup -}}(Q) up to four loops is presented. By using the world average {alpha}{sub s}{sup {ovr MS}}(MZ) = 0.1184 {+-} 0.0007, we obtain the asymptotic scale for the 't Hooft associated with the {ovr MS} scheme, {Lambda}{sub {ovr MS}}{sup 'tH} = 245{sub -10}{sup +9} MeV, and the asymptotic scale for the conventional {ovr MS} scheme, {Lambda}{sub {ovr MS}} = 213{sub -8}{sup +19} MeV.

  4. The VISION Model | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The VISION Model What is VISION? The VISION model has been developed to provide estimates of the potential energy use, oil use and carbon emission impacts of advanced light- and heavy-duty vehicle technologies and alternative fuels through the year 2050. Beginning in 2008, the analysis horizon has been extended to 2100. The model consists of two Excel workbooks: a Base Case of US highway fuel use and carbon emissions to 2050 (to 2100 in 2008 and newer versions) and a copy (of the Base Case) that

  5. Visual agent-based model development with repast simphony.

    SciTech Connect (OSTI)

    North, M. J.; Tatara, E.; Collier, N. T.; Ozik, J.; Decision and Information Sciences; Univ. of Chicago; PantaRei Corp.

    2007-01-01

    Repast is a widely used, free, and open-source agent-based modeling and simulation toolkit. Three Repast platforms are currently available, each of which has the same core features but a different environment for these features. Repast Simphony (Repast S) extends the Repast portfolio by offering a new approach to simulation development and execution. This paper presents a model of physical infrastructure network interdependency as an introductory tutorial and illustration of the visual modeling capabilities of Repast S.

  6. Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Wave-Energy-Device Modeling: Developing A 1:17 Scaled Model Many theoretical studies show ...

  7. Lifecycle Model

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter describes the lifecycle model used for the Departmental software engineering methodology.

  8. Three new extended Preyssler-type polyoxometalates modified by transition metal-2,2 Prime -biimidazole complexes

    SciTech Connect (OSTI)

    Yang, Chun-Yue [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Zhang, Lan-Cui, E-mail: zhanglancui@lnnu.edu.cn [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Wang, Zan-Jiao; Wang, Lin; Li, Xiao-Hui [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Zhu, Zai-Ming, E-mail: chemzhu@sina.com [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)

    2012-10-15

    Three extended Preyssler-type ({l_brace}P{sub 5}W{sub 30}{r_brace}) polyoxometalates modified by transition metal (TM)-2,2 Prime -biimidazole (abbreviated as H{sub 2}biim) complexes, namely [Mn(H{sub 2}biim){sub 3}]{sub 5}H{sub 2}[{l_brace}Mn(H{sub 2}biim){sub 2}(H{sub 2}O){r_brace} (NaP{sub 5}W{sub 30}O{sub 110})]{center_dot}39H{sub 2}O (1), [{l_brace}(H{sub 2}biim){sub 2}Zn({mu}-OH)Zn(H{sub 2}biim)({mu}-H{sub 2}biim)Zn(H{sub 2}biim)(H{sub 2}O){r_brace}{sub 2}H{sub 4}(NaP{sub 5}W{sub 30}O{sub 110})]{center_dot}22 H{sub 2}O (2), and {l_brace}(H{sub 4}biim){sub 18}NaH{sub 5}[({mu}-Fe(H{sub 3}biim)(H{sub 2}O){sub 3})({mu}-Fe(H{sub 2}O){sub 4})(NaP{sub 5}W{sub 30}O{sub 110}){sub 2}]{sub 2}{center_dot}78H{sub 2}O{r_brace}{sub n} (3) have been hydrothermally synthesized, and characterized by physicochemical and spectroscopic methods. Their catalytic activities have been investigated. 1 contains mono-supporting {l_brace}P{sub 5}W{sub 30}{r_brace} anions. In compound 2, a {l_brace}P{sub 5}W{sub 30}{r_brace} anion is bi-supported by two symmetrical chains constructed by trinuclear zinc complexes. Compound 3 is composed of infinite 1-D zigzag chains built up of {l_brace}P{sub 5}W{sub 30}{r_brace} polyoxoanions linked via [Fe(H{sub 2}O){sub 4}]{sup 3+} and [Fe(H{sub 3}biim)(H{sub 2}O){sub 3}]{sup 4+} fragments. H{sub 2}biim ligands adopt three coordination modes in the structure. All these compounds have 3-D supramolecular frameworks via extensive hydrogen-bonding interactions. - Graphical abstract: Three new extended Preyssler-type polyoxometalates modified by TM-2,2 Prime -biimidazole complexes are obtained, they display high thermal stabilities. Highlights: Black-Right-Pointing-Pointer Three new extended Preyssler-type polyoxometalates were hydrothermally synthesized. Black-Right-Pointing-Pointer An interesting trinuclear zinc-2,2 Prime -biimidazole-polyanion complex was obtained. Black-Right-Pointing-Pointer The huge {l_brace}P{sub 5}W{sub 30}{r_brace} clusters were

  9. Integration of the DAYCENT Biogeochemical Model within a Multi-Model Framework

    SciTech Connect (OSTI)

    David Muth

    2012-07-01

    Agricultural residues are the largest near term source of cellulosic 13 biomass for bioenergy production, but removing agricultural residues sustainably 14 requires considering the critical roles that residues play in the agronomic system. 15 Determining sustainable removal rates for agricultural residues has received 16 significant attention and integrated modeling strategies have been built to evaluate 17 sustainable removal rates considering soil erosion and organic matter constraints. 18 However the current integrated model does not quantitatively assess soil carbon 19 and long term crop yields impacts of residue removal. Furthermore the current 20 integrated model does not evaluate the greenhouse gas impacts of residue 21 removal, specifically N2O and CO2 gas fluxes from the soil surface. The DAYCENT 22 model simulates several important processes for determining agroecosystem 23 performance. These processes include daily Nitrogen-gas flux, daily carbon dioxide 24 flux from soil respiration, soil organic carbon and nitrogen, net primary productivity, 25 and daily water and nitrate leaching. Each of these processes is an indicator of 26 sustainability when evaluating emerging cellulosic biomass production systems for 27 bioenergy. A potentially vulnerable cellulosic biomass resource is agricultural 28 residues. This paper presents the integration of the DAYCENT model with the 29 existing integration framework modeling tool to investigate additional environment 30 impacts of agricultural residue removal. The integrated model is extended to 31 facilitate two-way coupling between DAYCENT and the existing framework. The 32 extended integrated model is applied to investigate additional environmental 33 impacts from a recent sustainable agricultural residue removal dataset. The 34 integrated model with DAYCENT finds some differences in sustainable removal 35 rates compared to previous results for a case study county in Iowa. The extended 36 integrated model with

  10. SPR Hydrostatic Column Model Verification and Validation.

    SciTech Connect (OSTI)

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  11. Molecular Basis for the Catalytic Specificity of the CTX-M Extended-Spectrum β-Lactamases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamski, Carolyn J.; Cardenas, Ana Maria; Brown, Nicholas G.; Horton, Lori B.; Sankaran, Banumathi; Prasad, B. V. Venkataram; Gilbert, Hiram F.; Palzkill, Timothy

    2014-12-09

    We report that extended-spectrum β-lactamases (ESBLs) pose a threat to public health because of their ability to confer resistance to extended-spectrum cephalosporins such as cefotaxime. The CTX-M β-lactamases are the most widespread ESBL enzymes among antibiotic resistant bacteria. Many of the active site residues are conserved between the CTX-M family and non-ESBL β-lactamases such as TEM-1, but the residues Ser237 and Arg276 are specific to the CTX-M family, suggesting that they may help to define the increased specificity for cefotaxime hydrolysis. To test this hypothesis, site-directed mutagenesis of these positions was performed in the CTX-M-14 β-lactamase. Substitutions of Ser237 andmore » Arg276 with their TEM-1 counterparts, Ala237 and Asn276, had a modest effect on cefotaxime hydrolysis, as did removal of the Arg276 side chain in an R276A mutant. The S237A:R276N and S237A:R276A double mutants, however, exhibited 29- and 14-fold losses in catalytic efficiency for cefotaxime hydrolysis, respectively, while the catalytic efficiency for benzylpenicillin hydrolysis was unchanged. Therefore, together, the Ser237 and Arg276 residues are important contributors to the cefotaximase substrate profile of the enzyme. High-resolution crystal structures of the CTX-M-14 S70G, S70G:S237A, and S70G:S237A:R276A variants alone and in complex with cefotaxime show that residues Ser237 and Arg276 in the wild-type enzyme promote the expansion of the active site to accommodate cefotaxime and favor a conformation of cefotaxime that allows optimal contacts between the enzyme and substrate. In conclusion, the conservation of these residues, linked to their effects on structure and catalysis, imply that their coevolution is an important specificity determinant in the CTX-M family.« less

  12. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    SciTech Connect (OSTI)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.; Correnti, Matteo E-mail: verap@stsci.edu E-mail: correnti@stsci.edu; and others

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ?1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ? 15 km s{sup 1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ? 12 km s{sup 1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup 1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.

  13. Modified Invasion Percolation Models for Multiphase Processes

    SciTech Connect (OSTI)

    Karpyn, Zuleima

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  14. A power sensitivity model for electromechanical oscillation studies

    SciTech Connect (OSTI)

    Deckmann, S.M.; Costa, V.F. da (Unicamp, Campinas (Brazil))

    1994-05-01

    This paper describes the derivation of a power sensitivity model for dynamic studies of power systems, subjected to normal operation disturbances. The need of an infinite bus representation is avoided with the linearized nodal power balance approach. This permits the model to be easily extended to any number of network buses. In the linearized form, the resulting Power Sensitivity Model (PSM), presents some interesting features, such as decoupled modeling and time scale decomposition properties. For presentation reasons, the PSM is first derived for a single generator connected to an infinite bus. Its performance is then compared with the classical Heffron-Phillips Model (HPM), as described by de Mello and Concordia. It is then extended for multinodal networks.

  15. Modeling of Time Varying Slag Flow in Coal Gasifiers

    SciTech Connect (OSTI)

    Pilli, Siva Prasad; Johnson, Kenneth I.; Williford, Ralph E.; Sundaram, S. K.; Korolev, Vladimir N.; Crum, Jarrod V.

    2008-08-30

    There is considerable interest within government agencies and the energy industries across the globe to further advance the clean and economical conversion of coal into liquid fuels to reduce our dependency on imported oil. To date, advances in these areas have been largely based on experimental work. Although there are some detailed systems level performance models, little work has been done on numerical modeling of the component level processes. If accurate models are developed, then significant R&D time might be saved, new insights into the process might be gained, and some good predictions of process or performance can be made. One such area is the characterization of slag deposition and flow on the gasifier walls. Understanding slag rheology and slag-refractory interactions is critical to design and operation of gasifiers with extended refractory lifetimes and also to better control of operating parameters so that the overall gasifier performance with extended service life can be optimized. In the present work, the literature on slag flow modeling was reviewed and a model similar to Seggiani’s was developed to simulate the time varying slag accumulation and flow on the walls of a Prenflo coal gasifier. This model was further extended and modified to simulate a refractory wall gasifier including heat transfer through the refractory wall with flowing slag in contact with the refractory. The model was used to simulate temperature dependent slag flow using rheology data from our experimental slag testing program. These modeling results as well as experimental validation are presented.

  16. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  17. Extended Virtual Spring Mesh (EVSM): The Distributed Self-Organizing Mobile Ad Hoc Network for Area Exploration

    SciTech Connect (OSTI)

    Kurt Derr

    2011-12-01

    Mobile Ad hoc NETworks (MANETs) are distributed self-organizing networks that can change locations and configure themselves on the fly. This paper focuses on an algorithmic approach for the deployment of a MANET within an enclosed area, such as a building in a disaster scenario, which can provide a robust communication infrastructure for search and rescue operations. While a virtual spring mesh (VSM) algorithm provides scalable, self-organizing, and fault-tolerant capabilities required by aMANET, the VSM lacks the MANET's capabilities of deployment mechanisms for blanket coverage of an area and does not provide an obstacle avoidance mechanism. This paper presents a new technique, an extended VSM (EVSM) algorithm that provides the following novelties: (1) new control laws for exploration and expansion to provide blanket coverage, (2) virtual adaptive springs enabling the mesh to expand as necessary, (3) adapts to communications disturbances by varying the density and movement of mobile nodes, and (4) new metrics to assess the performance of the EVSM algorithm. Simulation results show that EVSM provides up to 16% more coverage and is 3.5 times faster than VSM in environments with eight obstacles.

  18. Multiwavelength study of the northeastern outskirts of the extended TeV source HESS J1809193

    SciTech Connect (OSTI)

    Rangelov, Blagoy; Kargaltsev, Oleg; Hare, Jeremy; Volkov, Igor; Posselt, Bettina; Pavlov, George G.

    2014-11-20

    HESS J1809193 is an extended TeV ?-ray source in the Galactic plane. Multiwavelength observations of the HESS J1809193 field reveal a complex picture. We present results from three Chandra X-Ray Observatory and two Suzaku observations of a region in the northeastern outskirts of HESS J1809-193, where enhanced TeV emission has been reported. Our analysis also includes GeV ?-ray and radio data. One of the X-ray sources in the field is the X-ray binary XTE J1810-189, for which we present the outburst history from multiple observatories and confirm that XTE J1810-189 is a strongly variable type I X-ray burster, which can hardly produce TeV emission. We investigate whether there is any connection between the possible TeV extension of HESS J1809193 and the sources seen at lower energies. We find that another X-ray binary candidate, Suzaku J1811-1900, and a radio supernova remnant, SNR G11.40.1, can hardly be responsible for the putative TeV emission. Our multiwavelength classification of fainter X-ray point sources also does not produce a plausible candidate. We conclude that the northeast extension of HESS J1809193, if confirmed by deeper observations, can be considered a dark acceleratora TeV source without a visible counterpart at lower energies.

  19. RELATIVISTIC SUPERNOVAE HAVE SHORTER-LIVED CENTRAL ENGINES OR MORE EXTENDED PROGENITORS: THE CASE OF SN 2012ap

    SciTech Connect (OSTI)

    Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; Sanders, N.; Chakraborti, S.; Kamble, A.; Drout, M.; Parrent, J.; Zauderer, A.; Guidorzi, C.; Morsony, B. J.; Ray, A.; Chomiuk, L.

    2014-12-20

    Deep, late-time X-ray observations of the relativistic, engine-driven, type Ic SN 2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic supernova explosions (SNe). We find that on a local scale of ∼0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate of M-dot <5×10{sup −6} M{sub ⊙} yr{sup −1}, in line with gamma-ray bursts (GRBs) and the other relativistic SN 2009bb. Like sub-energetic GRBs, SN 2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late-time (δt ≈ 20 days) X-ray emission is ∼100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to break out. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.

  20. Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides

    SciTech Connect (OSTI)

    Abdel-Rehim, A M; Stathopoulos, Andreas; Orginos, Kostas

    2014-08-01

    The technique that was used to build the EigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of EigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental EigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.

  1. Amyloid-β-Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope

    SciTech Connect (OSTI)

    Miles, Luke A; Wun, Kwok S; Crespi, Gabriela A.N.; Fodero-Tavoletti, Michelle T; Galatis, Denise; Bagley, Christopher J; Beyreuther, Konrad; Masters, Colin L; Cappai, Roberto; McKinstry, William J; Barnham, Kevin J; Parker, Michael W

    2012-04-17

    Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.

  2. Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  3. Models & Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Arctic Climate Measurements Global Climate Models Software Sustainable Subsurface ...

  4. Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Arctic Climate Measurements Global Climate Models Software Sustainable Subsurface ...

  5. Theory & Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  6. Modeling of neutral entrainment in an FRC thruster

    SciTech Connect (OSTI)

    Brackbill, Jeremiah; Gimelshein, Natalia; Gimelshein, Sergey; Cambier, Jean-Luc; Ketsdever, Andrew

    2012-11-27

    Neutral entrainment in a field reversed configuration thruster is modeled numerically with an implicit PIC code extended to include thermal and chemical interactions between plasma and neutral particles. The contribution of charge exchange and electron impact ionization reactions is analyzed, and the sensitivity of the entrainment efficiency to the plasmoid translation velocity and neutral density is evaluated.

  7. An extension of the multiple-trapping model

    SciTech Connect (OSTI)

    Shkilev, V. P.

    2012-07-15

    The hopping charge transport in disordered semiconductors is considered. Using the concept of the transport energy level, macroscopic equations are derived that extend a multiple-trapping model to the case of semiconductors with both energy and spatial disorders. It is shown that, although both types of disorder can cause dispersive transport, the frequency dependence of conductivity is determined exclusively by the spatial disorder.

  8. Extended Cold Testing of a Russian Pulsating Mixer Pump at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Lewis, BE

    2002-12-23

    The effectiveness of a mixer is dependent on the size of the tank to be mixed, the characteristics of the waste, and the operating conditions. Waste tanks throughout the U.S. Department of Energy Complex require mixing and mobilization systems capable of (1) breaking up and suspending materials that are difficult to mix and pump, without introducing additional liquids into the tank; (2) complementing and augmenting the performance of other remotely operated and/or robotic waste retrieval systems; and (3) operating in tanks with various quantities of waste. The Oak Ridge Russian pulsating mixer pump (PMP) system was designed with the flexibility to permit deployment in a variety of cylindrical tanks. The PMP was installed at the Tanks Technology Cold Test Facility at the Oak Ridge National Laboratory (ORNL) to assess the performance of the system over an extended range of operating conditions, including supply pressures up to 175 psig. Previously conducted cold tests proved the applicability of the PMP for deployment in ORNL gunite tank TH-4. The previous testing and hot demonstrations had been limited to operating at air supply pressures of <100 psig. The extended cold testing of the Russian PMP system showed that the system was capable of mobilizing waste simulants in tanks in excess of 20-ft diam. The waste simulant used in these tests was medium-grain quartz sand. The system was successfully installed, checked out, and operated for 406 pulse discharge cycles. Only minor problems (i.e., a sticking air distributor valve and a few system lockups) were noted. Some improvements to the design of the air distributor valve may be needed to improve reliability. The air supply requirements of the PMP during the discharge cycle necessitated the operation of the system in single pulse discharge cycles to allow time for the air supply reservoir to recharge to the required pressure. During the test program, the system was operated with sand depths of 2, 4, and 4.5 in.; at

  9. Energy-dependent evolution in IC10 X-1: hard evidence for an extended corona and implications

    SciTech Connect (OSTI)

    Barnard, R.; Steiner, J. F.; Prestwich, A. F.; Stevens, I. R.; Clark, J. S.; Kolb, U. C.

    2014-09-10

    We have analyzed a ∼130 ks XMM-Newton observation of the dynamically confirmed black hole + Wolf-Rayet (BH+WR) X-ray binary (XB) IC10 X-1, covering ∼1 orbital cycle. This system experiences periodic intensity dips every ∼35 hr. We find that energy-independent evolution is rejected at a >5σ level. The spectral and timing evolution of IC10 X-1 are best explained by a compact disk blackbody and an extended Comptonized component, where the thermal component is completely absorbed and the Comptonized component is partially covered during the dip. We consider three possibilities for the absorber: cold material in the outer accretion disk, as is well documented for Galactic neutron star (NS) XBs at high inclination; a stream of stellar wind that is enhanced by traveling through the L1 point; and a spherical wind. We estimated the corona radius (r {sub ADC}) for IC10 X-1 from the dip ingress to be ∼10{sup 6} km, assuming absorption from the outer disk, and found it to be consistent with the relation between r {sub ADC} and 1-30 keV luminosity observed in Galactic NS XBs that spans two orders of magnitude. For the other two scenarios, the corona would be larger. Prior BH mass (M {sub BH}) estimates range over 23-38 M {sub ☉}, depending on the inclination and WR mass. For disk absorption, the inclination, i, is likely to be ∼60-80°, with M {sub BH} ∼ 24-41 M {sub ☉}. Alternatively, the L1-enhanced wind requires i ∼ 80°, suggesting ∼24-33 M {sub ☉}. For a spherical absorber, i ∼ 40°, and M {sub BH} ∼ 50-65 M {sub ☉}.

  10. SEISMIC MODELING ENGINES PHASE 1 FINAL REPORT

    SciTech Connect (OSTI)

    BRUCE P. MARION

    2006-02-09

    Seismic modeling is a core component of petroleum exploration and production today. Potential applications include modeling the influence of dip on anisotropic migration; source/receiver placement in deviated-well three-dimensional surveys for vertical seismic profiling (VSP); and the generation of realistic data sets for testing contractor-supplied migration algorithms or for interpreting AVO (amplitude variation with offset) responses. This project was designed to extend the use of a finite-difference modeling package, developed at Lawrence Berkeley Laboratories, to the advanced applications needed by industry. The approach included a realistic, easy-to-use 2-D modeling package for the desktop of the practicing geophysicist. The feasibility of providing a wide-ranging set of seismic modeling engines was fully demonstrated in Phase I. The technical focus was on adding variable gridding in both the horizontal and vertical directions, incorporating attenuation, improving absorbing boundary conditions and adding the optional coefficient finite difference methods.

  11. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    SciTech Connect (OSTI)

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  12. Use Computational Model to Design and Optimize Welding Conditions to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suppress Helium Cracking during Welding | Department of Energy Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld technology must be

  13. Modeling and experimental characterization of stepped and v-shaped (311) defects in silicon

    SciTech Connect (OSTI)

    Marqus, Luis A. Aboy, Mara; Dudeck, Karleen J.; Botton, Gianluigi A.; Knights, Andrew P.; Gwilliam, Russell M.

    2014-04-14

    We propose an atomistic model to describe extended (311) defects in silicon. It is based on the combination of interstitial and bond defect chains. The model is able to accurately reproduce not only planar (311) defects but also defect structures that show steps, bends, or both. We use molecular dynamics techniques to show that these interstitial and bond defect chains spontaneously transform into extended (311) defects. Simulations are validated by comparing with precise experimental measurements on actual (311) defects. The excellent agreement between the simulated and experimentally derived structures, regarding individual atomic positions and shape of the distinct structural (311) defect units, provides strong evidence for the robustness of the proposed model.

  14. Account of nonlocal ionization by fast electrons in the fluid models of a direct current glow discharge

    SciTech Connect (OSTI)

    Rafatov, I.; Bogdanov, E. A.; Kudryavtsev, A. A.

    2012-09-15

    We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the 'simple' and 'extended' fluid frameworks. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model.

  15. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    SciTech Connect (OSTI)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C.; Biggs, A. D.; Ivison, R. J.; Brandt, W. N.; Chapman, S. C.; Coppin, K. E. K.; Dannerbauer, H.; Greve, T. R.; Karim, A.; Menten, Karl M.; Schinnerer, E.; Walter, F.; Wardlow, J. L.; and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  16. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    SciTech Connect (OSTI)

    Li Hui . E-mail: lihui@bit.edu.cn; Guo Ming; Tian Hong; He Feiyue; Lee, G.-H.; Peng, S.-M.

    2006-11-15

    One-dimensional alternative chains of two lanthanum complexes: [La(L{sup 1}){sub 3}(CH{sub 3}OH)(H{sub 2}O){sub 2}].5H{sub 2}O (L{sup 1}=anion of {alpha}-cyano-4-hydroxycinnamic acid ) 1 and [La(L{sup 2}){sub 3}(H{sub 2}O){sub 2}].3H{sub 2}O (L{sup 2}=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C{sub 31}H{sub 36}LaN{sub 3}O{sub 17}, triclinic, P-1, a=9.8279(4)A, b=11.8278(5)A, c=17.8730(7)A, {alpha}=72.7960(10){sup o}, {beta}=83.3820(10){sup o}, {gamma}=67.1650(10)-bar , Z=2, R{sub 1}=0.0377, wR{sub 2}=0.0746; for 2: C{sub 33}H{sub 37}LaO{sub 14}, triclinic, P-1, a=8.7174(5)A, b=9.9377(5)A, c=21.153(2)A, {alpha}=81.145(2){sup o}, {beta}=87.591(2){sup o}, {gamma}=67.345(5){sup o}, Z=2, R{sub 1}=0.0869, wR{sub 2}=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two {eta}{sup 3}-O bridges and four bridges (two {eta}{sup 2}-O and two {eta}{sup 3}-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  17. Theory, modeling and simulation: Annual report 1993

    SciTech Connect (OSTI)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  18. Amendment to Extend the Partnership Agreement between the U.S. Small Business Administration (SBA) and the U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    The purpose of this flash is to advise you that subject amendment is issued pursuant to Section VII of the Partnership Agreement (PA) between the SBA and the DOE. The amendment extends the current PA until January 29,2010. All other terms and conditions of the PA remain unchanged.

  19. Amendment to Extend the Partnership Agreement between the U.S. Small Business Administration (SBA) and the Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    The purpose of this flash is to advise you that an amendment was issued pursuant to Section VII of the Partnership Agreement (PA) between the SBA and the DOE. The amendment extends the current PA until November 30,2009. All other terms and conditions of the PA remain unchanged.

  20. CEQ Extends Comment Period on Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews

    Broader source: Energy.gov [DOE]

    The Council on Environmental Quality (CEQ) has extended by 30 days the comment period on its revised draft guidance on consideration of greenhouse gas (GHG) emissions and the effects of climate change in NEPA reviews. The comment period now ends on March 25, 2015.

  1. VISION Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VISION Model (Argonne National Laboratory) Objectives To provide estimates of the potential energy use, oil use, and carbon emission impacts of advanced light- and heavy-duty ...

  2. Autonomie Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autonomie Model (Argonne National Laboratory) Objectives Perform simulations to assess the ... performance of advanced component and powertrain technologies in a vehicle system context. ...

  3. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  4. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  5. International land Model Benchmarking (ILAMB) Package v002.00

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Collier, Nathaniel; Hoffman, Forrest M. [Climage Modeling.org; Mu, Mingquan [University of California, Irvine; Randerson, James T. [University of California, Irvine; Riley, William J. [Lawrence Berkeley National Laboratory

    2016-05-09

    As a contribution to International Land Model Benchmarking (ILAMB) Project, we are providing new analysis approaches, benchmarking tools, and science leadership. The goal of ILAMB is to assess and improve the performance of land models through international cooperation and to inform the design of new measurement campaigns and field studies to reduce uncertainties associated with key biogeochemical processes and feedbacks. ILAMB is expected to be a primary analysis tool for CMIP6 and future model-data intercomparison experiments. This team has developed initial prototype benchmarking systems for ILAMB, which will be improved and extended to include ocean model metrics and diagnostics.

  6. International land Model Benchmarking (ILAMB) Package v001.00

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mu, Mingquan [University of California, Irvine; Randerson, James T. [University of California, Irvine; Riley, William J. [Lawrence Berkeley National Laboratory; Hoffman, Forrest M. [Climage Modeling.org; Oak Ridge National Laboratory

    2016-05-02

    As a contribution to International Land Model Benchmarking (ILAMB) Project, we are providing new analysis approaches, benchmarking tools, and science leadership. The goal of ILAMB is to assess and improve the performance of land models through international cooperation and to inform the design of new measurement campaigns and field studies to reduce uncertainties associated with key biogeochemical processes and feedbacks. ILAMB is expected to be a primary analysis tool for CMIP6 and future model-data intercomparison experiments. This team has developed initial prototype benchmarking systems for ILAMB, which will be improved and extended to include ocean model metrics and diagnostics.

  7. OSPREY Model

    SciTech Connect (OSTI)

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to

  8. Next Generation Calibration Models with Dimensional Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Models with Dimensional Modeling Next Generation Calibration Models with ... Calibration Optimization for Next Generation Diesel Engines An Accelerated Aging ...

  9. Lithium-Ion Ultracapacitors integrated with Wind Turbines Power Conversion Systems to Extend Operating Life and Improve Output Power Quality

    SciTech Connect (OSTI)

    Adel Nasiri

    2012-05-23

    In this project we designed and modeled a system for a full conversion wind turbine and built a scaled down model which utilizes Lithium-Ion Capacitors on the DC bus. One of the objectives is to reduce the mechanical stress on the gearbox and drivetrain of the wind turbine by adjusting the torque on generator side according to incoming wind power. Another objective is to provide short-term support for wind energy to be more “grid friendly” in order to ultimately increase wind energy penetration. These supports include power smoothing, power ramp rate limitation, low voltage ride through, and frequency (inertia) support. This research shows how energy storage in small scale and in an economical fashion can make a significant impact on performance of wind turbines. Gearbox and drivetrain premature failures are among high cost maintenance items for wind turbines. Since the capacitors are directly applied on the turbine DC bus and their integration does not require addition hardware, the cost of the additional system can be reasonable for the wind turbine manufacturers and utility companies.

  10. Models Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iteration by iteration. RevSim is an Excel 2010 based model. Much of the logic is VBA code (Visual Basic for Applications); the user does not need to know VBA to run the...

  11. Programming models

    SciTech Connect (OSTI)

    Daniel, David J; Mc Pherson, Allen; Thorp, John R; Barrett, Richard; Clay, Robert; De Supinski, Bronis; Dube, Evi; Heroux, Mike; Janssen, Curtis; Langer, Steve; Laros, Jim

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  12. ISDAC Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Modeling of aerosol effects on Arctic stratiform clouds: Preliminary results from the ISDAC case study (poster 13J) Mikhail Ovchinnikov, Steve Ghan, Jiwen Fan, Xiaohong Liu (PNNL), Alexei Korolev, Peter Liu (Env. Canada) Shaocheng Xie (LLNL), Hugh Morrison (NCAR), ISDAC PI's, and members of the CMWG 2 Indirect Semi-Direct Aerosol Campaign Science questions: How do properties of the arctic aerosol during April differ from those measured during the MPACE in October? To what extent do the

  13. S. 737: A Bill to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This bill was proposed to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. The bill proposes extending the deadlines applying to certain hydroelectric projects in West Virginia, Kentucky, Washington, Oregon, and Arkansas. It proposes limited exemptions for licensing provisions for a power transmission project in New Mexico, extends Alaska`s state jurisdiction over small hydroelectric projects in the state, and amends the jurisdiction of FERC for licensing fresh water hydroelectric projects in Hawaii.

  14. ISSUANCE 2015-04-29: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters Notice of petition to extend test procedure compliance date and request for comment

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters; Notice of petition to extend test procedure compliance date and request for comment.

  15. Internal energy dissipation of gamma-ray bursts observed with Swift: Precursors, prompt gamma-rays, extended emission, and late X-ray flares

    SciTech Connect (OSTI)

    Hu, You-Dong; Liang, En-Wei; Xi, Shao-Qiang; Peng, Fang-Kun; Lu, Rui-Jing; Lü, Lian-Zhong; Zhang, Bing E-mail: Zhang@physics.unlv.edu

    2014-07-10

    We jointly analyze the gamma-ray burst (GRB) data observed with Burst Alert Telescope (BAT) and X-ray Telescope on board the Swift mission to present a global view on the internal energy dissipation processes in GRBs, including precursors, prompt gamma-ray emission, extended soft gamma-ray emission, and late X-ray flares. The Bayesian block method is utilized to analyze the BAT light curves to identify various emission episodes. Our results suggest that these emission components likely share the same physical origin, which is the repeated activation of the GRB central engine. What we observe in the gamma-ray band may be a small part of more extended underlying activities. The precursor emission, which is detected in about 10% of Swift GRBs, is preferably detected in those GRBs that have a massive star core-collapse origin. The soft extended emission tail, on the other hand, is preferably detected in those GRBs that have a compact star merger origin. Bright X-ray emission is detected during the BAT quiescent phases prior to subsequent gamma-ray peaks, implying that X-ray emission may be detectable prior the BAT trigger time. Future GRB alert instruments with soft X-ray capability are essential for revealing the early stages of GRB central engine activities, and shedding light on jet composition and the jet launching mechanism in GRBs.

  16. Spin-foam models and the physical scalar product

    SciTech Connect (OSTI)

    Alesci, Emanuele; Noui, Karim; Sardelli, Francesco

    2008-11-15

    This paper aims at clarifying the link between loop quantum gravity and spin-foam models in four dimensions. Starting from the canonical framework, we construct an operator P acting on the space of cylindrical functions Cyl({gamma}), where {gamma} is the four-simplex graph, such that its matrix elements are, up to some normalization factors, the vertex amplitude of spin-foam models. The spin-foam models we are considering are the topological model, the Barrett-Crane model, and the Engle-Pereira-Rovelli model. If one of these spin-foam models provides a covariant quantization of gravity, then the associated operator P should be the so-called ''projector'' into physical states and its matrix elements should give the physical scalar product. We discuss the possibility to extend the action of P to any cylindrical functions on the space manifold.

  17. Multiscale Concrete Modeling of Aging Degradation

    SciTech Connect (OSTI)

    Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  18. Coulomb reacceleration as a clock for nuclear reactions: A two-dimensional model

    SciTech Connect (OSTI)

    Bertulani, C.A. ); Bertsch, G.F. )

    1994-05-01

    Reacceleration effects in the Coulomb breakup of nuclei are modeled with the two-dimensional time-dependent Schroedinger equation, extending a previous one-dimensional study. The present model better describes the individual contributions of longitudinal and transverse forces to the breakup and reacceleration. Reacceleration effects are found to preserve a strong memory of the pre-breakup phase of the reaction, as was concluded with the one-dimensional model.

  19. WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT

    SciTech Connect (OSTI)

    Zhegang Ma

    2013-09-01

    The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significant damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.

  20. Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phenomenological Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  1. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} ? f(x{sub (i?1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14

  2. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using a variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts

  3. Criticality Model

    SciTech Connect (OSTI)

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  4. The Potosi Reservoir Model 2013c, Property Modeling Update

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from this project as well as two other separately funded projects: the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well #1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. The intention was for 2.2 million tons per annum (2 million tonnes per annum [MTPA]) of CO2 to be injected for 20 years. In the Task Error! Reference source not found., the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010") was re-run using a new injection scenario of 3.5 million tons per annum (3.2 MTPA) for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. The models size was insufficient to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 by 30 mi (48 by 48 km), while preserving all

  5. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    SciTech Connect (OSTI)

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.; Girardi, Leo; Puzia, Thomas H.; Kerber, Leandro E-mail: goudfroo@stsci.edu E-mail: leo.girardi@oapd.inaf.it E-mail: lkerber@gmail.com

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (?10{sup 4} M {sub ?}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ? 15 km s{sup 1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ? 12 km s{sup 1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.

  6. scale model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scale model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  7. Competency Models

    Broader source: Energy.gov [DOE]

    An industry-validated competency model is an excellent tool for identifying the skills needed to succeed in a particular job, developing curricula to teach them, and benchmarking their attainment. Particularly valuable in dynamic industries like solar energy, a competency framework is critical to any training program attempting to advance lower-skilled workers into navigable career pathways, or transition higher skilled workers into new industry sectors.

  8. Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  9. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  10. Evaluation of Mesoscale Atmospheric Model for Contrail Cirrus Simulations |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility of contrail-to-cirrus transition (INCITE 2012). Snapshot of potential temperature fluctuation in a turbulent atmosphere. The horizontal layers are due to atmospheric stratification. Flight altitude corresponds to Z=3000 m, the contrail extends vertically from Z=3000 to Z=25000 m. Evaluation of Mesoscale Atmospheric Model for Contrail Cirrus Simulations PI Name: Roberto Paoli PI Email: paoli@cerfacs.fr Institution: CERFACS Allocation Program: INCITE

  11. A symmetric approach to the massive nonlinear sigma model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ferrari, Ruggero

    2011-09-28

    In the present study we extend to the massive case the procedure of divergences subtraction, previously introduced for the massless nonlinear sigma model (D = 4). Perturbative expansion in the number of loops is successfully constructed. The resulting theory depends on the Spontaneous Symmetry Breaking parameter v, on the mass m and on the radiative correction parameter Λ. Fermions are not considered in the present work. SU(2) Ⓧ SU(2) is the group used.

  12. Multifractal electronic wave functions in the Anderson model of localization

    SciTech Connect (OSTI)

    Schreiber, M.; Grussbach, H. )

    1992-06-20

    In this paper, investigations of the multifractal properties of electronic wave functions in disordered samples are reviewed. The characteristic mass exponents of the multifractal measure, the generalized dimensions and the singularity spectra are discussed for typical cases. New results for large 3D systems are reported, suggesting that the multifractal properties at the mobility edge which separates localized and extended states are independent of the microscopic details of the model.

  13. Modeling CO{sub 2} Laser Ablative Impulse with Polymers

    SciTech Connect (OSTI)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-10-08

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO{sub 2} laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO{sub 2} laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  14. The Potosi Reservoir Model 2013

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was

  15. Implementation of two-equation soot flamelet models for laminar diffusion flames

    SciTech Connect (OSTI)

    Carbonell, D.; Oliva, A.; Perez-Segarra, C.D.

    2009-03-15

    The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)

  16. APEX - a Petri net process modeling tool built on a discrete-event simulation system

    SciTech Connect (OSTI)

    Gish, J.W.

    1996-12-31

    APEX, the Animated Process Experimentation tool, provides a capability for defining, simulating and animating process models. Primarily constructed for the modeling and analysis of software process models, we have found that APEX is much more broadly applicable and is suitable for process modeling tasks outside the domain of software processes. APEX has been constructed as a library of simulation blocks that implement timed hierarchical colored Petri Nets. These Petri Net blocks operate in conjunction with EXTEND, a general purpose continuous and discrete-event simulation tool. EXTEND provides a flexible, powerful and extensible environment with features particularly suitable for the modeling of complex processes. APEX`s Petri Net block additions to EXTEND provide an inexpensive capability with well-defined and easily understood semantics that is a powerful, easy to use, flexible means to engage in process modeling and evaluation. The vast majority of software process research has focused on the enactment of software processes. Little has been said about the actual creation and evaluation of software process models necessary to support enactment. APEX has been built by the Software Engineering Process Technology Project at GTE Laboratories which has been focusing on this neglected area of process model definition and analysis. We have constructed high-level software lifecycle models, a set of models that demonstrate differences between four levels of the SEI Capability Maturity Model (CMM), customer care process models, as well as models involving more traditional synchronization and coordination problems such as producer-consumer and 2-phase commit. APEX offers a unique blend of technology from two different disciplines: discrete-event simulation and Petri Net modeling. Petri Nets provide a well-defined and rich semantics in a simple, easy to understand notation. The simulation framework allows for execution, animation, and measurement of the resultant models.

  17. R&D for computational cognitive and social models : foundations for model evaluation through verification and validation (final LDRD report).

    SciTech Connect (OSTI)

    Slepoy, Alexander; Mitchell, Scott A.; Backus, George A.; McNamara, Laura A.; Trucano, Timothy Guy

    2008-09-01

    Sandia National Laboratories is investing in projects that aim to develop computational modeling and simulation applications that explore human cognitive and social phenomena. While some of these modeling and simulation projects are explicitly research oriented, others are intended to support or provide insight for people involved in high consequence decision-making. This raises the issue of how to evaluate computational modeling and simulation applications in both research and applied settings where human behavior is the focus of the model: when is a simulation 'good enough' for the goals its designers want to achieve? In this report, we discuss two years' worth of review and assessment of the ASC program's approach to computational model verification and validation, uncertainty quantification, and decision making. We present a framework that extends the principles of the ASC approach into the area of computational social and cognitive modeling and simulation. In doing so, we argue that the potential for evaluation is a function of how the modeling and simulation software will be used in a particular setting. In making this argument, we move from strict, engineering and physics oriented approaches to V&V to a broader project of model evaluation, which asserts that the systematic, rigorous, and transparent accumulation of evidence about a model's performance under conditions of uncertainty is a reasonable and necessary goal for model evaluation, regardless of discipline. How to achieve the accumulation of evidence in areas outside physics and engineering is a significant research challenge, but one that requires addressing as modeling and simulation tools move out of research laboratories and into the hands of decision makers. This report provides an assessment of our thinking on ASC Verification and Validation, and argues for further extending V&V research in the physical and engineering sciences toward a broader program of model evaluation in situations of high

  18. Restoration of the Potosi Dynamic Model 2010

    SciTech Connect (OSTI)

    Adushita, Yasmin; Leetaru, Hannes

    2014-09-30

    In topical Report DOE/FE0002068-1 [2] technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In this Task the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. Also, it might have overestimated the injection capacity by enhancing too much the pressure relief due to the relatively close proximity between the injector and the infinite acting boundaries. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48 km by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 years, which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum of three (3) wells could be required to achieve the injection target. The injectivity evaluation of the Potosi formation will be revisited in topical Report 15 during which more data will be integrated in the modeling exercise. A vertical flow performance evaluation could be considered for the succeeding task to determine the appropriate tubing size, the required injection tubing head pressure (THP) and to investigate whether the corresponding well injection rate

  19. On the diagonal susceptibility of the two-dimensional Ising model

    SciTech Connect (OSTI)

    Tracy, Craig A.; Widom, Harold

    2013-12-15

    We consider the diagonal susceptibility of the isotropic 2D Ising model for temperatures below the critical temperature. For a parameter k related to temperature and the interaction constant, we extend the diagonal susceptibility to complex k inside the unit disc, and prove the conjecture that the unit circle is a natural boundary.

  20. Measurement of the Neutron (3He) Spin Structure at Low Q2 and the Extended Gerasimov-Drell-Hearn Sum Rule

    SciTech Connect (OSTI)

    Ioannis Kominis

    2001-01-31

    This thesis presents the results of E-94010, an experiment at Thomas Jefferson National Accelerator Facility (TJNAF) designed to study the spin structure of the neutron at low momentum transfer, and to test the extended Gerasimov-Drell-Hearn (GDH) sum rule. The first experiment of its kind, it was performed in experimental Hall-A of TJNAF using a new polarized 3He facility. It has recently been shown that the GDH sum rule and the Bjorken sum rule are both special examples of a more general sum rule that applies to polarized electron scattering off nucleons. This generalized sum rule, due to Ji and Osborne, reduces to the GDH sum rule at Q2 = 0 and to the Bjorken sum rule at Q2 >> 1 GeV2. By studying the Q2 evolution of the extended GDH sum, one learns about the transition from quark-like behavior to hadronic-like behavior. We measured inclusive polarized cross sections by scattering high energy polarized electrons off the new TJNAF polarized 3He target with both longitudinal and transverse target orientations. The high density 3He target, based on optical pumping and spin exchange, was used as an effective neutron target. The target maintained a polarization of about 35% at beam currents as high as 151tA. We describe the precision 3He polarimetry leading to a systematic uncertainty of the target polarization of 4% (relative). A strained GaAs photocathode was utilized in the polarized electron gun, which provided an electron beam with a polarization of about 70%, known to 3% (relative). By using six different beam energies (between 0.86 and 5.06 GeV) and a fixed scattering angle of 15.5, a wide kinematic coverage was achieved, with 0.02 GeV2< Q2 <1 GcV2 and 0.5 GeV< W < 2.5 GeV for the squared momentum transfer and invariant mass, respectively. From the measured cross sections we extract the 3He spin structure functions He and g1e Finally, we determine the extended GDH sum for the range 0.1 GeV2< Q2 <1 GeV2 for 3He and the neutron.

  1. CoMD Implementation Suite in Emerging Programming Models

    Energy Science and Technology Software Center (OSTI)

    2014-09-23

    CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecularmore » dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended to support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.« less

  2. OSCARS Extends JGI Network Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS & JGI Science DMZ Case Studies Multi-facility Workflow Case Study News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Case Studies » OSCARS Case Studies » OSCARS & JGI Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies OSCARS & JGI Science DMZ Case Studies Multi-facility Workflow Case Study Contact Us Technical

  3. OSCARS Extends JGI Network Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS & JGI Science DMZ Case Studies Multi-facility Workflow Case Study News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet...

  4. Extended-range tiltable micromirror

    DOE Patents [OSTI]

    Allen, James J.; Wiens, Gloria J.; Bronson, Jessica R.

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  5. 1.9 W continuous-wave single transverse mode emission from 1060?nm edge-emitting lasers with vertically extended lasing area

    SciTech Connect (OSTI)

    Miah, M. J. Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D.; Kettler, T.; Skoczowsky, D.; Pohl, J.; Weyers, M.

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060?nm range are investigated. Ridge waveguide (RW) lasers with 9??m stripe width and 2.64?mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060?nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9 in lateral and 14 (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup ?2}sr{sup ?1} is obtained. 100??m wide and 3?mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  6. UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES

    SciTech Connect (OSTI)

    Barro, G.; Perez-Gonzalez, P. G.; Gallego, J.; Villar, V.; Zamorano, J.; Ashby, M. L. N.; Kajisawa, M.; Yamada, T.; Miyazaki, S.

    2011-04-01

    Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Paper I), we present a detailed spectral energy distribution (SED) analysis of nearly 80,000 IRAC 3.6 + 4.5 {mu}m selected galaxies in the Extended Groth Strip. We estimate photometric redshifts, stellar masses, and star formation rates (SFRs) separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] {<=} 23.75 (85% completeness level of the IRAC survey) over 0.48 deg{sup 2}. The typical photometric redshift accuracy is {Delta}z/(1 + z) = 0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and initial mass functions in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 {mu}m data available in the Extended Groth Strip. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z {approx}> 1.5 observed when only MIPS 24 {mu}m data are available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the Web interface utility Rainbow-navigator.

  7. SU-E-T-623: Delivery of 3D Conformal Proton-Therapy Fields at Extended Source- To-Axis Distances

    SciTech Connect (OSTI)

    Kryck, E; Slopsema, R

    2014-06-15

    Purpose: To evaluate the dosimetric properties of proton dose distributions delivered at extended source-to-skin distances (SSD). Methods: Radiation was delivered with a gantry-mounted proton double scattering system (Proteus 230, IBA). This system has a maximum field diameter of 24 cm at isocenter and a nominal source-to-axis distance of 230 cm. Dose was measured at nominal SSD as well as at -10, +10, +25, +50, +75, and +100 cm for several range and modulation width combinations. Depth dose distributions were measured with a multi-layer ionization chamber (MLIC), and lateral dose distributions with a 2D ionization chamber array as well as with a diode in a water phantom. Results: The maximum field diameter was found to increase from 24.0 cm at nominal SSD to 29.1 cm and 33.3 cm at +50 cm and +100 cm respectively. Field flatness remained below 3% for all SSD. Tilt in the spread-out Bragg peak depth dose distribution increased with SSD up to 0.4 %-per-g/cm2 at +100 cm. The measured range decreased with 1.1x10-3 g/cm2 per centimeter shift in SSD due to proton energy loss in air, very close to the theoretically calculated value of 1.06x10-3 g/cm3. The output and dose rate decrease with the inverse of the SSD squared as expected. Conclusion: Extending the SSD up to 100 cm increases the maximum field diameter from 24.0 cm to 33.3 cm while the dose uniformity remains acceptable.

  8. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    SciTech Connect (OSTI)

    Xavier, MA; Trimboli, MS

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.

  9. Regional Model Calibration for Improving Seismic Location

    SciTech Connect (OSTI)

    Swenson, J.L.; Schultz, C.A.; Myers, S.C.

    2000-07-14

    extend our investigation to additional MENA stations, and will use our model in tandem with nonstationary empirical corrections (nonstationary Bayesian kriging) to further improve our ability to accurately predict travel times and locate seismic events in this region.

  10. Hybrid reduced order modeling for assembly calculations

    SciTech Connect (OSTI)

    Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.

    2013-07-01

    While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)

  11. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect (OSTI)

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  12. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    SciTech Connect (OSTI)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y.

    2012-07-06

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that

  13. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  14. I&C Modeling in SPAR Models

    SciTech Connect (OSTI)

    John A. Schroeder

    2012-06-01

    The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

  15. Extending the antitrust exemption in the Energy Policy and Conservation Act. Hearing before the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, First Session on S. 573, a bill to extend the expiration date of section 252 of the Energy Policy and Conservation Act, March 2, 1981. [Publication No. 97-7

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A proposed amendmnt (S. 573) to section 252 of the Energy Policy and Conservation Act extending the antitrust exemption expiration date from March 15 to December 31, 1981 is intended to protect US oil companies that are participating in an International Energy Agency program to reduce dependence on imported oil. If the exemption expires, the oil companies could withdraw from the oil-sharing network. The text of S. 573 is followed by statements of four witnesses, including one from the Justice Department to the effect that no adverse impacts on competition or small businesses were discerned. (DCK)

  16. An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes

    SciTech Connect (OSTI)

    Seager, jR., Benno Blumenthal, M.; Kushnir, Y.

    1995-08-01

    A simple model of the lowest layer of the atmosphere is developed for coupling to ocean models used to simulate sea surface temperature (SST). The model calculates the turbulent fluxes of sensible and latent heat in terms of variables that an ocean model either calculates (SST) or is forced by (winds). It is designed to avoid the need to specify observed atmospheric data (other than surface winds), or the SST, in the surface flux calculations of ocean models and, hence, to allow a realistic representation of the feedbacks between SST and the fluxes. The modeled layer is considered to be either a dry convective layer or the subcloud layer that underlies marine clouds. The turbulent fluxes are determined through a balance of horizontal advection and diffusion, the surface flux and the flux at the mixed layer top, and, for temperature, radiative cooling. Reasonable simulations of the global distribution of latent and sensible heat flux are obtained. This includes the large fluxes that occur east of the Northern Hemisphere continents in winter that were found to be related to both diffusion (taken to be a parameterization of baroclinic eddies) and advection of cold, dry air from the continent. However, east of North America during winter the sensible heat flux is underestimated and, generally, the region of enhanced fluxes does not extend far enough east compared to observations. Reasons for these discrepancies are discussed and remedies suggested. 47 refs., 10 figs.

  17. Modeling natural gas reservoirs - a simple model

    SciTech Connect (OSTI)

    Collier, R.S.

    1981-10-01

    A mathematical model is developed and tested for the production of natural gas with water encroachment and gas entrapment. The model is built on the material and volumetric balance relations, the Schilthuis water drive model, and a gas entrapment mechanism which assumes that the rate of gas entrapment is proportional to the volumetric rate of water influx. This model represents an alternative to the large grid models because of its low computer, maintenance, and manpower costs. 13 refs.

  18. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect (OSTI)

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  19. Nonlinear model for thermal effects in free-electron lasers

    SciTech Connect (OSTI)

    Peter, E. Endler, A. Rizzato, F. B.

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12?3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precede the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.

  20. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    SciTech Connect (OSTI)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.