Sample records for faults fractures lithology

  1. The effects of lithology and initial fault angle in physical models of fault-propagation folds

    E-Print Network [OSTI]

    McLain, Christopher Thomas

    2001-01-01T23:59:59.000Z

    Experimentally deformed physical rock models are used to examine the effects of changing mechanical stratigraphy and initial fault angle on the development of fault-propagation folds over a flat-ramp-flat thrust geometry. This study also...

  2. Hydraulic Fracture Optimization with a Pseudo-3D Model in Multi-layered Lithology 

    E-Print Network [OSTI]

    Yang, Mei

    2011-10-21T23:59:59.000Z

    Hydraulic Fracturing is a technique to accelerate production and enhance ultimate recovery of oil and gas while fracture geometry is an important aspect in hydraulic fracturing design and optimization. Systematic design ...

  3. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault

    E-Print Network [OSTI]

    Savage, Heather M.

    Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones Heather M. Savage1,2 and Emily E. Brodsky1 Received 22 April 2010; revised 10 of fracture distributions as a function of displacement to determine whether damage around small and large

  4. Hydraulic Fracture Optimization with a Pseudo-3D Model in Multi-layered Lithology

    E-Print Network [OSTI]

    Yang, Mei

    2011-10-21T23:59:59.000Z

    -layered reservoir, (3) The upwards and downwards growth of the fracture tip from the crack center....

  5. Microscopic feather fractures in the faulting process

    E-Print Network [OSTI]

    Conrad, Robert Eugene

    1974-01-01T23:59:59.000Z

    . Naximum compressive stress trajectories in a photoelastic model are shown by solid lines. Short lines are drawn on isoclinics in crossed polarized light at 10' intervals of rotation. Load axis is N-S. stress (o'I) trajectories curve near the fault..., maximum compressive stress, trajectories to a two dimensional during sliding along (dashed lines) in a cylindrical specimen reduced elastic problem. (b) Expected ol trajectories a fault. crack by shear along the crack surfaces (Bieniawski, 1967...

  6. Unsaturated flow and transport through a fault embedded in fractured welded tuff

    E-Print Network [OSTI]

    Hu, Qinhong "Max"

    -matrix interactions, the nonlinearity of unsat- urated flow, and the heterogenities in the hydrological properties of lithium bromide)) was released along the fault over a period of 9 days, 7 months after the start of water- rated fractured rock (i.e., matrix and fracture flow, and fracture-matrix interactions) is of interest

  7. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones

    E-Print Network [OSTI]

    Savage, Heather M.; Brodsky, Emily E.

    2011-01-01T23:59:59.000Z

    E. McCallum (1999), Reservoir damage around faults: OutcropSkar (2005), Controls on damage zone asymmetry of a normal2007), The evolution of the damage zone with fault growth in

  8. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones

    E-Print Network [OSTI]

    Savage, Heather M.; Brodsky, Emily E.

    2011-01-01T23:59:59.000Z

    8 m fault 14 m fault Lonewolf Wadi Araba Carboneras Caletasiltstone, conglomerate Wadi As Sir Limestone gneiss schistFaulkner et al. , 2003], and Wadi Araba [Du Bernard et al. ,

  9. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect (OSTI)

    Stephen L. Karner, Ph.D

    2006-06-01T23:59:59.000Z

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

  10. The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee

    E-Print Network [OSTI]

    Hollon, Dwight Mitchell

    1997-01-01T23:59:59.000Z

    Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

  11. The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee 

    E-Print Network [OSTI]

    Hollon, Dwight Mitchell

    1997-01-01T23:59:59.000Z

    Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

  12. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01T23:59:59.000Z

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  13. Hydraulic fracturing in faulted sedimentary basins: Numerical simulation of potential contamination of shallow aquifers over long

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    fracturing (hydrofracturing or ``fracking'') is generally used [BAPE, 2011; EPA, 2012]. Hydraulic fracturing, which returns to the surface [Gregory et al., 2001]. The fracking fluid is commonly composed of $99

  14. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01T23:59:59.000Z

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  15. Mesoscale fracture fabric and paleostress along the San Andreas fault at SAFOD

    E-Print Network [OSTI]

    Almeida, Rafael Vladimir

    2009-05-15T23:59:59.000Z

    Spot cores from Phase 1 drilling of the main borehole at the San Andreas Fault Observatory at Depth (SAFOD) were mapped to characterize the mesoscale structure and infer paleostress at depth. Cores were oriented by comparing mapped structures...

  16. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    SciTech Connect (OSTI)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17T23:59:59.000Z

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

  17. Scales Depencence of Fracture Density and Fabric in the Damage Zone of a Large Displacement Continental Transform Fault

    E-Print Network [OSTI]

    Ayyildiz, Muhammed

    2012-08-28T23:59:59.000Z

    ). . ......... 48 Figure 6. Representative map of transgranular fractures for one petrographic thin section (P1B13-1-2T). (a) Transgranular fractures are shown on top of the plane polarized image (PPL) of the thin section. (b) Cross polarized...

  18. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    rock controls on fault zone hydrology, Coso geothermal field, CA Abstract In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability....

  19. Genesis of fault hosted carbonate fracture cements in a naturally high CO2 province, South Viking Graben, UK North Sea 

    E-Print Network [OSTI]

    Lee, David Robert

    2013-07-01T23:59:59.000Z

    The Late Jurassic Brae oilfields in the South Viking Graben of the northern North Sea contain naturally high concentrations of carbon dioxide (up to 35 mol %). Fields immediately adjacent to the graben bounding fault ...

  20. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

    1991-06-01T23:59:59.000Z

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

  1. LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA

    E-Print Network [OSTI]

    Eidsvik, Jo

    LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA MARIT ULVMOEN Department of Mathematical of the study is on lithology-fluid inversion from prestack seismic data in a 3D reservoir. The inversion relates the lithology-fluid classes to elastic variables and the seismic data, and it follows the lines

  2. Lithology-Fluid Inversion based on Prestack Seismic Data

    E-Print Network [OSTI]

    Eidsvik, Jo

    Lithology-Fluid Inversion based on Prestack Seismic Data Marit Ulvmoen Summary The focus of the study is on lithology-fluid inversion from prestack seismic data. The target zone is a 3D reservoir model. The likelihood model relates the lithology-fluid classes to elastic variables and the seismic

  3. Analysis of the growth of strike-slip faults using effective medium theory

    SciTech Connect (OSTI)

    Aydin, A.; Berryman, J.G.

    2009-10-15T23:59:59.000Z

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  4. Development of secondary faults between en echelon, oblique-slip faults: examples from basement controlled, small-fault systems in the Llano Uplift of central Texas

    E-Print Network [OSTI]

    Hedgcoxe, Howard Reiffert

    1987-01-01T23:59:59.000Z

    correspond to the NE trending set of faults and the secondary antithetic faults corre- spond to the N to NNE set (Figure 12). Fractures, represented by the dashed lines in Figure 12, occur in direct association with the primary and secondary faults...DEVELOPMENT OF SECONDARY FAULTS BETWEEN EN ECHELON, OBLIQUE-SLIP FAULTS: EXAMPLES FROM BASEMENT CONTROLLED, SMALL-FAULT SYSTEMS IN THE LLANO UPLIFT OF CENTRAL TEXAS A Thesis by HOWARD REIFFERT HEDGCOXE Submitted to the Graduate College...

  5. Identifying fracture zones in the Austin Chalk using seismic attributes

    E-Print Network [OSTI]

    Bafia, Daniel Joseph

    1998-01-01T23:59:59.000Z

    . After studying various attributes, it was determined that there is no direct evidence of these fracture zones, but areas that are more prone to fracturing can be deduced from lithology. "Clean chalk, or areas that lack shale interbeds, is more brittle...

  6. Identifying fracture zones in the Austin Chalk using seismic attributes 

    E-Print Network [OSTI]

    Bafia, Daniel Joseph

    1998-01-01T23:59:59.000Z

    . After studying various attributes, it was determined that there is no direct evidence of these fracture zones, but areas that are more prone to fracturing can be deduced from lithology. "Clean chalk, or areas that lack shale interbeds, is more brittle...

  7. Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic, France Abstract Hydromechanical coupled processes in a shallow fractured carbonate reservoir rock were fracture network made up of vertical faults and bedding planes. Hydromechanical response of the reservoir

  8. Geomechanical Simulation of Fluid-Driven Fractures

    SciTech Connect (OSTI)

    Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

    2012-11-30T23:59:59.000Z

    The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

  9. Characterization of natural fractures in Mesaverde core from the multiwell experiment

    SciTech Connect (OSTI)

    Finley, S.J.; Lorenz, J.C.

    1988-09-01T23:59:59.000Z

    Natural fractures dominate the permeability of tight sandstone reservoirs in the Mesaverde Formation of the Piceance Creek Basin, north-western Colorado. Roughly 1900 natural fractures, detected in 4200 ft of Mesaverde core from the US Department of Energy's Multiwell Experiment (MWX), have been differentiated into 10 different fracture types on the basis of fracture morphology, inclination, the presence of slickensides, the presence of dickite mineralization and/or host lithology. Approximately 75% of the MWX core fractures are dewatering planes in mudstone and are probably unimportant to reservoir permeability. The remaining 25% of the MWX core fractures include 275 mostly calcite-mineralized, vertical extension fractures, 61 irregular, dickite-mineralized extension fractures, 27 mostly calcite-mineralized, horizontal extension fractures, and 90 slickensided, occasionally mineralized shear fractures. These extension and shear fractures are all potentially important to reservoir permeability and consequently productivity. 13 refs., 61 figs., 2 tabs.

  10. Soda Lake Well Lithology Data and Geologic Cross-Sections

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross?sections in Adobe Illustrator format.

  11. Appendix A Lithologic and Monitor Well Completion Logs

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic and Monitor Well Completion Logs

  12. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect (OSTI)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01T23:59:59.000Z

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  13. An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...

    Open Energy Info (EERE)

    Both reservoirs seem to be separated by a vitreous tuff lithological unit, but hydraulic connectivity occurs through faults and fractures of the system, allowing deep steam...

  14. Microscopic feather fractures in the faulting process 

    E-Print Network [OSTI]

    Conrad, Robert Eugene

    1974-01-01T23:59:59.000Z

    to a similar siesmic study, stopped triaxial compression tests at 10 various stages prior to failure and analyzed the microfractures in thin section. They found the early microfractures to be oriented within 30' of the load axis, and that they tend... similar, but their percentages of microfractures of a given orientation agree with those for Mff determined here. The question remains does the local maximum compression axis parallel the observed orientation of Mff, Given an end-loaded cylinder...

  15. Measurement and analysis of fractures in vertical, slant, and horizontal core, with examples from the Mesaverde formation

    SciTech Connect (OSTI)

    Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Hill, R.E. (CER Corp., Las Vegas, NV (United States))

    1991-01-01T23:59:59.000Z

    Optimum analysis of natural fracture characteristics and distributions in reservoirs requires conscientious supervision of coring operations, on-site core processing, careful layout and marketing of the core, and detailed measurement of fracture characteristics. Natural fractures provide information on the in situ permeability system, and coring-induced fractures provide data on the in situ stresses. Fracture data derived from vertical core should include fracture height, type and location of fracture terminations with respect to lithologic heterogeneity, fracture planatary and roughness, and distribution with depth. Fractures in core from either a vertical or a deviated well will yield information on dip, dip azimuth, strike, mineralization, and the orientation of fractures relative to the in situ stresses. Only measurements of fractures in core from a deviated/horizontal well will provide estimates of fracture spacing and porosity. These data can be graphed and cross-plotted to yield semi-quantitative fracture characteristics for reservoir models. Data on the orientations of fractures relative to each other in unoriented core can be nearly as useful as the absolute orientations of fractures. A deviated pilot hole is recommended for fracture assessment prior to a drilling horizontal production well because it significantly enhances the chances of fracture intersection, and therefore of fracture characterization. 35 refs., 20 figs., 2 tabs.

  16. Hydraulic Fracturing (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

  17. Dynamic leakage of faults during differential depletion: Theory, models, and examples from the Niger delta

    SciTech Connect (OSTI)

    Watts, N.L.; Kaars Sijpestein, C.H.; Osai, L.N.; Okoli, O.C. (Shell Petroleum Development Co. of Nigeria, Lagos (Nigeria))

    1991-08-01T23:59:59.000Z

    Previous studies of fault sealing have addressed possible fault leakage during secondary migration due to the effects of increased hydrocarbon-water capillary pressure, fracturing, or small-scale incremental fault movements. Of equal importance to production geologists is the failure and leakage of faults during field development due to differential depletion of adjacent fault blocks. This paper examines the unique problems associated with this dynamic leakage of faults. It is theoretically shown that the fault sealing mechanism, and the extent of the seal, directly influences the failure process which in turn results in a variety of favorable and unfavorable effects on field development. The qualitative models give considerable insight into such aspects as oil-column expansion and resaturation losses, interfault block aquifer support (with important implications to material balance calculations), possible leakage or spillage of oil across faults, and potential fault failure during (re)injection projects. Examples of dynamic fault leakage are presented from selected fields of the Niger delta.

  18. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06T23:59:59.000Z

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  19. Hydraulic fracturing-1

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

  20. High-definition analysis of fluid-induced seismicity related to the mesoscale hydromechanical properties of a fault zone

    E-Print Network [OSTI]

    Vallée, Martin

    -strain and seismic measurements taken in the fractured damage zone during the pressurization indicated that seismicity is triggered along low-permeable, highly rigid, low-dip angle, mesoscale-inherited fractures where-so-rigid, aseismic, sub- vertical, fault-related fractures. Using a three-dimensional distinct-element representation

  1. The Starr fault system of southeastern Ohio

    SciTech Connect (OSTI)

    Brannock, M.C. (Qauker State Corp., Belpre, OH (United States))

    1993-08-01T23:59:59.000Z

    The Starr fault system is a series of east-west-trending faults located in southeastern Ohio. This fault system was discovered by mapping the anomalous sedimentary sequence of the [open quotes]Big Lime[close quotes]. The Big Lime is a driller's term for the stratigraphic section that includes the Lower Devonian Onondaga through Middle Silurian Lockport formations. The use of trend-surface analysis identified the probable fault orientation, which was then verified by seismic. The system is a series of high-angle faults, originating in the Precambrian, that occur along a narrow corridor traversing several townships. Analysis of the sedimentary section preserved by faulting indicates fault movement after the deposition of the Bass Island Formation, which was followed by a regional unconformity that removed the Bass Islands and a part of the upper Salina Formation. The Onondaga subsequently was deposited, masking fault movement evidence in the shallower formations. Some minor movement occurred later, as evidenced by the expansion in the Devonian shale sequence. The geometry of the fault system and other data suggest a pattern similar to the Albio-Scipio field of southern Michigan. A group of wells were drilled to test the Ordovician Trenton and Black River formations to determine the existence of secondary dolomite, which could be a potential reservoir. Secondary dolomite was encountered, but no commercial hydrocarbons were found in either the Trenton or Black River. Other formations produced hydrocarbons and water from fractured zones that were not known for this behavior. Other probable fault systems in southern Ohio, identified by using the same mapping techniques, may provide deeper targets for future drilling.

  2. Lithology and well log study of Campbell E-2 geothermal test...

    Open Energy Info (EERE)

    Pershing County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lithology and well log study of Campbell E-2 geothermal test well,...

  3. Flemish fieldstone: unravelling lithological differences and diagenesis Research Unit: Sedimentary Geology and Engineering Geology

    E-Print Network [OSTI]

    Gent, Universiteit

    Flemish fieldstone: unravelling lithological differences and diagenesis Research Unit: Sedimentary Geology and Engineering Geology Topic: Fieldstone, natural stone, diagenesis, microscopy with a great interest in sedimentation processes and diagenesis, in petrology and Flemish stratigraphy

  4. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01T23:59:59.000Z

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  5. Pressure test data reveal reservoir barriers/faults

    SciTech Connect (OSTI)

    Hurd, J.D.

    1984-07-30T23:59:59.000Z

    A review of transient pressure test data from an oil reservoir in Libya indicated not only the suspected fault barriers, but also the non-sealing portions of the faults. Extensive seismic data indicated much faulting, and directional trends had been interpreted to be generally northwest-southeast. The reservoir is a heterogeneous dolomite with average permeability of 40 to 50 md and contains neither natural fractures not stratification. Vertical displacement (throw) of each fault block is indicated to be within the range of the dolomite thickness, i.e., 40 to 180 ft. Therefore, when the fault throw is greater than reservoir thickness there is sealing, and when the throw is less than reservoir thickness the faults are non-sealing.

  6. Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures

    E-Print Network [OSTI]

    Xue, Wenxu

    2011-02-22T23:59:59.000Z

    Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF...

  7. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2003-06-30T23:59:59.000Z

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

  8. 12 PLANET EARTH Summer 2014 Earthquake progression with time along the North Anatolian Fault. The current sequence started with the 1939 earthquake and has progressed westwards towards Istanbul.

    E-Print Network [OSTI]

    Brierley, Andrew

    that to the amount of energy being stored on the fault. Finally, the modelling team will link these observations12 PLANET EARTH Summer 2014 Earthquake progression with time along the North Anatolian Fault in the world: the North Anatolian Fault. This is a system of large fractures within the Earth on which energy

  9. International Geophysical Conference and Exhibition, 26-29 February 2012 -Brisbane, Australia 1 Structurally constrained lithology characterization using magnetic

    E-Print Network [OSTI]

    22 nd International Geophysical Conference and Exhibition, 26-29 February 2012 - Brisbane meaningful lithologic information directly from geophysical data. Here, we describe a multi-faceted approach

  10. Geophysical Fault Mapping Using the Magnetic Method at Hickory Sandstone Aquifer, Llano Uplift, Texas

    E-Print Network [OSTI]

    Pereira, Antonio Do Nascimento

    2013-04-05T23:59:59.000Z

    .1 Governing equations & basic theory . . . . . . . . . . . . . . . . . . . 8 2.1.1 The main eld . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Magnetic petrology... possesses a volume V and magnetization J . A fault or a lithologic contact can be approximated to a line of point dipoles. 15 2.2 Magnetic petrology The concept of magnetic petrology [Clark, 1997] integrates conventional and rock magnetism petrology...

  11. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-06-01T23:59:59.000Z

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  12. Fracture Properties From Seismic Scattering

    E-Print Network [OSTI]

    Burns, Daniel R.

    2007-01-01T23:59:59.000Z

    Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

  13. Seismic characterization of fractures

    E-Print Network [OSTI]

    JM Carcione

    2014-06-07T23:59:59.000Z

    Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

  14. Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

    1998-01-01T23:59:59.000Z

    This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

  15. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01T23:59:59.000Z

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  16. Microstructures and Rheology of a Limestone-Shale Thrust Fault 

    E-Print Network [OSTI]

    Wells, Rachel Kristen

    2011-02-22T23:59:59.000Z

    thick calcite and shale shear zone suggest that calcite, not shale, controlled the rheology of the shear zone rocks. While shale deformed brittley, plasticity-induced fracturing in calcite resulted in ultrafine-grained (<1.0 ?m) fault rocks that deformed...

  17. OVERBURDEN PRESSURE AFFECTS FRACTURE APERTURE

    E-Print Network [OSTI]

    Schechter, David S.

    OVERBURDEN PRESSURE AFFECTS FRACTURE APERTURE AND FRACTURE PERMEABILITY IN A FRACTURED RESERVOIR are in integrated reservoir study, reservoir charac- terization, naturally fractured reservoirs, waterflooding in Hydraulically and Naturally Fractured Reservoirs." His research areas include experimental analysis

  18. Austin chalk fracture mapping using frequency data derived from seismic data

    E-Print Network [OSTI]

    Najmuddin, Ilyas Juzer

    2004-09-30T23:59:59.000Z

    good correlation with the faults interpreted on the top of Austin Chalk reflector. Production data in Burleson County (Giddings Field) is a proxy for fracturing. Values of t* mapped on the 2D data have a good correlation with the cumulative... ATTENUATION OF AMPLITUDES: A FRACTURE INDICATOR ?t*????????????????????... .21 Procedure???????????????????????????22 Discussion of Noise in the Data??????????????????. 26 Discussion of t* Attribute Values (Fracture Indicator)???. ?????? 27...

  19. Fracture characterization and discrimination criteria for karst and tectonic fractures in the Ellenburger Group, West Texas: Implications for reservoir and exploration models

    SciTech Connect (OSTI)

    Hoak, T.E. [Science Applications International Corp., Germantown, MD (United States); [Kestrel Geoscience, Littleton, CO (United States); Sundberg, K.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Deyhim, P. [Oklahoma State Univ., Stillwater, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States). Lab. for Computational Geodynamics

    1998-12-31T23:59:59.000Z

    In the Ellenburger Group fractured dolomite reservoirs of West Texas, it is extremely difficult to distinguish between multiple phases of karst-related fracturing, modifications to the karst system during burial, and overprinting tectonic fractures. From the analyses of drill core, the authors developed criteria to distinguish between karst and tectonic fractures. In addition, they have applied these criteria within the context of a detailed diagenetic cement history that allows them to further refine the fracture genesis and chronology. In these analyses, the authors evaluated the relationships between fracture intensity, morphologic attributes, host lithology, fracture cement, and oil-staining. From this analysis, they have been able to characterize variations in Ellenburger tectonic fracture intensity by separating these fractures from karst-related features. In general, the majority of fracturing in the Ellenburger is caused by karst-related fracturing although a considerable percentage is caused by tectonism. These findings underscore the importance of considering the complete geologic evolution of a karst reservoir during exploration and field development programs. The authors have been able to more precisely define the spatial significance of the fracture data sets by use of oriented core from Andector Field. They have also demonstrated the importance of these results for exploration and reservoir development programs in West Texas, and the potential to extrapolate these results around the globe. Given the historic interest in the large hydrocarbon reserves in West Texas carbonate reservoirs, results of this study will have tremendous implications for exploration and production strategies targeting vuggy, fractured carbonate systems not only in West Texas, but throughout the globe.

  20. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications

    E-Print Network [OSTI]

    Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins in localities such as the Canary Islands are deficient in SiO2, and mayhavebeengenerated by partial inclusions will be useful to evaluate its importance. In contrast to Hawaii, many ocean island basalts

  1. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    SciTech Connect (OSTI)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

    2011-02-01T23:59:59.000Z

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).

  2. Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers

    E-Print Network [OSTI]

    that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could for development. Hydraulic fracturing (fracking, the industry term for the operation; Kramer 2011) loosens

  3. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect (OSTI)

    Wood, James R.; Harrison, William B.

    2002-12-02T23:59:59.000Z

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

  4. A Handbook for the Application of Seismic Methods for Quantifying Naturally Fractured Gas Reservoirs in the San Juan Basin, New Mexico

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    data in the Mesaverde was to perform the analysis on the reservoir rock (lithology): sand, not shale.reservoir and in the formations above the Lewis shale the datadata could not be explained without the fracture-induced anisotropy in the reservoir and above the Lewis shale.

  5. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Integration of borehole imaging data with available open-hole log, core, and well-test data from horizontal and vertical wells allowed for the distribution of fracture parameters, including fracture density, aperture, porosity, and permeability throughout a geocellular model. Analysis of over 5000 fractures showed that changes in lithology, grain size, and/or bed thickness do not correlate with changes in fracture densities. Review of P- and S-wave log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. Fracture permeabilities compare favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix- related permeability contrasts sharply with highly variable and relatively high (ER 50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  6. Fault tolerant pulse synchronization 

    E-Print Network [OSTI]

    Deconda, Keerthi

    2009-05-15T23:59:59.000Z

    FFC n=4 orig alg n=4 ft alg n=7 orig alg n=7 ft alg n=10 orig alg n=10 ft alg 24 (a) n=4, f=1. (b) n=7, f=2. Fig. 5: Convergence Time with No Jump faults. 0 50 100 150 200 250 70 100 250 500 Tim e to co nv erg e FFC orig alg: no faults... orig alg: NoJump faults ft alg:NoJump faults 0 50 100 150 200 250 300 350 400 450 70 100 250 500 Tim e to co nv erg e FFC orig alg: no faults orig alg: NoJump faults ft alg:NoJump faults 25 (c) n=10, f=3. Fig. 5 (Continued) Fig. 5(a...

  7. Characterization and simulation of an exhumed fractured petroleum reservoir. Final report, March 18, 1996--September 30, 1998

    SciTech Connect (OSTI)

    Forster, C.B.; Nielson, D.L.; Deo, M.

    1998-12-01T23:59:59.000Z

    An exhumed fractured reservoir located near Alligator Ridge in central Nevada provides the basis for developing and testing different approaches for simulating fractured petroleum reservoirs. The fractured analog reservoir comprises a 90 m thickness of silty limestone and shaly interbeds within the Devonian Pilot Shale. A period of regional compression followed by ongoing basin and range extension has created faults and fractures that, in tern, have controlled the migration of both oil and gold ore-forming fluids. Open pit gold mines provide access for observing oil seepage, collecting the detailed fracture data needed to map variations in fracture intensity near faults, build discrete fracture network models and create equivalent permeability structures. Fault trace patterns mapped at the ground surface provide a foundation for creating synthetic fault trace maps using a stochastic procedure conditioned by the outcrop data. Conventional simulations of petroleum production from a 900 by 900 m sub-domain within the reservoir analog illustrate the possible influence of faults and fractures on production. The consequences of incorporating the impact of different stress states (e.g., extension, compression or lithostatic) are also explored. Simulating multiphase fluid flow using a discrete fracture, finite element simulator illustrates how faults acting as conduits might be poorly represented by the upscaling procedures used to assign equivalent permeability values within reservoir models. The parallelized reservoir simulators developed during this project provide a vehicle to evaluate when it might be necessary to incorporate very fine scale grid networks in conventional reservoir simulators or to use finely gridded discrete fracture reservoir simulators.

  8. Extrapolation of fracture orientation and spacing in outcrops of Upper Cretaceous Austin Chalk, Texas to corresponding petroleum reservoirs / by Desiree Elisabeth McKiernan

    E-Print Network [OSTI]

    McKiernan, Desiree Elisabeth

    1993-01-01T23:59:59.000Z

    Counties) show that an orthogonal set of fractures exist with the preferred orientations being between N40'-60'E and N40'-70'W (Table 2). The longest fractures are those that run parallel to the Balcones Fault System (Wiltschko et al. , 1991). In Del Rio... of Texas has focused exploration efforts on other fractured reservoirs around the world. Successfully drilling in these reservoirs requires characterization of the fracture system (i. e. origin, orientation, length and connectivity, and spacing) as well...

  9. Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

    2008-01-01T23:59:59.000Z

    of Naturally Fractured Reservoirs, Society of Petroleumresources from fractured reservoirs (e.g. , Warren and Root,Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2008 SGP-TR-185 FRACTURE-FLOW-ENHANCED SOLUTE DIFFUSION INTO FRACTURED

  10. Recent advances in hydraulic fracturing

    SciTech Connect (OSTI)

    Gidley, J.L.

    1989-01-01T23:59:59.000Z

    This book is a reference to the application of significant technological advances in hydraulic fracturing. It features illustrative problems to demonstrate specific applications of advanced technologies. Chapters examine pretreatment formation evaluation, rock mechanics and fracture geometry, 2D and 3D fracture-propagation models, propping agents and fracture conductivity, fracturing fluids and additives, fluid leakoff, flow behavior, proppant transport, treatment design, well completions, field implementation, fracturing-pressure analysis, postfracture formation evaluation, fracture azimuth and geometry determination, and economics of fracturing.

  11. High velocity impact fracture

    E-Print Network [OSTI]

    Teng, Xiaoqing

    2005-01-01T23:59:59.000Z

    An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture ...

  12. Fault simulation and test generation for small delay faults

    E-Print Network [OSTI]

    Qiu, Wangqi

    2007-04-25T23:59:59.000Z

    Delay faults are an increasingly important test challenge. Traditional delay fault models are incomplete in that they model only a subset of delay defect behaviors. To solve this problem, a more realistic delay fault model has been developed which...

  13. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2009-05-15T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  14. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2008-10-10T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  15. The Political History of Hydraulic Fracturing’s Expansion Across the West

    E-Print Network [OSTI]

    Forbis, Robert E.

    2014-01-01T23:59:59.000Z

    Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

  16. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31T23:59:59.000Z

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.

  17. Fractures in oriented Devonian-shale cores from the Appalachian Basin. Vol. 1

    SciTech Connect (OSTI)

    Evans, M.A.

    1980-01-01T23:59:59.000Z

    Examination of thirteen oriented Devonian-shale cores from the Appalachian Basin revealed considerable fracturing and shearing at depth. Fracture frequency and orientation measurements were made on the fractures in each core. Fractures and associated structures were differentiated into core-induced fractures, unmineralized natural fractures, mineralized natural fractures, slickensided fractures, and slickenlines. Core-induced fractures exhibit a consistent northeast orientation both areally and with depth. This consistency indicates the presence of an anisotropy which is interpreted to be related to an east to northeast trending maximum compressive stress developed in eastern North America by the convective flow in the mantle associated with spreading along the Mid-Atlantic Ridge. Natural fracture, slickenside, and slickenline orientations are related to: (1) northwest directed tectonic compressive stresses associated with Alleghenian deformation, (2) stresses associated with local faulting, and (3) the same east to northeast maximum compressive stress responsible for the core-induced fractures. Higher frequencies of natural fractures and slickensides are associated primarily with incompetent, high-organic shales. Natural fractures occur most frequently in the Marcellus Shale, Tully Limestone, Geneseo Shale, West Falls Formation, and the Lower Huron Member of the Ohio Shale. Slickensided fractures occur most frequently in the Marcellus Shale, Tully Limestone, Geneseo Shale, West Falls Formation, base of the Java Formation, and Lower Huron and Cleveland Members of the Ohio Shale. These observations are consistent with a fracture facies concept that proposes fracture development in shales that have acted as decollement zones during Alleghenian deformation. Detailed reports are included in Volume 2 for each of the thirteen cores investigated. 25 figures, 4 tables.

  18. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    SciTech Connect (OSTI)

    Fecht, K R; Lillie, J T

    1982-03-01T23:59:59.000Z

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area.

  19. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14T23:59:59.000Z

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  20. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01T23:59:59.000Z

    potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

  1. Simulation of Hydraulic Fractures and their Interactions with Natural Fractures

    E-Print Network [OSTI]

    Sesetty, Varahanaresh

    2012-10-19T23:59:59.000Z

    Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control...

  2. New observations of infiltration through fractured alluvium in Yucca Flat, Nevada Test Site: A preliminary field investigation

    SciTech Connect (OSTI)

    Kao, C.S. [California Univ., Berkeley, CA (United States). Dept. of Civil Engineering; Smith, D.K. [Lawrence Livermore National Lab., CA (United States); McKinnis, W.B. [Lawrence Livermore National Lab., Mercury, NV (United States)

    1994-02-01T23:59:59.000Z

    Regional tectonics coupled with the subsurface detonation of nuclear explosives has caused widespread fracturing of the alluvium of Yucca Flat. Fractures deeper than 30 meters have been observed in boreholes. Some of these fractures are large enough to capture significant amounts of runoff during storm events. Evidence of stream capture by fractures and observations of runoff flowing into open fractures give qualitative evidence of infiltration to depths greater than several meters and possibly to the saturated zone. Our field observations contradict the assumption that little infiltration occurs on Yucca Flat. The larger, hydrologically important fractures are associated with geologic faults or the regional stress field. Additional field studies are needed to investigate the impact of fractures on the transport of contaminants.

  3. 1. INTRODUCTION Joint, fracture, fault, and discontinuity are the four

    E-Print Network [OSTI]

    Maerz, Norbert H.

    in every rock mass [3]. Discontinuities influence all the engineering properties and behavior of rock [4]. When dealing with discontinuous rock masses, the properties of the discontinuities become a prime be the most important property. These properties can be measured directly from the discontinuity if the rock

  4. TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...

    Open Energy Info (EERE)

    OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE...

  5. Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length

    E-Print Network [OSTI]

    Lolon, Elyezer P.

    2006-04-12T23:59:59.000Z

    Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

  6. Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length 

    E-Print Network [OSTI]

    Lolon, Elyezer P.

    2006-04-12T23:59:59.000Z

    Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

  7. Oil and Gas CDT Predicting fault permeability at depth: data pooling from

    E-Print Network [OSTI]

    Henderson, Gideon

    the present-day (and past) hydraulic behaviour of any particular fault in the subsurface. Current practice are known to be poor predictors (e.g. fractured reservoirs, sand-dominated reservoirs). These new predictive laboratories at Strathclyde and the Engineering Faculty's Advanced Materials Research Laboratory. The student

  8. Joint porosity depth trend estimation and lithology/fluid classification by Bayesian inversion Kjartan Rimstad and Henning Omre

    E-Print Network [OSTI]

    Eidsvik, Jo

    ,0 Sand,Shale,Sand,kc Sand,zc Sand] and the prior model of is p(). We assume that seismic AVO data. The ultimate goal of this study is to clas- sify lithology/fluid from sesimic AVO data using our stochastic Consider a geological model of a reservoir in one dimension, and the four classes oil-, gas- and brine

  9. Transition-fault test generation

    E-Print Network [OSTI]

    Cobb, Bradley Douglas

    2013-02-22T23:59:59.000Z

    . One way to detect these timing defects is to apply test patterns to the integrated circuit that are generated using the transition-fault model. Unfortunately, industry's current transition-fault test generation schemes produce test sets that are too...

  10. Fault tolerant linear actuator

    DOE Patents [OSTI]

    Tesar, Delbert

    2004-09-14T23:59:59.000Z

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  11. Computer hardware fault administration

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Megerian, Mark G. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

    2010-09-14T23:59:59.000Z

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  12. Suspensions in hydraulic fracturing

    SciTech Connect (OSTI)

    Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

    1996-12-31T23:59:59.000Z

    Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

  13. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2002-01-30T23:59:59.000Z

    In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located. The trend and location of these faults based on aeromagnetics agrees with the location based on FIDs. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  14. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect (OSTI)

    Subhash Shah

    2000-08-01T23:59:59.000Z

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  15. Fault Tolerant Quantum Filtering and Fault Detection for Quantum Systems

    E-Print Network [OSTI]

    Qing Gao; Daoyi Dong; Ian R. Petersen

    2015-04-26T23:59:59.000Z

    This paper aims to determine the fault tolerant quantum filter and fault detection equation for a class of open quantum systems coupled to laser fields and subject to stochastic faults. In order to analyze open quantum systems where the system dynamics involve both classical and quantum random variables, a quantum-classical probability space model is developed. Using a reference probability approach, a fault tolerant quantum filter and a fault detection equation are simultaneously derived for this class of open quantum systems. An example of two-level open quantum systems subject to Poisson-type faults is presented to illustrate the proposed method. These results have the potential to lead to a new fault tolerant control theory for quantum systems.

  16. The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska

    SciTech Connect (OSTI)

    Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

    2001-07-23T23:59:59.000Z

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

  17. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, J R; Glaser, Steven D

    2007-01-01T23:59:59.000Z

    potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

  18. Can a fractured caprock self-heal?

    E-Print Network [OSTI]

    Elkhoury, JE; Elkhoury, JE; Detwiler, RL; Ameli, P

    2015-01-01T23:59:59.000Z

    characterization of fractured reservoirs. J. Geophys. Eng.fractured carbonates caused by flow of CO 2 -rich brine under reservoirreservoirs. We present results from two experiments in fractured

  19. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2010-02-23T23:59:59.000Z

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  20. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2012-02-07T23:59:59.000Z

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  1. Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis

    E-Print Network [OSTI]

    Ahmed, Ibraheem 1987-

    2012-11-30T23:59:59.000Z

    Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

  2. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994

    SciTech Connect (OSTI)

    Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

    1995-05-01T23:59:59.000Z

    Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group.

  3. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  4. Fracture induced anisotropy in viscoelastic media

    E-Print Network [OSTI]

    santos,,,

    ... seismology and mining. Fractures constitute the sources of earthquakes, and hydrocarbon and geothermal reservoirs are mainly composed of fractured rocks.

  5. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  6. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  7. Fracture prediction in metal sheets

    E-Print Network [OSTI]

    Lee, Young-Woong

    2005-01-01T23:59:59.000Z

    One of the most important failure modes of thin-walled structures is fracture. Fracture is predominantly tensile in nature and, in most part, is operated by the physical mechanisms of void nucleation, growth, and linkage. ...

  8. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    SciTech Connect (OSTI)

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01T23:59:59.000Z

    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints near an injection well have potential to divert a large percentage of an injected CO{sub 2} stream away from a target coal seam. However, the strata-bound nature of Pottsville fracture systems is a natural factor that mitigates the risk of long-range leakage and surface seepage. Flow models indicate that cross-formational flow in strata-bound joint networks is low and is dissipated by about an order of magnitude at each successive bedding contact. These models help confirm that strata-bound joint networks are self-compartmentalizing and that the thick successions of interbedded shale and sandstone separating the Pottsville coal zones are confining units that protect shallow aquifers from injection operations at reservoir depth. DFN models are powerful tools for the simulation and analysis of fracture networks and can play an important role in the assessment of risks associated with carbon sequestration and enhanced coalbed methane recovery. Importantly, the stochastic nature DFN models dictates that they cannot be used to precisely reproduce reservoir conditions in a specific field area. Rather, these models are most useful for simulating the fundamental geometric and statistical properties of fracture networks. Because the specifics of fracture architecture in a given area can be uncertain, multiple realizations of DFN models and DFN-based flow models can help define variability that may be encountered during field operations. Using this type of approach, modelers can inform the risk assessment process by characterizing the types and variability of fracture architecture that may exist in geologic carbon sinks containing natural fractures.

  9. Fault interaction near Hollister, California

    SciTech Connect (OSTI)

    Mavko, G.M.

    1982-09-10T23:59:59.000Z

    A numerical model is used to study fault stress slip near Hollister, California. The geometrically complex system of interacting faults, including the San Andreas, Calaveras, Sargent, and Busch faults, is approximated with a two-dimensional distribution of short planar fault segments in an elastic medium. The steady stress and slip rate are simulated by specifying frictional strength and stepping the remote stress ahead in time. The resulting computed fault stress is roughly proportional to the observed spatial density of small earthquakes, suggesting that the distinction between segments characterized by earthquakes and those with aseismic creep results, in part, from geometry. A nonsteady simulation is made by introducing, in addition, stress drops for individual moderate earthquakes. A close fit of observed creep with calculated slip on the Calaveras and San Andreas faults suggests that many changes in creep rate (averaged over several months) are caused by local moderate earthquakes. In particular, a 3-year creep lag preceding the August 6, 1979, Coyote Lake earthquake on the Calaveras fault seems to have been a direct result of the November 28, 1974, Thanksgiving Day earthquake on the Busch fault. Computed lags in slip rate preceding some other moderate earthquakes in the area are also due to earlier earthquakes. Although the response of the upper 1 km of the fault zone may cause some individual creep events and introduce delays in others, the long-term rate appears to reflect deep slip.

  10. Q AS A LITHOLOGICAL/HYDROCARBON INDICATOR: FROM FULL WAVEFORM SONIC TO 3D SURFACE SEISMIC

    SciTech Connect (OSTI)

    Jorge O. Parra; C.L. Hackert; L. Wilson; H.A. Collier; J. Todd Thomas

    2006-03-31T23:59:59.000Z

    The goal of this project was to develop a method to exploit viscoelastic rock and fluid properties to greatly enhance the sensitivity of surface seismic measurements to the presence of hydrocarbon saturation. To reach the objective, Southwest Research Institute scientists used well log, lithology, production, and 3D seismic data from an oil reservoir located on the Waggoner Ranch in north central Texas. The project was organized in three phases. In the first phase, we applied modeling techniques to investigate seismic- and acoustic-frequency wave attenuation and its effect on observable wave attributes. We also gathered existing data and acquired new data from the Waggoner Ranch field, so that all needed information was in place for the second phase. During the second phase, we developed methods to extract attenuation from borehole acoustic and surface seismic data. These methods were tested on synthetic data constructed from realistic models and real data. In the third and final phase of the project, we applied this technology to a full data set from the Waggoner site. The results presented in this Final Report show that geological conditions at the site did not allow us to obtain interpretable results from the Q processing algorithm for 3D seismic data. However, the Q-log processing algorithm was successfully applied to full waveform sonic data from the Waggoner site. A significant part of this project was technology transfer. We have published several papers and conducted presentations at professional conferences. In particular, we presented the Q-log algorithm and applications at the Society of Exploration Geophysicists (SEG) Development and Production Forum in Austin, Texas, in May 2005. The presentation attracted significant interest from the attendees and, at the request of the SEG delegates, it was placed on the Southwest Research Institute Internet site. The presentation can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/Algorithm.pps In addition, we presented a second application of the Q algorithm at the SEG International Conference in Houston, Texas, in May 2005. The presentation attracted significant interest there as well, and it can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/attenuation.pps.

  11. A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs

    E-Print Network [OSTI]

    Wu, Yu-Shu; Pruess, Karsten

    2004-01-01T23:59:59.000Z

    of naturally fractured reservoirs with uniform fracturefor naturally fractured reservoirs, SPE-11688, Presented atflow simulations in fractured reservoirs, Report LBL- 15227,

  12. Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test 

    E-Print Network [OSTI]

    Correa Castro, Juan

    2011-08-08T23:59:59.000Z

    EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A Thesis by JUAN CARLOS CORREA CASTRO Submitted to the Office of Graduate Studies of Texas A... in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test Copyright 2011 Juan Carlos Correa Castro EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A...

  13. Fault current limiter

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2013-10-08T23:59:59.000Z

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  14. Fault Current Limiters

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVID GEISEREnergy1DNVDOE'sUAfter 12Fault

  15. Thrust faulting in Temblor Range, Kern County, California

    SciTech Connect (OSTI)

    Simonson, R.R.

    1991-02-01T23:59:59.000Z

    Surface and subsurface studies confirm the presence of overthrusting in the Temblor Range between Gonyer Canyon and Recruit Pass. In the subsurface, three wells have penetrated the Cree fault, the Hudbay Cree' No. 1 (7,300 ft), the Frantzen Oil Company Cree' No. 1 (5,865 ft) and the Arco Cree Fee' 1A well (5,915 ft). Below the fault, 25 to 35{degree} of westerly dips on the west flank of the sub-thrust Phelps anticline are encountered. The McDonald section below the fault is comprised of siliceous fractured shale which contains live oil and gas showings. A drill-stem test of the interval from 8,247 to 8,510 ft in the Frantzen well resulted in a recovery of 1,200 ft clean 34{degree} oil and 40 MCF per day gas. The shut in pressure was 3,430 lb, which is a normal hydrostatic pressure common to the producing structures in the southern San Joaquin Valley. The equivalent of this interval has produced over 7,000 bbl of oil in the Arco Cree' 1A well. The Arco Cree Fee' No. 1A well crossed the axis of the Phelps Anticline as indicated by good dipmeter and bottomed in Lower Zemorrian at 14,512 ft total depth. This well was not drilled deep enough to reach the Point of Rocks Sand and did not test the gas showings in the lower Miocene section. In the Gonyer Canyon area, subsurface evidence indicated conditions are similar to those in the Cree area because a large structure is present below a thrust fault. It is believed that significant accumulations will be found beneath thrust faults in the eastern part of the Temblor Range where conditions are similar to those that were instrumental in forming fields such as the Elk Hills, B. V. Hills, Belgian Anticline and others.

  16. Observer-based fault detection for nuclear reactors

    E-Print Network [OSTI]

    Li, Qing, 1972-

    2001-01-01T23:59:59.000Z

    This is a study of fault detection for nuclear reactor systems. Basic concepts are derived from fundamental theories on system observers. Different types of fault- actuator fault, sensor fault, and system dynamics fault ...

  17. Colorado Regional Faults

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  18. Synchronized sampling improves fault location

    SciTech Connect (OSTI)

    Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-04-01T23:59:59.000Z

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  19. Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks

    E-Print Network [OSTI]

    Ogbechie, Joachim Nwabunwanne

    2012-02-14T23:59:59.000Z

    Gen and NFflow) for fracture modeling of a shale gas reservoir and also studies the interaction of the different fracture properties on reservoir response. The most important results of the study are that a uniform fracture network distribution and fracture...

  20. Procedure for estimating fracture energy from fracture surface roughness

    DOE Patents [OSTI]

    Williford, Ralph E. (Kennewick, WA)

    1989-01-01T23:59:59.000Z

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  1. The aftermath of silurian faulting in southeast Michigan, and its effect on oil and gas exploration

    SciTech Connect (OSTI)

    Fowler, J.H. (Polaris Energy, Jackson, MI (United States))

    1994-08-01T23:59:59.000Z

    In Macomb Township of Macomb County, southeast Michigan, is found a sinuous normal fault extending along a N82[degrees]W strike, from end to end only 6 mi long, but with more than 260 ft of maximum displacement at the Trenton level. Through about 3 mi of its midsection extent, the main fault is paired with another normal fault with opposite displacement sense, forming a very narrow graben. The timing of development of this divergent wrench feature coincides with Caledonian tectonic activity, a period of intense structural disturbance and regional subsidence throughout the Michigan basin. The fault appears to cut no higher than A[sub 1] Carbonate, although relationships are obscured by subsequent dissolution of more than 500 ft of Salina A[sub 1], A[sub 2], B, D, and F salts along and beyond the trace of the fault. Collapse of interbedded carbonates and shales is evident, although the apparent lack of brecciation indicates salt removal was not rapid. Further, salt removal proceeded throughout the Devonian, producing dramatic compensatory thickening in overlying units. The development of this large feature in prime Niagaran reef territory may have prevented the discovery of reefs by obscuring what is otherwise well-known stratigraphy and seismic signature. The presence of oil production in dolomitized fracture zones in the Trenton/Black River rocks of nearby Ontario may point to similar potential yet remaining along the Macomb faulted trend.

  2. Gravity and fault structures, Long Valley caldera, California

    SciTech Connect (OSTI)

    Carle, S.F.; Goldstein, N.E.

    1987-07-01T23:59:59.000Z

    The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

  3. Structural Settings Of Hydrothermal Outflow- Fracture Permeability...

    Open Energy Info (EERE)

    deposits along fault zones can potentially provide a tool for studying fault-zone evolution. Authors Daniel Curewitz and Jeffrey A. Karson Published Journal Journal of...

  4. Numerical simulation of hydraulic fracturing

    E-Print Network [OSTI]

    Warner, Joseph Barnes

    1987-01-01T23:59:59.000Z

    ~ared that the results of such treatments were not always adequately described by the two-dimensional models. With recent advances in hydraulic fracturing and computing technology, attempts have been made to formulate more realistic fracture models. These three...NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...

  5. Automated Fault Location In Smart Distribution Systems 

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    ............................................................................................................................ 88 x LIST OF FIGURES Page Figure 1 Multiple possible fault location estimation for a fault at node A ........................ 7 Figure 2 Simple faulted network model [1] © [2011] IEEE ............................................ 40 Figure 3... Types C and D voltage sags for different phases [51] © [2003] IEEE .............. 42 Figure 4 Rf estimation procedure [1] © [2011] IEEE ...................................................... 45 Figure 5 Flow chart of the fault location algorithm [1...

  6. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  7. Hot Pot Detail - Evidence of Quaternary Faulting

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27T23:59:59.000Z

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  8. Arc fault detection system

    DOE Patents [OSTI]

    Jha, Kamal N. (Bethel Park, PA)

    1999-01-01T23:59:59.000Z

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  9. Arc fault detection system

    DOE Patents [OSTI]

    Jha, K.N.

    1999-05-18T23:59:59.000Z

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  10. Shallow seismic reflection confirmation of Berea gas pool structure and faulting, Portage County, Ohio

    SciTech Connect (OSTI)

    Sergoulopoulos, A.; Coogan, A.H.; Palmer, D.F.

    1987-09-01T23:59:59.000Z

    The Mississippian Berea Sandstone is a reservoir for shallow gas in Suffield Township, Portage County, Ohio, in the informally named St. Joseph's Church field. Production of natural gas from the Berea reservoir is from sandstone up to 60 ft (18 m) thick with porosity in the 15-25% range. The field, which is at about 400 ft (720 ft above sea level), lies updip from the Akron-Suffield fault zone and more or less along strike from the Berea gas field in Randolph Township to the southeast. The trap for the gas is anticlinal and overlying Sunbury shale (so called Coffee shale) is the seal. Initial field pressures were about 80-100 psi (552 kPa). A shallow seismic survey of 6 refraction and 26 CDP reflection lines was made, using a six-channel Bison recording unit. Reflections were obtained from depths down to 800 ft through well-documented formations of known lithology, including glacial till (kame and non-kame), Sharon Shale, Sharone Sandstone, Sunbury Shale, Berea Sandstone, Bedford Shale, and Ohio Shale. Correlation of the seismic data with logs from three separate wells drilled with cable tools was used to derive interval velocities for depth control. Seismic reflections from the top of the Berea Sandstone were consistent over the area with depths from wells. Unexpectedly high elevations of the Berea Sandstone on the southern crest of the anticlinal dome lay in a straight line trending east-west. This suggests the presence of a fault with a general east-west strike and vertical displacement of 15-18 ft. Marginal gas production was encountered just north of the plotted fault on a line between the best producing wells on 450-500 ft centers. Better gas-producing wells lie on the downthrown side of the small eastwest fault and close to the fault. The fault is probably one of many in the area and may be a splinter fault of the Akron-Suffield fault zone.

  11. BTEX biodegradation in fractured shale

    SciTech Connect (OSTI)

    O`Cleirigh, D.; Coryea, H. [Roy F. Weston, Inc., Austin, TX (United States); Christopher, M.; Vaughn, C. [Roy F. Weston, Inc., Houston, TX (United States)

    1997-12-31T23:59:59.000Z

    A petroleum hydrocarbon groundwater plume was identified at a Federal Aviation Administration (FAA) facility in Oklahoma. The affected area had an average BTEX concentration of 3.8 mg/L. Previous aquifer tests indicated preferential groundwater flow paths resulting from natural fractures present in the aquifer formation (primarily shale). A pneumatic fracturing pilot study was performed to evaluate the technology`s effectiveness in creating a more isotropic aquifer. As part of the study, pre-fracture/post-fracture pump tests were performed. Pre-fracture and post-fracture graphs confirmed the study`s hypothesis that pneumatic fracturing would eliminate preferential flow paths and increase groundwater yield. Based on the successful pneumatic fracturing test, an area within the petroleum hydrocarbon plume was fractured and a pilot-scale biodegradation system was operated for four months. The remediation system provided groundwater circulation amended with nutrients and oxygen. Results of the study indicated a significant decrease in BTEX concentrations between the injection well and the observation wells. By Day 113, the benzene concentration (0.044 mg/L) at one of the observation wells was less than the desired state cleanup goal of 0.05 mg/L.

  12. Fracture model for cemented aggregates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

    2013-01-01T23:59:59.000Z

    A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

  13. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-02-28T23:59:59.000Z

    In the structure task, we completed a N-S transect east of Seneca Lake that indicated a N-striking fault near the southeastern shore of Seneca Lake, and also indicated NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the NE-striking FIDs and faults are thought to be controlled by basement faults, rather than thrust ramps above the Salina salt controlled only by a far-field Alleghanian stress field. Structure contour maps based on well log analyses have been constructed but not interpreted. Soil gas data displayed a number of ethane-charged soil gas ''spikes'' on a N-S transect from Ovid south to near Valois. The soil gas team found a larger number of spikes in the northern half of the survey, suggesting more open fractures (and faults) in the northern half of the survey. Seismic data has been purchased and reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. The aeromagnetic survey is completed and the data is processed. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located.

  14. Interferometric hydrofracture microseism localization using neighboring fracture

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2011-05-19T23:59:59.000Z

    Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

  15. Interferometric hydrofracture microseism localization using neighboring fracture

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

  16. Fracture compliance estimation using borehole tube waves

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

  17. Exploring the physicochemical processes that govern hydraulic fracture through laboratory

    E-Print Network [OSTI]

    Belmonte A; Connelly P

    ) containing model boreholes as an analog to hydraulic fracturing with various fracture-driving fluids. The

  18. Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault

    E-Print Network [OSTI]

    Neal, Leslie Ann

    2002-01-01T23:59:59.000Z

    Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure...

  19. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    SciTech Connect (OSTI)

    Gary Mavko

    2004-11-30T23:59:59.000Z

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that fracturing is likely to be more intense near faults--sometimes referred to as the damaged zone. Yet another constraint, based on world-wide observations, is that the maximum likely fracture density increases with depth in a well-defined way. Defining these prior constrains has several benefits: they lead to a priori probability distributions of fractures, that are important for objective statistical integration; they limit the number of geologic hypotheses that need to be theoretically modeled; they provide plausible models for fracture distributions below the seismic resolution. The second element was theoretical rock physics modeling of optimal seismic attributes, including offset and azimuth dependence of traveltime, amplitude, and impedance signatures of anisotropic fractured rocks. The suggested workflow is to begin with an elastic earth model, based on well logs, theoretically add fractures to the likely facies as defined by the geologic prior information, and then compute synthetic seismic traces and attributes, including variations in P and S-wave velocities, Poisson's ratio, reflectivity, travel time, attenuation, and anisotropies of these parameters. This workflow is done in a Monte-Carlo fashion, yielding ranges of expected fracture signatures, and allowing realistic assessments of uncertainty to be honored. The third element was statistical integration of the geophysical data and prior constraints to map fracture intensity and orientations, along with uncertainties. A Bayesian framework was developed that allowed systematic integration of the prior constraints, the theoretical relations between fractures and their seismic signatures, and the various observed seismic observations. The integration scheme was successfully applied on an East Texas field site. The primary benefit from the study was the optimization and refinement of practical workflows for improved geophysical characterization of natural fractures and for quantifying the uncertainty of these interpretations. By presenting a methodology for integrating various types of information, the workflow will

  20. Fault-tolerant rotary actuator

    SciTech Connect (OSTI)

    Tesar, Delbert

    2006-10-17T23:59:59.000Z

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  1. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

  2. Development of Characterization Technology for Fault Zone Hydrology

    E-Print Network [OSTI]

    Karasaki, Kenzi

    2010-01-01T23:59:59.000Z

    TECHNOLOGY FOR FAULT ZONE HYDROLOGY Kenzi Karasaki Lawrencefor characterizing the hydrology of fault zones, recognizingstructure of faults to hydrology, that it still may be

  3. active fault diagnosis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harrold, Mary Jean 453 Fault Tolerant Control with Additive Compensation for Faults in an Automotive Damper Physics Websites Summary: Fault Tolerant Control with Additive...

  4. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    E-Print Network [OSTI]

    Cappa, F.

    2009-01-01T23:59:59.000Z

    an Engineered Fractured Geothermal Reservoir. Example of theinteractions in a fractured carbonate reservoir inferredwithin a shallow fractured carbonate reservoir. Fracture

  5. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, Daniel J. (Wheeling, IL); Cha, Yung S. (Darien, IL)

    1999-01-01T23:59:59.000Z

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  6. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, D.J.; Cha, Y.S.

    1999-04-06T23:59:59.000Z

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  7. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  8. Characterization of Damage in Sandstones along the Mojave Section of the San Andreas Fault: Implications for the Shallow Extent of Damage

    E-Print Network [OSTI]

    Ben-Zion, Yehuda

    Characterization of Damage in Sandstones along the Mojave Section of the San Andreas Fault: Implications for the Shallow Extent of Damage Generation ORY DOR,1,5 JUDITH S. CHESTER,2 YEHUDA BEN-ZION,1 shallow generation of rock damage during an earthquake rupture, we measure the degree of fracture damage

  9. Slator Ranch fracture optimization study

    SciTech Connect (OSTI)

    Ventura, J.L.

    1985-07-01T23:59:59.000Z

    The Las Ovejas (Lobo) field in Zapata County, TX, is being developed actively. The field was discovered on Tenneco Oil EandP's Slator Ranch lease with the successful completion of the Sanchez-O'Brien Vaquillas Ranch Well 1. Tenneco operates all of the 17,712-acre (71 678 X 10/sup 3/-m/sup 2/) lease (with the exception of a 320-acre (1295 X 10/sup 3/-m/sup 2/) tract assigned to the Vaquillas Ranch Well 1) and has successfully completed five wells in the Lobo field subsequent to the discovery well. The Lobo interval in the Slator Ranch area is a tight gas sand, and all these wells require fracture stimulation. Because a successful fracture is essential for a good Lobo completion and because hydraulic fracturing represents a significant portion of the completed well cost, it is important to optimize this phase of the completion. The purpose of this study was to determine the following for Slator Ranch Lobo completions: an optimum fracture length as a function of permeability; whether wells should be tailed-in with bauxite, or fractured with all bauxite or sand (if an optimum tail-in does exist, to determine the optimum tail-in for a fixed fracture length as a function of permeability); the drainage area and abandonment pressure for Slator Ranch Well 2; the effect of compression on reserves; and closure pressure as a function of time and distance along the fracture for Slator Ranch Well 2.

  10. Condition Assessment and Fault Prognostics of Microelectromechanical Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    monitoring, Condition assessment, Fault detection, Fault diagnostics, Fault prognostics. Corresponding, batteries, etc.) to complete machines (wind turbines, electrical motors, machining tools, etc.). SeveralCondition Assessment and Fault Prognostics of Microelectromechanical Systems K. Medjaher , H. Skima

  11. Development of Hydrologic Characterization Technology of Fault Zones

    E-Print Network [OSTI]

    Karasaki, Kenzi

    2009-01-01T23:59:59.000Z

    model for fissured fractured reservoir, Soc. Pet. Eng. J. ,flow simulations in fractured reservoirs, Report LBL-15227,behavior of naturally fractured reservoirs, Soc. Pet. Eng.

  12. Acid Fracture and Fracture Conductivity Study of Field Rock Samples 

    E-Print Network [OSTI]

    Underwood, Jarrod

    2013-11-15T23:59:59.000Z

    carbonate reservoir were labeled A through F to protect proprietary information included in this research. A 2% potassium chloride solution was used for the acid system and fracture conductivity measurements to prevent clay swelling. Injection temperature...

  13. Optimization of fracture treatment designs

    E-Print Network [OSTI]

    Rueda, Jose Ignacio

    1992-01-01T23:59:59.000Z

    using the type curves published by Holditch et al2O. n f H r lic Fracture Pro a ation imula or In 1955, the first model to simulate the propagation of a vertical hydraulic fracture was developed by Khristianovitch and Zheltov O (K-Z model). This two... . . . . 93 97 LIST OF TABLES Table Page 5. I Reservoir and well data for base case example 54 5. 2 Fracture design data for base case example . 54 5. 3 Economic data for base case example . . 54 5. 4 Comparison of the methods used in STIMOP and LPOP...

  14. Use of outcrop analogues to predict lithology influence on the seismic signature Kathleen Baker* and Mike Batzle, Colorado School of Mines, Richard Gibson, Texas A&M University

    E-Print Network [OSTI]

    with outcrop studies, well log and seismic interpretation of deep-water sediments, forward and inverse modeling the interpretation of subsurface information such as well logs, seismic data and regional geologic models. Here we the influence of lithology on the seismic signature. Method To better interpret seismic DHIs it is essential

  15. Sensor Fault Detection and Isolation System

    E-Print Network [OSTI]

    Yang, Cheng-Ken

    2014-08-01T23:59:59.000Z

    The purpose of this research is to develop a Fault Detection and Isolation (FDI) system which is capable to diagnosis multiple sensor faults in nonlinear cases. In order to lead this study closer to real world applications in oil industries...

  16. A Rectilinear-Monotone Polygonal Fault Block Model for Fault-Tolerant Minimal Routing

    E-Print Network [OSTI]

    Wang, Dajin

    ]. In rectangular model, all faulty nodes are grouped in dis- jointed, rectangular areas, called fault blocksA Rectilinear-Monotone Polygonal Fault Block Model for Fault-Tolerant Minimal Routing in Mesh Dajin Wang, Member, IEEE Abstract--We propose a new fault block model, Minimal-Connected-Component (MCC

  17. Fracture of aluminum naval structures

    E-Print Network [OSTI]

    Galanis, Konstantinos, 1970-

    2007-01-01T23:59:59.000Z

    Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

  18. Sensitivity analysis of fracture scattering

    E-Print Network [OSTI]

    Fang, Xinding, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    We use a 2-D finite difference method to numerically calculate the seismic response of a single finite fracture in a homogeneous media. In our experiments, we use a point explosive source and ignore the free surface effect, ...

  19. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  20. Seismic anisotropy of fractured rock

    E-Print Network [OSTI]

    M. Schoenberg, C. M. Sayers

    2000-02-18T23:59:59.000Z

    of seismic anisotropy to determine the orientation of fracture sets is of ... this assumption of noninteraction does not imply that the ... conventional (2-subscript) condensed 6 x 6 matrix notation,. 11. 6, while ... have simple physical interpretations.

  1. Estimation of fracture compliance from tubewaves generated at a fracture intersecting a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2011-01-01T23:59:59.000Z

    Understanding fracture compliance is important for characterizing fracture networks and for inferring fluid flow in the subsurface. In an attempt to estimate fracture compliance in the field, we developed a new model to ...

  2. FAULT & COORDINATION STUDY FOR T PLANT COMPLEX

    SciTech Connect (OSTI)

    MCDONALD, G.P.; BOYD-BODIAU, E.A.

    2004-09-01T23:59:59.000Z

    A short circuit study is performed to determine the maximum fault current that the system protective devices, transformers, and interconnections would he subject to in event of a three phase, phase-to-phase, or phase-to-ground fault. Generally, the short circuit study provides the worst case fault current levels at each bus or connection point of the system.

  3. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04T23:59:59.000Z

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  4. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01T23:59:59.000Z

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  5. Using Fault Model Enforcement to Improve Availability

    E-Print Network [OSTI]

    instead that a new approach, called fault model enforcement, that maps actual faults to expected faults on a constellation of interconnected systems--a typical example is cluster-based systems [4]. Traditional database centers around a set of closely guarded racks and data closets woven together by intricate networks

  6. Using Fault Model Enforcement to Improve Availability

    E-Print Network [OSTI]

    Martin, Richard P.

    that a new approach, called fault model enforcement, that maps actual faults to expected faults on a constellation of interconnected systems--a typical example is cluster-based systems [4]. Traditional database centers around a set of closely guarded racks and data closets woven together by intricate networks

  7. Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir

    E-Print Network [OSTI]

    Mhiri, Adnene

    2014-08-10T23:59:59.000Z

    : ? Uniform distribution of heterogeneities that cause a variation of geomechanical properties such as: — In-situ stress — Fracture initiation pressure — Elastic moduli (Shear modulus and Poisson’s ratio) ? No interaction with natural fractures: — Natural... that are dynamically created due to the change in the geomechanical properties in the vicinity of the primary fracture these are referred to as secondary fractures and are thought to be orthogonal to primary fractures. ? The fractures that originate due...

  8. INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2014-01-01T23:59:59.000Z

    Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

  9. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02T23:59:59.000Z

    This unexpected result is caused by the wave-induced flow of fluids between pores and fractures. ..... For non-fractured rock setting fracture weaknesses. DN and ...

  10. GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01T23:59:59.000Z

    Flow in Naturally Fractured Reservoirs, Society of Petroleumfor Naturally Fractured Reservoirs, paper SPE-11688,Determining Naturally Fractured Reservoir Properties by Well

  11. Analysis of flow behavior in fractured lithophysal reservoirs

    E-Print Network [OSTI]

    Liu, Jianchun; Bodvarsson, G.S.; Wu, Yu-Shu

    2002-01-01T23:59:59.000Z

    R. , 1980. Naturally Fractured Reservoirs, Petroleum, Tulsa,bounded naturally fractured reservoirs. Soc. Pet. Eng. J.test in a naturally fractured reservoir. J. Pet. Tech. 1295–

  12. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-01-01T23:59:59.000Z

    Heat Flow in Fractured Reservoirs, SPE Advanced TechnologyTransfer Area in Fractured Reservoirs Karsten Pruess 1 , Tonbehavior arises in fractured reservoirs. As cold injected

  13. asymmetric hydraulic fracture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the fractured shale 17 RPSEA UNCONVENTIONAL GAS CONFERENCE 2012: Geology, the Environment, Hydraulic Fracturing Engineering Websites Summary: Fracturing Experiment Overview...

  14. advanced hydraulic fracturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the fractured shale 18 RPSEA UNCONVENTIONAL GAS CONFERENCE 2012: Geology, the Environment, Hydraulic Fracturing Engineering Websites Summary: Fracturing Experiment Overview...

  15. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    SciTech Connect (OSTI)

    Potirakis, S. M. [Department of Electronics, Technological Education Institute (TEI) of Piraeus, 250 Thivon and P. Ralli, Aigaleo, Athens GR-12244 (Greece)] [Department of Electronics, Technological Education Institute (TEI) of Piraeus, 250 Thivon and P. Ralli, Aigaleo, Athens GR-12244 (Greece); Karadimitrakis, A. [Department of Physics, Section of Electronics, Computers, Telecommunications and Control, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)] [Department of Physics, Section of Electronics, Computers, Telecommunications and Control, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece); Eftaxias, K. [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)] [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)

    2013-06-15T23:59:59.000Z

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  16. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    SciTech Connect (OSTI)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Wernicke, B.P. [California Inst. of Tech., Pasadena, CA (United States). Div. of Geological and Planetary Sciences

    1996-03-01T23:59:59.000Z

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

  17. Multiwell experiment: Fracturing experiments

    SciTech Connect (OSTI)

    Warpinski, N.R.; Sattler, A.R.; Branagan, P.T.; Cipolla, C.

    1987-01-01T23:59:59.000Z

    Because of the complexity of the stimulation, no conventional analyses were useful, so we decided to concentrate on the minifrac to provide important fracture parameters. The minifrac was conducted in an identical manner to the pressure-up and pad stages of the stimulation. Figure 1 shows two initial pressure-history match calculations that were performed to model the minifrac. We found that the pressure behavior could not be matched with any normal behavior. Examining the field pressure data, we see that the interesting feature is the sudden flattening in the pressure at a level 1050 psi above the closure stress during pumping and the rapid drop to this same level at shut-in, after which the pressure decreases much more slowly. We first tried to match this behavior using enhanced height growth. While height growth can flatten the pressure during pumping, it also causes a very slow pressure decline at shut-in. We also tried additional leakoff height as height grew, but this could not flatten the pressure as much as needed. Finally, we tried an accelerated leakoff condition above 1050 psi. We did this by increasing the leakoff coefficient by a constant factor above some threshold value. To keep the results smooth and code convergent, we actually linearly phased in the increased leakoff between 1000 and 1100 psi. The final result of these calculations is shown in Figure 2; a factor of 50 increase in the leakoff coefficient was required to match the data for pressures above 1050 psi.

  18. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2011-04-19T23:59:59.000Z

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  19. Software Fault Diagnosis Peter Zoeteweij

    E-Print Network [OSTI]

    Zoeteweij, Peter

    Lab, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University-to-day basis is constantly growing. Combined with a practically constant rate of faults per line of code in the software development cycle, which aim at exposing such discrepancies. In this context, automated diagnosis

  20. Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture

    E-Print Network [OSTI]

    Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

    2000-01-01T23:59:59.000Z

    reopening during hydraulic fracturing stress determinations.Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurement

  1. Development of a bridge fault extractor tool

    E-Print Network [OSTI]

    Bhat, Nandan D.

    2005-02-17T23:59:59.000Z

    as interlayer faults. An example of an intralayer fault is a bridge between two adjacent metal1 lines. An example of an interlayer fault is a short between overlapping polysilicon and metal1 lines. The rest of this thesis is organized as follows: Chapter 2... between two adjacent 6 metal1 lines. An example of an interlayer fault is a short between overlapping polysilicon and metal1 lines. A recent survey of fault extractors describes their different features [15]. Some tools such as VLASIC [16] attempt...

  2. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  3. Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models

    E-Print Network [OSTI]

    Kim, Tae Hyung

    2009-05-15T23:59:59.000Z

    Determining fracture characteristics at the laboratory scale is a major challenge. It is known that fracture characteristics are scale dependent; as such, the minimum sample size should be deduced in order to scale to reservoir dimensions. The main...

  4. Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions

    SciTech Connect (OSTI)

    Polsky, Yarom [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; An, Ke [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Bingham, Philip R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had both the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.

  5. The detection of high impedance faults using random fault behavior

    E-Print Network [OSTI]

    Carswell, Patrick Wayne

    1988-01-01T23:59:59.000Z

    In response to an Electric Power Research Institute (EPRI) request for pro- posed solutions for the detection of high impedance faults, the Hughes Aircraft Corporation developed a detection technique based solely on the level of the third harmonic current... for proposed solutions from EPRI that brought the Hughes technique, Power Technologies Incorporated (PTI) proposed a technique which statistically monitors the first, third, and fifth harmonics of current to make a, determination as to the presence of a high...

  6. Three Models for Water ooding in a Naturally Fractured Petroleum ...

    E-Print Network [OSTI]

    THREE MODELS FOR WATERFLOODING IN A NATURALLY. FRACTURED ... 1. Introduction. For the purposes of this paper a naturally fractured reservoir.

  7. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

    1994-01-01T23:59:59.000Z

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  8. Acoustic Character Of Hydraulic Fractures In Granite

    E-Print Network [OSTI]

    Paillet, Frederick I.

    1983-01-01T23:59:59.000Z

    Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

  9. A Global Model for Fracture Falloff Analysis

    E-Print Network [OSTI]

    Marongiu-Porcu, Matteo

    2014-10-29T23:59:59.000Z

    The reservoir permeability is an essential input for the optimum design of modern hydraulic fracture treatments, which are undeniably the crucial technology involved in the development of tight and/or unconventional gas reservoirs. The fracture...

  10. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  11. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01T23:59:59.000Z

    during hydraulic fracturing Moore and Glaser, in press JGR,press JGR, B – 2006JB004373 where m is the average hydraulichydraulic fracturing with water. Moore and Glaser, in press

  12. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    E-Print Network [OSTI]

    Lu, Zhiming

    Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks Mingjie Chen Keywords: Hydraulic fracturing Fractal dimension Surrogate model Optimization Global sensitivity a b s t r a c t Hydraulic fracturing has been used widely to stimulate production of oil, natural gas

  13. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.

  14. Discrete fracture modeling for fractured reservoirs using Voronoi grid blocks

    E-Print Network [OSTI]

    Gross, Matthew Edward

    2007-09-17T23:59:59.000Z

    or pseudofracture groups modeled in their own grid blocks. Discrete Fracture Modeling (DFN) is still a relatively new field, and most research on it up to this point has been done with Delaunay tessellations. This research investigates an alternative approach using...

  15. Hydraulic Fracture: multiscale processes and moving

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Mitchell (UBC) · Ed Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Scaling Fluid Proppant #12;6 An actual hydraulic fracture #12;7 HF experiment (Jeffrey et al CSIRO) #12;8 1D

  16. Hydraulic Fracture: multiscale processes and moving

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Mathematical models of hydraulic fracture · Scaling and special solutions for 1-2D models · Numerical modeling for 2-3D problems

  17. RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS A REPORT SUBMITTED TO THE DEPARTMENT analylsiis for constant pressure production in a naturally fractured reservoir is presented. The solution, the Warren and Root model which assumes fracturing is perfectly unifom, provides an upper bound of reservoir

  18. Regulation of Hydraulic Fracturing in California

    E-Print Network [OSTI]

    Kammen, Daniel M.

    APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

  19. Fractured shale reservoirs: Towards a realistic model

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

    1996-09-01T23:59:59.000Z

    Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

  20. Fault prophet : a fault injection tool for large scale computer systems

    E-Print Network [OSTI]

    Tchwella, Tal

    2014-01-01T23:59:59.000Z

    In this thesis, I designed and implemented a fault injection tool, to study the impact of soft errors for large scale systems. Fault injection is used as a mechanism to simulate soft errors, measure the output variability ...

  1. Realistic fault modeling and quality test generation of combined delay faults 

    E-Print Network [OSTI]

    Thadhlani, Ajaykumar A

    2001-01-01T23:59:59.000Z

    With increasing operating speed and shrinking technology, timing defects in integrated circuits are becoming increasingly important. The well established stuck-at-fault model is not sufficient because it is a static fault ...

  2. Fault-tolerant dynamic task graph scheduling

    SciTech Connect (OSTI)

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16T23:59:59.000Z

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  3. Automated Fault Location In Smart Distribution Systems

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    Quality Meters (PQM), are installed to capture harmonics and certain disturbances for analyzing the power quality indices. Digital Protective Relays are utilized to detect occurrence of the faults and isolate faulted section as fast as possible. Digital... Protective Relays) use synchronous methods [28]. Therefore, if the available data is provided by RTUs, fault location methods that operate based on direct comparison of the input samples cannot be 17 utilized. However, if the data could be gathered from...

  4. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

  5. Towards Fault-Tolerant Digital Microfluidic Lab-on-Chip: Defects, Fault Modeling, Testing, and Reconfiguration

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Towards Fault-Tolerant Digital Microfluidic Lab-on-Chip: Defects, Fault Modeling, Testing, NC 27708, USA Abstract Dependability is an important attribute for microfluidic lab-on-chip devices microfluidic lab-on-chip systems. Defects are related to logical fault models that can be viewed not only

  6. Contribution of Identified Active Faults to Near Fault Seismic Hazard in the Flinders Ranges

    E-Print Network [OSTI]

    Sandiford, Mike

    Somerville1 , Peggy Quijada1 , Hong Kie Thio1 , Mike Sandiford2 and Mark Quigley2 1. URS Corporation estimates of fault slip rate from Quigley et al. (2006) to quantify the seismic activity rate on the faults of these models was used in conjunction with the active fault model. Quigley et al. (2006) identified a system

  7. A fault location approach for fuzzy fault section estimation on radial distribution feeders

    E-Print Network [OSTI]

    Andoh, Kwame Sarpong

    2000-01-01T23:59:59.000Z

    was involved in the fault was evaluated using the event-phase possibility values and line section phase topology information. The fault distance algorithm was used to eliminate sections of the feeder that were not likely to be possible faulted section...

  8. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18T23:59:59.000Z

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  9. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado: Appendix B to Attachment 3, Lithologic logs and monitor well construction information. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This volume contains lithology logs and monitor well construction information for: NC processing site; UC processing site; and Burro Canyon disposal site. This information pertains to the ground water hydrology investigations which is attachment 3 of this series of reports.

  10. Shallow faults mapped with seismic reflections: Lost River Fault, Idaho

    E-Print Network [OSTI]

    Mubarik, Ali; Miller, Richard D.; Steeples, Don W.

    1991-09-01T23:59:59.000Z

    stations 132 and 160. Total bedrock dis?lace- ment interpreted along this seismic survey line is approxa- mately 6 m, representing 4 to 6 times more displacement than is observed on either the common offset refraction section or at the surface..., vol. A, U.S. Geological Survey Open-file Report 85-290, 182-194, 1985. Crone, A. J., and M. N. Macbette, Surface faulting accompa- nying the Borah Peak earthquake, central Idaho, Geology, 12, 664-667, 1984. Crone, A. J., M. N. Macbette, M. G...

  11. Accurate resistive bridge fault modeling, simulation, and test generation 

    E-Print Network [OSTI]

    Sar-Dessai, Vijay Ramesh

    1999-01-01T23:59:59.000Z

    Resistive bridging faults in CMOS combinational circuits are studied in this work. Bridging faults are modeled using HSPICE circuit simulation of the various types of bridging faults that can occur in CMOS combinational ...

  12. Earthquake behavior and structure of oceanic transform faults

    E-Print Network [OSTI]

    Roland, Emily Carlson

    2012-01-01T23:59:59.000Z

    Oceanic transform faults that accommodate strain at mid-ocean ridge offsets represent a unique environment for studying fault mechanics. Here, I use seismic observations and models to explore how fault structure affects ...

  13. Low-cost motor drive embedded fault diagnosis systems

    E-Print Network [OSTI]

    Akin, Bilal

    2009-05-15T23:59:59.000Z

    Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low...

  14. Accurate resistive bridge fault modeling, simulation, and test generation

    E-Print Network [OSTI]

    Sar-Dessai, Vijay Ramesh

    1999-01-01T23:59:59.000Z

    Resistive bridging faults in CMOS combinational circuits are studied in this work. Bridging faults are modeled using HSPICE circuit simulation of the various types of bridging faults that can occur in CMOS combinational circuits. The results...

  15. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-04-12T23:59:59.000Z

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  16. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01T23:59:59.000Z

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  17. Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures

    SciTech Connect (OSTI)

    Nakagawa, S.; Myer, L.R.

    2009-06-15T23:59:59.000Z

    Schoenberg's Linear-slip Interface (LSI) model for single, compliant, viscoelastic fractures has been extended to poroelastic fractures for predicting seismic wave scattering. However, this extended model results in no impact of the in-plane fracture permeability on the scattering. Recently, we proposed a variant of the LSI model considering the heterogeneity in the in-plane fracture properties. This modified model considers wave-induced, fracture-parallel fluid flow induced by passing seismic waves. The research discussed in this paper applies this new LSI model to heterogeneous fractures to examine when and how the permeability of a fracture is reflected in the scattering of seismic waves. From numerical simulations, we conclude that the heterogeneity in the fracture properties is essential for the scattering of seismic waves to be sensitive to the permeability of a fracture.

  18. Off-fault Damage Associated with a Localized Bend in the North Branch San Gabriel Fault, California

    E-Print Network [OSTI]

    Becker, Andrew 1987-

    2012-08-15T23:59:59.000Z

    Structures within very large displacement, mature fault zones, such as the North Branch San Gabriel Fault (NBSGF), are the product of a complex combination of processes. Off-fault damage within a damage zone and first-order geometric asperities...

  19. Improving Distribution System Reliability Through Risk-base Doptimization of Fault Management and Improved Computer-based Fault Location

    E-Print Network [OSTI]

    Dong, Yimai

    2013-11-07T23:59:59.000Z

    )’s regulation on power quality. Optimization in fault management tasks has the potential of improving system reliability by reducing the duration and scale of outages caused by faults through fast fault isolation and service restoration. The research reported...

  20. Evaluation of faulting characteristics and ground acceleration associated with recent movement along the Meers Fault, Southwestern Oklahoma

    E-Print Network [OSTI]

    Burrell, Richard Dennis

    1997-01-01T23:59:59.000Z

    Recent studies have shown that a 27 km section of the Meers Fault was reactivated during Holocene time. Although these studies have proven the occurrence of recent fault activity, many basic characteristics of the faulting remain unresolved...

  1. An algorithm for faulted phase and feeder selection under high impedance fault conditions

    E-Print Network [OSTI]

    Benner, Carl Lee

    1988-01-01T23:59:59.000Z

    proximate lines served by the same substation. Because of this signal propagation, a fault will be detected simultaneously on the faulted line and possibly several other lines served by the substation. Since it would not be plausible for a utility company... to deenergize the entire area served by a substation due to a high impedance fault on one lateral, a technique is needed to discriminate the faulted line from neighboring healthy feeders and healthy phases of the faulted feeder. Such a technique would also...

  2. active fault segments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fault activation Kuzmanov, Georgi 140 Early stage evolution of growth faults: 3D seismic insights from the Levant Basin, Eastern Mediterranean Materials Science Websites...

  3. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    E-Print Network [OSTI]

    Najafi, Massieh

    2010-01-01T23:59:59.000Z

    in Fault Diagnostics for HVAC Systems Massieh Najafi 1 ,tools for determining HVAC diagnostics, methods todetect faults in HVAC systems are still generally

  4. Acid Fracture and Fracture Conductivity Study of Field Rock Samples

    E-Print Network [OSTI]

    Underwood, Jarrod

    2013-11-15T23:59:59.000Z

    (Black and Hower 1965). Clays consist of negatively charged aluminosilicate layers kept together by cations. The most characteristic property is their ability to adsorb water between the layers, resulting in strong repulsive forces and clay expansion... chemicals used in water fracturing such as friction reducers, fluid-loss additives, and surfactants (Black and Hower 1965). The samples used in this study had significant clay-like content. To prevent swelling, a 2% KCl solution was used throughout...

  5. Fault-tolerant TCP mechanisms 

    E-Print Network [OSTI]

    Satapati, Suresh Kumar

    2000-01-01T23:59:59.000Z

    point (TSAPs). In BSD, a service access point is a TCP socket identified by an IP address and port number, A TCP based fault-tolerant service is realized by replicating a server program onto one or more hosts and by having all replicas bind... backup sends the SEQUENCE NUMBER of the segment it recently sent. Since the primary server doesn't exist, the client does not acknowledge. The TCP on backup server keeps retransmitting the same segment, which can be counted to initiate a...

  6. Fault Controlled | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway,FarmersFastcap SystemsShear Zone:Fault

  7. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01T23:59:59.000Z

    responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

  8. Coupled Flow and Deformation Modeling of Carbon Dioxide Migration in the Presence of a Caprock Fracture during Injection

    SciTech Connect (OSTI)

    Siriwardane, Hema J.; Gondle, Raj K.; Bromhal, Grant S.

    2013-08-01T23:59:59.000Z

    Understanding the transport of carbon dioxide (CO{sub 2}) during long-term CO{sub 2} injection into a typical geologic reservoir, such as a saline aquifer, could be complicated because of changes in geochemical, hydrogeological, and hydromechanical behavior. While the caprock layer overlying the target aquifer is intended to provide a tight, impermeable seal in securing injected CO{sub 2}, the presence of geologic uncertainties, such as a caprock fracture or fault, may provide a channel for CO{sub 2} leakage. There could also be a possibility of the activation of a new or existing dormant fault or fracture, which could act as a leakage pathway. Such a leakage event during CO{sub 2} injection may lead to a different pressure and ground response over a period of time. In the present study, multiphase fluid flow simulations in porous media coupled with geomechanics were used to investigate the overburden geologic response and plume behavior during CO{sub 2} injection in the presence of a hypothetical permeable fractured zone in a caprock, existing or activated. Both single-phase and multiphase fluid flow simulations were performed. The CO{sub 2} migration through an existing fractured zone leads to changes in the fluid pressure in the overburden geologic layers and could have a significant impact on ground deformation behavior. Results of the study show that pressure signatures and displacement patterns are significantly different in the presence of a fractured zone in the caprock layer. The variation in pressure and displacement signatures because of the presence of a fractured zone in the caprock at different locations may be useful in identifying the presence of a fault/fractured zone in the caprock. The pressure signatures can also serve as a mechanism to identify the activation of leakage pathways through the caprock during CO{sub 2} injection. Pressure response and ground deformation behavior from sequestration modeling could be useful in the development of smart technologies to monitor safe CO{sub 2} storage and understand CO{sub 2} transport, with limited field instrumentation.

  9. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    SciTech Connect (OSTI)

    Boles, James [Professor

    2013-05-24T23:59:59.000Z

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  10. Optimized Fault Location Final Project Report

    E-Print Network [OSTI]

    Engineering Research Center Optimized Fault Location Concurrent Technologies Corporation Final Project Report by the Concurrent Technologies Corporation (CTC) and the Power Systems Engineering Research Center (PSERC). NeitherOptimized Fault Location Final Project Report Power Systems Engineering Research Center A National

  11. Sensor Fault Diagnosis Using Principal Component Analysis 

    E-Print Network [OSTI]

    Sharifi, Mahmoudreza

    2010-07-14T23:59:59.000Z

    The purpose of this research is to address the problem of fault diagnosis of sensors which measure a set of direct redundant variables. This study proposes: 1. A method for linear senor fault diagnosis 2. An analysis of isolability and detectability...

  12. Sensor Fault Diagnosis Using Principal Component Analysis

    E-Print Network [OSTI]

    Sharifi, Mahmoudreza

    2010-07-14T23:59:59.000Z

    The purpose of this research is to address the problem of fault diagnosis of sensors which measure a set of direct redundant variables. This study proposes: 1. A method for linear senor fault diagnosis 2. An analysis of isolability and detectability...

  13. INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS

    E-Print Network [OSTI]

    Povinelli, Richard J.

    INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano M. da Silva, B.S. A Thesis;i Abstract Induction motors are used worldwide as the "workhorse" in industrial applications material. However, induction motor faults can be detected in an initial stage in order to prevent

  14. Self-triggering superconducting fault current limiter

    DOE Patents [OSTI]

    Yuan, Xing (Albany, NY); Tekletsadik, Kasegn (Rexford, NY)

    2008-10-21T23:59:59.000Z

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  15. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

    1999-08-10T23:59:59.000Z

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

  16. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

    1999-08-10T23:59:59.000Z

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

  17. TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwater 4aSyntheticTAU SolarTDKCOSO

  18. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2008-10-10T23:59:59.000Z

    conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries... different or special methods for completion, stimulation, and/or production techniques to retrieve the resource. Natural gas from coal or coal bed methane, tight gas sands, shale gas, and gas hydrates are all examples of unconventional gas reservoirs...

  19. I N F I N I T E CONDUCTIVITY FRACTURE NATURALLY FRACTURED RESERVOIR

    E-Print Network [OSTI]

    Stanford University

    I N F I N I T E CONDUCTIVITY FRACTURE I N A NATURALLY FRACTURED RESERVOIR A REPORT SUBMITTED How& #12;ABSTRACT This r e p o r t describes t h e behavior of a n a t u r a l l y fractured r e s e r v o i r when a well is producing a t constant rate through an i n f i n i t e conductivity fracture

  20. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01T23:59:59.000Z

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  1. Regional Analysis And Characterization Of Fractured Aquifers...

    Open Energy Info (EERE)

    Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    2014-06-22T23:59:59.000Z

    Wave Propagation in Fractured. Poroelastic Media. WCCM, Barcelona, Spain, July 2014. Juan E. Santos,. 1. 1. Instituto del Gas y del Petr´oleo (IGPUBA), UBA,

  3. Fracturing technology poised for rapid advancement

    SciTech Connect (OSTI)

    Von Flatern, R.

    1993-10-01T23:59:59.000Z

    This paper summarizes the advances and current status of hydraulic fracturing and the industry's ability to design and predict the results. Although modeling techniques have improved over the years, there still is no model which can be considered very reliable. The paper considers alternatives to help improve the reliability of these models such as on-site quality control. This quality control aspect entails the site-specific tailoring of a fracturing fluid to be better suited for the target fracturing zone environment and adjusting the fluid properties accordingly. It also entails various methods for fluid injection and placement of propping agents. Some future trends in hydraulic fracturing are also discussed.

  4. Fracture permeability and seismic wave scattering ŒPoroelastic ...

    E-Print Network [OSTI]

    Seiji Nakagawa

    2010-02-03T23:59:59.000Z

    Jun 18, 2010 ... The new model contains fracture permeability in the plan-parallel direction. ... Division of Chemical Sciences of the U.S. Department of Energy ...

  5. Geothermal: Sponsored by OSTI -- Fracture Characterization in...

    Office of Scientific and Technical Information (OSTI)

    Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

  6. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

  7. Microseismic Tracer Particles for Hydraulic Fracturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture stimulation of...

  8. Fault-Tolerant CCM Middleware for Embedded Adaptive Dependability (MEAD)

    E-Print Network [OSTI]

    Narasimhan, Priya

    Fault-Tolerant CCM Middleware for Embedded Adaptive Dependability (MEAD) Real-Time Fault Narasimhan Carnegie Mellon University CCM Workshop, Nashville, TN December 10, 2003 #12;12/11/2003 Page 2 Model precursor to a real-time fault tolerant CCM ­ Real-Time Fault Tolerant CORBA Standard RFP launched

  9. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01T23:59:59.000Z

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  10. Mechanical Models of Fault-Related Folding

    SciTech Connect (OSTI)

    Johnson, A. M.

    2003-01-09T23:59:59.000Z

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  11. The Role of Acidizing in Proppant Fracturing in Carbonate Reservoirs

    E-Print Network [OSTI]

    Densirimongkol, Jurairat

    2010-10-12T23:59:59.000Z

    in fracture conductivity and unsuccessful stimulation treatment. In early years, because of the increase in the success of proppant fracturing, proppant partial monolayer has been put forward as a method that helps generate the maximum fracture conductivity...

  12. Seismic characterization of fractured reservoirs using 3D double beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01T23:59:59.000Z

    We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

  13. Efficient Double-Beam Characterization for Fractured Reservoir

    E-Print Network [OSTI]

    Zheng, Yingcai

    We proposed an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. Based on the diffraction theory, the scattered wave ...

  14. Incorporating Rigorous Height Determination into Unified Fracture Design

    E-Print Network [OSTI]

    Pitakbunkate, Termpan

    2010-10-12T23:59:59.000Z

    to find the maximum productivity index for a given proppant amount. Then, the dimensionless fracture conductivity index corresponding to the maximum productivity index can be computed. The penetration ration, the fracture length, and the propped fracture...

  15. Studying Hydraulic Fracturing through Time-variant Seismic Anisotropy

    E-Print Network [OSTI]

    Liu, Qifan

    2013-10-01T23:59:59.000Z

    . Studying seismic anisotropy by shear wave splitting can help us better understand the relationship between hydraulic fracturing and fracture systems. Shear wave splitting can be caused by fracturing and also can naturally take place in most sedimentary...

  16. Ductile fracture modeling : theory, experimental investigation and numerical verification

    E-Print Network [OSTI]

    Xue, Liang, 1973-

    2007-01-01T23:59:59.000Z

    The fracture initiation in ductile materials is governed by the damaging process along the plastic loading path. A new damage plasticity model for ductile fracture is proposed. Experimental results show that fracture ...

  17. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    injection into a fractured reservoir system. A reservoirIn the case of fractured reservoirs, Equations (25) and (26)c ww q a >> For fractured reservoirs, the former expression

  18. Laboratory-scale fracture conductivity created by acid etching 

    E-Print Network [OSTI]

    Pournik, Maysam

    2009-05-15T23:59:59.000Z

    Success of acid fracturing treatment depends greatly on the created conductivity under closure stress. In order to have sufficient conductivity, the fracture face must be non-uniformly etched while the fracture strength maintained to withstand...

  19. The Statistical Reservoir Model: calibrating faults and fractures, and predicting reservoir response to water flood

    E-Print Network [OSTI]

    geomechanics to have a significant influence on hydrocarbon production rates through changes in the effective 2004). Geomechanics not only predicts a reservoir response in the near field, but also at long range i

  20. FRACTURE MODELING AND FAULT ZONE CHARACTERISTICS APPLIED TO RESERVOIR CHARACTERIZATION OF THE RULISON GAS FIELD,

    E-Print Network [OSTI]

    that incorporates geologic well data, three dimensional seismic data, geomechanical analysis, and well production been calculated based on available well data. Incorporation of geomechanical stresses allows the known geomechanical properties of the reservoir interval. Ultimately, this model highlights

  1. Finite-difference modeling of faults and fractures Richard T. Coates ...

    E-Print Network [OSTI]

    2010-06-09T23:59:59.000Z

    Greenhorn Shale (Jones and Wang, 1981), i.e., c 11 = 22.70 GPa, c33 = 34.30 GPa, c13 = 10.70 GPa, and c55 = 5.40 GPa with the 1-direction taken horizontal ...

  2. Mesoscale fracture fabric and paleostress along the San Andreas fault at SAFOD 

    E-Print Network [OSTI]

    Almeida, Rafael Vladimir

    2009-05-15T23:59:59.000Z

    ) exhumation related to uplift of the regional Coast Ranges during the late Cenozoic [Blythe et al., 2004]. These data indicate that in spite of having a lateral transport of 160 km over the last 5 Myr [e.g. Sims, 1993], only 1 km of net vertical motion... occurred during the last 60 Myr [Blythe et al., 2004]. In contrast to the Salinian block, the block on the northeast side of the SAF is complexly deformed. The northeastern block is composed of the Franciscan Complex, overlain by the Great Valley...

  3. An Analysis of Surface and Subsurface Lineaments and Fractures for Oil and Gas Exploration in the Mid-Continent Region

    SciTech Connect (OSTI)

    Guo, Genliang; and George, S.A.

    1999-04-08T23:59:59.000Z

    An extensive literature search was conducted and geological and mathematical analyses were performed to investigate the significance of using surface lineaments and fractures for delineating oil and gas reservoirs in the Mid-Continent region. Tremendous amount of data were acquired including surface lineaments, surface major fracture zones, surface fracture traces, gravity and magnetic lineaments, and Precambrian basement fault systems. An orientation analysis of these surface and subsurface linear features was performed to detect the basic structural grains of the region. The correlation between surface linear features and subsurface oil and gas traps was assessed, and the implication of using surface lineament and fracture analysis for delineating hydrocarbon reservoirs in the Mid-Continent region discussed. It was observed that the surface linear features were extremely consistent in orientation with the gravity and magnetic lineaments and the basement faults in the Mid-Continent region. They all consist of two major sets bending northeast and northwest, representing, therefore, the basic structural grains of the region. This consistency in orientation between the surface and subsurface linear features suggests that the systematic fault systems at the basement in the Mid-Continent region have probably been reactivated many times and have propagated upward all the way to the surface. They may have acted as the loci for the development of other geological structures, including oil and gas traps. Also observed was a strong association both in orientation and position between the surface linear features and the subsurface reservoirs in various parts of the region. As a result, surface lineament and fracture analysis can be used for delineating additional oil and gas reserves in the Mid-Continent region. The results presented in this paper prove the validity and indicate the significance of using surface linear features for inferring subsurface oil and gas reservoirs in the Mid-Continent region. Any new potential oil and gas reservoirs in the Mid-Continent region, if they exist, will be likely associated with the northeast- and northwest-trending surface lineaments and fracture traces in the region.

  4. 1. Detect ground faults in PV arrays mounted on the roofs of 2. Interrupt the fault current

    E-Print Network [OSTI]

    Johnson, Eric E.

    1. Detect ground faults in PV arrays mounted on the roofs of dwellings 2. Interrupt the fault current 3. Indicate that a ground fault had occurred 4. Disconnect the faulted part of the PV array 5. "Crowbar" (short-circuit) the PV array The original GFPD prototype was developed in two versions that were

  5. Field-Scale Effective Matrix Diffusion Coefficient for Fractured Rock: Results From Literature Survey

    E-Print Network [OSTI]

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2008-01-01T23:59:59.000Z

    Dispersed fluid flow in fractured reservoirs: An analysis ofa hydraulically fractured granite geothermal reservoir, Soc.

  6. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    seismic parameters for fractured reservoirs when the crackin a naturally fractured gas reservoir, The Leading Edge,

  7. Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike 

    E-Print Network [OSTI]

    Huntsman, Brent Stanley

    1983-01-01T23:59:59.000Z

    OF FIELD MAPPING Methods . Thrust Faults . The Wind Ridge Thrust Fault System The Red Rocks Thrust Fault System CLAY MODEL STUDIES Purpose and Description Model Results DISCUSSION OF RESULTS Kinematics of the Red Rocks Thrust Fault Termination... . Kinematics of the Southern Wind Ridge Thrust Fault . . . A Conceptual Model of the Red Rocks Thrust Fault Termination Implications of the Red Rocks Fault Termination . . . . . . Page V1 V11 1X X1 X11 7 9 17 18 18 21 24 27 35 35 38 49 49...

  8. Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method.

    E-Print Network [OSTI]

    Tao, Qingfeng

    2010-07-14T23:59:59.000Z

    finite difference method to solve the fluid flow in fractures, a fully coupled displacement discontinuity method to build the global relation of fracture deformation, and the Barton-Bandis model of fracture deformation to build the local relation...

  9. active fracture model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models Texas A&M University - TxSpace Summary: Determining fracture characteristics...

  10. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

  11. Images of Fracture Sustainability Test on Stripa Granite

    SciTech Connect (OSTI)

    Tim Kneafsey

    2014-05-11T23:59:59.000Z

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  12. Detecting Fractures Using Technology at High Temperatures and...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.1 Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug...

  13. Images of Fracture Sustainability Test on Stripa Granite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Kneafsey

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  14. acetabular internal fracture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  15. age fracture mechanics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  16. alloys fracture mechanics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  17. applying fracture mechanics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  18. advanced fracture characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  19. Identification of MHF Fracture Planes and Flow Paths- a Correlation...

    Open Energy Info (EERE)

    flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the...

  20. Fracture Evolution Following a Hydraulic Stimulation within an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a...

  1. Monitoring of Fracture Cri0cal Steel Bridges

    E-Print Network [OSTI]

    Minnesota, University of

    #12;Monitoring of Fracture Cri0cal Steel Bridges: Acous0c Emission Sensors system on other fracture cri0cal steel bridges #12;Project Impact #12;Thank

  2. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Broader source: Energy.gov (indexed) [DOE]

    Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers...

  3. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

  4. Fault Tolerant Control using Cartesian Genetic Programming

    E-Print Network [OSTI]

    Fernandez, Thomas

    Fault Tolerant Control using Cartesian Genetic Programming Yoshikazu Hirayama University of York]: Robotics-- Sensors; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems General Terms Algorithms, Reliability Keywords cartesian genetic programming, evolutionary

  5. Modeling of Acid Fracturing in Carbonate Reservoirs

    E-Print Network [OSTI]

    Al Jawad, Murtada s

    2014-06-05T23:59:59.000Z

    equations are used to draw 3D velocity and pressure profiles. Part of the fluid diffuses or leaks off into the fracture walls and dissolves part of the fracture face according to the chemical reaction below. 2H^(+)(aq) + CO((2-)/3) ? H_(2 )CO_(3)(aq) ? CO...

  6. Accounting for Remaining Injected Fracturing Fluid 

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  7. Accounting for Remaining Injected Fracturing Fluid

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  8. Fracture of synthetic diamond M. D. Droty

    E-Print Network [OSTI]

    Ritchie, Robert

    of synthetic polycrystalline diamond make it a promising material for many structural applications studies on the fracture toughness of polycrystalline diamond,29 primarily due to the difficultiesFracture of synthetic diamond M. D. Droty Ctystallume, 3506 Bassett Street, Santa Clara, California

  9. Finite Conductivity Fractures in Elliptical Coordinates

    E-Print Network [OSTI]

    Stanford University

    TO THE DEPARTMENT OF PETROLEUM ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL well performance. Indeed, a large number of wells, which could not otherwise be operated economically, it is important that means be available to evaluate fracture effectiveness. The most widely used tool in fracture

  10. Hydraulic fracturing slurry transport in horizontal pipes

    SciTech Connect (OSTI)

    Shah, S.N.; Lord, D.L. (Halliburton Services (US))

    1990-09-01T23:59:59.000Z

    Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

  11. Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells 

    E-Print Network [OSTI]

    Wang, Wenxin

    2006-04-12T23:59:59.000Z

    This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of ...

  12. Use of fracture surface features to improve core description and fracture interpretation in Niobrara and Gallup formations, Colorado and New Mexico

    SciTech Connect (OSTI)

    Ward, B.J.; Petrusak, R.L.; Kulander, B.R. (Amoco Production Co. Research, Tulsa, OK (USA))

    1989-09-01T23:59:59.000Z

    The Niobrara formation in the Denver basin and the Gallup formation in the eastern San Juan Basin are very fine-grained, low-permeability reservoirs. Natural fracturing provides essential reservoir permeability. When natural and induced fractures are correctly identified in core, understanding of key fractured reservoir characteristics such as fracture spacing, fracture intensity, and fracture size improves greatly. For example, the Gallup has a significant amount of non-mineralized natural fractures which are generally difficult to identify in core as natural. If these fractures are misidentified as induced, fracture intensity may be underestimated and fracture spacing may be overestimated. Diagnostic fracture surface features are very well developed in the Gallup and Niobrara. Proper identification of induced fractures and nonmineralized natural fractures is done by examining these fracture surface features under oblique illumination. The Niobrara cores that were examined provide excellent examples of induced fractures. These cores have predominately mineral-filled and slickened natural fractures. Fracture surface features on the non-mineralized fractures positively identify these fractures as induced and demonstrate that nonmineralized natural fractures are a minor component of the reservoir. The Gallup cores provide excellent examples of the diagnostic surface features of natural fractures. Fractured intervals up to 20 ft long have been recovered in Gallup core. Multiple individual fractures which comprise the larger fractured intervals are identified using fracture surface morphology. This type of detailed fracture description improves evaluations of fractured reservoir quality in the Gallup formation.

  13. GEOLOGIC NOTE Fault linkage and graben

    E-Print Network [OSTI]

    Fossen, Haakon

    . Schultz $ Geomechanics-Rock Fracture Group, Department of Geological Sciences and Engineering/172 (1982), and his Ph.D. in geomechanics from Purdue University (1987). He worked at the Lunar

  14. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect (OSTI)

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24T23:59:59.000Z

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  15. Fault-tolerant Sensor Network based on Fault Evaluation Matrix and Compensation for Intermittent Observation

    E-Print Network [OSTI]

    Fault-tolerant Sensor Network based on Fault Evaluation Matrix and Compensation for Intermittent-tolerant sensor network configuration problem for a target navigation. A sensor network system consists of many sensor nodes and its network connections. Each sensor node can exchange information by wireless

  16. Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation

    SciTech Connect (OSTI)

    Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

    2011-05-15T23:59:59.000Z

    Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

  17. Flow of groundwater and transport of contaminants through saturated fractured geologic media

    SciTech Connect (OSTI)

    Steele, T.D.; Kunkel, J.R.; Way, S.C.; Koenig, R.A.

    1989-06-01T23:59:59.000Z

    This report documents the results of several field investigations conducted during the early part of 1988 to characterize the Roza Member basalt aquifer of the Wanapum Formation of the Columbia River Basalt Group. A research wellfield was implemented and field tests conducted to lithologically classify subsurface geologic media and hydrologic parameters in an 800- by 1400-foot area located in the northwest quarter of Section 16, T.25N, R.34E, six miles south of the town of Creston in Lincoln County, Washington. This final project report assimilates the data and information generated by the study for possible eventual application to repository site characterization and performance prediction in fractured geologic media. The relatively high-yielding aquifers of the Roza Member basalt are separated by claystone aquitards and are hydrologically interrupted by at least two different subsurface hydrologic structures. Water-level data were collected over an 18-month period and used to assess seasonal variations in regional and local hydraulic gradient. Additional wellbore slug tests and two more passive (nonpumping) tracer tests enabled calculation of equivalent hydraulic apertures and effective porosities for the Roza basalt flow top. Analysis of data from two pumping tests provided a basis for calculation of transmissivities and storage coefficients for the Roza basalt. 31 refs., 97 figs., 15 tabs.

  18. Study of Chelyabinsk LL5 meteorite fragment with a light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution

    SciTech Connect (OSTI)

    Maksimova, Alevtina A.; Petrova, Evgeniya V.; Grokhovsky, Victor I. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Oshtrakh, Michael I., E-mail: oshtrakh@gmail.com; Semionkin, Vladimir A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation and Department of Experimental Physics, Institute of Physics and Technology, Ura (Russian Federation)

    2014-10-27T23:59:59.000Z

    Study of Chelyabinsk LL5 ordinary chondrite fragment with a light lithology and its fusion crust, fallen on February 15, 2013, in Russian Federation, was carried out using Mössbauer spectroscopy with a high velocity resolution. The Mössbauer spectra of the internal matter and fusion crust were fitted and all components were related to iron-bearing phases such as olivine, pyroxene, troilite, Fe-Ni-Co alloy, and chromite in the internal matter and olivine, pyroxene, troilite, Fe-Ni-Co alloy, and magnesioferrite in the fusion crust. A comparison of the content of different phases in the internal matter and in the fusion crust of this fragment showed that ferric compounds resulted from olivine, pyroxene, and troilite combustion in the atmosphere.

  19. Fracture-resistant lanthanide scintillators

    DOE Patents [OSTI]

    Doty, F. Patrick (Livermore, CA)

    2011-01-04T23:59:59.000Z

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  20. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30T23:59:59.000Z

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  1. High Energy Gas Fracturing Test

    SciTech Connect (OSTI)

    Schulte, R.

    2001-02-27T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  2. Stresses and fractures in the Frontier Formation, Green River Basin, predicted from basin-margin tectonic element interactions

    SciTech Connect (OSTI)

    Lorenz, J.C.

    1996-01-01T23:59:59.000Z

    Natural fractures and in situ stresses commonly dictate subsurface reservoir permeability and permeability anisotropy, as well as the effectiveness of stimulation techniques in low-permeability, natural gas reservoirs. This paper offers an initial prediction for the orientations of the fracture and stress systems in the tight gas reservoirs of the Frontier Formation, in the Green River basin of southwestern Wyoming. It builds on a previous report that addressed fractures and stresses in the western part of the basin and on ideas developed for the rest of the basin, using the principle that thrust faults are capable of affecting the stress magnitudes and orientations in little-deformed strata several hundreds of kilometers in front of a thrust. The prediction of subsurface stresses and natural fracture orientations is an undertaking that requires the willingness to revise models as definitive data are acquired during drilling. The predictions made in this paper are offered with the caveat that geology in the subsurface is always full of surprises.

  3. Coupling schemes for modeling hydraulic fracture propagation using the XFEM

    E-Print Network [OSTI]

    Peirce, Anthony

    Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we

  4. Calibration of hydraulic and tracer tests in fractured media

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Calibration of hydraulic and tracer tests in fractured media represented by a DFN Model L. D. Donado, X. Sanchez-Vila, E. Ruiz* & F. J. Elorza** * Enviros Spain S.L. ** UPM #12;Fractured Media Water flows through fractures (matrix basically impervious ­ though relevant to transport) Fractures at all

  5. Basin center - fractured source rock plays within tectonically segmented foreland (back-arc) basins: Targets for future exploration

    SciTech Connect (OSTI)

    Weimer, R.J. [Colorado School of Mines, Golden, CO (United States)

    1994-09-01T23:59:59.000Z

    Production from fractured reservoirs has long been an industry target, but interest in this type play has increased recently because of new concepts and technology, especially horizontal drilling. Early petroleum exploration programs searched for fractured reservoirs from shale, tight sandstones, carbonates, or basement in anticlinal or fault traps, without particular attention to source rocks. Foreland basins are some of the best oil-generating basins in the world because of their rich source rocks. Examples are the Persian Gulf basin, the Alberta basin and Athabasca tar sands, and the eastern Venezuela basin and Orinoco tar sands. Examples of Cretaceous producers are the wrench-faulted La Paz-Mara anticlinal fields, Maracaibo basin, Venezuela; the active Austin Chalk play in an extensional area on the north flank of the Gulf of Mexico continental margin basin; and the Niobrara Chalk and Pierre Shale plays of the central Rocky Mountains, United States. These latter plays are characteristic of a foreland basin fragmented into intermontane basins by the Laramide orogeny. The Florence field, Colorado, discovered in 1862, and the Silo field, Wyoming, discovered in 1980, are used as models for current prospecting and will be described in detail. The technologies applied to fracture-source rock plays are refined surface and subsurface mapping from new log suites, including resistivity mapping; 3D-3C seismic, gravity, and aeromagnetic mapping; borehole path seismic mapping associated with horizontal drilling; fracture mapping with the Formation MicroScanner and other logging tools; measurements while drilling and other drilling and completion techniques; surface geochemistry to locate microseeps; and local and regional lineament discrimination.

  6. Faulted joints: kinematics, displacementlength scaling relations and criteria for their identication

    E-Print Network [OSTI]

    Engelder, Terry

    and kinematics based on two sets of joints, pinnate joints and fault striations, reveal that some mesoscale faults (i.e., faults without linked fault segments) at the mesoscale: ªneoformed faultsº which form

  7. Microfracture fabric of the Punchbowl fault zone, San Andreas System, California

    E-Print Network [OSTI]

    Wilson, Jennifer Elizabeth

    1999-01-01T23:59:59.000Z

    The origin of fault zone structure is not completely understood. On the basis of mechanistic models of faulting, the characteristic internal structure of faults may largely be established early during growth of the fault, or it may develop...

  8. Robust Condition Monitoring and Fault Diagnosis of Variable Speed Induction Motor Drives

    E-Print Network [OSTI]

    Choi, Seungdeog

    2012-02-14T23:59:59.000Z

    The main types of faults studied in the literature are commonly categorized as electrical faults and mechanical faults. In addition to well known faults, the performance of a diagnostic algorithm and its operational reliability in harsh environments...

  9. A Hybrid Model Based and Statistical Fault Diagnosis System for Industrial Process

    E-Print Network [OSTI]

    Lin, Chen-Han

    2014-11-21T23:59:59.000Z

    This thesis presents a hybrid model based and statistical fault diagnosis system, which applied on the nonlinear three-tank model. The purpose of fault diagnosis is generating and analyzing the residual to find out the fault occurrence. This fault...

  10. Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test

    E-Print Network [OSTI]

    Correa Castro, Juan

    2011-08-08T23:59:59.000Z

    make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a...

  11. Three dimensional geologic modeling of a fractured reservoir, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01T23:59:59.000Z

    A geological assessment of a large carbonate reservoir in Saudi Arabia shows that it is a Type 2 fractured reservoir in which fractures provide the essential permeability. Intercrystalline microporosity, found within the basinally deposited mudstones and wackestones, is the dominant porosity type. Near-vertical, east-west-oriented extension fractures are preferentially localized in low-to-moderate porosities associated with stylolites. Porosity/fracture density relationships, combined with the results of structural curvature mapping, yielded a 3-dimensional model of fracture density. Fracture permeability and fracture porosity distributions were generated by integrating fracture density modeling results with average fracture aperture information derived from well test data. Dramatic differences exist between matrix- and fracture-related porosity, permeability models that help explain observed production behavior within the field. These models are being used by reservoir and simulation engineers for daily reservoir management, history matching, and long-term development drilling planning.

  12. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    SciTech Connect (OSTI)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01T23:59:59.000Z

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  13. Percutaneous Vertebroplasty for Osteoporotic Compression Fracture: Multivariate Study of Predictors of New Vertebral Body Fracture

    SciTech Connect (OSTI)

    Komemushi, Atsushi, E-mail: kome64@yo.rim.or.jp; Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo [Kansai Medical University, Department of Radiology (Japan); Komemushi, Sadao [Kinki University, Schoool of Agriculture (Japan); Sawada, Satoshi [Kansai Medical University, Department of Radiology (Japan)

    2006-08-15T23:59:59.000Z

    Purpose. To investigate the risk factors and relative risk of new compression fractures following vertebroplasty. Methods. Initially, we enrolled 104 consecutive patients with vertebral compression fractures caused by osteoporosis. A total of 83 of the 104 patients visited our hospital for follow-up examinations for more than 4 weeks after vertebroplasty. Logistic regression analysis of the data obtained from these 83 patients was used to determine relative risks of recurrent compression fractures, using 13 different factors. Results. We identified 59 new fractures in 30 of the 83 patients: 41 new fractures in vertebrae adjacent to treated vertebrae; and 18 new fractures in vertebrae not adjacent to treated vertebrae. New fractures occurred in vertebrae adjacent to treated vertebrae significantly more frequently than in vertebrae not adjacent to treated vertebrae. Only cement leakage into the disk was a significant predictor of new vertebral body fracture after vertebroplasty (odds ratio = 4.633). None of the following covariates were associated with increased risk of new fracture: age, gender, bone mineral density, the number of vertebroplasty procedures, the number of vertebrae treated per procedure, the cumulative number of vertebrae treated, the presence of a single untreated vertebra between treated vertebrae, the presence of multiple untreated vertebrae between treated vertebrae, the amount of bone cement injected per procedure, the cumulative amount of bone cement injected, cement leakage into the soft tissue around the vertebra, and cement leakage into the vein.

  14. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

    2007-03-31T23:59:59.000Z

    For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

  15. Universal asymptotic umbrella for hydraulic fracture modeling

    E-Print Network [OSTI]

    Linkov, Aleksandr M

    2014-01-01T23:59:59.000Z

    The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

  16. Gas condensate damage in hydraulically fractured wells

    E-Print Network [OSTI]

    Adeyeye, Adedeji Ayoola

    2004-09-30T23:59:59.000Z

    Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant...

  17. Geomechanical review of hydraulic fracturing technology

    E-Print Network [OSTI]

    Arop, Julius Bankong

    2013-01-01T23:59:59.000Z

    Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

  18. Fracture induced anisotropy in viscoelastic media

    E-Print Network [OSTI]

    santos,,,

    pp = 28 MPa, Z. ?1. N. = (14.4+3.6i) GPa, Z. ?1. T. = (21 + 2.6i) GPa,. We consider a set of equispaced fractures with L = 1 cm and 80 % binary fractal variations ...

  19. Multiphase flow in fractured porous media

    SciTech Connect (OSTI)

    Firoozabadi, A.

    1995-02-01T23:59:59.000Z

    The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

  20. Dynamic Fracture Toughness of Polymer Composites

    E-Print Network [OSTI]

    Harmeet Kaur

    2012-02-14T23:59:59.000Z

    bar with required instrumentation to obtain load-history and initiation of crack propagation parameters followed by finite element analysis to determine desired dynamic properties. Single edge notch bend(SENB) type geometry is used for Mode-I fracture...

  1. Infiltration and Seepage Through Fractured Welded Tuff

    SciTech Connect (OSTI)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20T23:59:59.000Z

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  2. Anomalous transport through porous and fractured media

    E-Print Network [OSTI]

    Kang, Peter Kyungchul

    2014-01-01T23:59:59.000Z

    Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured ...

  3. Synthesis and evaluation of fault-tolerant quantum computer architectures

    E-Print Network [OSTI]

    Cross, Andrew W. (Andrew William), 1979-

    2005-01-01T23:59:59.000Z

    Fault-tolerance is the cornerstone of practical, large-scale quantum computing, pushed into its prominent position with heroic theoretical efforts. The fault-tolerance threshold, which is the component failure probability ...

  4. FEATURE BASED HANDLING OF SURFACE FAULTS IN COMPACT DISC PLAYERS

    E-Print Network [OSTI]

    Wickerhauser, M. Victor

    two photo detectors. The distances are the distance from the actual position of the OPU such surface faults. The core idea is not to rely on sensor information during the fault. The sensor signals

  5. Observations on the capability of the Criner fault, southern Oklahoma

    E-Print Network [OSTI]

    Williamson, Shawn Collin

    1996-01-01T23:59:59.000Z

    of the present study suggest that the Criner fault is an old tectonic feature with a deceptively youthful geomorphic appearance. Differential erosion has likely exhumed the Criner fault-line scarp in the resistant Ordovician limestone of the Criner Hills...

  6. Design and analysis of a fault tolerant network processor

    E-Print Network [OSTI]

    Desai, Shaishav A

    1998-01-01T23:59:59.000Z

    This thesis investigates the effect of transient faults on a processor and proposes on-chip fault tolerant design techniques to improve its reliability. The target processor is a general 32-bit, four stage pipeline, dual context RISC style design...

  7. Frictional properties of faults: from observation on the

    E-Print Network [OSTI]

    Winfree, Erik

    Frictional properties of faults: from observation on the Longitudinal Valley Fault, Taiwan myself lucky to do what I love and to wake up every day, happy and excited about the day to come

  8. East-west faults due to planetary contraction

    E-Print Network [OSTI]

    Beuthe, Mikael

    2010-01-01T23:59:59.000Z

    Contraction, expansion and despinning have been common in the past evolution of Solar System bodies. These processes deform the lithosphere until it breaks along faults. The type and orientation of faults are usually determined under the assumption of a constant lithospheric thickness, but lithospheric thinning can occur at the equator or at the poles due either to latitudinal variation in solar insolation or to localized tidal dissipation. Using thin elastic shells with variable thickness, I show that the equatorial thinning of the lithosphere transforms the homogeneous and isotropic fault pattern caused by contraction/expansion into a pattern of faults striking east-west, preferably formed in the equatorial region. By contrast, lithospheric thickness variations only weakly affect the despinning faulting pattern consisting of equatorial strike-slip faults and polar normal faults. If contraction is added to despinning, the despinning pattern first shifts to thrust faults striking north-south and then to thrus...

  9. New approach to the fault location problem using synchronized sampling

    E-Print Network [OSTI]

    Mrkic, Jasna

    1994-01-01T23:59:59.000Z

    This thesis presents a new approach to solving the problem of fault location on a transmission line using synchronized data from both ends of the line. The synchronized phase voltage and current samples taken during the fault transient are used...

  10. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15T23:59:59.000Z

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  11. Fracture Conductivity of the Eagle Ford Shale

    E-Print Network [OSTI]

    Guzek, James J

    2014-07-25T23:59:59.000Z

    , and rock geomechanical properties. Therefore, optimizing conductivity by tailoring a well’s fracturing treatment to local reservoir characteristics is important to the oil and gas industry for economic reasons. The roots of hydraulic fracturing can... of the formation. Sahoo et al. (2013) identified that mineralogy, hydrocarbon filled porosity, and total organic content are most prominent parameters that control Eagle Ford well productivity. Mineral composition determines several geomechanical properties...

  12. Poroelastic response of orthotropic fractured porous media

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-12-01T23:59:59.000Z

    An algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton's second coe#14;fficient and satisfies 0 {<=} #20; B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further goal of the discussion is to determine how many of the poroelastic constants need to be known by other means in order to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a{sub f} ~ 0.1 and the pore fluid is liquid water, then for several cases considered Skempton's B ~ 0:9, so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ~ 0.1, in these examples. The results do however depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann's equations for homogeneous -- but anisotropic -- poroelasticity. Relationships to Skempton's analysis of saturated soils are also noted. The paper concludes with a discussion of alternative methods of analyzing and quantifying fluid-substitution behavior in poroelastic systems, especially for those systems having heterogeneous constitution.

  13. FRACTURE TOUGHNESS VARIABILITY IN F82H

    SciTech Connect (OSTI)

    Gelles, David S.; Sokolov, M.

    2003-09-03T23:59:59.000Z

    The fracture toughness database for F82H displays some anomalous behavior. Metallographic examination reveals banding in the center of 25 mm thick F82H plate, which is more evident in transverse section. The banding is shown to arise because some grains are etched on a very fine scale whereas the remainder is etched more strongly and better delineates the martensite lath structure. However, the banding found does not provide explanation for the anomalous fracture toughness behavior.

  14. TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS

    SciTech Connect (OSTI)

    Morgan, M; Michael Tosten, M; Scott West, S

    2006-07-17T23:59:59.000Z

    The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritium aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.

  15. Experimental characterization of faults on low-voltage systems

    E-Print Network [OSTI]

    Ahmed, Jubayer

    1992-01-01T23:59:59.000Z

    was to simulate a con- trolled arcing fault. Hence, the arcgap was maintained constant for a particular test. A tungsten welding rod was used as the electrode because it does not melt easily. This test was performed on a. single-phase system with 240 volts... better understanding of the problem. These arcing faults and high impedance and incipient faults constitute the previously mentioned low-current faults. Journal model is IEEE Transactions on Power Delivery. Although these problems have been...

  16. Fault seal analysis of Okan and Meren fields, Nigeria

    SciTech Connect (OSTI)

    Eisenberg, R.A. [Chevron Petroleum Technology Co., La Habra, CA (United States); Brenneman, R.J. [Chevron Overseas Petroleum Co., San Ramon, CA (United States); Adeogba, A.A. [Chevron Nigeria Ltd., Lagos (Nigeria)

    1995-08-01T23:59:59.000Z

    The sealing capacity and the dynamic seal behavior of faults between juxtaposed reservoirs were analyzed for Okan and Meren fields, offshore Nigeria. In both fields correlations were found between reservoir performance, juxtaposed fluid types, oil geochemistry, interpreted fluid contact relationships, fault sealing/leaking condition, and calculated smear gouge ratios. Integration of these data has been invaluable in quantifying fault seal risk and may effect depletion strategies for fault-juxtaposed reservoirs within these fields. Fault plane sections defined reservoir juxtapositions and aided visualization of potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materials between the juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character based on fluid contact relationships in proved reservoirs and, in addition, were used to quantify fault seal risk of untested fault-dependent closures in Okan. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and also to risk seal integrity of fault dependent closures within the untested O-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits potential reserves within the O-sand package. In Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, specific G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios. The cross-sealing and/or cross-leaking nature of compartment boundaries at Meren is related to fault displacement variation and the composition of displaced stratigraphy.

  17. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

  18. Photovoltaic ground fault and blind spot electrical simulations.

    SciTech Connect (OSTI)

    Flicker, Jack David; Johnson, Jay

    2013-06-01T23:59:59.000Z

    Ground faults in photovoltaic (PV) systems pose a fire and shock hazard. To mitigate these risks, AC-isolated, DC grounded PV systems in the United States use Ground Fault Protection Devices (GFPDs), e.g., fuses, to de-energize the PV system when there is a ground fault. Recently the effectiveness of these protection devices has come under question because multiple fires have started when ground faults went undetected. In order to understand the limitations of fuse-based ground fault protection in PV systems, analytical and numerical simulations of different ground faults were performed. The numerical simulations were conducted with Simulation Program with Integrated Circuit Emphasis (SPICE) using a circuit model of the PV system which included the modules, wiring, switchgear, grounded or ungrounded components, and the inverter. The derivation of the SPICE model and the results of parametric fault current studies are provided with varying array topologies, fuse sizes, and fault impedances. Closed-form analytical approximations for GFPD currents from faults to the grounded current carrying conductor-known as %E2%80%9Cblind spot%E2%80%9D ground faults-are derived to provide greater understanding of the influence of array impedances on fault currents. The behavior of the array during various ground faults is studied for a range of ground fault fuse sizes to determine if reducing the size of the fuse improves ground fault detection sensitivity. The results of the simulations show that reducing the amperage rating of the protective fuse does increase fault current detection sensitivity without increasing the likelihood of nuisance trips to a degree. Unfortunately, this benefit reaches a limit as fuses become smaller and their internal resistance increases to the point of becoming a major element in the fault current circuit.

  19. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources

    SciTech Connect (OSTI)

    Keller, J.; Kroposki, B.

    2010-01-01T23:59:59.000Z

    This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

  20. Experimental wrench faulting at confining pressure

    E-Print Network [OSTI]

    Bartlett, Wendy Louise

    1980-01-01T23:59:59.000Z

    along the precut, resembling the "flower or palm tree" structure noted by Sylvester and Smith (1976), in the Salton Sea area, California. The bounding fault above the down-dropped block dips at a lower angle to the forcing block-veneer interface than..., the oeometries, ori- gins, and sequence of development of structural elements comprising the fault zones. Specimens (2. 8 or 3. 4 x 3. 4 x 9. 4 cm) are loaded parallel to their longest dimension, at an average displacement rate -3 -1 of 7. 3 x 10 cm sec...

  1. UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault

  2. On Distributed Fault-Tolerant Detection in Wireless Sensor Networks

    E-Print Network [OSTI]

    Huang, Yinlun

    On Distributed Fault-Tolerant Detection in Wireless Sensor Networks Xuanwen Luo, Student Member problems for distributed fault-tolerant detection in wireless sensor networks: 1) how to address both it possible to perform energy- efficient fault-tolerant detection in a wireless sensor network. Index Terms

  3. Outlier Detection Rules for Fault Detection in Solar Photovoltaic Arrays

    E-Print Network [OSTI]

    Lehman, Brad

    , MPPT of the PV inverters, high fault impedance, or degradation of solar cells [1]. Without proper fault Abstract-- Solar photovoltaic (PV) arrays are unique power sources that may have uncleared fault current when utilizing conventional overcurrent protection devices. To monitor the PV operation and detect

  4. A Parametric Spectral Estimator for Faults Detection in Induction Machines

    E-Print Network [OSTI]

    Boyer, Edmond

    since their frequency resolution is limited and additional post-processing algorithms are required of bearing faults. Index Terms--Induction machine, faults detection, bearing faults, stator current that avoids the use of extra sensors since the stator currents are usually available and inexpensive

  5. RIS-M-2311 AUTOMATIC FAULT TREE CONSTRUCTION WITH RIKKE

    E-Print Network [OSTI]

    RISØ-M-2311 AUTOMATIC FAULT TREE CONSTRUCTION WITH RIKKE A COMPENDIUM OF EXAMPLES, VOLUME I BASIC MODELS J.R. Taylor Abstract. Examples of automatically constructed fault trees are given. In this first are intended to illustrate the prin- ciples of fault tree construction using the RIKKE failure analysis system

  6. Ris-M-2311 AUTOMATIC FAULT TREE CONSTRUCTION WITH RIKKE

    E-Print Network [OSTI]

    Risø-M-2311 Vol. 2 AUTOMATIC FAULT TREE CONSTRUCTION WITH RIKKE A COMPENDIUM OF EXAMPLES. VOLUME 2. CONTROL AND SAFETY LOOPS. J.R. Taylor Abstract. This second volume describes the construction of fault In this volume, examples of HIKKE fault tree construction including loops are given. The principles involved were

  7. Statistical estimation of multiple faults in aircraft gas turbine engines

    E-Print Network [OSTI]

    Ray, Asok

    415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

  8. Identifying Security Fault Reports via Text Mining Michael Gegick, 2

    E-Print Network [OSTI]

    Young, R. Michael

    Identifying Security Fault Reports via Text Mining 1 Michael Gegick, 2 Pete Rotella, 1 Tao Xie 1 contains fault reports (FRs) collected from various sources such as development teams, test teams, and end-users. Software or security engineers manually analyze the FRs to label the subset of FRs that are security fault

  9. Diverse neural net solutions to a fault diagnosis problem \\Lambda

    E-Print Network [OSTI]

    Sharkey, Amanda

    Abstract The development of a neural net system for fault diagnosis in a mar­ ine diesel engine system solution to a problem of fault diagnosis in a four­stroke marine diesel engine; that of early to recognise faults in simulated data from a diesel engine; specifically to classify combustion condition

  10. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01T23:59:59.000Z

    u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

  11. A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    simulation of naturally fractured reservoirs, Water Resour.model for fissured fractured reservoir, Soc. Pet. Eng. J. ,behavior of naturally fractured reservoirs, Soc. Pet. Eng.

  12. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01T23:59:59.000Z

    flow in naturally fractured reservoirs: Proceedings, 2ndliquid-dominated, fractured reservoir over a twenty- yeardrawdown. (c) Fractured Reservoir: The double-porosity

  13. An Analytical Solution for Slug-Tracer Tests in Fractured Reservoirs

    E-Print Network [OSTI]

    Shan, Chao; Pruess, Karsten

    2005-01-01T23:59:59.000Z

    Tracer Tests in Fractured Reservoirs Chao Shan and Karstenof chemicals or heat in fractured reservoirs is stronglyin a water-saturated fractured reservoir. The solution shows

  14. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters for polar media

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    waves in such fractured reservoirs (Hsu and Schoenberg,i.e. , for cracked/fractured reservoirs), the vertical phasemore closely. FRACTURED RESERVOIRS AND CRACK-INFLUENCE

  15. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    E-Print Network [OSTI]

    Geiger, S.

    2012-01-01T23:59:59.000Z

    behavior of naturally fractured reservoirs. SPE Journal, R.the Bristol Channel fractured reservoir analogue (a), ?uidfor naturally fractured reservoirs. These simulations are

  16. Brief Guide to the MINC-Method for Modeling Flow and Transport in Fractured Media

    E-Print Network [OSTI]

    Pruess editor, K.

    2010-01-01T23:59:59.000Z

    Simulating Naturally Fractured Reservoirs Using a SubdomainModels of Naturally Fractured Reservoirs, In Situ, 15, (2),for Naturally Fractured Reservoirs, papr,r SPE-11688,

  17. Effects of non-condensible gases on fluid recovery in fractured geothermal reservoirs

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.; Gaulke, Scott

    1986-01-01T23:59:59.000Z

    Simu- lations in Fractured Reservoirs,” Lawrence Berkeleyfrom a twctphase fractured reservoir. T h e results obtainedRecovery in Fractured Geothermal Reservoirs Gudmundur S.

  18. Modeling interfacial fracture in Sierra.

    SciTech Connect (OSTI)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01T23:59:59.000Z

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  19. An algorithm for faulted phase and feeder selection under high impedance fault conditions 

    E-Print Network [OSTI]

    Benner, Carl Lee

    1988-01-01T23:59:59.000Z

    . One method based on increases in third and fifth harmonic symmetrical current components under high impedance fault conditions has been proposed by Balser et. Journal model is IEEE Transactions on Power Delivery. al, of Power Technologies Inc [1...

  20. Realistic fault modeling and quality test generation of combined delay faults

    E-Print Network [OSTI]

    Thadhlani, Ajaykumar A

    2001-01-01T23:59:59.000Z

    coupled lines. To cope up with these realistic testing problems, it is necessary to model the circuit defects by considering the capacitively coupling between lines. This needs a better fault model which can incorporate the local defects (such...

  1. Seismoelectric Imaging of a Shallow Fault System Employing Fault Guided Waves

    E-Print Network [OSTI]

    Cohrs, Frelynn Joseph Reese

    2012-07-16T23:59:59.000Z

    Independent sets of reflection seismic and seismoelectric data were collected, processed, and interpreted with the aim of generating and studying guided waves within a fault zone. While seismic surveys have recently been utilized to investigate...

  2. Evaluation of acid fracturing based on the "acid fracture number" concept

    E-Print Network [OSTI]

    Alghamdi, Abdulwahab

    2006-08-16T23:59:59.000Z

    ................................................................................................. 29 4.2.1 Initial Pad Volume ........................................................................... 29 4.2.2 Acid Strength and Volume...............................................................30 V... stages of pad fluids and acids.11 The reaction of HCl with carbonate formations is fast, especially at high temperatures. This means that the acid will not be able to penetrate deeply down the fracture, which may affect the outcome of acid fracturing...

  3. A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

    2004-03-15T23:59:59.000Z

    Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

  4. Fractured: Experts examine the contentious issue of hydraulic fracturing water use

    E-Print Network [OSTI]

    Wythe, Kathy

    2013-01-01T23:59:59.000Z

    of Fracture Fluid Performance in Oil Shale with Surfactant Additives by X-Ray Tomography Methods (Crisman Institute: Schechter) Re-Use of Produced Waters as Hydraulic Fracturing Fluids (Crisman Institute: Nasr-El-Din) In a joint House Commi#20;ee...

  5. Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary

    E-Print Network [OSTI]

    Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution Samuel H. Haines,1 Ben A. van der Pluijm,1 Matt J intensity measurements using X-ray texture goniometry on 22 natural clay-rich fault gouges from low

  6. We develop a microprocessor design that tolerates hard faults, including fabrication defects and in-field faults,

    E-Print Network [OSTI]

    Sorin, Daniel J.

    1 Abstract We develop a microprocessor design that tolerates hard faults, including fabrication defects and in-field faults, by leveraging existing microprocessor redundancy. To do this, we must: detect FDUs with hard faults. In our reliable microprocessor design, we use DIVA dynamic verification

  7. Thermal anomaly near the Aigio fault, Gulf of Corinth, Greece, maybe due to convection below the fault

    E-Print Network [OSTI]

    Thermal anomaly near the Aigio fault, Gulf of Corinth, Greece, maybe due to convection below intersecting the active Aigio fault, Corinth Rift, Greece. The heat flow is 53 mW/m2 , indicating of Corinth, Greece, maybe due to convection below the fault, Geophys. Res. Lett., 34, L06314, doi:10

  8. Fault Tolerant CORBASpecification, OMG document: ptc/20000404

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    Fault Tolerant CORBASpecification, V1.0 OMG document: ptc/2000­04­04 replaces draft adopted specification ptc/2000­03­04 and submission document orbos/00­01­19 This document is an OMG Final Adopted in the finalization phase. Comments on the content of this document are welcomed, and should be directed to issues

  9. All row, planar fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23T23:59:59.000Z

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  10. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2010-11-23T23:59:59.000Z

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  11. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29T23:59:59.000Z

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  12. Global Trajectory Planning for Fault Tolerant Manipulators

    E-Print Network [OSTI]

    . Khosla Department of Electrical and Computer Engineering and The Robotics Institute, Carnegie Mellon attribute of robot manipulators in a growing range of applications such as space missions, nuclear waste retrieval, and medical robot­ ics. This trend has spawned a research effort in fault toler­ ant robotics

  13. Fault-tolerant, Universal Adiabatic Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel

    2014-03-30T23:59:59.000Z

    Quantum computation has revolutionary potential for speeding computational tasks such as factoring and simulating quantum systems, but the task of constructing a quantum computer is daunting. Adiabatic quantum computation and other ``hands-off" approaches relieve the need for rapid, precise pulsing to control the system, inspiring at least one high-profile effort to realize a hands-off quantum computing device. But is hands-off incompatible with fault-tolerant? Concerted effort and many innovative ideas have not resolved this question but have instead deepened it, linking it to fundamental problems in quantum complexity theory. Here we present a hands-off approach that is provably (a) capable of scalable universal quantum computation in a non-degenerate ground state and (b) fault-tolerant against an analogue of the usual local stochastic fault model. A satisfying physical and numerical argument indicates that (c) it is also fault-tolerant against thermal excitation below a threshold temperature independent of the computation size.

  14. 54 MAY | 2012 Gearbox Fault Detection

    E-Print Network [OSTI]

    Kusiak, Andrew

    , research in fault identification and condition monitoring is war- ranted. In this study, detecting wind of a test wind turbine. The gearbox was retested at the Dynamometer Test Facility (DTF) at NREL. To retest the gearbox, the complete nacelle, and the drive train of the test wind turbine were installed at the DTF

  15. Fault-tolerant quantum computation by anyons

    E-Print Network [OSTI]

    A. Yu. Kitaev

    1997-07-09T23:59:59.000Z

    A two-dimensional quantum system with anyonic excitations can be considered as a quantum computer. Unitary transformations can be performed by moving the excitations around each other. Measurements can be performed by joining excitations in pairs and observing the result of fusion. Such computation is fault-tolerant by its physical nature.

  16. Fault-Tolerant Spanners: Better and Simpler

    E-Print Network [OSTI]

    Dinitz, Michael

    2011-01-01T23:59:59.000Z

    A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults $r$, for all stretch bounds. For stretch $k \\geq 3$ we design a simple transformation that converts every $k$-spanner construction with at most $f(n)$ edges into an $r$-fault-tolerant $k$-spanner construction with at most $O(r^3 \\log n) \\cdot f(2n/r)$ edges. Applying this to standard greedy spanner constructions gives $r$-fault tolerant $k$-spanners with $\\tilde O(r^{2} n^{1+\\frac{2}{k+1}})$ edges. The previous construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends similarly on $n$ but exponentially on $r$ (approximately like $k^r$). For the case $k=2$ and unit-length edges, an $O(r \\log n)$-approximation algorithm is known from recent work of D...

  17. Coordinated Fault Tolerance for High-Performance Computing

    SciTech Connect (OSTI)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08T23:59:59.000Z

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  18. Probabilistic model of fault detection in quantum circuits

    E-Print Network [OSTI]

    Anindita Banerjee; Anirban Pathak

    2009-05-12T23:59:59.000Z

    It is shown that the fault testing for quantum circuits does not follow conventional classical techniques. If probabilistic gate like Hadamard gate is included in a circuit then the classical notion of test vector is shown to fail. We have reported several new and distinguishing features of quantum fault and also presented a general methodology for detection of functional faults in a quantum circuit. The technique can generate test vectors for detection of different kinds of fault. Specific examples are given and time complexity of the proposed quantum fault detection algorithm is reported.

  19. A robust method for fracture orientation and density detection from seismic scattered energy

    E-Print Network [OSTI]

    Fang, Xinding

    2011-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  20. Experimental analysis of the extension to shear fracture transition in Berea Sandstone

    E-Print Network [OSTI]

    Bobich, Jennifer Kay

    2005-11-01T23:59:59.000Z

    and follows Coulomb behavior; however, the angle between the fracture surface and ??1 increases continuously with Pc. Fracture surfaces characteristic of the extension to shear fracture transition appear as linked, stepped extension fractures; the length...

  1. Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and 76 Field, Clinton Co., KY.

    E-Print Network [OSTI]

    SPE 36651 Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and enhanced recovery, production operations in fracture- dominated oil and gas reservoirs. Borehole geophones to study reservoir fracture systems. Methods currently applied to study fracture systems include tilt

  2. THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen; Michael T. Whalen

    2002-01-01T23:59:59.000Z

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. The Lisburne in the main axis of the Brooks Range is characteristically deformed into imbricate thrust sheets with asymmetrical hanging wall anticlines and footwall synclines. In contrast, the Lisburne in the northeastern Brooks Range is characterized by symmetrical detachment folds. The focus of our 2000 field studies was at the boundary between these structural styles in the vicinity of Porcupine Lake, in the Arctic National Wildlife Refuge. The northern edge of thrust-truncated folds in Lisburne is marked by a local range front that likely represents an eastward continuation of the central Brooks Range front. This is bounded to the north by a gently dipping panel of Lisburne with local asymmetrical folds. The leading edge of the flat panel is thrust over Permian to Cretaceous rocks in a synclinal depression. These younger rocks overlie symmetrically detachment-folded Lisburne, as is extensively exposed to the north. Six partial sections were measured in the Lisburne of the flat panel and local range front. The Lisburne here is about 700 m thick and is interpreted to consist primarily of the Wachsmuth and Alapah Limestones, with only a thin veneer of Wahoo Limestone. The Wachsmuth (200 m) is gradational between the underlying Missippian Kayak Shale and the overlying Mississippian Alapah, and increases in resistance upward. The Alapah consists of a lower resistant member (100 m) of alternating limestone and chert, a middle recessive member (100 m), and an upper resistant member (260 m) that is similar to Wahoo in the northeastern Brooks Range. The Wahoo is recessive and is thin (30 m) due either to non-deposition or erosion beneath the sub-Permian unconformity. The Lisburne of the area records two major episodes of transgression and shallowing-upward on a carbonate ramp. Thicknesses and facies vary along depositional strike. Asymmetrical folds, mostly truncated by thrust faults, were studied in and south of the local range front. Fold geometry was documented by surveys of four thrust-truncated folds and two folds not visibly cut by thrusts. A portion of the local range front was mapped to document changes in fold geometry along strike in three dimensions. The folds typically display a long, non-folded gently to moderately dipping backlimbs and steep to overturned forelimbs, commonly including parasitic anticline-syncline pairs. Thrusts commonly cut through the anticlinal forelimb or the forward synclinal hinge. These folds probably originated as detachment folds based on their mechanical stratigraphy and the transition to detachment folds to the north. Their geometry indicates that they were asymmetrical prior to thrust truncation. This asymmetry may have favored accommodation of increasing shortening by thrust breakthrough rather than continued folding. Fracture patterns were documented in the gently dipping panel of Lisburne and the asymmetrical folds within it. Four sets of steeply dipping extension fractures were identified, with strikes to the (1) N, (2) E, (3) N to NW, and (4) NE. The relative timing of these fracture sets is complex and unclear. En echelon sets of fractures are common, and display normal or strike-slip sense. Mesoscopic and penetrative structures are locally well developed, and indicate bed-parallel shear within the flat panel and strain within folds. Three sets of normal faults are well developed in the area, and are unusual

  3. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01T23:59:59.000Z

    cooling of the fracture surfaces results in a significant opening of the fracture, which would influence the rate of geothermal

  4. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  5. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01T23:59:59.000Z

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  6. Hydraulic Fracture Monitoring: A Jonah Field Case Study

    E-Print Network [OSTI]

    Seher, T.

    2011-01-01T23:59:59.000Z

    Hydraulic fracturing involves the injection of a fluid to fracture oil and gas reservoirs, and thus increase their permeability. The process creates numerous microseismic events, which can be used to monitor subsurface ...

  7. Fractional Diffusion Modeling of Electromagnetic Induction in Fractured Rocks

    E-Print Network [OSTI]

    Ge, Jianchao

    2014-08-11T23:59:59.000Z

    -2 km, a zone where pores and fractures over various length scales are highly complicated. Spatial confinement of fluid or electric charge transport by the fractal geometry gives rise to interesting dynamic processes within the pore space and fractures...

  8. Gaseous Detonation-Driven Fracture of Tubes Tong Wa Chao

    E-Print Network [OSTI]

    never asked for anything back. First is Professor Wolfgang Knauss, who guided me in the solid to be consistent with fracture under mixed-mode loading. High-speed movies of the fracture events and blast wave

  9. Laboratory-scale fracture conductivity created by acid etching

    E-Print Network [OSTI]

    Pournik, Maysam

    2009-05-15T23:59:59.000Z

    the closure stress. While there have been several experimental studies conducted on acid fracturing, most of these have not scaled experiments to field conditions and did not account for the effect of rock weakening and etching pattern. Hence, acid fracture...

  10. Development and testing of an advanced acid fracture conductivity apparatus

    E-Print Network [OSTI]

    Zou, ChunLei

    2006-08-16T23:59:59.000Z

    wells. Acid fracturing is a standard practice to increase the production rate and to improve ultimate recovery in carbonate reservoirs. There have been successful cases in most carbonate reservoirs around the world. However acid fracture performance...

  11. Fracture characterization from seismic measurements in a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2015-01-01T23:59:59.000Z

    Fracture characterization is important for optimal recovery of hydrocarbons. In this thesis, we develop techniques to characterize natural and hydraulic fractures using seismic measurements in a borehole. We first develop ...

  12. Stochastic multiscale models for fracture analysis of functionally graded materials

    E-Print Network [OSTI]

    Rahman, Sharif

    Chakraborty, Sharif Rahman * Department of Mechanical and Industrial Engineering, College of Engineering three multiscale models, including sequential, invasive, and concurrent models, for fracture analysis-intensity factors or accurate probability of fracture initiation. The concurrent multiscale model is sufficiently

  13. FRACTURE AND HYDROLOGY DATA FROM FIELD STUDIES AT STRIPA, SWEDEN

    E-Print Network [OSTI]

    Gale, J.E.

    2010-01-01T23:59:59.000Z

    An Approach to the Fracture Hydrology at Stripa, PreliminaryRocks. On Recent Trends in Hydrology, Special PublicationsDE86 013586 W FRACTURE AND HYDROLOGY DATA FROM FIELD STUDIES

  14. Finite Difference Modeling of Seismic Responses to Intersecting Fracture Sets

    E-Print Network [OSTI]

    Chi, Shihong

    2006-01-01T23:59:59.000Z

    Fractured reservoir characterization is becoming increasingly important for the petroleum industry. Currentmethods for this task are developed based on effectivemedia theory, which assumes the cracks or fractures in a ...

  15. Effects of subsurface fracture interactions on surface deformation

    E-Print Network [OSTI]

    Jerry, Ruel (Ruel Valentine)

    2013-01-01T23:59:59.000Z

    Although the surface deformation resulting from the opening of a single fracture in a layered elastic half-space resembles the observed deformation at the InSalah site, it seems unlikely that only a single fracture is ...

  16. Analysis of Scattered Signal to Estimate Reservoir Fracture Parameters

    E-Print Network [OSTI]

    Grandi, Samantha K.

    We detect fracture corridors and determine their orientation and average spacing based on an analysis of seismic coda in the frequency-wave number (f-k ) domain. Fracture corridors have dimensions similar to seismic ...

  17. Seismic characterization of fractured reservoirs by focusing Gaussian beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    Naturally fractured reservoirs occur worldwide, and they account for the bulk of global oil production. The most important impact of fractures is their influence on fluid flow. To maximize oil production, the characterization ...

  18. On equivalence of thinning fluids used for hydraulic fracturing

    E-Print Network [OSTI]

    Linkov, Alexander

    2012-01-01T23:59:59.000Z

    The paper aims to answer the question: if and how non-Newtonian fluids may be compared in their mechanical action when used for hydraulic fracturing? By employing the modified formulation of the PKN problem we obtain its simple analytical solutions in the cases of perfectly plastic and Newtonian fluids. Since the results for shear thinning fluids are intermediate between those for these cases, the obtained equation for the fracture length suggests a criterion of the equivalence of various shear thinning fluids for the problem of hydraulic fractures. We assume fluids equivalent in their hydrofracturing action, when at a reference time they produce fractures of the same length. The equation for the fracture length translates the equivalence in terms of the hydraulic fracture length and treatment time into the equivalence in terms of the properties of a fracturing fluid (behavior and consistency indices). Analysis shows that the influence of the consistency and behavior indices on the fracture length, particle v...

  19. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  20. Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation

    E-Print Network [OSTI]

    Nino Penaloza, Andrea

    2013-05-01T23:59:59.000Z

    to those in actual acid fracture treatments. After acid etching, fracture conductivity is measured at different closure stresses. This research work presents a systematic study to investigate the effect of temperature, rock-acid contact time and initial...

  1. Model for Fracturing Fluid Flowback and Characterization of Flowback Mechanisms

    E-Print Network [OSTI]

    Song, Bo

    2014-08-28T23:59:59.000Z

    A large volume of fracturing fluid that may include slick water and various sorts of additives is injected into shale formations along with proppant to create hydraulic fractures which define a stimulated shale volume a shale gas well will actually...

  2. Effectiveness of microseismic monitoring for optimizing hydraulic fracturing in California

    E-Print Network [OSTI]

    Alampi, Ann M

    2014-01-01T23:59:59.000Z

    Hydraulic fracturing has fundamentally changed the oil and gas industry in the past 10 years. Bakersfield, California provides a unique case study because steam injection, a type of hydraulic fracturing, has been used there ...

  3. Fracture Characterization from Scattered Energy: A Case Study

    E-Print Network [OSTI]

    Grandi, Samantha K.

    2006-01-01T23:59:59.000Z

    We use 3D surface seismic data to determine the presence and the preferred orientation of fracture corridors in a field. The Scattering Index method is proving to be a robust tool for detecting and mapping fracture corridors. ...

  4. How can we use one fracture to locate another?

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2011-01-01T23:59:59.000Z

    Hydraulic fracturing is an important tool that helps extract fluids from the subsurface. It is critical in applications ranging from enhanced oil recovery to geothermal energy pro-duction. As the goal of fracturing is to ...

  5. Mechanistic fracture criteria for the failure of human cortical bone

    SciTech Connect (OSTI)

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.

    2002-12-13T23:59:59.000Z

    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  6. Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation 

    E-Print Network [OSTI]

    Nino Penaloza, Andrea

    2013-05-01T23:59:59.000Z

    Acid fracture conductivity and the effect of key variables in the etching process during acid fracturing can be assessed at the laboratory scale. This is accomplished by using an experimental apparatus that simulates acid injection fluxes comparable...

  7. A Bayesian framework for fracture characterization from surface seismic data

    E-Print Network [OSTI]

    Zamanian, S. Ahmad

    2012-01-01T23:59:59.000Z

    We describe a methodology for quantitatively characterizing the fractured nature of a hydrocarbon or geothermal reservoir from surface seismic data under a Bayesian inference framework. Fractures provide pathways for fluid ...

  8. On the fracture toughness of advanced materials

    SciTech Connect (OSTI)

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24T23:59:59.000Z

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as the fracture toughness K{sub Ic}.

  9. Compartmentalization analysis using discrete fracture network models

    SciTech Connect (OSTI)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01T23:59:59.000Z

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  10. Fracture Toughness Prediction for MWCNT Reinforced Ceramics

    SciTech Connect (OSTI)

    Henager, Charles H.; Nguyen, Ba Nghiep

    2013-09-01T23:59:59.000Z

    This report describes the development of a micromechanics model to predict fracture toughness of multiwall carbon nanotube (MWCNT) reinforced ceramic composites to guide future experimental work for this project. The modeling work described in this report includes (i) prediction of elastic properties, (ii) development of a mechanistic damage model accounting for matrix cracking to predict the composite nonlinear stress/strain response to tensile loading to failure, and (iii) application of this damage model in a modified boundary layer (MBL) analysis using ABAQUS to predict fracture toughness and crack resistance behavior (R-curves) for ceramic materials containing MWCNTs at various volume fractions.

  11. Seismic velocity and Q anisotropy in fractured poroelastic media

    E-Print Network [OSTI]

    Introduction. Seismic wave propagation through fractures is an important subject in hydrocarbon exploration geophysics, mining and reservoir characterization ...

  12. Experimental and Analytical Research on Fracture Processes in ROck

    SciTech Connect (OSTI)

    Herbert H.. Einstein; Jay Miller; Bruno Silva

    2009-02-27T23:59:59.000Z

    Experimental studies on fracture propagation and coalescence were conducted which together with previous tests by this group on gypsum and marble, provide information on fracturing. Specifically, different fracture geometries wsere tested, which together with the different material properties will provide the basis for analytical/numerical modeling. INitial steps on the models were made as were initial investigations on the effect of pressurized water on fracture coalescence.

  13. Mapping DNAPL transport contamination in sedimentary and fractured rock aquifers with high resolution borehole seismic imaging Project No. SF11SS13 FY01 Annual Report

    SciTech Connect (OSTI)

    Geller, J.T.; Majer, E.L.; Peterson, J.E.; Williams, K.H.; Flexser, S.

    2001-12-01T23:59:59.000Z

    This report covers the work performed in the first year of a three-year project funded by the USDOE's Subsurface Contaminant Focus Area (SCFA). The objectives of this project are to develop, demonstrate and evaluate, at appropriate field sites, the utility of high frequency seismic imaging methods to detect and characterize non-aqueous phase liquid (NAPL) contamination in sedimentary and fractured rock aquifers. Field tests consist of crosswell seismic tomography acquired before, during and after any remediation action that would potentially affect fluid distributions. Where feasible, other characterization data is obtained, such as crosswell radar, borehole conductivity and cone penetration testing (CPT). Crosswell data are processed to obtain tomographic images, or two-dimensional distributions, of velocity and attenuation. The interpretation of the tomograms utilizes all available site characterization data to relate the geophysical attributes to lithology and fluid phase heterogeneities. Interpretations are validated by evaluation and testing of field cores. Laboratory tests on core retrieved from surveyed locations are performed to determine the relationships between geophysical parameters and solid and fluid phase composition. In the case of sedimentary aquifers, proof of principle has been demonstrated previously in homogeneous sand-packs at the centimeter and half-meter scale (Geller and Myer, 1995; Geller et al., 2000). The field tests will provide proof-of-principle at the field-scale, by working in an unconsolidated sand aquifer with known presence of NAPL. The ability to upscale from the laboratory to the field is evaluated by conducting field measurements over a range of frequencies that overlap the lowest frequencies used in the laboratory tests. In the fractured rock case, previous field work has shown that fracture zones can be detected by crosswell seismic tomography (Daley et al., 2001; Daley et al., 2000). Laboratory studies have demonstrated that the seismic wave signature is sensitive to the fracture stiffness, and that stiffness is affected by fracture-filling fluids (Pyrak-Nolte and Morris, 2000; Pyrak-Nolte, 1996). The field and laboratory experience provide a physical basis for the potential detection of fractures that would be the important flow paths for NAPL contaminants.

  14. Completing fault models for abductive diagnosis

    SciTech Connect (OSTI)

    Knill, E. (Los Alamos National Lab., NM (United States)); Cox, P.T.; Pietrzykowski, T. (Technical Univ., NS (Canada))

    1992-11-05T23:59:59.000Z

    In logic-based diagnosis, the consistency-based method is used to determine the possible sets of faulty devices. If the fault models of the devices are incomplete or nondeterministic, then this method does not necessarily yield abductive explanations of system behavior. Such explanations give additional information about faulty behavior and can be used for prediction. Unfortunately, system descriptions for the consistency-based method are often not suitable for abductive diagnosis. Methods for completing the fault models for abductive diagnosis have been suggested informally by Poole and by Cox et al. Here we formalize these methods by introducing a standard form for system descriptions. The properties of these methods are determined in relation to consistency-based diagnosis and compared to other ideas for integrating consistency-based and abductive diagnosis.

  15. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) study

    E-Print Network [OSTI]

    Treece, Graham M.; Gee, Andrew H.; Tonkin, Carol; Ewing, Susan K.; Cawthon, Peggy M.; Black, Dennis M.; Poole, Kenneth E. S.; Osteoporotic Fractures in Men Study

    2015-03-18T23:59:59.000Z

    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual energy X-ray (DXA)-based methods have shown limited...

  16. Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions SANUM Conference (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

  17. Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions CSIRO CSS TCP Detournay (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

  18. Role of seepage forces on hydraulic fracturing and failure patterns

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Role of seepage forces on hydraulic fracturing and failure patterns Alexander Rozhko Thesis September 2007 #12;ii Role of seepage forces on hydraulic fracturing and failure patterns Abstract. The mechanical role of seepage forces on hydraulic fracturing and failure patterns was studied both

  19. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations 

    E-Print Network [OSTI]

    Zhang, Junjing

    2014-07-10T23:59:59.000Z

    Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

  20. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Deliverable 2.5.4, Ferron Sandstone lithologic strip logs, Emergy & Sevier Counties, Utah: Volume I

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-12-08T23:59:59.000Z

    Strip logs for 491 wells were produced from a digital subsurface database of lithologic descriptions of the Ferron Sandstone Member of the Mancos Shale. This subsurface database covers wells from the parts of Emery and Sevier Counties in central Utah that occur between Ferron Creek on the north and Last Chance Creek on the south. The lithologic descriptions were imported into a logging software application designed for the display of stratigraphic data. Strip logs were produced at a scale of one inch equals 20 feet. The strip logs were created as part of a study by the Utah Geological Survey to develop a comprehensive, interdisciplinary, and qualitative characterization of a fluvial-deltaic reservoir using the Ferron Sandstone as a surface analogue. The study was funded by the U.S. Department of Energy (DOE) under the Geoscience/Engineering Reservoir Characterization Program.

  1. Poroelastic modeling of fracture-seismic wave interaction

    SciTech Connect (OSTI)

    Nakagawa, Seiji

    2008-08-15T23:59:59.000Z

    Rock containing a compliant, fluid-filled fracture can be viewed as one case of heterogeneous poroelastic media. When this fracture is subjected to seismic waves, a strong contrast in the elastic stiffness between the fracture itself and the background can result in enhanced grain-scale local fluid flow. Because this flow--relaxing the pressure building up within the fracture--can increase the dynamic compliance of the fracture and change energy dissipation (attenuation), the scattering of seismic waves can be enhanced. Previously, for a flat, infinite fracture, we derived poroelastic seismic boundary conditions that describe the relationship between a finite jump in the stress and displacement across a fracture, expressed as a function of the stress and displacement at the boundaries. In this paper, we use these boundary conditions to determine frequency-dependent seismic wave transmission and reflection coefficients. Fluid-filled fractures with a range of mechanical and hydraulic properties are examined. From parametric studies, we found that the hydraulic permeability of a fracture fully saturated with water has little impact on seismic wave scattering. In contrast, the seismic response of a partially water-saturated fracture and a heterogeneous fracture filled with compliant liquid (e.g., supercritical CO{sub 2}) depended on the fracture permeability.

  2. MODELING OF NATURALLY FRACTURED RESERVOIRS BY FORMAL HOMOGENIZATION TECHNIQUES*

    E-Print Network [OSTI]

    Douglas Jr., Jim

    MODELING OF NATURALLY FRACTURED RESERVOIRS BY FORMAL HOMOGENIZATION TECHNIQUES* Todd Arbogast,y Jim in naturally fractured reservoirs. A single component in a single phase and two-component mis- cible. porous medium, double porosity, fractured reservoir, homogenization. yDepartment of Mathematics, Purdue

  3. ESTIMATION OF MATRIX BLOCK SIZE DISTRIBUTION IN NATURALLY FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    ESTIMATION OF MATRIX BLOCK SIZE DISTRIBUTION IN NATURALLY FRACTURED RESERVOIRS A Report Submitted;2 ABSTRACT Interporosity flow in a naturslly fractured reservoir is modelled by a new formulation of the distribution. Thus, observed pressure response from fractured reservoirs can be analysed to obtain the matrix

  4. EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-57 SGP-TR-57 EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS: A SUMMARY INTO FRACTURED GEOTHERMAL RESERVOIRS A SUMMARY OP EXPERImCE WORtDWIDE Roland N. Horne Stanford University ABSTRACT Reinjection of water i n t o fractured geothermal reservoirs holds potential both f o r

  5. HYDRAULIC STIMULATION OF NATURAL FRACTURES AS REVEALED BY INDUCED MICROEARTHQUAKES,

    E-Print Network [OSTI]

    -1- HYDRAULIC STIMULATION OF NATURAL FRACTURES AS REVEALED BY INDUCED MICROEARTHQUAKES, CARTHAGE, December, 2001 Manuscript # 01066 LAUR# 01-1204 #12;Hydraulic Stimulation of Natural Fractures -2- ABSTRACT We have produced a high-resolution microseismic image of a hydraulic fracture stimulation

  6. Modeling Turbulent Hydraulic Fracture Near a Free Surface

    E-Print Network [OSTI]

    Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. wall Wall shear stress. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been

  7. Modeling Turbulent Hydraulic Fracture Near a Free Surface

    E-Print Network [OSTI]

    Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been studied for many years

  8. Estimating Major and Minor Natural Fracture Patterns in Gas

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

  9. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations

    E-Print Network [OSTI]

    Zhang, Junjing

    2014-07-10T23:59:59.000Z

    Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

  10. Stuck-at-fault test set compaction

    E-Print Network [OSTI]

    Vanfickell, Jason Michael

    2013-02-22T23:59:59.000Z

    of sltcp g(0. 5-ones~robo~, ~) Exc Bal, = 0. 25 ? of sites Figure 1. Formula for computation of the excitation balance Excitation balance is a metric computed for every detectable fault in the entire circuit. It is intended to provide a measure... Sigma ~ National Society of Collegiate Scholars Activities: ~ Texas A&M University Institute of Electrical and Electronic Engineers IT/Technology Chair and Webmaster, Fall 2003 ? Spring 2004 ~ Texas A&M University Student Engineers' Council...

  11. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; /SLAC; ,

    2010-11-17T23:59:59.000Z

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  12. Interference Fracturing: Non-Uniform Distributions of Perforation Clusters that Promote Simultaneous Growth of Multiple Hydraulic Fractures

    E-Print Network [OSTI]

    Peirce, Anthony

    Simultaneous Growth of Multiple Hydraulic Fractures A.P. Peirce, University of British Columbia and A.P. Bunger in horizontal well stimulation is the generation of hydraulic fractures (HFs) from all perforation clusters shadowing" that refers to suppression of some hydraulic fractures by the compressive stresses exerted

  13. Fibre bundle framework for unitary quantum fault tolerance

    E-Print Network [OSTI]

    Daniel Gottesman; Lucy Liuxuan Zhang

    2013-09-26T23:59:59.000Z

    We introduce a differential geometric framework for describing families of quantum error-correcting codes and for understanding quantum fault tolerance. This work unifies the notion of topological fault tolerance with fault tolerance in other kinds of quantum error-correcting codes. In particular, we use fibre bundles with a natural flat projective connection to study the transformation of codewords under unitary fault-tolerant evolutions. We show that the fault-tolerant logical operations are given by the monodromy group for either of two bundles, both of which have flat projective connections. As concrete realizations of the general framework, we construct the bundles explicitly for two examples of fault-tolerant families of operations, the qudit transversal gates and the string operators in the toric code.

  14. Similarity Matching Techniques for Fault Diagnosis in Automotive Infotainment Electronics

    E-Print Network [OSTI]

    Kabir, Mashud

    2009-01-01T23:59:59.000Z

    Fault diagnosis has become a very important area of research during the last decade due to the advancement of mechanical and electrical systems in industries. The automobile is a crucial field where fault diagnosis is given a special attention. Due to the increasing complexity and newly added features in vehicles, a comprehensive study has to be performed in order to achieve an appropriate diagnosis model. A diagnosis system is capable of identifying the faults of a system by investigating the observable effects (or symptoms). The system categorizes the fault into a diagnosis class and identifies a probable cause based on the supplied fault symptoms. Fault categorization and identification are done using similarity matching techniques. The development of diagnosis classes is done by making use of previous experience, knowledge or information within an application area. The necessary information used may come from several sources of knowledge, such as from system analysis. In this paper similarity matching tec...

  15. Identifying Best Practices in Hydraulic Fracturing Using

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . Treating Rate Medina Treating Pressure Medina Production Remaining Gas Ultimate Gas Gas Months Prod Gas Medina and Whirlpool sands of southwest New York State are considered to be tight gas sands. Most wells, are fractured upon completion to provide economic amounts of gas. #12;SPE 72385 BACKGROUND A dataset

  16. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2009-05-15T23:59:59.000Z

    ) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

  17. Investigation of the Meers fault in southwestern Oklahoma

    SciTech Connect (OSTI)

    Luza, K.V.; Madole, R.F.; Crone, A.J.

    1987-08-01T23:59:59.000Z

    The Meers fault is part of a major system of NW-trending faults that form the boundary between the Wichita Mountains and the Anadarko basin in southwestern Oklahoma. A portion of the Meers fault is exposed at the surface in northern Comanche County and strikes approximately N. 60/sup 0/ W. where it offsets Permian conglomerate and shale for at least 26 km. The scarp on the fault is consistently down to the south, with a maximum relief of 5 m near the center of the fault trace. Quaternary stratigraphic relationships and 10 /sup 14/C age dates constrain the age of the last movement of the Meers fault. The last movement postdates the Browns Creek Alluvium, late Pleistocene to early Holocene, and predates the East Cache Alluvium, 100 to 800 yr B.P. Fan alluvium, produced by the last fault movement, buried a soil that dates between 1400 and 1100 yr B.P. Two trenches excavated across the scarp near Canyon Creek document the near-surface deformation and provide some general information on recurrence. Trench 1 was excavated in the lower Holocene part of the Browns Creek Alluvium, and trench 2 was excavated in unnamed gravels thought to be upper Pleistocene. Flexing and warping was the dominant mode of deformation that produced the scarp. The stratigraphy in both trenches indicates one surface-faulting event, which implies a lengthy recurrence interval for surface faulting on this part of the fault. Organic-rich material from two samples that postdate the last fault movement yielded /sup 14/C ages between 1600 and 1300 yr B.P. These dates are in excellent agreement with the dates obtained from soils buried by the fault-related fan alluvium.

  18. A Turing Machine Resisting Isolated Bursts Of Faults

    E-Print Network [OSTI]

    Capuni, Ilir

    2012-01-01T23:59:59.000Z

    We consider computations of a Turing machine under noise that causes consecutive violations of the machine's transition function. Given a constant upper bound B on the size of bursts of faults, we construct a Turing machine M(B) subject to faults that can simulate any fault-free machine under the condition that bursts are not closer to each other than V for an appropriate V = O(B^2).

  19. Lithologically Controlled | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum, Maryland:source HistoryLite

  20. A Triple-Porosity Model for Fractured Horizontal Wells

    E-Print Network [OSTI]

    Alahmadi, Hasan Ali H.

    2010-10-12T23:59:59.000Z

    . The model consists of three contiguous porous media: the matrix, less permeable micro-fractures and more permeable macro-fractures. Only the macro-fractures produce to the well while they are fed by the micro-fractures only. Consequently, the matrix feeds... the micro-fractures only. Therefore, the flow is sequential from one medium to the other. Four sub-models are derived based on the interporosity flow assumption between adjacent media, i.e., pseudosteady state or transient flow assumption. These are fully...

  1. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect (OSTI)

    NONE

    1996-09-30T23:59:59.000Z

    The focus of this report was on preparing data and modules for Piceance Basin-wide fracture prediction. A review of the geological data input and automated history reconstruction approach was made. Fluid pressure data analysis and preliminary basin simulations were carried out. These activities are summarized briefly below and reviewed in more detail in Appendices A-E. Appendix D is a review of the fluid pressure data and its implications for compartmentation. Preliminary fracture prediction computations on generic basins are presented in Appendix E; these were carried out as part of our code testing activities. The results of these two Appendices are the beginning of what will be the basis of the model testing; fluid pressures are directly comparable with the model predictions and are a key element of fracture nucleation and presentation. We summarize the tectonic and sedimentary history of the Piceance Basin based on our automated history reconstruction and published interpretations. The narrative and figures provide the basic material we have quantified for our CIRF.B basin simulator input. This data supplements our existing well data interpretation approach. It provides an independent check of the automated sedimentary/subsidence history reconstruction module. Fluid pressure data was gathered and analyzed. This data serves two functions. Fluid pressure distribution across the basin provides a quantitative test as it is a direct prediction of CIRF.B. Furthermore, fluid pressure modifies effective stress. It thereby enters fracture nucleation criteria and fracture extension rate and aperture laws. The pressure data is presented in Appendix Din terms of overpressure maps and isosurfaces.

  2. Upper crustal faulting in an obliquely extending orogen, structural...

    Open Energy Info (EERE)

    faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search OpenEI...

  3. Active Fault Controls At High-Temperature Geothermal Sites- Prospectin...

    Open Energy Info (EERE)

    the level of unrecognized active faults present in these areas. Analysis of low-sun-angle aerial photography acquired over the Needle Rocks, Astor Pass, Empire, and Lee...

  4. Fault-tolerant distributed transactions for partitioned OLTP databases

    E-Print Network [OSTI]

    Jones, Evan P. C. (Evan Philip Charles), 1981-

    2012-01-01T23:59:59.000Z

    This thesis presents Dtxn, a fault-tolerant distributed transaction system designed specifically for building online transaction processing (OLTP) databases. Databases have traditionally been designed as general purpose ...

  5. atera fault central: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations Geosciences Websites Summary: Interseismic deformation and creep...

  6. Checksum-Based Fault Tolerance for LU Factorization

    E-Print Network [OSTI]

    Davies, Teresa

    2014-01-01T23:59:59.000Z

    study of failures in high-performance computing systems. InFault tolerant high performance computing by a codingfor large-scale high- performance computing. In 2012

  7. PV Arc Fault Detector Challenges Due to Module Frequency Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This poster does not contain any proprietary or confidential information. Introduction PV system arc faults have led to a number of rooftop fires which have caused significant...

  8. Dating of major normal fault systems using thermochronology-...

    Open Energy Info (EERE)

    faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we...

  9. MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...

    Open Energy Info (EERE)

    GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC...

  10. PHOTOVOLTAIC DC ARC FAULT DETECTOR TESTING AT SANDIA NATIONAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOVOLTAIC DC ARC FAULT DETECTOR TESTING AT SANDIA NATIONAL LABORATORIES Jay Johnson 1 , Birger Pahl 2 , Charles Luebke 2 , Tom Pier 2 , Theodore Miller 3 , Jason Strauch 1 ,...

  11. Fault tolerant Quantum Information Processing with Holographic control

    E-Print Network [OSTI]

    G. A. Paz-Silva; G. K. Brennen; J. Twamley

    2010-08-10T23:59:59.000Z

    We present a fault-tolerant semi-global control strategy for universal quantum computers. We show that N-dimensional array of qubits where only (N-1)-dimensional addressing resolution is available is compatible with fault-tolerant universal quantum computation. What is more, we show that measurements and individual control of qubits are required only at the boundaries of the fault-tolerant computer, i.e. holographic fault-tolerant quantum computation. Our model alleviates the heavy physical conditions on current qubit candidates imposed by addressability requirements and represents an option to improve their scalability.

  12. Fault Tolerant Evaluation of Continuous Selection Queries over Sensor Data

    E-Print Network [OSTI]

    Lazaridis, Iosif; Han, Qi; Mehrotra, Sharad; Venkatasubramanian, Nalini

    2009-01-01T23:59:59.000Z

    Evaluation of Continuous Selection Queries over Sensor Dataevaluation of continuous selection queries (CSQs) over sensor-sensor suffices and there is no Fault Tolerant Evaluation of

  13. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    Open Energy Info (EERE)

    Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation,...

  14. Wrench faulting and cavity concentration ; Dollarhide Field, Andrews County, Texas

    E-Print Network [OSTI]

    Dygert, Todd Charles

    1992-01-01T23:59:59.000Z

    structure map for the Devonian horizon 20 7. Seismic time slice taken at 1010 ms 8. Seismic line 190 9. Seismic line 108 10. Seismic line 40 22 25 27 11. Cross-sectional view of a wrench fault 31 12. Pure shear fault model for strike- slip.... The Clearfork horizon was mapped first since it was shallow, strong and continuous. The faults and Devonian horizon were interpreted simultaneously, Adjacent lines were interpreted together throughout the survey to insure consistent fault and horizon picks...

  15. Fault simulation of combinational circuits based on critical path tracing

    E-Print Network [OSTI]

    Burnett, Charles James

    1992-01-01T23:59:59.000Z

    advantage of the computer's internal architecture and does not intelligently analyze the CUT. The deductive simulator traverses the good circuit to determine the value of each line. At the same time, every fault that causes a line to have a different... of the faults on a line within the circuit is detected for a given test vector, the line is marked as critical [10]. These faults that are detected are marked as covered. This very quickly gathers faults without direct simulation to the outputs, however...

  16. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, Crustal...

  17. automatic fault management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Fault Diagnosis by Exploiting Application Signatures Xiaoning Ding - The Ohio - The Ohio State University ABSTRACT Application problem diagnosis in complex...

  18. automatic fault tree: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Fault Diagnosis by Exploiting Application Signatures Xiaoning Ding - The Ohio - The Ohio State University ABSTRACT Application problem diagnosis in complex...

  19. automatical adaptive fault: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Fault Diagnosis by Exploiting Application Signatures Xiaoning Ding - The Ohio - The Ohio State University ABSTRACT Application problem diagnosis in complex...

  20. Recent earthquake sequences at Coso: Evidence for conjugate faulting...

    Open Energy Info (EERE)

    of faulting along conjugate planes. We present results from analyzing an earthquake sequence occurring in 1998 and compare it with a similar sequence that occurred in 1996. The...

  1. Post-Cretaceous faulting at head of Mississippi embayment

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign, IL (United States)); Harrison, R.W. (Geological Survey, Reston, VA (United States))

    1993-03-01T23:59:59.000Z

    Recent mapping in southernmost Illinois and southeastern Missouri has revealed numerous faults that displace Cretaceous and Tertiary strata. Units as young as the Pliocene-Pleistocene( ) Mounds Gravel are deformed; some faults possibly displace Quaternary sediments. The faults strike northeast, dip nearly vertically, and exhibit characteristics of dextral strike-slip. Pull-apart grabens occur along right-stepping fault strands, they contain chaotically jumbled blocks of Paleozoic, Cretaceous and Tertiary rocks downdropped as much as 800 m relative to wall rocks. Faults at the head of the Mississippi embayment probably originated during Cambrian rifting (Reelfoot rift) and have a long, complex history of reactivation under different stress fields. Some faults are on strike with faults in the New Madrid seismic zone. Kinematics of post-Cretaceous displacements fit the contemporary stress regime of ENE-WSW compression. Similar fault orientations and kinematics, as well as close proximity, suggest a close link between faulting at the head of the embayment and ongoing tectonism in the New Madrid seismic zone.

  2. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect (OSTI)

    Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

    1997-12-31T23:59:59.000Z

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  3. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect (OSTI)

    Chang, H.T.

    1984-01-01T23:59:59.000Z

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  4. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner; Iraj Ershaghi

    2002-01-31T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fifth quarter of Budget Period I.

  5. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2004-07-30T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the third quarter of Budget Period II.

  6. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2004-10-29T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re- injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fourth quarter of Budget Period II.

  7. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner; Iraj Ershaghi

    2002-04-30T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful redevelopment and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the seventh quarter of Budget Period I.

  8. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2004-04-29T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the second quarter of Budget Period II.

  9. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner; Iraj Ershaghi

    2003-07-30T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the twelfth quarter of Budget Period I.

  10. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2005-01-31T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fifth quarter of Budget Period II.

  11. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner; Iraj Ershaghi

    2003-10-31T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the final quarter of Budget Period I.

  12. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner; Iraj Ershaghi

    2003-01-31T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the tenth quarter of Budget Period I.

  13. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2005-08-01T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the seventh quarter of Budget Period II.

  14. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner; Iraj Ershaghi

    2003-05-15T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the eleventh quarter of Budget Period I.

  15. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect (OSTI)

    Steve Horner

    2006-01-31T23:59:59.000Z

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the ninth quarter of Budget Period II.

  16. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry

    E-Print Network [OSTI]

    Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays fault of northeastern Tibet by dating several size fractions of fault gouge clay that represent variable Ma and continued until at least Middle Miocene time and that authigenic clay growth occurred

  17. Evaluation of faulting characteristics and ground acceleration associated with recent movement along the Meers Fault, Southwestern Oklahoma 

    E-Print Network [OSTI]

    Burrell, Richard Dennis

    1997-01-01T23:59:59.000Z

    Exposures. 14 Diagram illustrating the effects of the Meers Fault scarp on stream channel pathways. 16 Tors on the western side of Elk Mountain, 17 Tors in Wichita Mountains known as Twin Rocks . . . 10 Tor Analysis Log utilized during fteld... and the adjacent petroleum rich Anadarko Basin. Moody and Hill (1956) identified the presence of a scarp along a section of the Meers Fault which deforms Quaternary deposits during a study of wrench fault tectonics. However, it was not until further observations...

  18. Treanmission Line Fault Location using Interoperability and Integration of Data and Model 

    E-Print Network [OSTI]

    Dutta, Papiya

    2014-01-10T23:59:59.000Z

    , classify and locate transmission line faults using synchronous samples of voltages and currents captured during fault transients from both ends of the transmission line of interest. The method is tested for several faults simulated on IEEE 118 bus test...

  19. Fault tolerant control of homopolar magnetic bearings and circular sensor arrays 

    E-Print Network [OSTI]

    Li, Ming-Hsiu

    2006-04-12T23:59:59.000Z

    Fault tolerant control can accommodate the component faults in a control system such as sensors, actuators, plants, etc. This dissertation presents two fault tolerant control schemes to accommodate the failures of power ...

  20. A Comparison of Fault Detection Methods For a Transcritical Refrigeration System

    E-Print Network [OSTI]

    Janecke, Alex Karl

    2012-10-19T23:59:59.000Z

    pairings of four faults: over/undercharge, evaporator fouling, gas cooler fouling, and compressor valve leakage. This technique allows for low cost measurement and independent detection of individual faults even when multiple faults are present. Results...

  1. Early Holocene and Late Pleistocene slip rates of the southern Dead Sea Fault determined from 10

    E-Print Network [OSTI]

    Klinger, Yann

    sites located along the Wadi Araba Fault (WAF) segment of the Dead Sea Fault are targeted on the DSF, focusing on the Wadi Araba Fault (WAF) segment (Figure 1b). The WAF strikes N12°E for about 160

  2. Data-Based Monitoring and Fault-Tolerant Control of Nonlinear Processes

    E-Print Network [OSTI]

    Chilin, David

    2012-01-01T23:59:59.000Z

    with a fault in the heat input/removal actuator to vessel 2with a fault in the heat input/removal actuator to vessel 2with a fault in the heat input/removal actuator to vessel 2

  3. Mechanical Behavior of Small-Scale Channels in Acid-etched Fractures

    E-Print Network [OSTI]

    Deng, Jiayao

    2011-02-22T23:59:59.000Z

    .) ............................................................................................................. 30 Fig. 2.4 Width profile of a fracture?s cross-section. ..................................................... 34 Fig. 2.5 Fracture?s cross-section approximated by an ellipse. ..................................... 35 Fig. 2.6 Fracture... profile scanned in the lab. .................................................................... 57 Fig. 3.5 Width profiles of fracture surfaces under closure stress 1,000 psi. ................ 58 Fig. 3.6 Width profiles of fracture surfaces...

  4. Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain

    E-Print Network [OSTI]

    Brest, Université de

    power industries, interests in diagnostics and fault-tolerant control of nuclear power plants have been industrial systems. To achieve these goals, monitoring and supervision are embedded in the electrical energy, FTC has been implemented in sensible applications such as aerospace, nuclear power, automotive

  5. Efficient Fault Tolerance: an Approach to Deal with Transient Faults in Multiprocessor Architectures

    E-Print Network [OSTI]

    Firenze, Università degli Studi di

    , 36, 56126 Pisa, Italy ** IEI/CNR, Via S. Maria, 46, 56126 Pisa, Italy Abstract Dynamic error, while making efficient use of the available resources. To this end, dynamic error processing must is integrated with a mechanism for dynamic error processing in a complete fault tolerance strategy. Reliability

  6. Recency of Faulting and Neotectonic Framework in the Dixie Valley...

    Open Energy Info (EERE)

    enough to produce significant increases in fracture dilatancy, thereby increasing hydraulic conductivity.We conclude that an understanding of the spatial distribution of active...

  7. A core-based assessment of the spatial relationship of small faults associated with a basement-controlled, large normal fault in the Hickory Sandstone

    E-Print Network [OSTI]

    Graff, Mitchell C

    2006-10-30T23:59:59.000Z

    Measures of Small Faults??????????????? Page iii v vi viii xiv 1 3 3 5 7 10 10 10 12 14 18 20 26 28 vii 4. ESTIMATING SMALL FAULT DISPLACEMENT USING FAULT GOUGE THICKNESS AND PROTOLITH TEXTURE??????????... 4.1 Previous Work... is proportional to mean?????????????????????. 26 Combined scatterplot of faults with known gouge thickness versus known displacement and faults with known gouge thickness versus estimated displacement????????????????????. Page 37 38 39 40 43 45 47 48...

  8. Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

    2008-07-01T23:59:59.000Z

    This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

  9. SciTech Connect: Development of Asset Fault Signatures for Prognostic...

    Office of Scientific and Technical Information (OSTI)

    Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry Citation Details In-Document Search Title: Development of Asset Fault Signatures...

  10. Area of Interest 1, CO2 at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    SciTech Connect (OSTI)

    Mozley, Peter; Evans, James; Dewers, Thomas

    2014-10-31T23:59:59.000Z

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault- to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

  11. Characterization of fracture networks for fluid flow analysis

    SciTech Connect (OSTI)

    Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

    1989-06-01T23:59:59.000Z

    The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs.

  12. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    SciTech Connect (OSTI)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  13. Impact fracture behavior of HT9 duct

    SciTech Connect (OSTI)

    Huang, F.H. [Westinghouse Hanford Co., Richland, WA (United States); Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1994-07-01T23:59:59.000Z

    Ferritic alloys are known to undergo a ductile-brittle transition as the test temperature is decreased. This inherent problem has limited their applications to reactor component materials subjected to low neutron exposures. However, the excellent resistance to void swelling exhibited by these alloys has led to choosing the materials as candidate materials for fast and fusion reactor applications. Despite the ductile-brittle transition problem, results show that the materials exhibit superior resistance to fracture under very high neutron fluences at irradiation temperatures above 380{degrees}C. Impact testing on FFTF duct sections of HT9 indicates that HT9 ducts have adequate fracture toughness at much higher temperatures for handling operations at room temperature and refueling operations.

  14. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  15. Automatic Fault Characterization via Abnormality-Enhanced Classification

    SciTech Connect (OSTI)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    2010-12-20T23:59:59.000Z

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  16. The northwest extension of the Meers Fault in southwestern Oklahoma

    E-Print Network [OSTI]

    Cetin, Hasan

    1991-01-01T23:59:59.000Z

    + t '+ + + ~et t 30 mt ~ 39 ~ 40 mt ~ 49 a 50 mt 59 060 m& 69 O20 mts29 26 26 ASZ ? ANNA SEISMIC ZONE ES ? ENOLA SWARM KRF ? KENTUCKY RIVER FAULT MF ? MEERS FAULT MU ? MONROE UPLIFT NM ? NEW MADRID NU ? NEMAHA UPLIFT PSD ? PIERRE, SOUTH DAKOTA WVF...

  17. An Information Flow Model of Fault Detection Margaret C. Thompson ?

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    not be practical. Nonethe­ less, Relay provides insight into testing and fault de­ tection and suggests an approach and Computer Science Amherst, MA 01003 University of California Irvine, CA 92717 Abstract Relay is a model of how a fault causes a failure on execution of some test datum. This process begins with introduction

  18. Fault Tolerant Oxygen Control of a Diesel Engine Air System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

  19. All-to-all sequenced fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2010-11-02T23:59:59.000Z

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  20. Fault Detection, Identification and Accommodation for an Electro-hydraulic

    E-Print Network [OSTI]

    Yao, Bin

    Fault Detection, Identification and Accommodation for an Electro-hydraulic System: An Adaptive in electro-hydraulic systems. It is well known fact that any realistic model of a hydraulic system suffers, such a scheme becomes a natural choice for designing robust fault detection algorithms for electro-hydraulic