National Library of Energy BETA

Sample records for faults folds grabens

  1. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  2. Mechanical Models of Fault-Related Folding

    SciTech Connect (OSTI)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  3. Growth faulting and syntectonic casting of the Dawson Creek Graben Complex: A North American craton-marginal trough; Carboniferous-Permian Peace River Embayment, western Canada

    SciTech Connect (OSTI)

    Barclay, J.E.; Utting, J. ); Krause, F.F.; Campbell, R.I. )

    1991-06-01

    The Dawson Creek Graben Complex was a 150 {times} 300 km, craton-perpendicular trough near the western North American craton margin. Sedimentary infill spanned 100 million years, and this tectonically controlled basin provides a comparison with other craton-marginal troughs or aulacogens, such as the Big Snowy, Uinta, Delaware, and Southern Oklahoma. The authors suspect that the graben complex was controlled by outboard, Antler-like orogeny and perhaps some strike-slip control. This syntectonic graben infill model provides a basis for developing new structural-stratigraphic plays in this mature basin. This extensional trough rests on a former basement arch and is centered in the broadly downwarped Peace River embayment. Sediment infill records several graben casting stages beginning with westernmost down-dropping, which then extended eastward and was accompanied by an increase in growth-type block faulting. Subsidence and faulting decay was followed by a retreat to western areas and tectonic stabilization. The complex was an arcuate half-graben, steep to the north, that widened asymmetrically and increased in depth to the west through time. The complex contained a principal half-graben with neighboring satellite grabens; throughout the complex are numerous kilometer-scale horst and graben blocks. The horsts subsided slower than neighboring grabens. This differential subsidence along block-bounding syn- and postdepositional growth-type normal faults controlled formation and bed thickness, as did inter- and intraformational unconformities.

  4. Folding associated with extensional faulting: Sheep Range detachment, southern Nevada

    SciTech Connect (OSTI)

    Guth, P.L.

    1985-01-01

    The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least three landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.

  5. Geometry and controls on fracturing in a natural fault-bend fold: Rosario field, Maracaibo basin, Venezuela

    SciTech Connect (OSTI)

    Apotria, T.G.; Wilkerson, M.S.; Knewtson, S.L.

    1996-08-01

    The Rosario oil field lies between the Perija Mountain front and Lake Maracaibo and produces from fractured Cretaceous carbonates and Tertiary clastics. We interpret the structure as a detached fault-bend fold which ramps through Cretaceous Cogollo and La Luna carbonates and flattens into an upper detachment at the base of the Upper Cretaceous Colon Shale. The structural relief formed primarily during the Mid Miocene and younger. Seismic and well control on the three-dimensional geometry illustrates the effects of (1) lithology and displacement variation on fold geometry, (2) an oblique footwall ramp on hangingwall faulting, and (3) fold curvature on fracturing and hydrocarbon production. Fold geometry at different structural levels is strongly controlled by lithology. Stiff Cogollo and La Luna carbonates exhibit kink-style folding above the upper fault-bend. The weak Colon Shale decouples the faulted carbonates from the concentrically folded Tertiary clastics. Regions of enhanced faulting and fracturing of Cretaceous carbonates are a function of structural position. We observe normal faults in the hangingwall where the strike of the footwall ramp changes from N20{degrees}E to N65{degrees}E. Fold curvature highlights fold hinges, yet distributed faulting is seismically imaged in the forelimb, suggesting that rocks fracture as they migrate through the ramp-upper flat fault-bend. Production rates are higher near the forelimb relative to the flat crestal region.

  6. Hawaii Faults

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Faults combined from USGS 2007 Geologic Map of the State of Hawaii and the USGS Quaternary Fault and Fold database. This data is in shapefile format.

  7. Interpretation of recent seismic data from a frontier hydrocarbon province: western Rough Creek graben, southern Illinois and western Kentucky

    SciTech Connect (OSTI)

    Bertagne, A.J.; Pisasale, E.T.; Leising, T.C.

    1986-05-01

    The northern basement fault of the Rough Creek graben is seismically discernible and has surface expression in the Rough Creek fault zone. The southern basement fault is not clearly defined seismically, but can be inferred from shallow faulting and gravity data. This fault is roughly coincident with the Pennyrile fault zone. Extensional faults that formed the rift boundaries were the sites of late-stage compressional and extensional tectonics. Flower structures observed along the graben boundaries probably indicate post-Pennsylvanian wrench faulting. The basement within the graben plunges north-northwest, with the lowest point occurring south of the Rough Creek fault zone. Pre-Knox sediments thicken to approximately 12,000 in this area. The Knox Megagroup thickens toward the Mississippi Embayment, ranging from 4800 ft (southeastern graben area) to more than 7000 ft (west end of graben). Upper Ordovician to Devonian units also display westward thickening. The top of the Meramecian, New Albany, Maquoketa, and the base of the Knox generate continuous, high-amplitude seismic reflections due to large impedance contrasts between clastic and carbonate units. Shallow oil and gas production (Mississippian and Pennsylvanian) is present in this area. However, deep horizons (Knox, Lower Cambrian) remain relatively untested. Potential hydrocarbon traps in the pre-Knox sequence observed on seismic include fault blocks and updip pinch-outs.

  8. Soro West: A non-seismically defined, fault cut-off prospect in the Papuan Fold and Thrust Belt, Papua New Guinea

    SciTech Connect (OSTI)

    Robinson, W.F. ); Swift, C.M. Jr. )

    1996-01-01

    Soro West is a fault cut-off prospect located in the frontal portion of the Papuan Fold and Thrust Belt. Prospective Toro and Imburu sandstones are interpreted to be in the hanging wall of the Soro Thrust. Truncation against the thrust, both updip and through lateral ramps, provides the trapping mechanism. The Soro West Prospect was defined using geological, geochemical, remote sensing, and geophysical data. The definition and location of the trap is a primary risk and work was focused on this aspect. Surface geological data (lithology, strikes, and dips) topography and synthetic aperture radar imagery were incorporated into the evaluation. Statistical curvature analysis techniques helped define the shape of the structure and the locations of the lateral ramps. Strontium isotope analyses of Darai Limestone surface samples refined erosional levels using a locally-derived reference curve. Severe karst precludes the acquisition of coherent surface seismic data, so the primary geophysical tool used was magnetotellurics (MT). A detailed, pre-survey feasibility study defined expected responses from alternative structural models. The MT data demonstrated that the limestone at surface is underlain by thick conductive clastics and not another Darai Limestone sheet. The data also constrained the range of fault cut-off positions significantly. Multiple, three-dimensionally consistent, restorable alternative structural models were created using results from all analyses. These led to a positive assessment of the prospect and an exploratory test is to be drilled in 1996.

  9. Soro West: A non-seismically defined, fault cut-off prospect in the Papuan Fold and Thrust Belt, Papua New Guinea

    SciTech Connect (OSTI)

    Robinson, W.F.; Swift, C.M. Jr.

    1996-12-31

    Soro West is a fault cut-off prospect located in the frontal portion of the Papuan Fold and Thrust Belt. Prospective Toro and Imburu sandstones are interpreted to be in the hanging wall of the Soro Thrust. Truncation against the thrust, both updip and through lateral ramps, provides the trapping mechanism. The Soro West Prospect was defined using geological, geochemical, remote sensing, and geophysical data. The definition and location of the trap is a primary risk and work was focused on this aspect. Surface geological data (lithology, strikes, and dips) topography and synthetic aperture radar imagery were incorporated into the evaluation. Statistical curvature analysis techniques helped define the shape of the structure and the locations of the lateral ramps. Strontium isotope analyses of Darai Limestone surface samples refined erosional levels using a locally-derived reference curve. Severe karst precludes the acquisition of coherent surface seismic data, so the primary geophysical tool used was magnetotellurics (MT). A detailed, pre-survey feasibility study defined expected responses from alternative structural models. The MT data demonstrated that the limestone at surface is underlain by thick conductive clastics and not another Darai Limestone sheet. The data also constrained the range of fault cut-off positions significantly. Multiple, three-dimensionally consistent, restorable alternative structural models were created using results from all analyses. These led to a positive assessment of the prospect and an exploratory test is to be drilled in 1996.

  10. Structural styles of subandean fold and thrust belt of Peru and Southern Ecuador

    SciTech Connect (OSTI)

    Aleman, A.M.

    1988-01-01

    Along-strike variations in structural styles of the east-verging Subandean fold and thrust belt (SAFTB) in Peru and southern Ecuador are controlled by the presence or absence of thick Late Permian to Jurassic evaporite sequences rather than changes in subducting plate geometries as has been suggested previously for the Andes. Salt distribution and thickness have not only controlled the styles and segmentation along the SAFTB but also have been important factors in strike variations across the belt. The southern Ecuador SAFTB lacks significant evaporite units and is characterized by thick-skinned deformation that encompasses high-angle reverse faults, and broad, low-amplitude folds. The style changes to thin-skinned deformation near 2S lat. and it is well illustrated in the Santiago and Huallaga basins where thick evaporite units are present. This segment is characterized by a major decollement on the salt, grabens formed by salt withdrawal from reactivation of thrust faults as listric normal faults, salt piercement at or near synclinal axes, and periclines and asymmetric folds. The frontal thrust of this thin-skinned segment consists of box, overturned and upright folds above shallow salt domes, and by a major backthrust at the mountain front. This segment extends to 1030'S lat., near Oxapampa, Peru, where the thin-skinned SAFTB is narrow and changes across strike to a thick-skinned deformation as the evaporite units thin and disappear eastward. South of 1030'S lat., a new thick-skinned deformation segment is present in southern Peru and characterizes most of the deformation in the SAFTB of the Ucayali and Madre De Dios basins.

  11. Shongaloo field: A recent smackover (Jurassic) discovery in the Arkansas-Louisiana state-line graben

    SciTech Connect (OSTI)

    DeMis, W.D.; Milliken, J.V. )

    1993-09-01

    The new North Shongaloo/Red Rock/Haynesville/East Haynesville (herein called Shongaloo) field is a recent discovery (1988) with reserves of 20-30 MMBOE. The field has over 50 wells producing from the Smackover Formation at about 11,000 ft depth, and is the largest field discovered in the very mature Arkansas-Louisiana state-line Smackover play in the past 20 yr. More significantly, the field is locate within the state-line graben, an area considered by industry as barren of Smackover potential because Smackover reservoir rocks were assumed absent. Shongaloo field pay is from the Smackover. The [open quotes]C[close quotes] sand has average porosity of 5-7% and average permeability of less than 1 md (average initial flow rate is 1500 MCFGD with 430 BCPD). The [open quotes]B[close quotes] carbonate reservoirs consist of ooid grainstones with average porosity of 14% and average permeability of 60 md, ranging up to 1800 md (average initial flow rate is 550 BOPD and 950 MCFGD). Shongaloo field is an upthrown fault trap within the overall downthrown central graben. Shongaloo field was found by overcoming two technical hurdles. First, reservoir rock distribution was shown to follow paleoshorelines through the graben. Porous ooid grainstones facies within a mappable cycle of the Smackover [open quotes]B[close quotes] are parallel to, and immediately downdip (<1.5 mi) of paleoshorelines. Paleoshorelines are documented by the updip pinchout of [open quotes]B[close quotes] cycles into time-equivalent Buckner red beds. Second, the critical trapping fault was resolved by shooting and interpreting modern proprietary seismic data. The discovery of Shongaloo field proves that significant reserves can be found in mature domestic plays by applying new technology and stratigraphic concepts.

  12. Seismic Reflection Project Near the Southern Terminations of the Lost River and Lemhi Faults, Eastern Snake River Plain, Idaho

    SciTech Connect (OSTI)

    S. M. Jackson; G. S. Carpenter; R. P. Smith; J. L. Casper

    2006-10-01

    Thirteen seismic reflection lines were processed and interpreted to determine the southern terminations of the Lost River and Lemhi faults along the northwest boundary of the eastern Snake River Plain (ESRP). The southernmost terminations of the Arco and Howe segments were determined to support characterization of the Lost River and Lemhi fault sources, respectively, for the INL probabilistic seismic hazard analysis. Keywords:Keywords are required forExternal Release Review*Keywords  Keywords *Contacts (Type and Name are required for each row) Type ofContactContact Name  POC Editor RecordFour commercial seismic reflection lines (Arco lines 81-1 and 81-2; Howe lines 81-3 and 82-2) were obtained from the Montana Power Company. The seismic data were collected in the early 1980’s using a Vibroseis source with station and shot point locations that resulted in 12-fold data. Arco lines 81?1 and 81?2 and Howe lines 81?3 and 82?2 are located within the basins adjacent to the Arco and Howe segments, respectively. Seven seismic lines (Arco lines A1, A2, A3, and A4 and Howe lines H1, H2, and H3) were acquired by EG&G Idaho, Inc. Geosciences for this study using multiple impacts with an accelerated weight drop source. Station and shot point locations yielded 12-fold data. The seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. Two seismic lines (Arco line S2 and Howe line S4) were obtained from Sierra Geophysics. In 1984, they acquired seismic reflection data using an accelerated weight drop source with station and shot point locations that yielded 6-fold data. The two seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. In 1992 for this study, Geotrace Technologies Inc. processed all of the seismic reflection data using industry standard processing techniques. The

  13. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  14. Fault finder

    DOE Patents [OSTI]

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  15. Pattern of extensional faulting in pelagic carbonates of the Unbria-Marche Apennines of central Italy

    SciTech Connect (OSTI)

    Alvarez, W. )

    1990-05-01

    The Umbria-Marche Apennines provide a new region in which the nature passive-margin extensional faulting can be studied in outcrop. In these dominantly pelagic carbonate rocks of Jurassic and Cretaceous age, horsts acted as shallow, nonvolcani seamounts, while tilted half grabens formed deeper basins. One well-exposed seamount-basin transition agrees in general with the model of listric normal faulting and tilted half grabens, but shows interesting and significant divergences when studied in detail. A small sedimentary wedge at the faulted margin of a horst-block seamount thickens unexpectedly toward the adjacent basin. This wedge developed because of local convex-upward curvature of the shallowest part of a fault which at depth must have concave-up, listric geometry. The local sedimentary wedge resulted from deposition on the hanging wall as it tilted, followed by differential compaction of younger limestones that lapped onto the gentle slope leading from the horst-block seamount toward the basin. The map pattern of listric normal faulting in the Umbria-Marche Apennines suggests that both principal strain axes were extensional, in contrast to the usual pattern of listric faults crossed by transfer faults.

  16. Folded waveguide coupler

    DOE Patents [OSTI]

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  17. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  18. Protein folding in the ER.

    SciTech Connect (OSTI)

    Stevens, F. J.; Argon, Y.; Biosciences Division; Univ. of Chicago

    1999-10-01

    The endoplasmic reticulum (ER) is a major protein folding compartment for secreted, plasma membrane and organelle proteins. Each of these newly-synthesized polypeptides folds in a deterministic process, affected by the unique conditions that exist in the ER. An understanding of protein folding in the ER is a fundamental biomolecular challenge at two levels. The first level addresses how the amino acid sequence programs that polypeptide to efficiently arrive at a particular fold out of a multitude of alternatives, and how different sequences obtain similar folds. At the second level are the issues introduced by folding not in the cytosol, but in the ER, including the risk of aggregation in a molecularly crowded environment, accommodation of post-translational modifications and the compatibility with subsequent intracellular trafficking. This review discusses both the physicochemical and cell biological constraints of folding, which are the challenges that the ER molecular chaperones help overcome.

  19. Laboratory modeling of graben inversion with application to broad fourteens basin, Netherlands offshore

    SciTech Connect (OSTI)

    Nalpas, T.; Brun, J.P. ); Le Douaran, S. ); Richert, J.P. )

    1993-09-01

    The southern North Sea presents spectacular examples of basin inversion, which have been documented by numerous projects of the oil industry. Some basic inversion patterns identified through wells and seismic data were used to prepare a laboratory modeling investigation. Models are built with sand and silicone putty, respectively, which represent the frictional behavior of Mesozoic cover and Paleozoic basement and the viscous behavior of the decollement layer, mainly Permian salt, between them. They are scaled to fit natural configurations observed in the Broad Fourteens basin. All experiments are done in two steps: (1) graben formation with synkinematic sedimentation and (2) compression oblique to the graben. The experiments show that structures generated by or reactivated during inversion are strongly dependent on the strength of the decollement layer at the base of the sedimentary cover, which is itself dependent on the silicone viscosity, the layer thickness, and the displacement velocity applied at model boundaries; and the strength of the sedimentary cover, which is solely dependent on its thickness. This work is in progress. Preliminary results will be compared with examples from the Broad Fourteens basin on the basis of both seismic data and structural maps.

  20. Graphene folding on flat substrates

    SciTech Connect (OSTI)

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57?eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  1. Compact intermediates in RNA folding

    SciTech Connect (OSTI)

    Woodson, S.A. (JHU)

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  2. Heavy oil reservoirs in the Tulare Fold Belt, Cymric-McKittrick fields, Kern County, California

    SciTech Connect (OSTI)

    Farley, T. )

    1990-05-01

    The Tulare fold belt is a series of asymmetric, generally northeast-verging anticlines and synclines in the Pliocene-Pleistocene Tulare Formation that trend northwestward through the Cymric-McKittrick fields. Anticlines within the deformed belt generally originated as fault propagation folds above decollements, the most important of which is the regional decollement on top of the Amnicola sand, the basal Tulare unit. The Amnicola decollement is the northeast subsurface extension of the McKittrick thrust, a low-angle fault that has displaced the Miocene Antelope shale over the Pliocene San Joaquin Formation and locally over the Tulare Formation. The Amnicola decollement is itself deformed by folding related to a younger, deeper decollement near the base of the San Joaquin Formation that merges westward with the Amnicola decollement and defines a zone of faulting associated with the McKittrick thrust Heavy oil reservoirs in the Tulare Formation are currently undergoing active development by thermal recovery techniques. In general, the geometry of heavy oil reservoirs is determined by location within the Tulare fold belt combined with the position of a subhorizontal fluid level trap that forms the updip limit of fluid-saturated rock Reservoir geometry is complicated by complex local structure, discontinuous stratigraphy, and partial depletion of heavy oil reservoirs by fluid withdrawal due to gravity drainage. Proper resolution of fold geometry, fault geometry, and position of the fluid level trap is crucial to the design and monitoring of thermal recovery projects within the Tulare fold belt.

  3. Fast events in protein folding

    SciTech Connect (OSTI)

    Woodruff, W.; Callender, R.; Causgrove, T.; Dyer, R.; Williams, S.

    1996-04-01

    The primary objective of this work was to develop a molecular understanding of how proteins achieve their native three-dimensional (folded) structures. This requires the identification and characterization of intermediates in the protein folding process on all relevant timescales, from picoseconds to seconds. The short timescale events in protein folding have been entirely unknown. Prior to this work, state-of-the-art experimental approaches were limited to milliseconds or longer, when much of the folding process is already over. The gap between theory and experiment is enormous: current theoretical and computational methods cannot realistically model folding processes with lifetimes longer than one nanosecond. This unique approach to employ laser pump-probe techniques that combine novel methods of laser flash photolysis with time-resolved vibrational spectroscopic probes of protein transients. In this scheme, a short (picosecond to nanosecond) laser photolysis pulse was used to produce an instantaneous pH or temperature jump, thereby initiating a protein folding or unfolding reaction. Structure-specific, time-resolved vibrational probes were then used to identify and characterize protein folding intermediates.

  4. Photovoltaic System Fault Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Fault Detection and Diagnostics using Laterally Primed Adaptive Resonance Theory Neural Network C. Birk Jones, Joshua S. Stein, Sigifredo Gonzalez, and Bruce H. King Sandia National Laboratories, Albuquerque, NM, 87185, U.S.A Abstract-Cost effective integration of solar photovoltaic (PV) systems requires increased reliability. This can be achieved with a robust fault detection and diagnostic (FDD) tool that auto- matically discovers faults. This paper introduces the Laterally

  5. Chemical relationship between discharging fluids in the Siena-Radicofani Graben and the deep fluids produced by the geothermal fields of Mt Amiata, torre Afina and Latera (Central Italy)

    SciTech Connect (OSTI)

    Duchi, V.; Paolieri, M.; Prati, F ); Minissale, A. Centro di Studio per Mineralogia e la Geochimica dei Sedimenti, Via La Pira 4, 50121 Firenze ); Valori, A )

    1992-06-01

    This paper reports that the thermal springs discharging in the Siena-Radicofani basin and the deep fluids within the geothermal systems of Piancastagnaio (Mt Amiata), Torre Alfina and Latera (Vulsini Mts) have a common origin. The chemical composition and evolution towards the low enthalpy of the springs as compared to the high enthalpy of the geothermal fluids are affected by both the structural setting of the region and the deep hydraulic conditions. Recharge of both the shallow thermal aquifer and the deep geothermal systems takes place in the outcrop areas of Mesozoic carbonate rocks, which constitute the main potential geothermal reservoir in central Italy. The waters of meteoric origin are heated at depth, as a consequence of anomalous heat flow in the region; these waters acquire a CO[sub 2]-rich rising gas phase, equilibrate with the reservoir rocks and, finally, assume their Ca--HCO[sub 3]--SO[sub 4] composition. If these waters discharge rapidly from the border fault systems of the Siena-Radicofani basin they maintain their original composition. If, instead, they emerge from the inner faults of the graben, their temperature and dissolved solids increase so that they become Na--Cl with a high content of NH[sub 4], and H[sub 3]BO[sub 3].

  6. Fault Current Limiters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other benefits include: &17; Enhanced system safety, stability, and efficiency of the power ... large fault current desaturates the iron core of the series AC coils and the increased ...

  7. Characterization of protein folding intermediates

    SciTech Connect (OSTI)

    Kim, P.S.

    1986-01-01

    The three-dimensional structure of a protein is encoded in its linear sequence of amino acids. Studies of protein folding are aimed at understanding the nature of this code which translates one-dimensional information to three-dimensions. It is now well-established that protein folding intermediates exist and can be populated significantly under some conditions. A method to characterize kinetic folding intermediates is described. The method takes advantage of the decrease in exchange rates between amide protons (i.e., peptide backbone NH) and solvent water protons, when the amide proton is involved in structure. The feasibility of using amide proton exchange to pulse-label proteins during folding has been demonstrated using (/sup 3/H)-H/sub 2/O. The results with ribonuclease A (RNase A) support a framework model for folding, in which the secondary structure of a protein is formed before tertiary structure changes are complete. Extension of these studies using NMR should permit characterization of early secondary structure folding frameworks.

  8. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  9. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  10. SciTech Connect: "protein folding"

    Office of Scientific and Technical Information (OSTI)

    protein folding" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "protein folding" Semantic Semantic Term Title: Full Text: Bibliographic Data:...

  11. OpenStudio - Fault Modeling

    Energy Science and Technology Software Center (OSTI)

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  12. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    SciTech Connect (OSTI)

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig; Wells, Ray E.; Rohay, Alan C.

    2014-06-11

    Magnetic and gravity data, collected in south-central Washington near the Yakima Fold and Thrust Belt (YFTB) are used to model upper crustal structure, the extent of the late Columbia River Basalt flow named the Ice Harbor member, the vertical conduits (dikes) that the Ice Harbor erupted from, and whether the dikes are offset or affected by faulting on the Wallula Fault zone.

  13. Fault tolerant linear actuator

    DOE Patents [OSTI]

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  14. Computer hardware fault administration

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  15. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOE Patents [OSTI]

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  16. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  17. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  18. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  19. Dynamic Fault Detection Chassis

    SciTech Connect (OSTI)

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  20. Automatic Fault Classification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automatic Fault Classification of Photovoltaic Strings Based on an In Situ IV Characterization System and a Gaussian Process Algorithm. C. Birk Jones ∗ , Manel Mart´ ınez-Ram´ on ‡ , § Ryan Smith † , Craig K. Carmignani ∗ , Olga Lavrova ∗ , Charles Robinson ∗ , and Joshua S. Stein ∗ ∗ Sandia National Laboratories Solar PV & Grid Integration, Albuquerque, NM, USA. ‡ Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA, §

  1. Protein Vivisection Reveals Elusive Intermediates in Folding

    SciTech Connect (OSTI)

    Zheng, Zhongzhou; Sosnick, Tobin R. (UC)

    2010-05-25

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here, we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu {yields} Glu{sup -}) to destabilize and unfold a specific region of the protein. We applied this strategy to ubiquitin, reversibly trapping a folding intermediate in which the {beta}5-strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high-energy states.

  2. Fault Detection Tool Project: Automatic Discovery of Faults using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems LaboratoryBrayton Lab Photovoltaic Systems Evaluation Laboratory PV ... HomeEnergy, Photovoltaic, Renewable Energy, Research & Capabilities, SolarFault ...

  3. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  4. Fault Mapping | Open Energy Information

    Open Energy Info (EERE)

    to help locate and identify geothermal systems that rely on faults as high permeability pathways for fluid circulation. There are many techniques that can be done to...

  5. Exploration in the Sub Andean thrust/fold belt of northwest Argentina

    SciTech Connect (OSTI)

    Schulz, A.; Alarcon, M.; Aramayo, F.; Santiago, M.; Ashby, W.J.

    1996-08-01

    A significant portion of the 15,000 square kilometer Aguarague exploration permit is located with the Sub Andean zone of northwest Argentina bordering Bolivia. The Sub Andean sedimentary section is dominated by a succession of tectonostratigraphic cycles of Silurian to recent age. These cycles display a complex geological history prior to the onset of the Andean deformation of Upper Miocene age. As the structures are complex, several different exploration techniques were combined, including satellite imagery, aeromagnetics, geological mapping, geochemistry, microtectonic studies, magneto stratigraphy, seismic modeling and seismic with pre- and post-stack depth migration. The interpretation of these techniques produced three dimensional structural models, at regional and prospect scales, that demonstrated the deformation mechanism, sequence and timing of the structures; these were then linked to the timing of generation/expulsion of hydrocarbons. The physical properties of the sedimentary sequence produces three structural environs, each with distinct fold and fault mechanisms. 1. (Upper): A product of the cumulative deformation of the underlying environs; 2. (Middle): The presence of an incompetent shale, the principal source rock, within this unit produces {open_quotes}fold disharmony {close_quotes} (horizontally and vertically) between the overlying and underlying environs. 3. (Lower): Characterized by folds developed by Fault Bend Fold processes. Hydrocarbon fields and exploration prospects are present within all three environs. The work performed has permitted the successful evaluation of several structures within the Sub Andean of the UTE Aguarague.

  6. Fault current limiter

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  7. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  8. THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen; Michael T. Whalen

    2002-01-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. The Lisburne in the main axis of the Brooks Range is characteristically deformed into imbricate thrust sheets with asymmetrical hanging wall anticlines and footwall synclines. In contrast, the Lisburne in the northeastern Brooks Range is characterized by symmetrical detachment folds. The focus of our 2000 field studies was at the boundary between these structural styles in the vicinity of Porcupine Lake, in the Arctic National Wildlife Refuge. The northern edge of thrust-truncated folds in Lisburne is marked by a local range front that likely represents an eastward continuation of the central Brooks Range front. This is bounded to the north by a gently dipping panel of Lisburne with local asymmetrical folds. The leading edge of the flat panel is thrust over Permian to Cretaceous rocks in a synclinal depression. These younger rocks overlie symmetrically detachment-folded Lisburne, as is extensively exposed to the north. Six partial sections were measured in the Lisburne of the flat panel and local range front. The Lisburne here is about 700 m thick and is interpreted to consist primarily of the Wachsmuth and Alapah Limestones, with only a thin veneer of Wahoo Limestone. The Wachsmuth (200 m) is gradational between the underlying Missippian Kayak Shale and the overlying Mississippian Alapah, and

  9. Cooperative Tertiary Interaction Network Guides RNA Folding

    SciTech Connect (OSTI)

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan; Briber, R.M.; Woodson, Sarah A.

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.

  10. Fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  11. Fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  12. Colorado Regional Faults

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  13. Arc fault detection system

    DOE Patents [OSTI]

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  14. Arc fault detection system

    DOE Patents [OSTI]

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  15. Tectonic and eustatic controls on facies distribution in the middle of upper Jurassic, Viking Graben, Norwegian North Sea

    SciTech Connect (OSTI)

    Sneider, J.S.; Vail, P.R. ); De Clarens, P. )

    1993-09-01

    The Middle of Upper Jurassic in the Viking Graben area was deposited during an overall transgression. From the lower Toarcian to the base of the cretaceous, there are seven 2nd-order (3-5 m.y.) transgressive-regressive (T/R) facies cycles that are related to regional tectonic events. These cycles dominate facies distribution, appear synchronous, and can be correlated throughout the study area. Local tectonics and sediment supply can modify these cycles. Local tectonics, sediment supply, and position in the T/R facies cycles control development of 3rd-order (0.5-3 m.y.) cycles. Where sediment supply is low, 3rd-order sequences are poorly developed. During a 2nd-order regression, shelfal areas and local highs are often eroded. Third-order sequences have well developed lowstands system-Y tracts (LST) and poorly developed transgressive systems tracts (TST). During 2nd-order transgressions, 3rd-order sequences have enhanced TST, starved HST, and poorly developed LST. Thick, stacked, shoreface sandstones may develop in the TST on terraces or on gently dipping slopes if sediment supply is high. The base of these sequences often shows an abrupt basinward shift in facies followed by backstepping facies. turbidites develop during 3rd-order lowstands when there is a steeply dipping slope and high sediment supply, but their distribution is more limited.

  16. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    SciTech Connect (OSTI)

    Cumbest, R.J.

    2000-11-14

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion.

  17. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    it steps 3 km to the left and continues northwest across Crater Mountain and through Big Pine. The fault has an overall strike of 340 and dip of 8015 ENE. Surface...

  18. Fault Detection Tool Project: Automatic Discovery of Faults using Machine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Fault Detection Tool Project: Automatic Discovery of Faults using Machine Learning - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  19. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  20. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-27

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  1. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  2. Fault Controlled | Open Energy Information

    Open Energy Info (EERE)

    has been provided for this term. Add a Definition This classification is used if the literature describes the geothermal fluids as being controlled by faults, but not in detail....

  3. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  4. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  5. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  6. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  7. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  8. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  9. Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada...

    Open Energy Info (EERE)

    was also 15 km instead of the previously reported 40 km. Local microearthquakes cluster around 10-15 km. The geometrical block models indicate that crustal horst-graben...

  10. Folded-path optical analysis gas cell

    DOE Patents [OSTI]

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  11. Solvent-induced forces in protein folding

    SciTech Connect (OSTI)

    Ben-Naim, A. (Hebrew Univ., Jerusalem (Israel))

    1990-08-23

    The solvent-induced forces between various groups on the protein are examined. It is found that the intramolecular hydrophilic forces are likely to be the strongest forces mediated through the solvent. It is argued that these are probably the most important solvent-induced driving forces in the process of protein folding.

  12. Folded-path optical analysis gas cell

    DOE Patents [OSTI]

    Carangelo, Robert M. (Glastonbury, CT); Wright, David D. (Vershire, VT)

    1995-01-01

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.

  13. Self-folding graphene-polymer bilayers

    SciTech Connect (OSTI)

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  14. Simplified Protein Models: Predicting Folding Pathways and Structure...

    Office of Scientific and Technical Information (OSTI)

    Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences Title: Simplified Protein Models: Predicting Folding Pathways and Structure Using ...

  15. Recurrent motion on Precambrian-age basement faults, Palo Duro basin, Texas Panhandle

    SciTech Connect (OSTI)

    Budnik, R.T.

    1983-03-01

    The distribution of Late Precambrian through Quaternary strata in the Palo Duro basin and surrounding uplifts documents recurrent motion on Precambrian-age basement faults. Basement blocks have been uplifted with little tilting or folding of overlying strata along a system of northwest-southeast oriented faults, part of a regional trend extending from central Colorado to southwestern Oklahoma. The orientation of basement terranes in Colorado and that of a 50-mi (80-km) long mylonite zone in east-central New Mexico suggest a Precambrian age for the faults. An Arkosic sandstone overlies basement and underlies a Cambrian(.) quartzose sandstone in a few Palo Duro basin wells. It may represent debris shed from active fault blocks during the opening of the southern Oklahoma aulocogen in the Late Precambrian or Early Cambrian. Ordovician carbonates thin or are missing beneath Mississippian carbonates on some fault blocks, indicating a post-Ordovician-pre-Mississippian period of faulting. The greatest amount of deformation occurred during the Pennsylvanian. Thickness, distribution, and facies of sediments were controlled by the location of active faults. Lower Pennsylvanian strata thin by up to 50% across some structures. Fault blocks provided sources of arkosic debris and loci for carbonate buildups throughout the Pennsylvanian and Early Permian. Around the periphery of the basin, Late Pennsylvanian or Early Permian faulting caused a wedging out of older units beneath the Wolfcamp. Permian, Triassic, and Neogene units, along with present topography, all have been subtly affected by basement structures. The entire section thins over basement highs. Middle and Upper Permian evaporites are thicker in structural lows. The overlying Dockum Group (Triassic) and Ogallala Formation (Neogene), both nonmarine clastic units, become finer grained over basement highs. Present topographic highs coincide with some basement highs.

  16. Folded membrane dialyzer with mechanically sealed edges

    DOE Patents [OSTI]

    Markley, Finley W.

    1976-01-01

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  17. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  18. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  19. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  20. Microsoft Word - RNA_folding_Herschlag.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2003 Exploring the Folding Landscape of a Structured RNA by SAXS Rick Russell, Ian S. Millett, Sebastian Doniach and Daniel Herschlag Stanford University One goal of genome projects is to systematically identify genes (1,2). The best current knowledge indicates that humans carry approximately 35000 genes. This number is an estimate that varies from expert to expert and range up to 100,000 (3-5). To anyone who has taken an elementary biology class, this ambiguity must seem strange. How hard

  1. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  2. CONTROL AND FAULT DETECTOR CIRCUIT

    DOE Patents [OSTI]

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  3. Fault Current Limiters (FCL) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fault Current Limiters (FCL) Fact Sheet Fault Current Limiters (FCL) Fact Sheet Plugging America Into the Future of Power: Superconducting & Solid-state Power Equipment What are Fault Current Limiters Why do we need Fault Current Limiters What are the benefits to utilities Fault Current Limiter projects Fault Current Limiters (926.42 KB) More Documents & Publications An Assessment of Fault Current Limiter Testing Requirements Superconductivity Program Overview Superconductivity for

  4. Folding and association of a homotetrameric protein complex in...

    Office of Scientific and Technical Information (OSTI)

    Folding and association of a homotetrameric protein complex in an all-atom Go model Title: Folding and association of a homotetrameric protein complex in an all-atom Go model ...

  5. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding New Crystal Structures Lift Fog around Protein Folding Print Wednesday, 25 July 2012 00:00 Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a

  6. Fault-tolerant dynamic task graph scheduling

    SciTech Connect (OSTI)

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  7. Sandia Energy - PV Arc-Fault and Ground Fault Detection and Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prescribe maintenance schedules, and warn of arc-fault events. Investigating the proscons of module-level, string-level, and array-level arc-fault detection schemes....

  8. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic ...

  9. Efficient Synchronization Stability Metrics for Fault Clearing...

    Office of Scientific and Technical Information (OSTI)

    Title: Efficient Synchronization Stability Metrics for Fault Clearing Authors: Backhaus, Scott N. 1 ; Chertkov, Michael 1 ; Bent, Russell Whitford 1 ; Bienstock, Daniel 2...

  10. Reducing the Risk of Arc-Faults

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arc-fault detection algorithms by: 1. Performing arcing tests at the Distributed Energy Technologies Laboratory (DETL) with AFCI prototypes to verify their functionality on...

  11. Variscan fold belt and its foreland in western Europe from late Carboniferous to Permian time

    SciTech Connect (OSTI)

    Mascle, A.; Benard, F.; Cazes, M.; Le Gall, B.

    1988-08-01

    The Variscan front was emplaced in the Later Carboniferous with a south-to-north or southeast-to-northwest-trending vergence of thrusting. At the same time, folds were formed in the foreland. In England and southern Scotland, such structures were induced by an east-west direction of shortening, followed by a more subdued north-south compressive event. In Stephanian time, isolated basins developed on the Hercynian belt. In the Massif Central Marues Massif, they are closely related to transcurrent faults which developed in response to north-south-trending compressive stresses. The distribution of stresses completely changed in Early Permian time when extension dominated almost everywhere. Three kinds of basins developed at that time: those related to the relaxation of stresses on the Hercynian range, a north-south-trending rift system in the western United Kingdom and the North Sea, and a broad flexural evaporitic basin from eastern England to Poland.

  12. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    SciTech Connect (OSTI)

    Boles, James

    2013-05-24

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  13. Self-triggering superconducting fault current limiter

    DOE Patents [OSTI]

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  14. Accordian-folded boot shield for flexible swivel connection

    DOE Patents [OSTI]

    Hoh, Joseph C.

    1986-01-01

    A flexible swivel boot connector for connecting a first boot shield section to a second boot shield section, both first and second boot sections having openings therethrough, the second boot section having at least two adjacent accordian folds at the end having the opening, the second boot section being positioned through the opening of the first boot section such that a first of the accordian folds is within the first boot section and a second of the accordian folds is outside of the first boot, includes first and second annular discs, the first disc being positioned within and across the first accordian fold, the second disc being positioned within and across the second accordian fold, such that the first boot section is moveably and rigidly connected between the first and second accordian folds of the second boot section.

  15. Multi-fault Tolerance for Cartesian Data Distributions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Fault-tolerant linear algebra (FTLA) algo- rithms employ additional processors that store parities along the dimensions of a matrix to tolerate multiple, simultaneous faults. ...

  16. Modeling of fault reactivation and induced seismicity during...

    Office of Scientific and Technical Information (OSTI)

    Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs Citation Details In-Document Search Title: Modeling of fault reactivation ...

  17. Termination of a Major Normal Fault | Open Energy Information

    Open Energy Info (EERE)

    sometimes split into multiple closely-spaced faults that result in increased permeability. Fault sets at these terminations sometimes appear as "horsetailing" splays that...

  18. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  19. Microsecond Microfluidic Mixing for Investigation of Protein Folding

    Office of Scientific and Technical Information (OSTI)

    Kinetics (Conference) | SciTech Connect Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics Citation Details In-Document Search Title: Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated

  20. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  1. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  2. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  3. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING...

    Office of Scientific and Technical Information (OSTI)

    OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY Citation Details In-Document Search Title: MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN ...

  4. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING...

    Office of Scientific and Technical Information (OSTI)

    MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY Kane, A; Hertzog, D; Baumgartel, P; Lengefeld, J; Horsley,...

  5. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these...

  6. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING...

    Office of Scientific and Technical Information (OSTI)

    THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY Citation Details In-Document Search Title: MICROFLUIDIC MIXERS FOR THE...

  7. A Fault Oblivious Extreme-Scale Execution Environment

    SciTech Connect (OSTI)

    McKie, Jim

    2014-11-20

    The FOX project, funded under the ASCR X-stack I program, developed systems software and runtime libraries for a new approach to the data and work distribution for massively parallel, fault oblivious application execution. Our work was motivated by the premise that exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today’s machines. To deliver the capability of exascale hardware, the systems software must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems. Our OS work focused on adaptive, application tailored OS services optimized for multi → many core processors. We developed a new operating system NIX that supports role-based allocation of cores to processes which was released to open source. We contributed to the IBM FusedOS project, which promoted the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel library was developed, based on the Linda tuple space model, that used low level interconnect primitives for optimized communication. We designed fault tolerance mechanisms for task parallel computations

  8. Method for fabricating fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  9. Method for fabricating fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  10. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect (OSTI)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  11. HVAC Fault Detection and Diagnosis Toolkit

    Energy Science and Technology Software Center (OSTI)

    2004-12-31

    This toolkit supports component-level model-based fault detection methods in commercial building HVAC systems. The toolbox consists of five basic modules: a parameter estimator for model calibration, a preprocessor, an AHU model simulator, a steady-state detector, and a comparator. Each of these modules and the fuzzy logic rules for fault diagnosis are described in detail. The toolbox is written in C++ and also invokes the SPARK simulation program.

  12. A connecting network with fault tolerance capabilities

    SciTech Connect (OSTI)

    Ciminiera, L.; Serra, A.

    1986-06-01

    A new multistage interconnection network is presented in this paper. It is able to handle the communications between the connected devices correctly, even in the presence of fault(s) in the network. This goal is achieved by using redundant paths with a fast procedure able to dynamically reroute the message. It is also shown that the rerouting properties are still valid when broadcasting transmission is used.

  13. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    SciTech Connect (OSTI)

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  14. Water dynamics clue to key residues in protein folding

    SciTech Connect (OSTI)

    Gao, Meng [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Zhu, Huaiqiu, E-mail: hqzhu@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Yao, Xin-Qiu [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China) [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 (Japan); She, Zhen-Su, E-mail: she@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)

    2010-01-29

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  15. Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation

    SciTech Connect (OSTI)

    Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

    2011-05-15

    Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

  16. Office of Small and Disadvantaged Business Utilization Tri-Fold

    Broader source: Energy.gov [DOE]

    OSDBU has created a downloadable, print-on-demand tri-fold PDF that introduces the office, its role in the Department of Energy and its goals for supporting small business nationwide.

  17. UFO (UnFold Operator) computer program abstract

    SciTech Connect (OSTI)

    Kissel, L.; Biggs, F.

    1982-11-01

    UFO (UnFold Operator) is an interactive user-oriented computer program designed to solve a wide range of problems commonly encountered in physical measurements. This document provides a summary of the capabilities of version 3A of UFO.

  18. Determining the role of hydration forces in protein folding

    SciTech Connect (OSTI)

    Sorenson, J.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry] [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Hura, G. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States); [Lawrence Berkeley National Lab., CA (United States). Life Sciences Div.; Soper, A.K. [Rutherford Appleton Lab., Didcot (United Kingdom). ISIS Facility] [Rutherford Appleton Lab., Didcot (United Kingdom). ISIS Facility; Pertsemlidis, A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry] [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Head-Gordon, T. [Lawrence Berkeley National Lab., CA (United States)] [Lawrence Berkeley National Lab., CA (United States)

    1999-07-01

    One of the primary issues in protein folding is determining what forces drive folding and eventually stabilize the native state. A delicate balance exists between electrostatic forces such as hydrogen bonding and salt bridges, and the hydrophobic effect, which are present for both intramolecular protein interactions and intermolecular contributions with the surrounding aqueous environment. This article describes a combined experimental, theoretical, and computational effort to show how the complexity of aqueous hydration can influence the structure, folding and aggregation, and stability of model protein systems. The unification of the theoretical and experimental work is the development or discovery of effective amino acid interactions that implicitly include the effects of aqueous solvent. The authors show that consideration of the full range of complexity of aqueous hydration forces such as many-body effects, long-ranged character of aqueous solvation, and the assumptions made about the degree of protein hydrophobicity can directly impact the observed structure, folding, and stability of model protein systems.

  19. In the OSTI Collections: Determining How Proteins Fold | OSTI...

    Office of Scientific and Technical Information (OSTI)

    ... Some of the research into how proteins fold has been funded by the Department of Energy ... in terms of how the object's energy would change if a force acted to change the shape. ...

  20. Nonlinear vs. linear biasing in Trp-cage folding simulations

    SciTech Connect (OSTI)

    Spiwok, Vojt?ch Oborsk, Pavel; Krlov, Blanka; Pazrikov, Jana

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200?ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  1. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for

  2. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING

    Office of Scientific and Technical Information (OSTI)

    SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY (Conference) | SciTech Connect MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY Citation Details In-Document Search Title: MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY The purpose of this study is to design, fabricate and optimize microfluidic mixers to investigate the kinetics of protein

  3. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect (OSTI)

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  4. Buried pipelines in large fault movements

    SciTech Connect (OSTI)

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  5. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A.; Serkland, Darwin K.

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  6. Solitons and protein folding: An In Silico experiment

    SciTech Connect (OSTI)

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-10-28

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  7. Fault-tolerant three-level inverter

    DOE Patents [OSTI]

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  8. Intermediates and the folding of proteins L and G

    SciTech Connect (OSTI)

    Brown, Scott; Head-Gordon, Teresa

    2003-07-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  9. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    SciTech Connect (OSTI)

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  10. Arc-Fault Detector Algorithm Evaluation Method Utilizing Prerecorded...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This pulse was fed into the AFD circuit to better tune the arc-fault detector. Figure 4 shows the string current (Hall Effect), the arc-fault voltage (Arc V (TEK)), and the arcing ...

  11. Collective aspects of protein folding illustrated by a toy model

    SciTech Connect (OSTI)

    Stillinger, F.H. [AT& T Bell Laboratories, Murray Hill, New Jersey 07974 (United States)] [AT& T Bell Laboratories, Murray Hill, New Jersey 07974 (United States); Head-Gordon, T. [Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)] [Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1995-09-01

    A simple toy model for polypeptides serves as a testbed to illuminate some nonlocal, or collective, aspects of protein folding phenomena. The model is two dimensional and has only two amino acids, but involves a continuous range of backbone bend angles. Global potential energy minima and their folding structures have been determined for leading members of two special and contrasting polypeptide sequences, center doped and Fibonacci, named descriptively for their primary structures. The results display the presence of spontaneous symmetry breaking, elastic strain, and substantial conformational variation for specific embedded amino acid strings. We conclude that collective variables generated by the primary amino acid structure may be required for fully effective protein folding predictors, including those based on neural networks.

  12. Heteropolymer freezing and design: Towards physical models of protein folding

    SciTech Connect (OSTI)

    Pande, Vijay S. [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States)] [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States); Grosberg, Alexander Yu. [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)] [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Tanaka, Toyoichi [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2000-01-01

    Protein folding has become one of the most actively studied problems in modern molecular biophysics. Approaches to the problem combine ideas from the physics of disordered systems, polymer physics, and molecular biology. Much can be learned from the statistical properties of model heteropolymers, the chain molecules having different monomers in irregular sequences. Even in highly evolved proteins, there is a strong random element in the sequences, which gives rise to a statistical ensemble of sequences for a given folded shape. Simple analytic models give rise to phase transitions between random, glassy, and folded states, depending on the temperature T and the design temperature T{sup des} of the ensemble of sequences. Besides considering the analytic results obtainable in a random-energy model and in the Flory mean-field model of polymers, the article reports on confirming numerical simulations. (c) 2000 The American Physical Society.

  13. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  14. Adjustable direct current and pulsed circuit fault current limiter

    DOE Patents [OSTI]

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  15. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources

    SciTech Connect (OSTI)

    Keller, J.; Kroposki, B.

    2010-01-01

    This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

  16. All row, planar fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  17. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  18. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-23

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  19. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  20. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    SciTech Connect (OSTI)

    Reheis, M.C.; Noller, J.S.

    1991-09-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs.

  1. Folding model description of reactions with exotic nuclei

    SciTech Connect (OSTI)

    Ibraheem, Awad A.; Hassanain, M. A.; Mokhtar, S. R.; Zaki, M. A.; Mahmoud, Zakaria M. M.; Farid, M. El-Azab

    2012-08-15

    Microscopic folding calculations based upon the effective M3Y nucleon-nucleon interaction and the nuclearmatter densities of the interacting nuclei have been carried out to explain recently measured experimental data of the {sup 6}He+{sup 120}Sn elastic scattering cross section at four different laboratory energies near the Coulomb barrier. The extracted reaction cross sections are also considered.

  2. Coordinated Fault Tolerance for High-Performance Computing

    SciTech Connect (OSTI)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  3. Statistical Fault Detection & Diagnosis Expert System

    Energy Science and Technology Software Center (OSTI)

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component hasmoredegraded.less

  4. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  5. New approach to folding with the Coulomb wave function

    SciTech Connect (OSTI)

    Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.

    2015-05-15

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  6. Invariant patterns in crystal lattices: Implications for protein folding algorithms

    SciTech Connect (OSTI)

    HART,WILLIAM E.; ISTRAIL,SORIN

    2000-06-01

    Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist invariants across lattices related to fundamental properties of the protein folding process. This paper considers whether performance-guaranteed approximability is such an invariant for HP lattice models. The authors define a master approximation algorithm that has provable performance guarantees provided that a specific sublattice exists within a given lattice. They describe a broad class of crystal lattices that are approximable, which further suggests that approximability is a general property of HP lattice models.

  7. Controlling Structures | Open Energy Information

    Open Energy Info (EERE)

    fault terminations or tip-lines with multiple closely-spaced faults that enhance permeability. Mountainous, Horst and Graben Extensional Tectonics, Rift Zone Stepover or Relay...

  8. Invariant patterns in crystal lattices: Implications for protein folding algorithms

    SciTech Connect (OSTI)

    Hart, W.E.; Istrail, S.

    1995-12-11

    Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist ``invariants`` across lattices that define fundamental properties of protein folding process; an invariant defines a property that transcends particular lattice formulations. This paper identifies two classes of invariants, defined in terms of sublattices that are related to the design of algorithms for the structure prediction problem. The first class of invariants is, used to define a master approximation algorithm for which provable performance guarantees exist. This algorithm can be applied to generalizations of the hydrophobic-hydrophilic model that have lattices other than the cubic lattice, including most of the crystal lattices commonly used in protein folding lattice models. The second class of invariants applies to a related lattice model. Using these invariants, we show that for this model the structure prediction problem is intractable across a variety of three-dimensional lattices. It`` turns out that these two classes of invariants are respectively sublattices of the two- and three-dimensional square lattice. As the square lattices are the standard lattices used in empirical protein folding` studies, our results provide a rigorous confirmation of the ability of these lattices to provide insight into biological phenomenon. Our results are the first in the literature that identify algorithmic paradigms for the protein structure prediction problem which transcend particular lattice formulations.

  9. Combined approach to the inverse protein folding problem. Final report

    SciTech Connect (OSTI)

    Ruben A. Abagyan

    2000-06-01

    The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).

  10. Folding and insertion thermodynamics of the transmembrane WALP peptide

    SciTech Connect (OSTI)

    Bereau, Tristan; Bennett, W. F. Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-12-28

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.

  11. Calculating the probability of injected carbon dioxide plumes encountering faults

    SciTech Connect (OSTI)

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  12. Detachment faults: Evidence for a low-angle origin

    SciTech Connect (OSTI)

    Scott, R.J.; Lister, G.S. )

    1992-09-01

    The origin of low-angle normal faults or detachment faults mantling metamorphic core complexes in the southwestern United States remains controversial. If [sigma][sub 1] is vertical during extension, the formation of, or even slip along, such low-angle normal faults is mechanically implausible. No records exist of earthquakes on low-angle normal faults in areas currently undergoing continental extension, except from an area of actively forming core complexes in the Solomon Sea, Papua New Guinea. In light of such geophysical and mechanical arguments, W.R. Buck and B. Wernicke and G.J. Axen proposed models in which detachment faults originate as high-angle normal faults, but rotate to low angles and become inactive as extension proceeds. These models are inconsistent with critical field relations in several core complexes. The Rawhide fault, an areally extensive detachment fault in western Arizona, propagated at close to its present subhorizontal orientation late in the Tertiary extension of the region. Neither the Wernicke and Axen nor Buck models predict such behavior; in fact, both models preclude the operation of low-angle normal faults. The authors recommend that alternative explanations or modifications of existing models are needed to explain the evidence that detachment faults form and operate with gentle dips.

  13. Directed evolution methods for improving polypeptide folding and solubility and superfolder fluorescent proteins generated thereby

    DOE Patents [OSTI]

    Waldo, Geoffrey S.

    2007-09-18

    The current invention provides methods of improving folding of polypeptides using a poorly folding domain as a component of a fusion protein comprising the poorly folding domain and a polypeptide of interest to be improved. The invention also provides novel green fluorescent proteins (GFPs) and red fluorescent proteins that have enhanced folding properties.

  14. A Summary of Fault Recurrence and Strain Rates in the Vicinity of the Hanford Site--Topical Report

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to fault recurrence and strain rates within the Yakima Fold Belt. Strain rates have met with contention in the expert community and may have a significant potential for impact on the seismic hazard estimate at the Hanford Site. This report identifies the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some prospective approaches to reducing uncertainties about earthquake recurrence rates for the Yakima Fold Belt.

  15. Protein-Folding Landscapes in Multi-Chain Systems (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Protein-Folding Landscapes in Multi-Chain Systems Citation Details In-Document Search Title: Protein-Folding Landscapes in Multi-Chain Systems Computational studies of proteins have significantly improved our understanding of protein folding. These studies are normally carried out using chains in isolation. However, in many systems of practical interest, proteins fold in the presence of other molecules. To obtain insight into folding in such situations, we compare the

  16. Fault-Oblivious Exascale Computing Environment | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Fault-Oblivious Exascale Computing Environment PI Name: Maya B. Gokhale PI Email: gokhale2@llnl.gov Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Computer Science Two areas of concern that have emerged from several DOE meetings on exascale systems (machines with 100 million cores) are runtime systems which can function at that scale, and fault management. The Fault Oblivious Exascale (FOX) project aims to build a software stack

  17. An Assessment of Fault Current Limiter Testing Requirements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fault Current Limiter Testing Requirements An Assessment of Fault Current Limiter Testing Requirements The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is conducting research and development (R&D) on next-generation electricity delivery equipment including fault current limiters (FCLs). Prototype FCL devices are undergoing testing with the aim of market-ready devices making their debut in the transmission and distribution (T&D)

  18. Properties of the extra stage cube under multiple faults

    SciTech Connect (OSTI)

    Adams, G.B., III; Siegel, H.J.

    1982-01-01

    The extra stage cube (ESC) interconnection network, a fault tolerant structure, has been proposed for use in large-scale parallel and distributed systems. It has all of the interconnecting capabilities of the multistage cube-type networks that have been proposed for many systems, and the ESC provides fault tolerance for any single failure. The paper examines the ability of the ESC to operate with multiple faults. 9 references.

  19. Recency of Faulting and Neotectonic Framework in the Dixie Valley...

    Open Energy Info (EERE)

    by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable...

  20. Error Estimation for Fault Tolerance in Numerical Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Error Estimation for Fault Tolerance in Numerical Integration Solvers Event Sponsor: ... In numerical integration solvers, approximation error can be estimated at a low cost. We ...

  1. Understanding Fault Characteristics And Sediment Depth For Geothermal...

    Open Energy Info (EERE)

    Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search OpenEI Reference...

  2. Microsoft PowerPoint - HPC - Resilience-Fault Injection Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This document is approved for public release; further dissemination unlimited Resilience ... FIT 32Gbit High FIT 32Gbit Low FIT Resilience Fault Injection Research ...

  3. Upper crustal faulting in an obliquely extending orogen, structural...

    Open Energy Info (EERE)

    faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search OpenEI...

  4. Active Fault Controls At High-Temperature Geothermal Sites- Prospectin...

    Open Energy Info (EERE)

    model in which recently active (Holocene) faults are preferred conduits for migration of thermal water from deep crustal depths, and we infer that the detection of sites...

  5. Active Fault Segments As Potential Earthquake Sources- Inferences...

    Open Energy Info (EERE)

    Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Jump to: navigation, search OpenEI...

  6. Controls on Fault-Hosted Fluid Flow: Preliminary Results from...

    Open Energy Info (EERE)

    Flow: Preliminary Results from the Coso Geothermal Field, CA Abstract cap rock, permeability, fault, fracture, clay, Coso Authors Davatzes, N.C.; Hickman and S.H. Published...

  7. Dating of major normal fault systems using thermochronology-...

    Open Energy Info (EERE)

    Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Jump to: navigation, search OpenEI...

  8. Fault Mapping At Raft River Geothermal Area (1993) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration...

  9. Asking the right questions: benchmarking fault-tolerant extreme...

    Office of Scientific and Technical Information (OSTI)

    Title: Asking the right questions: benchmarking fault-tolerant extreme-scale systems. Abstract not provided. Authors: Widener, Patrick ; Ferreira, Kurt Brian ; Levy, Scott N. ; ...

  10. Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuna Area), Tierra del Fuego, southern Chile

    SciTech Connect (OSTI)

    Alvarez-Marron, J.; McClay, K.R. ); Harambour, S.; Rojas, L.; Skarmeta, J. )

    1993-11-01

    The Magallanes foreland thrust and fold belt is a thin-skinned foreland thrust and fold belt of Paleocene to Oligocene age that deforms Upper Jurassic through Tertiary volcanic, volcaniclastic, and siliciclastic strata of the Magallanes basin, southern Andean Cordillera, Chile. This paper is a detailed description and analysis of the geology and structural evolution of the thrust front (Vicuna area of southern Tierra del Fuego). Reflection seismic and well data, together with 1:50,000 scale geological mapping, have been used in the analysis. In the southern part of the Vicuna area, two different thrust systems have been found: an upper imbricate fan that deforms Upper Jurassic and Cretaceous strata, and a younger, lower duplex composed of Cretaceous and probably Upper Jurassic rocks. The imbricate fan is characterized by fault-propagation folding in which listric thrust faults merge downward into a sole thrust that probably is located within the Upper Jurassic stratigraphy. The sole thrust of the upper imbricates forms the roof thrust of the underlying duplex. In the northern part of the Vicuna area, the syntectonic sedimentary wedge of the foredeep consists of Late Cretaceous through Tertiary siliciclastics that have been deformed and uplifted by passive back thrusting at the triangle zone. The structural style in the foreland region shows three main subhorizontal detachment levels located within the sedimentary wedge as a result of the progressive transfer of slip from the thrust belt to the foreland. Minor blind thrusts produce stacked [open quotes]pop up[close quotes] and triangle structures that result in complex geometries in the cores of anticlines. A forward-breaking sequence of thrusting is interpreted. During deformation, the active foredeep wedge migrated at least 10 km northward. Balanced geological cross sections indicate approximately 60% (-30 km) shortening for this part of the Magallanes thrust belt.

  11. Statistical Fault Detection & Diagnosis Expert System

    Energy Science and Technology Software Center (OSTI)

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component hasmore » degraded.« less

  12. Superconducting fault current controller/current controller

    DOE Patents [OSTI]

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  13. A vault ribonucleoprotein particle exhibiting 39-fold dihedral symmetry

    SciTech Connect (OSTI)

    Kato, Koji; Tanaka, Hideaki; Sumizawa, Tomoyuki; Yoshimura, Masato; Yamashita, Eiki; Iwasaki, Kenji; Tsukihara, Tomitake

    2008-05-01

    A vault from rat liver was crystallized in space group C2. Rotational symmetry searches indicated that the particle has 39-fold dihedral symmetry. Vault is a 12.9 MDa ribonucleoprotein particle with a barrel-like shape, two protruding caps and an invaginated waist structure that is highly conserved in a wide variety of eukaryotes. Multimerization of the major vault protein (MVP) is sufficient to assemble the entire exterior shell of the barrel-shaped vault particle. Multiple copies of two additional proteins, vault poly(ADP-ribose) polymerase (VPARP) and telomerase-associated protein 1 (TEP1), as well as a small vault RNA (vRNA), are also associated with vault. Here, the crystallization of vault particles is reported. The crystals belong to space group C2, with unit-cell parameters a = 708.0, b = 385.0, c = 602.9 Å, β = 124.8°. Rotational symmetry searches based on the R factor and correlation coefficient from noncrystallographic symmetry (NCS) averaging indicated that the particle has 39-fold dihedral symmetry.

  14. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    SciTech Connect (OSTI)

    Spudich, John L

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for {alpha}?-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the worlds oceans. Specific aims are: (1) To develop a highefficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  15. All-to-all sequenced fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  16. Fault current limiter with shield and adjacent cores

    DOE Patents [OSTI]

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  17. Automated Proactive Fault Isolation: A Key to Automated Commissioning

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.

    2007-07-31

    In this paper, we present a generic model for automated continuous commissioing and then delve in detail into one of the processes, proactive testing for fault isolation, which is key to automating commissioning. The automated commissioining process uses passive observation-based fault detction and diagnostic techniques, followed by automated proactive testing for fault isolation, automated fault evaluation, and automated reconfiguration of controls together to continuously keep equipment controlled and running as intended. Only when hard failures occur or a physical replacement is required does the process require human intervention, and then sufficient information is provided by the automated commissioning system to target manual maintenance where it is needed. We then focus on fault isolation by presenting detailed logic that can be used to automatically isolate faults in valves, a common component in HVAC systems, as an example of how automated proactive fault isolation can be accomplished. We conclude the paper with a discussion of how this approach to isolating faults can be applied to other common HVAC components and their automated commmissioning and a summary of key conclusions of the paper.

  18. Automatic Fault Characterization via Abnormality-Enhanced Classification

    SciTech Connect (OSTI)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    2010-12-20

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  19. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  20. Origin of Entropy Convergence in Hydrophobic Hydration and Protein Folding

    SciTech Connect (OSTI)

    Garde, S.; Hummer, G.; Garcia, A.E.; Paulaitis, M.E.; Pratt, L.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); [Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716 (United States); [Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    1996-12-01

    An information theory model of hydrophobic effects is used to construct a molecular explanation why hydrophobic solvation entropies of protein unfolding measured by high sensitivity calorimetry converge to zero at a common convergence temperature. The entropy convergence follows directly from the weak temperature dependence of occupancy fluctuations {l_angle}{delta}{ital n}{sup 2}{r_angle} for molecular-scale volumes in water. The macroscopic expression of the contrasting entropic behavior of water relative to common organic solvents is the {ital relative} temperature insensitivity of the water isothermal compressibility compared to hydrocarbon liquids. The information theory model used provides a quantitative description of small molecule hydration and, in addition, predicts that the value of the entropy at convergence is slightly {ital negative}. Interpretations of entropic contributions to protein folding should account for this result. {copyright} {ital 1996 The American Physical Society.}

  1. Discovering The Folding Rules That Proteins Obey FY08 LDRD Final...

    Office of Scientific and Technical Information (OSTI)

    Discovering The Folding Rules That Proteins Obey FY08 LDRD Final Report Citation Details In-Document Search Title: Discovering The Folding Rules That Proteins Obey FY08 LDRD Final ...

  2. New N-Acetyltransferase Fold in the Structure and Mechanism of...

    Office of Scientific and Technical Information (OSTI)

    New N-Acetyltransferase Fold in the Structure and Mechanism of the Phosphonate Biosynthetic Enzyme FrbF Citation Details In-Document Search Title: New N-Acetyltransferase Fold in ...

  3. Locating an active fault zone in Coso geothermal field by analyzing...

    Open Energy Info (EERE)

    waves from microearthquake data Abstract Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems...

  4. Development of a Fast Microfluidic Mixer for Studies of Protein Folding

    Office of Scientific and Technical Information (OSTI)

    KineticsFinal Report Cover Page (Technical Report) | SciTech Connect Technical Report: Development of a Fast Microfluidic Mixer for Studies of Protein Folding KineticsFinal Report Cover Page Citation Details In-Document Search Title: Development of a Fast Microfluidic Mixer for Studies of Protein Folding KineticsFinal Report Cover Page We designed and fabricated mixing devices that will help us elucidate the mechanisms of protein folding through measurements of folding reaction rates. These

  5. Protein-Folding Landscapes in Multi-Chain Systems Cellmer, Troy...

    Office of Scientific and Technical Information (OSTI)

    37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; FREE ENERGY; MELTING; PROTEINS; THERMODYNAMICS; TOPOLOGY protein folding protein...

  6. Self field triggered superconducting fault current limiter

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D.

    2008-02-19

    A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

  7. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  8. Online Monitoring System for Performance Fault Detection

    SciTech Connect (OSTI)

    Gioiosa, Roberto; Kestor, Gokcen; Kerbyson, Darren J.

    2014-05-19

    To achieve the exaFLOPS performance within a contain power budget, next supercomputers will feature hundreds of millions of components operating at low- and near-threshold voltage. As the probability that at least one of these components fails during the execution of an application approaches certainty, it seems unrealistic to expect that any run of a scientific application will not experience some performance faults. We believe that there is need of a new generation of light-weight performance and debugging tools that can be used online even during production runs of parallel applications and that can identify performance anomalies during the application execution. In this work we propose the design and implementation of a monitoring system that continuously inspects the evolution of run

  9. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  10. Analysis of the growth of strike-slip faults using effective medium theory

    SciTech Connect (OSTI)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  11. Coupled hydro-mechanical processes and fault reactivation induced...

    Office of Scientific and Technical Information (OSTI)

    Coupled hydro-mechanical processes and fault reactivation induced by Co2 Injection in a three-layer storage formation Citation Details In-Document Search This content will become ...

  12. Recent earthquake sequences at Coso: Evidence for conjugate faulting...

    Open Energy Info (EERE)

    earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  13. STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND...

    Open Energy Info (EERE)

    STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS FROM THE EAST FLANK AND COSO WASH Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. INVESTIGATION OF HOLOCENE FAULTING PROPOSED C-746-U LANDFILL EXPANSION

    SciTech Connect (OSTI)

    Lettis, William

    2006-07-01

    This report presents the findings of a fault hazard investigation for the C-746-U landfill's proposed expansion located at the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP), in Paducah, Kentucky. The planned expansion is located directly north of the present-day C-746-U landfill. Previous geophysical studies within the PGDP site vicinity interpret possible northeast-striking faults beneath the proposed landfill expansion, although prior to this investigation the existence, locations, and ages of these inferred faults have not been confirmed through independent subsurface exploration. The purpose of this investigation is to assess whether or not Holocene-active fault displacement is present beneath the footprint of the proposed landfill expansion.

  15. Fault Tree Reliability Analysis and Design-for-reliability

    Energy Science and Technology Software Center (OSTI)

    1998-05-05

    WinR provides a fault tree analysis capability for performing systems reliability and design-for-reliability analyses. The package includes capabilities for sensitivity and uncertainity analysis, field failure data analysis, and optimization.

  16. Fault and joint geometry at Raft River geothermal area, Idaho...

    Open Energy Info (EERE)

    may be useful for locating the surface traces of faults in the reservoir. Authors Guth, L. R.; Bruhn, R. L.; Beck and S. L. Published DOE Information Bridge, 711981 DOI...

  17. High-Resolution Aeromagnetic Survey to Image Shallow Faults,...

    Open Energy Info (EERE)

    to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Abstract NA Author V. J. S. Grauch Published U.S. Geological Survey, 2002 Report Number 02-384 DOI Not Provided...

  18. Exploiting data representation for fault tolerance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoemmen, Mark Frederick; Elliott, J.; Sandia National Lab.; Mueller, F.

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product'smore » result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.« less

  19. Exploiting data representation for fault tolerance

    SciTech Connect (OSTI)

    Hoemmen, Mark Frederick; Elliott, J.; Mueller, F.

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product's result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.

  20. Contact order revisited: Influence of protein size on the folding rate

    SciTech Connect (OSTI)

    Ivankov, Dmitry N.; Garbuzynskiy, Sergiy O.; Alm, Eric; Plaxco, Kevin W.; Baker, David; Finkelstein, Alexei V.

    2003-05-28

    Guided by the recent success of empirical model predicting the folding rates of small two-state folding proteins from the relative contact order (CO) of their native structures, by a theoretical model of protein folding that predicts that logarithm of the folding rate decreases with the protein chain length L as L2/3, and by the finding that the folding rates of multistate folding proteins strongly correlate with their sizes and have very bad correlation with CO, we reexamined the dependence of folding rate on CO and L in attempt to find a structural parameter that determines folding rates for the totality of proteins. We show that the Abs{sub CO} = CO x L, is able to predict rather accurately folding rates for both two-state and multistate folding proteins, as well as short peptides, and that this Abs{sub CO} scales with the protein chain length as L0.70 {+-} 0.07 for the totality of studied single-domain proteins and peptides.

  1. Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado. pearl_hot_springs_peer2013.pdf (1.5 MB) More Documents & Publications Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well

  2. Near-surface geophysical characterization of Holocene faults conducive to

    Office of Scientific and Technical Information (OSTI)

    geothermal flow near Pyramid Lake, Nevada (Conference) | SciTech Connect Conference: Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada Citation Details In-Document Search Title: Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013,

  3. Preliminary observations on Quaternary reverse faulting along the southern front of the Northern Range of Trinidad

    SciTech Connect (OSTI)

    Beltran, C. , Caracus )

    1993-02-01

    Several geomorphological evidences of Quaternary reverse faulting are observed along the southern front of the Northern Range in Trinidad between Port-of-Spain and Matura Point. Such a mountain front is associated to a reverse fault system showing an imbricated pattern southward. In the north, the system is limited by a structural feature showing an important vertical component. Southward this system progressively changes to low angle faults. This geometry is corroborated by seismic profiling in the continent shelf. The active faulting evidences consist in lateral drainage offsets, fault trenches, sag-ponds, triangular facets, and saddles. Some quaternary terraces show fault scarps and tilting. We postulate that these reverse fault systems as Arima Fault instead of El Pilar fault as it is not actually connected to the San Sebestian-El Pilar right-lateral slip system, due to the southward prolongation of the southern limit of the Caribbean Plate through the fault system of Los Bajos-El Soldado.

  4. Adding Fault Tolerance to NPB Benchmarks Using ULFM

    SciTech Connect (OSTI)

    Parchman, Zachary W; Vallee, Geoffroy R; Naughton III, Thomas J; Engelmann, Christian; Bernholdt, David E; Scott, Stephen L

    2016-01-01

    In the world of high-performance computing, fault tolerance and application resilience are becoming some of the primary concerns because of increasing hardware failures and memory corruptions. While the research community has been investigating various options, from system-level solutions to application-level solutions, standards such as the Message Passing Interface (MPI) are also starting to include such capabilities. The current proposal for MPI fault tolerant is centered around the User-Level Failure Mitigation (ULFM) concept, which provides means for fault detection and recovery of the MPI layer. This approach does not address application-level recovery, which is currently left to application developers. In this work, we present a mod- ification of some of the benchmarks of the NAS parallel benchmark (NPB) to include support of the ULFM capabilities as well as application-level strategies and mechanisms for application-level failure recovery. As such, we present: (i) an application-level library to checkpoint and restore data, (ii) extensions of NPB benchmarks for fault tolerance based on different strategies, (iii) a fault injection tool, and (iv) some preliminary results that show the impact of such fault tolerant strategies on the application execution.

  5. Microcomputer applications of, and modifications to, the modular fault trees

    SciTech Connect (OSTI)

    Zimmerman, T.L.; Graves, N.L.; Payne, A.C. Jr.; Whitehead, D.W.

    1994-10-01

    The LaSalle Probabilistic Risk Assessment was the first major application of the modular logic fault trees after the IREP program. In the process of performing the analysis, many errors were discovered in the fault tree modules that led to difficulties in combining the modules to form the final system fault trees. These errors are corrected in the revised modules listed in this report. In addition, the application of the modules in terms of editing them and forming them into the system fault trees was inefficient. Originally, the editing had to be done line by line and no error checking was performed by the computer. This led to many typos and other logic errors in the construction of the modular fault tree files. Two programs were written to help alleviate this problem: (1) MODEDIT - This program allows an operator to retrieve a file for editing, edit the file for the plant specific application, perform some general error checking while the file is being modified, and store the file for later use, and (2) INDEX - This program checks that the modules that are supposed to form one fault tree all link up appropriately before the files are,loaded onto the mainframe computer. Lastly, the modules were not designed for relay type logic common in BWR designs but for solid state type logic. Some additional modules were defined for modeling relay logic, and an explanation and example of their use are included in this report.

  6. Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins

    SciTech Connect (OSTI)

    Bai Yawen [Laboratory of Biochemistry, National Cancer Institute, NIH, Building 37, Room 6114E, Bethesda, MD 20892 (United States)]. E-mail: yawen@helix.nih.gov

    2006-02-17

    Current theoretical views of the folding process of small proteins (<{approx}100 amino acids) postulate that the landscape of potential mean force (PMF) for the formation of the native state has a funnel shape and that the free energy barrier to folding arises from the chain configurational entropy only. However, recent theoretical studies on the formation of hydrophobic clusters with explicit water suggest that a barrier should exist on the PMF of folding, consistent with the fact that protein folding generally involves a large positive activation enthalpy at room temperature. In addition, high-resolution structural studies of the hidden partially unfolded intermediates have revealed the existence of non-native interactions, suggesting that the correction of the non-native interactions during folding should also lead to barriers on PMF. To explore the effect of a PMF barrier on the folding behavior of proteins, we modified Zwanzig's model for protein folding with an uphill landscape of PMF for the formation of transition states. We found that the modified model for short peptide segments can satisfy the thermodynamic and kinetic criteria for an apparently two-state folding. Since the Levinthal paradox can be solved by a stepwise folding of short peptide segments, a landscape of PMF with a locally uphill search for the transition state and cooperative stabilization of folding intermediates/native state is able to explain the available experimental results for small proteins. We speculate that the existence of cooperative hidden folding intermediates in small proteins could be the consequence of the highly specific structures of the native state, which are selected by evolution to perform specific functions and fold in a biologically meaningful time scale.

  7. Protein-Folding Landscapes in Multi-Chain Systems (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    contacts, suggesting that native topology plays a role in early stages of aggregation. ... MELTING; PROTEINS; THERMODYNAMICS; TOPOLOGY protein folding protein aggregation ...

  8. Systematic characterization of protein folding pathways using diffusion maps: Application to Trp-cage miniprotein

    SciTech Connect (OSTI)

    Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2015-02-28

    Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories in a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.

  9. Factors affecting the recognition of faults exposed in exploratory trenches. Bulletin

    SciTech Connect (OSTI)

    Bonilla, M.G.; Lienkaemper, J.J.

    1991-01-01

    During excavation of the reactor shaft at the proposed Bodega Head nuclear reactor in California, a fault was found in the sediments overlying bedrock. This apparent lack of a complete connection with the bedrock fault led to disagreement as to whether the fault in the sediments was of tectonic or landslide origin. The report provides information on some of the conditions under which fault strands in trench walls are either difficult to see or die out, and the frequency of occurrence of these phenomena. Information is also provided on the widths of fault zones, on the deformation of the hanging wall and footwall of dip-slip faults, and on the frequency of occurrence of pebble rotation, open fissures, gouge, slickensides, mixing, fault breccia, fault rubble, crushing, polishing, water barriers, and liquefaction effects. Short summaries of information relating to fault strands that are poorly expressed or that die out have already been published (Bonilla and Lienkaemper, 1988, 1990).

  10. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect (OSTI)

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  11. Accident Fault Trees for Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  12. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model

    SciTech Connect (OSTI)

    Agarwala, R. [National Institutes of Health, Bethesda, MD (United States); Batzoglou, S. [MIT, Cambridge, MA (United States); Dancik, V. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-06-01

    We consider the problem of determining the three-dimensional folding of a protein given its one-dimensional amino acid sequence. We use the HP model for protein folding proposed by Dill, which models protein as a chain of amino acid residues that are either hydrophobic or polar, and hydrophobic interactions are the dominant initial driving force for the protein folding. Hart and Istrail gave approximation algorithms for folding proteins on the cubic lattice under HP model. In this paper, we examine the choice of a lattice by considering its algorithmic and geometric implications and argue that triangular lattice is a more reasonable choice. We present a set of folding rules for a triangular lattice and analyze the approximation ratio which they achieve. In addition, we introduce a generalization of the HP model to account for residues having different levels of hydrophobicity. After describing the biological foundation for this generalization, we show that in the new model we are able to achieve similar constant factor approximation guarantees on the triangular lattice as were achieved in the standard HP model. While the structures derived from our folding rules are probably still far from biological reality, we hope that having a set of folding rules with different properties will yield more interesting folds when combined.

  13. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect (OSTI)

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  14. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect (OSTI)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J. (U. of Texas-SMED)

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  15. Impact of Installation Faults on Heat Pump Performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hourahan, Glenn; Baxter, Van D.

    2015-01-01

    Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHPmore » pump system.« less

  16. Network resilience; A measure of network fault tolerance

    SciTech Connect (OSTI)

    Najjar, W. . Dept. of Computer Science); Gaudoit, J.L. . Dept. of Electrical Engineering)

    1990-02-01

    The failure of a node in a multicomputer system will not only reduce the computational power but also alter the network's topology. Network fault tolerance is a measure of the number of failures the network can sustain before a disconnection occurs. It is expressed traditionally as the network's node degree. In this paper, the authors propose a probabilistic measure of network fault tolerance expressed as the probability f a disconnection. Qualitative evaluation of this measure is presented. As expected, the single-node disconnection probability is the dominant factor irrespective of the topology under consideration. They derive an analytical approximation of the disconnection probability and verify it with Monte Carlo simulation. Based on this model, the measures of network resilience and relative network resilience are proposed as probabilistic measures of network fault tolerance. These are then used to evaluate the effects of the disconnection probability on the reliability of the system.

  17. Impact of Installation Faults on Heat Pump Performance

    SciTech Connect (OSTI)

    Hourahan, Glenn; Baxter, Van D.

    2015-01-01

    Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHP pump system.

  18. Garbage collection: an exercise in distributed, fault-tolerant programming

    SciTech Connect (OSTI)

    Vestal, S.C.

    1987-01-01

    Two garbage-collection algorithms are presented to reclaim unused storage in object-oriented systems implemented on local area networks. The algorithms are fault-tolerant and allowed parallel, incremental collection in an object address space distributed throughout the system. The two approaches allow multiple collectors, so some unused storage can be reclaimed in partitioned networks. The first method makes use of fault-tolerant reference counts together with an algorithm to collect cycles of objects that would otherwise remain unclaimed. The second method adapts a parallel collector so that it can be used to collect subspaces of the entire network address space. Throughout this work concern is with a methodology for developing distributed, parallel, fault-tolerant programs. Also, there is concern with the suitability of object-oriented systems for such applications.

  19. Multistage network with an additional stage for fault tolerance

    SciTech Connect (OSTI)

    Adams, G.B. III; Siegel, H.J.

    1982-01-01

    The extra stage cube (ESC) network, a fault tolerant structure, is proposed for use in large-scale parallel and distributed supercomputer systems. This network is derived from the generalised cube network by the addition of one stage of interchange boxes and a bypass capability for two stages. It is shown that the ESC provides fault tolerance for any single failure. Further, the network can be controlled even when it has a single failure, using a simple modification of a routing tag scheme proposed for the generalised cube. Both one-to-one and broadcast connections under routing tag control are performable by the faulted ESC. The effects of the extra stage on the partitioning and permuting abilities of the network are described. 19 references.

  20. A Survey of lamba Repressor Fragments from Two-State to to Downhill Folding

    SciTech Connect (OSTI)

    Liu, F.; Gao, Y; Gruebele, M

    2010-01-01

    We survey the two-state to downhill folding transition by examining 20 {lambda}{sub 6-85}* mutants that cover a wide range of stabilities and folding rates. We investigated four new {lambda}{sub 6-85}* mutants designed to fold especially rapidly. Two were engineered using the core remodeling of Lim and Sauer, and two were engineered using Ferreiro et al.'s frustratometer. These proteins have probe-dependent melting temperatures as high as 80 C and exhibit a fast molecular phase with the characteristic temperature dependence of the amplitude expected for downhill folding. The survey reveals a correlation between melting temperature and downhill folding previously observed for the {beta}-sheet protein WW domain. A simple model explains this correlation and predicts the melting temperature at which downhill folding becomes possible. An X-ray crystal structure with a 1.64-{angstrom} resolution of a fast-folding mutant fragment shows regions of enhanced rigidity compared to the full wild-type protein.

  1. Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

    SciTech Connect (OSTI)

    Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

    2009-03-30

    Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

  2. Time Resolved Collapse of a Folding Protein Observed with Small Angle X-Ray Scattering

    SciTech Connect (OSTI)

    Pollack, L.; Tate, M. W.; Finnefrock, A. C.; Kalidas, C.; Trotter, S.; Darnton, N. C.; Lurio, L.; Austin, R. H.; Batt, C. A.; Gruner, S. M. (and others)

    2001-05-21

    High-intensity, ''pink'' beam from an undulator was used in conjunction with microfabricated rapid-fluid mixing devices to monitor the early events in protein folding with time resolved small angle x-ray scattering. This Letter describes recent work on the protein bovine {beta} -lactoglobulin where collapse from an expanded to a compact set of states was directly observed on the millisecond time scale. The role of chain collapse, one of the initial stages of protein folding, is not currently understood. The characterization of transient, compact states is vital in assessing the validity of theories and models of the folding process.

  3. Faulted reservoirs characterization by an image processing technique

    SciTech Connect (OSTI)

    Martinez-Angeles, R.

    1994-12-31

    This paper has developed an image processing method for obtaining the discontinuous areal distribution of oil parameters (formation top, porosity, water saturation,...) of faulted heterogeneous oil reservoirs. For its application it requires the previous knowledge of a set of discrete values z(k,l) from well-logs and seismic profiles. Faulted structures were discretized into continuous structures or blocks bounded by faults. The theoretical fundamental assumption of the proposed method establishes that the natural distributions can be considered as the superposition of several elementary brownian distributions, represented by discrete values z(k,l), whose physical model is the diffusion differential equation and its solution associated. This is a technique that allows the representation of a composed brownian distribution as a linear combination of all elementary brownian functions. For illustrating the operational aspect of brownian analysis, two examples are studied. The results are presented as a digital images by means of an image processing software. This method can be applied in mapping, three dimensions interpolation and reserves calculation of faulted reservoirs.

  4. Experimental and computational studies on stacking faults in zinc titanate

    SciTech Connect (OSTI)

    Sun, W.; Ageh, V.; Mohseni, H.; Scharf, T. W. E-mail: Jincheng.Du@unt.edu; Du, J. E-mail: Jincheng.Du@unt.edu

    2014-06-16

    Zinc titanate (ZnTiO{sub 3}) thin films grown by atomic layer deposition with ilmenite structure have recently been identified as an excellent solid lubricant, where low interfacial shear and friction are achieved due to intrafilm shear velocity accommodation in sliding contacts. In this Letter, high resolution transmission electron microscopy with electron diffraction revealed that extensive stacking faults are present on ZnTiO{sub 3} textured (104) planes. These growth stacking faults serve as a pathway for dislocations to glide parallel to the sliding direction and hence achieve low interfacial shear/friction. Generalized stacking fault energy plots also known as ?-surfaces were computed for the (104) surface of ZnTiO{sub 3} using energy minimization method with classical effective partial charge potential and verified by using density functional theory first principles calculations for stacking fault energies along certain directions. These two are in qualitative agreement but classical simulations generally overestimate the energies. In addition, the lowest energy path was determined to be along the [451{sup }] direction and the most favorable glide system is (104) ?451{sup }? that is responsible for the experimentally observed sliding-induced ductility.

  5. High voltage fault current limiter having immersed phase coils

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  6. Integrated Geophysical Exploration of a Known Geothermal Resource...

    Open Energy Info (EERE)

    a half-graben basin. This basin-bounding fault serves as the primary conduit for deep water circulation. Potential field, electrical, and seismic data characterize this major...

  7. Horst and Graben | Open Energy Information

    Open Energy Info (EERE)

    W 49,500,000,000 mW 0.0495 GW 4.95e-5 TW 470.15 K197 C 386.6 F 846.27 R Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional...

  8. Crystal Structures of RMI1 and RMI2, Two OB-Fold Regulatory Subunits...

    Office of Scientific and Technical Information (OSTI)

    Title: Crystal Structures of RMI1 and RMI2, Two OB-Fold Regulatory Subunits of the BLM Complex Mutations in BLM, a RecQ-like helicase, are linked to the autosomal recessive cancer-...

  9. A Route to Scale up DNA Origami Using DNA Tiles as Folding Staples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemie International Edition Year: 2010 Volume: 49 Pages: 1414-1417 ABSTRACT: A new strategy is presented to scale up DNA origami using multi-helical DNA tiles as folding...

  10. Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins

    SciTech Connect (OSTI)

    Bitto, E.

    2002-01-01

    The SurA protein facilitates correct folding of outer membrane proteins in gram-negative bacteria. The sequence of Escherichia coli SurA presents four segments, two of which are peptidyl-prolyl isomerases (PPIases); the crystal structure reveals an asymmetric dumbbell, in which the amino-terminal, carboxy-terminal, and first PPIase segments of the sequence form a core structural module, and the second PPIase segment is a satellite domain tethered approximately 30 A from this module. The core module, which is implicated in membrane protein folding, has a novel fold that includes an extended crevice. Crystal contacts show that peptides bind within the crevice, suggesting a model for chaperone activity whereby segments of polypeptide may be repetitively sequestered and released during the membrane protein-folding process.

  11. Tri-fold - Agencies Assisting with EEOICPA and the Former worker Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tri-fold - Agencies Assisting with EEOICPA and the Former worker Program Tri-fold - Agencies Assisting with EEOICPA and the Former worker Program March 2015 Agencies Assisting with EEOICPA and the Former Worker Program The Joint Outreach Task Group (JOTG) includes representatives from DOE, Department of Labor (DOL), the National Institute for Occupational Safety and Health (NIOSH), the Offices of the Ombudsman for DOL and NIOSH, and the DOE-funded FWP projects. The JOTG

  12. DOE Science Showcase - Protein Folding | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Protein Folding Proteins are the main constitute of our bones, muscles, hair, skin and blood vessels, performing a vast array of functions such as catalyzing metabolic reactions, replicating DNA, response to stimuli, moving muscles, and protecting the immune system. These proteins consist of long chains of molecules called amino acids that interact with each other to produce a well-defined three-dimensional structure - the folded protein. The correct

  13. Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry

    SciTech Connect (OSTI)

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford; Richard Rusaw

    2014-06-01

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: Diagnostic Advisor, Asset Fault Signature (AFS) Database, Remaining Useful Life Advisor, and Remaining Useful Life Database. This paper focuses on development of asset fault signatures to assess the health status of generator step-up generators and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. At the most basic level, fault signatures are comprised of an asset type, a fault type, and a set of one or more fault features (symptoms) that are indicative of the specified fault. The AFS Database is populated with asset fault signatures via a content development exercise that is based on the results of intensive technical research and on the knowledge and experience of technical experts. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  14. Characterization of Quaternary and suspected Quaternary faults, regional studies, Nevada and California

    SciTech Connect (OSTI)

    Anderson, R.E.; Bucknam, R.C.; Crone, A.J.; Haller, K.M.; Machette, M.N.; Personius, S.F.; Barnhard, T.P.; Cecil, M.J.; Dart, R.L.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies that resulted in the identification of 51 relevant and potentially relevant individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. Geologic data used to characterize the regional faults and fault zones as relevant or potentially relevant seismic sources includes age and displacement information, maximum fault lengths, and minimum distances between the fault and the Yucca Mountain site. For many of the regional faults, no paleoseismic field studies have previously been conducted, and age and displacement data are sparse to nonexistent. In November 1994, the Branch of Earthquake and Landslide Hazards entered into two Memoranda of Agreement with the Yucca Mountain Project Branch to conduct field reconnaissance, analysis, and interpretation of six relevant and six potentially relevant regional faults. This report describes the results of study of those faults exclusive of those in the Pahrump-Stewart Valley-Ash Meadows-Amargosa Valley areas. We also include results of a cursory study of faults on the west flank of the Specter Range and in the northern part of the Last Chance Range. A four-phase strategy was implemented for the field study.

  15. High resolution, shallow seismic reflection survey of the Pen Branch fault

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    The purpose of this project, at the Savannah River River Site (SRS) was to acquire, process, and interpret 28 km (17.4 miles) of high resolution seismic reflection data taken across the trace of the Pen Branch fault and other suspected, intersecting north-south trending faults. The survey was optimized for the upper 300 ft of geologic strata in order to demonstrate the existence of very shallow, flat lying horizons, and to determine the depth of the fault or to sediments deformed by the fault. Field acquisition and processing parameters were selected to define small scale spatial variability and structural features in the vicinity of the Pen Branch fault leading to the definition and the location of the Pen Branch fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. Associated geophysical, borehole, and geologic data were incorporated into the investigation to assist in the determination of optimal parameters and aid in the interpretation.

  16. Folding chair

    DOE Patents [OSTI]

    Cornell, Howell N.

    1985-08-20

    A foldable chair of the lawn chair type has ground-engaging front and rear legs, attached to and carrying a back frame and seat frame, the back frame and seat frame being pivotally attached to a spreader rod which extends beyond the back and seat frames to bear against one of the leg members when the chair is unfolded. A contact pad mounted on the extending portion of the spreader rod is formed as an externally-contoured bushing fit over the spreader rod and adapted to engage the leg member to restrict side-to-side movement of the spreader rod, with respect to the leg member, when the chair is unfolded.

  17. RNA Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Rick Russell, Ian S. Millett, Sebastian Doniach and Daniel Herschlag Stanford University One goal of genome projects is to systematically identify genes (1,2). The best current knowledge indicates that humans carry approximately 35000 genes. This number is an estimate that varies from expert to expert and range up to 100,000 (3-5). To anyone who has taken an elementary biology class, this ambiguity must seem strange. How hard can it be to count genes? After all, don't cells translate genes

  18. Precursory signatures of protein folding/unfolding: From time series correlation analysis to atomistic mechanisms

    SciTech Connect (OSTI)

    Hsu, P. J.; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw [Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320 Taiwan (China); Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Cheong, S. A. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2014-05-28

    Folded conformations of proteins in thermodynamically stable states have long lifetimes. Before it folds into a stable conformation, or after unfolding from a stable conformation, the protein will generally stray from one random conformation to another leading thus to rapid fluctuations. Brief structural changes therefore occur before folding and unfolding events. These short-lived movements are easily overlooked in studies of folding/unfolding for they represent momentary excursions of the protein to explore conformations in the neighborhood of the stable conformation. The present study looks for precursory signatures of protein folding/unfolding within these rapid fluctuations through a combination of three techniques: (1) ultrafast shape recognition, (2) time series segmentation, and (3) time series correlation analysis. The first procedure measures the differences between statistical distance distributions of atoms in different conformations by calculating shape similarity indices from molecular dynamics simulation trajectories. The second procedure is used to discover the times at which the protein makes transitions from one conformation to another. Finally, we employ the third technique to exploit spatial fingerprints of the stable conformations; this procedure is to map out the sequences of changes preceding the actual folding and unfolding events, since strongly correlated atoms in different conformations are different due to bond and steric constraints. The aforementioned high-frequency fluctuations are therefore characterized by distinct correlational and structural changes that are associated with rate-limiting precursors that translate into brief segments. Guided by these technical procedures, we choose a model system, a fragment of the protein transthyretin, for identifying in this system not only the precursory signatures of transitions associated with ? helix and ? hairpin, but also the important role played by weaker correlations in such protein

  19. Rule based decision support system for single-line fault detection in a delta-delta connected distribution system

    SciTech Connect (OSTI)

    Momoh, J.A.; Dias, L.G.; Thor, T. . Dept. of Electrical Engineering); Laird, D. )

    1994-05-01

    Single-line fault detection, faulted feeder identification, fault type classification, fault location and fault impedance estimation, continue to pose a problem to delta-delta connected distribution systems such as the Los Angeles Department of Water and Power (LADWP) which has over 1,500 feeder circuits at the 4.8kV voltage level. This paper describes a rule based decision support (RBDS) system application to single-line fault detection in a delta-delta connected distribution system. The RBDS system is built from knowledge acquired through exhaustive simulation based on non-arcing type fault situations. It is primarily designed to detect the presence of a fault, identify the faulted feeder, the faulted phase and classify the fault type. It is also designed to gauge the proximity of the fault to the substation and to assess the fault impedance. A fault in the distribution system, upon identification, triggers an alarm with explanatory facility leading to the fault. The RBDS system was tested with different sets of simulated data and proved successful in most cases. Additional tests will be done using field data made available by LADWP. The RBDS system module is a prototype integrated fault detection scheme to be installed in a LADWP distribution substation.

  20. When did movement begin on the Furnace Creek fault zone

    SciTech Connect (OSTI)

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  1. Testing of 3-meter Prototype Fault Current Limiting Cables

    SciTech Connect (OSTI)

    Gouge, Michael J; Duckworth, Robert C; Demko, Jonathan A; Rey, Christopher M; Thompson, James R; Lindsay, David T; Tolbert, Jerry Carlton; Willen, Dag; Lentge, Heidi; Thidemann, Carsten; Carter, Bill

    2009-01-01

    Two 3-m long, single-phase cables have been fabricated by Ultera from second generation (2G) superconductor supplied by American Superconductor. The first cable was made with two layers of 2G tape conductor and had a critical current of 5,750 A while the second cable had four layers and a critical current of 8,500 A. AC loss was measured for both cables at ac currents of up to 4 kArms. Ultera performed initial fault current studies of both cables in Denmark with limited currents in the range from 9.1 to 44 kA. Results from these tests will provide a basis for a 25-m long, three-phase, prototype cable to be tested at ORNL early next year and a 300-m long, fault current limiting, superconducting cable to be installed in a ConEd substation in New York City.

  2. NREL Research Proves Wind Can Provide Ancillary Grid Fault Response |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL NREL Research Proves Wind Can Provide Ancillary Grid Fault Response April 1, 2016 Interior of the controllable grid interface test facility, showing a long hallway and shelves full of electronic equipment. The controllable grid interface test facility at the National Wind Technology Center makes it possible to research the effectiveness of wind energy in providing ancillary grid services such as frequency control. Photo by Dennis Schroeder/NREL 27442 Image

  3. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    SciTech Connect (OSTI)

    Bichler, L. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. E., Toronto, M5B 2K3 (Canada); Ravindran, C., E-mail: rravindr@ryerson.ca [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. E., Toronto, M5B 2K3 (Canada)

    2010-03-15

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the {alpha}-Mg phase resulted in segregation of Al{sub 2}RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  4. Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein

    SciTech Connect (OSTI)

    Wu, Ying; Kondrashkina, Elena; Kayatekin, Can; Matthews, C. Robert; Bilsel, Osman (NWU); (UMASS, Amherst)

    2008-09-29

    The earliest kinetic folding events for ({beta}{alpha}){sub 8} barrels reflect the appearance of off-pathway intermediates. Continuous-flow microchannel mixing methods interfaced to small-angle x-ray scattering (SAXS), circular dichroism (CD), time-resolved Foerster resonant energy transfer (trFRET), and time-resolved fluorescence anisotropy (trFLAN) have been used to directly monitor global and specific dimensional properties of the partially folded state in the microsecond time range for a representative ({beta}{alpha}){sub 8} barrel protein. Within 150 {micro}s, the {alpha}-subunit of Trp synthase ({alpha}TS) experiences a global collapse and the partial formation of secondary structure. The time resolution of the folding reaction was enhanced with trFRET and trFLAN to show that, within 30 {micro}s, a distinct and autonomous partially collapsed structure has already formed in the N-terminal and central regions but not in the C-terminal region. A distance distribution analysis of the trFRET data confirmed the presence of a heterogeneous ensemble that persists for several hundreds of microseconds. Ready access to locally folded, stable substructures may be a hallmark of repeat-module proteins and the source of early kinetic traps in these very common motifs. Their folding free-energy landscapes should be elaborated to capture this source of frustration.

  5. Superconducting fault current-limiter with variable shunt impedance

    DOE Patents [OSTI]

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  6. Parallel continuation-based global optimization for molecular conformation and protein folding

    SciTech Connect (OSTI)

    Coleman, T.F.; Wu, Z. [Cornell Univ., Ithaca, NY (United States)

    1994-12-31

    This paper presents the authors` recent work on developing parallel algorithms and software for solving the global minimization problem for molecular conformation, especially protein folding. Global minimization problems are difficult to solve when the objective functions have many local minimizers, such as the energy functions for protein folding. In their approach, to avoid directly minimizing a ``difficult`` function, a special integral transformation is introduced to transform the function into a class of gradually deformed, but ``smoother`` or ``easier`` functions. An optimization procedure is then applied to the new functions successively, to trace their solutions back to the original function. The method can be applied to a large class of nonlinear partially separable functions including energy functions for molecular conformation and protein folding. Mathematical theory for the method, as a special continuation approach to global optimization, is established. Algorithms with different solution tracing strategies are developed. Different levels of parallelism are exploited for the implementation of the algorithms on massively parallel architectures.

  7. Femtosecond spectroscopy probes the folding quality of antibody fragments expressed as GFP fusions in the cytoplasm

    SciTech Connect (OSTI)

    Didier, P. [Faculte de Pharmacie, UMR 7175, 74, route du Rhin, 67412 Illkirch (France); Weiss, E.; Sibler, A.-P. [Ecole Superieure de Biotechnologie de Strasbourg, UMR 7175, Boulevard Sebastien Brant, F-67412 Illkirch (France); Philibert, P.; Martineau, P. [Centre de recherche en cancerologie de Montpellier, UMR 5160, Val d'Aurelle-Paul Lamarque, 34298 Montpellier cedex 5 (France); Bigot, J.-Y. [Institut de Physique et Chimie des Materiaux de Strasbourg, UMR 7504, 23, rue du Loess, F-67037 Strasbourg (France); Guidoni, L. [Institut de Physique et Chimie des Materiaux de Strasbourg, UMR 7504, 23, rue du Loess, F-67037 Strasbourg (France); Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Batiment Condorcet, 10 rue Alice Domon et Leonie Duquet, 75205 Paris cedex 13 (France)], E-mail: luca.guidoni@univ-paris-diderot.fr

    2008-02-22

    Time-resolved femtosecond spectroscopy can improve the application of green fluorescent proteins (GFPs) as protein-folding reporters. The study of ultrafast excited-state dynamics (ESD) of GFP fused to single chain variable fragment (scFv) antibody fragments, allowed us to define and measure an empirical parameter that only depends on the folding quality (FQ) of the fusion. This method has been applied to the analysis of genetic fusions expressed in the bacterial cytoplasm and allowed us to distinguish folded and thus functional antibody fragments (high FQ) with respect to misfolded antibody fragments. Moreover, these findings were strongly correlated to the behavior of the same scFvs expressed in animal cells. This method is based on the sensitivity of the ESD to the modifications in the tertiary structure of the GFP induced by the aggregation state of the fusion partner. This approach may be applicable to the study of the FQ of polypeptides over-expressed under reducing conditions.

  8. Geometry of wrapped M5-branes in Calabi-Yau 2-folds

    SciTech Connect (OSTI)

    Fayyazuddin, Ansar; Husain, Tasneem Zehra; Pappa, Ioanna

    2006-06-15

    We study the geometry of M5-branes wrapping a 2-cycle which is special Lagrangian with respect to a specific complex structure in a Calabi-Yau 2-fold. Using methods recently applied to the 3-fold case, we are again able to find a characterization of the geometry, in terms of a nonintegrable almost complex structure and a (2,0) form. This time, however, due to the hyper-Kaehler nature of the underlying 2-fold, we also have the freedom of choosing a different almost complex structure with respect to which the wrapped 2-cycle is holomorphic. We show that this latter almost complex structure is integrable. We then relate our geometry to previously found geometries of M5-branes wrapping holomorphic cycles and go further to prove some previously unknown results for M5-branes on holomorphic cycles.

  9. The evolution and hydrocarbon habitat of the Papuan fold belt, PNG

    SciTech Connect (OSTI)

    Dalton, D.G.; Smith, R.I.; Cawley, S.J. )

    1990-05-01

    After over 70 years of hydrocarbon exploration in the Papuan fold belt of PNG (Papua New Guinea) there have been a number of hydrocarbon discoveries over recent years that have confirmed its potential as a significant producing province. The Papuan basin developed during the early Mesozoic as part of the northeast corner of the Australian passive margin. The basin's tertiary evolution and the development of the Papuan fold belt within the Papuan basin has evolved in response to oblique convergence between the northerly moving Australian plate and westerly moving Pacific plate. Restacking of the Mesozoic passive margin sequence within the Papuan Basin was initiated in the early miocene by southward abduction of the Solomon Sea plate and the subsequent collision, in the late Miocene, of the Melanesian Island arc along the northeastern margin of PNG. This later collision provided the driving mechanism for the development of the papuan thrust belt. To date, all the significant hydrocarbon discoveries made within the Papuan fold belt have been located within the frontal zone of the fold belt, which is characterized by relatively simple ramp anticlines and thick-skinned inversion structures. The primary proven reservoir fairway is the Jurassic Toro formation, which is a sequence of stacked submarine bars prograding out across a shallow-marine low-gradient shelf. Geochemical analysis of produced hydrocarbons and samples collected from the many surface seeps found in the fold belt indicate two main families of oil. A model explains the distribution of hydrocarbons discovered to date, which involves Jurassic and Cretaceous source intervals and a complex history of secondary migration and entrapment. The unique technical problems associated with exploration of the Papuan fold belt leave many elements of the proven play systems uncertain, but in so doing, they present many challenges and opportunities for the future.

  10. The earliest events in protein folding: Helix dynamics in proteins and model peptides

    SciTech Connect (OSTI)

    Dyer, R.B.; Williams, S.; Woodruff, W.H. [Los Alamos National Lab., NM (United States)] [and others

    1996-12-31

    The earliest events in protein folding are critically important in determining the folding pathway, but have proved difficult to study by conventional approaches. We have developed new rapid initiation methods and structure-specific probes to interrogate the earliest events of protein folding. Our focus is the pathways. Folding or unfolding reactions are initiated on a fast timescale (10 ns) using a laser induced temperature jump (15 C) and probed with time-resolved infrared spectroscopy. We obtained the kinetics of the helix-coil transition for a model 21-residue peptide. The observed rate constant k{sub obs} = k{sub f} + k{sub u} for reversible kinetics; from the observed rate (6 x 10{sup 6} s{sup -1}) and the equilibrium constant favoring folding of 7.5 at 27 C, we calculate a folding lifetime of 180 ns and an unfolding lifetime of 1.4 {mu}s. The {open_quotes}molten globule{close_quotes} form of apomyoglobin (horse, pH*3, 0.15M NaCl) shows similar kinetics for helix that is unconstrained by tertiary structure (helix with an unusually low Amide I frequency, near 1633 cm{sup -1}). In {open_quotes}native{close_quotes} apomyoglobin (horse, pH*5.3, 10 mM NaCl) two very different rates (45 ns and 70 {mu}s) are observed and we infer that a third occurs on a timescales inaccessible to our experiment (> 1 ms). We suggest that the slower processes are due to helix formation that is rate-limited by the formation of tertiary structure.

  11. Deducing the Energetic Cost of Protein Folding in Zinc Finger Proteins Using Designed Metallopeptides

    SciTech Connect (OSTI)

    Reddi,A.; Guzman, T.; Breece, r.; Tierney, D.; Gibney, B.

    2007-01-01

    Zinc finger transcription factors represent the largest single class of metalloproteins in the human genome. Binding of Zn(II) to their canonical Cys4, Cys3His1, or Cys2His2 sites results in metal-induced protein folding events required to achieve their proper structure for biological activity. The thermodynamic contribution of Zn(II) in each of these coordination spheres toward protein folding is poorly understood because of the coupled nature of the metal-ligand and protein-protein interactions. Using an unstructured peptide scaffold, GGG, we have employed fluorimetry, potentiometry, and calorimetry to determine the thermodynamics of Zn(II) binding to the Cys4, Cys3His1, and Cys2His2 ligand sets with minimal interference from protein folding effects. The data show that Zn(II) complexation is entropy driven and modulated by proton release. The formation constants for Zn(II)-GGG with a Cys4, Cys3His1, or Cys2His2 site are 5.6 x 1016, 1.5 x 1015, or 2.5 x 1013 M-1, respectively. Thus, the Zn(II)-Cys4, Zn(II)-Cys3His1, and Zn(II)-Cys2His2 interactions can provide up to 22.8, 20.7, and 18.3 kcal/mol, respectively, in driving force for protein stabilization, folding, and/or assembly at pH values above the ligand pKa values. While the contributions from the three coordination motifs differ by 4.5 kcal/mol in Zn(II) affinity at pH 9.0, they are equivalent at physiological pH, ?G = -16.8 kcal/mol or a Ka = 2.0 x 1012 M-1. Calorimetric data show that this is due to proton-based enthalpy-entropy compensation between the favorable entropic term from proton release and the unfavorable enthalpic term due to thiol deprotonation. Since protein folding effects have been minimized in the GGG scaffold, these peptides possess nearly the tightest Zn(II) affinities possible for their coordination motifs. The Zn(II) affinities in each coordination motif are compared between the GGG scaffold and natural zinc finger proteins to determine the free energy required to fold the latter

  12. Protein-folding via divide-and-conquer optimization (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Protein-folding via divide-and-conquer optimization Citation Details In-Document Search Title: Protein-folding via divide-and-conquer optimization Authors: Oliva, Ricardo ; Crivelli, Silvia ; Meza, Juan Publication Date: 2004-07-11 OSTI Identifier: 882903 Report Number(s): LBNL--55869 R&D Project: 365969; BnR: YN0100000 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Conference Resource Relation: Conference: SIAM Conference on the Life Sciences, Portland,OR, July 11-14,

  13. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  14. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.

  15. Geology of the lower Yellow Creek Area, Northwestern Colorado

    SciTech Connect (OSTI)

    Hail, W.J.

    1990-01-01

    The lower Yellow Creek area is located in Rio Blanco and Moffat Counties of northwestern Colorado, about midway between the towns of Rangely and Meeker. The study area is in the northwestern part of the Piceance Creek basin, a very deep structural and sedimentary basin that formed during the Laramide orogeny. Potentially important resources in the area are oil shale and related minerals, oil and gas, coal, and uranium. Topics discussed in the report include: Stratigraphy (Subsurface rocks, Cretaceous rocks, Tertiary rocks, and Quaternary deposits); Structure (Midland anticline, graben at Pinyon Ridge, and Crooked Wash syncline, Folds and faults in the vicinity of the White River, Red Wash syncline and central graben zone, Yellow Creek anticlinal nose); Economic geology (Oil shale and associated minerals, Coal, Oil and gas, Uranium, Gravel).

  16. Long range correlations and folding angle with applications to ?-helical proteins

    SciTech Connect (OSTI)

    Krokhotin, Andrey, E-mail: Andrei.Krokhotine@cern.ch [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden)] [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Nicolis, Stam, E-mail: Stam.Nicolis@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fdration Denis Poisson, Universit de Tours, Parc de Grandmont, F37200 Tours (France)] [Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fdration Denis Poisson, Universit de Tours, Parc de Grandmont, F37200 Tours (France); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fdration Denis Poisson, Universit de Tours, Parc de Grandmont, F37200 Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2014-03-07

    The conformational complexity of chain-like macromolecules such as proteins and other linear polymers is much larger than that of point-like atoms and molecules. Unlike particles, chains can bend, twist, and even become knotted. Thus chains might also display a much richer phase structure. Unfortunately, it is not very easy to characterize the phase of a long chain. Essentially, the only known attribute is the radius of gyration. The way how it changes when the degree of polymerization becomes different, and how it evolves when the ambient temperature and solvent properties change, is commonly used to disclose the phase. But in any finite length chain there are corrections to scaling that complicate the detailed analysis of the phase structure. Here we introduce a quantity that we call the folding angle to identify and scrutinize the phase structure, as a complement to the radius of gyration. We argue for a mean-field level relationship between the folding angle and the scaling exponent in the radius of gyration. We then estimate the value of the folding angle in the case of crystallographic ?-helical protein structures in the Protein Data Bank. We also show how the experimental value of the folding angle can be obtained computationally, using a semiclassical Born-Oppenheimer description of ?-helical chiral chains.

  17. Microscopic Description of the Exotic Nuclei Reactions by Using Folding model Potentials

    SciTech Connect (OSTI)

    Ibraheem, Awad A.; Hassanain, M. A.; Mokhtar, S. R.; El-Azab Farid, M.; Zaki, M. A.; Mahmoud, Zakaria M. M.

    2011-10-27

    A microscopic folding approach based upon the effective M3Y nucleon-nucleon interaction and the nuclear matter densities of the interacting nuclei has been carried out to explain recently measured experimental data of the {sup 6}He+{sup 120}Sn elastic scattering reaction at four different laboratory energies near the Coulomb barrier. The corresponding reaction cross sections are also considered.

  18. Significance of recurrent fault movement at Grays Point quarry, southeast Missouri

    SciTech Connect (OSTI)

    Diehl, S.F.; Throckmorton, C.K. ); Clendenin, C.W. )

    1993-03-01

    Geologic relationships indicate recurrent movement on a fault exposed at Grays Point, MO. Faulting offsets Middle-Late Ordovician Plattin Group, Decorah Group, Kimmswick Limestone, and Maquoketa Group strata. In plan, the fault is characterized by a relatively narrow zone (30--70 m) of northeast-striking fault slices associated with a northwest-striking zone of right-stepping en echelon fractures. This systematic fracture-fault array identifies right-lateral strike-slip movement. A vertically offset basal Decorah Group contact shows 22 m of down-to-the-southeast dip slip, which indicates a component of oblique slip. Oldest recognizable movement on the fault is evidenced by Maquoketa Group strata that fill a northeast-striking, wedge-shaped synform. Post-Ordovician movement along an adjacent subvertical fault displaces part of this synform 300 m right laterally. In thin section, the northwest-striking fracture set shows a polyphase history of deformation indicated by cataclastic textures and intrusion of carbonate-rich fluids. Three periods of movement occurred: (1) initial fracturing sealed by authigenic mineral cements; (2) renewed fracturing associated with recrystallization of sub-rounded clasts; and (3) subsequent brecciation marked by angular clasts and filling of fractures and vugs. Each successive fluid intrusion is characterized by an increase in grain size of the authigenic cement. The fault is subparallel to the regional, northeast-striking English Hill fault system. Polyphase oblique-slip deformation suggests that the fault, like others in southeastern Missouri, is a reactivated Late Proterozoic-Cambrian zone of weakness. Initial fault reactivation occurred during Middle-Late Ordovician as opposed to Devonian, as commonly interpreted for southeast Missouri. Multiple authigenic mineral cements imply that fluids may have been an important factor influencing the fault's tendency to be reactivated.

  19. Arc-Fault Detector Algorithm Evaluation Method Utilizing Prerecorded Arcing Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc-Fault Detector Algorithm Evaluation Method Utilizing Prerecorded Arcing Signatures Jay Johnson 1 and Jack Kang 2 1 Sandia National Laboratories, Albuquerque, NM, USA 2 Sensata Technologies, Attleboro, MA, USA ABSTRACT Abstract - The 2011 National Electrical Code® Article 690.11 requires photovoltaic systems on or penetrating a building to include a DC arc-fault protection device. In order to satisfy this requirement, new Arc-Fault Detectors (AFDs) are being developed by multiple

  20. NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT CONDUCIVE TO

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL FLOW NEAR PYRAMID LAKE, NEVADA (Other) | SciTech Connect NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT CONDUCIVE TO GEOTHERMAL FLOW NEAR PYRAMID LAKE, NEVADA Citation Details In-Document Search Title: NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT CONDUCIVE TO GEOTHERMAL FLOW NEAR PYRAMID LAKE, NEVADA Linear deposits of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake,

  1. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    SciTech Connect (OSTI)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  2. High-resolution structure of a retroviral protease folded as a monomer

    SciTech Connect (OSTI)

    Gilski, Miroslaw [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland); Kazmierczyk, Maciej; Krzywda, Szymon [A. Mickiewicz University, 60-780 Poznan (Poland); Zbransk, Helena [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Cooper, Seth; Popovi?, Zoran [University of Washington, Box 352350, Seattle, WA 98195 (United States); Khatib, Firas; DiMaio, Frank; Thompson, James; Baker, David [University of Washington, Box 357350, Seattle, WA 98195 (United States); Pichov, Iva [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland)

    2011-11-01

    The crystal structure of MasonPfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs. MasonPfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerization of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C{sup ?} deviations are large and the active-site DTG loop (here NTG) deviates up to 2.7 from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 ) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections, including

  3. Isolation, folding and structural investigations of the amino acid transporter OEP16

    SciTech Connect (OSTI)

    Ni, Da Qun; Zook, James; Klewer, Douglas A.; Nieman, Ronald A.; Soll, J.; Fromme, Petra

    2011-12-01

    Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of a-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.

  4. Investigations of stacking fault density in perpendicular recording media

    SciTech Connect (OSTI)

    Piramanayagam, S. N. Varghese, Binni; Yang, Yi; Kiat Lee, Wee; Khume Tan, Hang

    2014-06-28

    In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure and dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.

  5. Non-abelian fractional quantum hall effect for fault-resistant...

    Office of Scientific and Technical Information (OSTI)

    Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation. Citation Details In-Document Search Title: Non-abelian fractional quantum hall...

  6. Sandia Research on PV Arc-Fault Detection Submitted for US Patent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... The 2011 National Electrical Code requires PV DC series arc-fault protection, but does ...

  7. Pull-Apart in Strike-Slip Fault Zone | Open Energy Information

    Open Energy Info (EERE)

    of sinistral fault systems, resulting in localized crustal extension and enhanced permeability. Other definitions:Wikipedia Reegle Controlling Structures List of controlling...

  8. Wind Power Plant Enhancement with a Fault-Current Limiter: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; DeLaRosa, F.

    2011-03-01

    This paper investigates the capability of a saturable core fault-current limiter to limit the short circuit current of different types of wind turbine generators.

  9. VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tool that integrates both statistical process control and machine learning techniques and rule-based methods to achieve a whole-building energy system "root-fault" diagnosis. ...

  10. Stepover or Relay Ramp in Normal Fault Zones | Open Energy Information

    Open Energy Info (EERE)

    intersections between the overlapping fault strands results in increased fracture density that enhances hydrothermal fluid flow. Other definitions:Wikipedia Reegle Controlling...

  11. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect (OSTI)

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  12. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as

  13. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    SciTech Connect (OSTI)

    Panda, Dhabaleswar Kumar; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? #15; What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? #15; What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? #15; What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? #15; What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. #15; Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental

  14. Southern Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    faults form the western edge of the Sierra Madre Occidental plateau in northeastern Sonora. These faults and associated half-grabens extend over a distance of more than 300 km...

  15. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    SciTech Connect (OSTI)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  16. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martínez, Enrique; Uberuaga, Blas P.

    2015-03-13

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  17. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; Sheng, Shuangwen

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less

  18. Restoration and testing of an HTS fault current controller

    SciTech Connect (OSTI)

    Waynert, J. A.; Boenig, H.; Mielke, C. H.; Willis, J. O.; Burley, B. L.

    2002-01-01

    A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

  19. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    SciTech Connect (OSTI)

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; Sheng, Shuangwen

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issue is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.

  20. Unconventional modelling of faulted reservoirs: a case study

    SciTech Connect (OSTI)

    Goldthorpe, W.H.; Chow, Y.S.

    1985-02-01

    An example is presented of detailed unconventional gridding of the North Rankin Field, which is a large, structurally complex gas-condensate field offshore Western Australia. A non-Cartesian areal grid was used with corner point geometry to approximate a generalized curvilinear coordinate system for the surface and interior of each reservoir unit. Coordinate lines in the vertical plane at any node in the grid were tilted where necessary to define sloping edges and sides of grid blocks. Thus, any sloping twisted surface could be modelled. To investigate possible communication across faults between different geological units, transmissibilities at faults were automatically calculated for any over-lapping cells and sensitivities made of the effect of varying these transmissibilities on well production, recovery factors, pressure decline and water encroachment. The model was solved with a fully implicit simulator using a Newton-Raphson iteration method for the non-linear equations and a variant of the Conjugate Gradient procedure with a preconditioning matrix for the linear equations.

  1. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  2. Fault current limiter and alternating current circuit breaker

    DOE Patents [OSTI]

    Boenig, Heinrich J.

    1998-01-01

    A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

  3. Fault current limiter and alternating current circuit breaker

    DOE Patents [OSTI]

    Boenig, H.J.

    1998-03-10

    A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

  4. Geology of oil and gas accumulations in the Papuan fold and thrust belt

    SciTech Connect (OSTI)

    Foo, W.K. )

    1990-06-01

    The high level of exploration interest in Papua New Guinea has developed in large part because of recent discoveries in the western Papuan fold and thrust belt and shows in the adjacent foreland region. Results from recent drilling in the Iagifu/Hedinia area by a Chevron-led joint venture have outlined several pools in culminations along a 50 km long structural axis. Oil and gas are sourced from a thick succession of Jurassic marine shales that were deposited along the rifted northern margin of the Australian plate. Generation and migration is interpreted to have peaked coincident with development of the fold and thrust belt during the Neogene. Trapping occurred as anticlines and thrust sheets developed sequentially from northeast to southwest. Several trends remain untested on lands held by various groups, primarily in the area west of the Juha gas condensate pool.

  5. Single-Molecule Dynamics Reveals Cooperative Binding-Folding in Protein Recognition

    SciTech Connect (OSTI)

    Wang, Jin; Lu, Qiang N.; Lu, H PETER.

    2006-07-01

    The study of associations between two biomolecules is the key to understand molecular recognition and function. Molecular function is often thought to be determined by the underlying structures. Here, combining single molecule study of protein binding with an energy landscape inspired microscopic model, we found strong evidences that bio-molecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse grained molecular dynamics performed on the residue level with the energy function biased towards the native binding structure (Go model). With our model, the underlying free energy landscape of the binding can be explored. Two distinct conformational states as free energy minimum, one with partially folding of CBD and significant binding of CBD to CDC42, and another with native folding of CBD and native binding of CBD to CDC42, are clearly seen. This shows the binding process proceeds with significant interface binding of CBD with CDC42 first without complete folding of CBD. Finally binding and folding are coupled with each other cooperatively to reach the native binding state. The single molecule experimental finding of the dynamic fluctuations between the loosely bound and closely bound conformational states can be identified with theoretically calculated free energy minimum and quantitatively explained in our model as a result of binding associated with large conformational changes. Theoretical predictions have identified certain key residues for binding which are consistent with mutational experiments. The combined study provides a test ground for fundamental mechanisms as well as insights into design and further explorations on biomolecular recognition with large conformational changes.

  6. MitoNEET is a Uniquely Folded Outer Mitochondrial Membrane Protein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stabilized by Diabetes Drugs MitoNEET is a Uniquely Folded Outer Mitochondrial Membrane Protein Stabilized by Diabetes Drugs The rise in obesity in the United States parallels a dramatic increase in obesity-associated diseases, most notably type-2 diabetes. This disease is predicted to reach epidemic proportions in the next several decades (Zimmet et al 2001, Urek et al 2007). Thus, understanding the biochemical processes underlying type-2 diabetes and identifying new targets for therapeutic

  7. In the OSTI Collections: Determining How Proteins Fold | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Determining How Proteins Fold Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Investigations Focused on Direct Experiments Investigations Focused on Computation References Research Organizations Reports available through OSTI's SciTech Connect Additional References Proteins are the materials in living cells whose primary structures are specified by the cell's DNA. These primary

  8. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect (OSTI)

    Davis, T.L.

    1983-08-01

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  9. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  10. System for detecting and limiting electrical ground faults within electrical devices

    DOE Patents [OSTI]

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  11. The role of the digital fault recorder in the automated substation

    SciTech Connect (OSTI)

    Brandt, J.D.

    1996-10-01

    This paper addresses the role of the digital fault recorder in the automated substation. The topics of the paper include distributed architecture, the substation LAN and reduced installation costs, multiple functions, improved substation intelligence, record generation and record merging, fault summaries, master station software, and future considerations.

  12. Structural Analysis of Protein Folding by the Long-Chain Archaeal Chaperone FKBP26

    SciTech Connect (OSTI)

    E Martinez-Hackert; W Hendrickson

    2011-12-31

    In the cell, protein folding is mediated by folding catalysts and chaperones. The two functions are often linked, especially when the catalytic module forms part of a multidomain protein, as in Methanococcus jannaschii peptidyl-prolyl cis/trans isomerase FKBP26. Here, we show that FKBP26 chaperone activity requires both a 50-residue insertion in the catalytic FKBP domain, also called 'Insert-in-Flap' or IF domain, and an 80-residue C-terminal domain. We determined FKBP26 structures from four crystal forms and analyzed chaperone domains in light of their ability to mediate protein-protein interactions. FKBP26 is a crescent-shaped homodimer. We reason that folding proteins are bound inside the large crescent cleft, thus enabling their access to inward-facing peptidyl-prolyl cis/trans isomerase catalytic sites and ipsilateral chaperone domain surfaces. As these chaperone surfaces participate extensively in crystal lattice contacts, we speculate that the observed lattice contacts reflect a proclivity for protein associations and represent substrate interactions by FKBP26 chaperone domains. Finally, we find that FKBP26 is an exceptionally flexible molecule, suggesting a mechanism for nonspecific substrate recognition.

  13. Wang-Landau sampling of the interplay between surface adsorption and folding of HP lattice proteins

    SciTech Connect (OSTI)

    Li, Ying Wai [ORNL] [ORNL; Wuest, Thomas [Swiss Federal Research Institute, Switzerland] [Swiss Federal Research Institute, Switzerland; Landau, David P [University of Georgia, Athens, GA] [University of Georgia, Athens, GA

    2014-01-01

    Generic features associated with the adsorption of proteins on solid surfaces are reviewed within the framework of the hydrophobic-polar (HP) lattice protein model. The thermodynamic behavior and structural properties of various HP protein sequences interacting with attractive surfaces have been studied using extensive Wang-Landau sampling with different types of surfaces, each of which attracts either: all monomers, only hydrophobic (H) monomers, or only polar (P) monomers, respectively. Consequently, different types of folding behavior occur for varied surface strengths. Analysis of the combined patterns of various structural observables, e.g., the derivatives of the numbers of interaction contacts, together with the specific heat, leads to the identification of fundamental categories of folding and transition hierarchies. We also inferred a connection between the transition categories and the relative surface strengths, i.e., the ratios of the surface attractive strengths to the intra-chain attraction among H monomers. We thus believe that the folding hierarchies and identification scheme are generic for different HP sequences interacting with attractive surfaces, regardless of the chain length, sequence, or surface attraction.

  14. System and method for motor fault detection using stator current noise cancellation

    DOE Patents [OSTI]

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  15. A Framework For Evaluating Comprehensive Fault Resilience Mechanisms In Numerical Programs

    SciTech Connect (OSTI)

    Chen, S.; Peng, L.; Bronevetsky, G.

    2015-01-09

    As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application are most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.

  16. System and method for bearing fault detection using stator current noise cancellation

    DOE Patents [OSTI]

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  17. Buffered coscheduling for parallel programming and enhanced fault tolerance

    DOE Patents [OSTI]

    Petrini, Fabrizio; Feng, Wu-chun

    2006-01-31

    A computer implemented method schedules processor jobs on a network of parallel machine processors or distributed system processors. Control information communications generated by each process performed by each processor during a defined time interval is accumulated in buffers, where adjacent time intervals are separated by strobe intervals for a global exchange of control information. A global exchange of the control information communications at the end of each defined time interval is performed during an intervening strobe interval so that each processor is informed by all of the other processors of the number of incoming jobs to be received by each processor in a subsequent time interval. The buffered coscheduling method of this invention also enhances the fault tolerance of a network of parallel machine processors or distributed system processors

  18. Characterization and application of microearthquake clusters to problems of scaling, fault zone dynamics, and seismic monitoring at Parkfield, California

    SciTech Connect (OSTI)

    Nadeau, R.M.

    1995-10-01

    This document contains information about the characterization and application of microearthquake clusters and fault zone dynamics. Topics discussed include: Seismological studies; fault-zone dynamics; periodic recurrence; scaling of microearthquakes to large earthquakes; implications of fault mechanics and seismic hazards; and wave propagation and temporal changes.

  19. Investigation of Ground-Fault Protection Devices for Photovoltaic Power Systems Applications

    SciTech Connect (OSTI)

    BOWER,WARD I.; WILES,JOHN

    2000-10-03

    Photovoltaic (PV) power systems, like other electrical systems, may be subject to unexpected ground faults. Installed PV systems always have invisible elements other than those indicated by their electrical schematics. Stray inductance, capacitance and resistance are distributed throughout the system. Leakage currents associated with the PV modules, the interconnected array, wires, surge protection devices and conduit add up and can become large enough to look like a ground-fault. PV systems are frequently connected to other sources of power or energy storage such as batteries, standby generators, and the utility grid. This complex arrangement of distributed power and energy sources, distributed impedance and proximity to other sources of power requires sensing of ground faults and proper reaction by the ground-fault protection devices. The different dc grounding requirements (country to country) often add more confusion to the situation. This paper discusses the ground-fault issues associated with both the dc and ac side of PV systems and presents test results and operational impacts of backfeeding commercially available ac ground-fault protection devices under various modes of operation. Further, the measured effects of backfeeding the tripped ground-fault devices for periods of time comparable to anti-islanding allowances for utility interconnection of PV inverters in the United States are reported.

  20. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding

    SciTech Connect (OSTI)

    Huang, David M.; Chandler, David

    2000-04-01

    The Lum-Chandler-Weeks theory of hydrophobicity [J. Phys. Chem. 103, 4570 (1999)] is applied to treat the temperature dependence of hydrophobic solvation in water. The application illustrates how the temperature dependence for hydrophobic surfaces extending less than 1nm differs significantly from that for surfaces extending more than 1nm. The latter is the result of water depletion, a collective effect, that appears at length scales of 1nm and larger. Due to the contrasting behaviors at small and large length scales, hydrophobicity by itself can explain the variable behavior of protein folding.

  1. Protein folding and non-conventional drug design: a primer for nuclear structure physicists

    SciTech Connect (OSTI)

    Broglia, R.A. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy); Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Tiana, G.; Provasi, D. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy)

    2004-02-27

    Some of the paradigms emerging from the study of the phenomena of phase transitions in finite many-body systems, like e.g. the atomic nucleus can be used at profit to solve the protein folding problem within the framework of simple (although not oversimplified) models. From this solution a paradigm emerges for the design of non-conventional drugs, which inhibit enzymatic action without inducing resistance (mutations). The application of these concepts to the design of an inhibitor to the HIV-protease central in the life cycle of the HIV virus is discussed.

  2. A practical approach to accurate fault location on extra high voltage teed feeders

    SciTech Connect (OSTI)

    Aggarwal, R.K.; Coury, D.V.; Johns, A.T. . School of Electronic and Electrical Engineering); Kalam, A. )

    1993-07-01

    This paper describes the basis of an alternative approach for accurately locating faults on teed feeders and the technique developed utilizes fault voltages and currents at all three ends. The method is virtually independent of fault resistance and largely insensitive to variations in source impedance, teed and line configurations, including line untransposition. The paper presents the basic theory of the technique which is then extensively tested using simulated primary system voltage and current waveforms which in turn include the transducer/hardware errors encountered in practice. The performance clearly shows a high degree of accuracy attained.

  3. Method and system for controlling a permanent magnet machine during fault conditions

    DOE Patents [OSTI]

    Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.

    2004-05-25

    Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.

  4. Trigger loop folding determines transcription rate of Escherichia coli’s RNA polymerase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mejia, Yara X.; Nudler, Evgeny; Bustamante, Carlos

    2014-12-31

    Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP’s pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kineticmore » model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. The model suggests a finely tuned mechanism that balances transcription speed and fidelity.« less

  5. Trigger loop folding determines transcription rate of Escherichia colis RNA polymerase

    SciTech Connect (OSTI)

    Mejia, Yara X.; Nudler, Evgeny; Bustamante, Carlos

    2014-12-31

    Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAPs pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kinetic model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. The model suggests a finely tuned mechanism that balances transcription speed and fidelity.

  6. A Fault-Oblivious Extreme-Scale Execution Environment (FOX)

    SciTech Connect (OSTI)

    Van Hensbergen, Eric; Speight, William; Xenidis, Jimi

    2013-03-15

    IBM Research’s contribution to the Fault Oblivious Extreme-scale Execution Environment (FOX) revolved around three core research deliverables: ● collaboration with Boston University around the Kittyhawk cloud infrastructure which both enabled a development and deployment platform for the project team and provided a fault-injection testbed to evaluate prototypes ● operating systems research focused on exploring role-based operating system technologies through collaboration with Sandia National Labs on the NIX research operating system and collaboration with the broader IBM Research community around a hybrid operating system model which became known as FusedOS ● IBM Research also participated in an advisory capacity with the Boston University SESA project, the core of which was derived from the K42 operating system research project funded in part by DARPA’s HPCS program. Both of these contributions were built on a foundation of previous operating systems research funding by the Department of Energy’s FastOS Program. Through the course of the X-stack funding we were able to develop prototypes, deploy them on production clusters at scale, and make them available to other researchers. As newer hardware, in the form of BlueGene/Q, came online, we were able to port the prototypes to the new hardware and release the source code for the resulting prototypes as open source to the community. In addition to the open source coded for the Kittyhawk and NIX prototypes, we were able to bring the BlueGene/Q Linux patches up to a more recent kernel and contribute them for inclusion by the broader Linux community. The lasting impact of the IBM Research work on FOX can be seen in its effect on the shift of IBM’s approach to HPC operating systems from Linux and Compute Node Kernels to role-based approaches as prototyped by the NIX and FusedOS work. This impact can be seen beyond IBM in follow-on ideas being incorporated into the proposals for the Exasacale Operating

  7. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  8. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  9. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; LeSar, Richard

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  10. On-line early fault detection and diagnosis of municipal solid waste incinerators

    SciTech Connect (OSTI)

    Zhao Jinsong [College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: jinsongzhao@mail.tsinghua.edu.cn; Huang Jianchao [College of Information Science and Technology, Beijing Institute of Technology, Beijing 10086 (China); Sun Wei [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2008-11-15

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

  11. Method and system for early detection of incipient faults in electric motors

    DOE Patents [OSTI]

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  12. Fault isolation through no-overhead link level CRC

    DOE Patents [OSTI]

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  13. Late Cenozoic fault kinematics and basin development, Calabrian arc, Italy

    SciTech Connect (OSTI)

    Knott, S.D.; Turco, E.

    1988-08-01

    Current views for explaining the present structure of the Calabrian arc emphasize bending or buckling of an initially straight zone by rigid indentation. Although bending has played an important role, bending itself cannot explain all structural features now seen in the arc for the following reasons: (1) across-arc extension is inconsistent with buckling, (2) north-south compression predicted by a bending mechanism to occur in the internal part of a curved mountain belt is not present in the Calabrian arc, and (3) lateral shear occurs throughout the arc, not just along the northern and southern boundaries. The model presented here is based on lateral bending of mantle and lower crust (demonstrated by variation in extension in the Tyrrhenian basin) and semibrittle faulting and block rotation in the upper crust. These two styles of deformation are confined to the upper plate of the Calabrian subduction system. This deformation is considered to have been active from the beginning of extension in the Tyrrhenian basin (late Tortonian) and is still active today (based on Holocene seismicity). Block rotations are a consequence of lateral heterogeneous shear during extension. Therefore, some of the observed rotation of paleo-magnetic declinations may have occurred in areas undergoing extension and not just during thrusting. Inversion of sedimentary basins by block rotation is predicted by the model. The model will be a useful aid in interpreting reflection seismic data and exploring and developing offshore and onshore sedimentary basins in southern Italy.

  14. Effects of stacking faults on the electronic structures of quantum rods

    SciTech Connect (OSTI)

    Wang, Lin-Wang

    2004-03-30

    Atomistic semiempirical pseudopotential method is used to study the effects of stacking faults in a wurtzite structure quantum rod. It is found that a single stacking fault can cause a 10-50 meV change in the conduction state eigen energy, and a localization in the electron wave function. However, the effects on the hole eigen energies and wave functions are very small.

  15. VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis Planned mixed-use demonstration site on Drexel University campus. Planned mixed-use demonstration site on Drexel University campus. Photo courtesy Drexel University. Photo courtesy Drexel University. Planned mixed-use demonstration site on Drexel University campus. Photo courtesy Drexel University. Lead Performer: Drexel University -

  16. Volttron Implementation: Automated Fault Detection and Diagnosis for AHU-VAV Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volttron Implementation: Automated Fault Detection and Diagnosis for AHU-VAV Systems 1 Volttron Workshop 23 July 2015 Arlington, VA Adam Regnier Jin Wen, Ph.D. Building Science & Engineering Group Drexel University Philadelphia, PA Outline/Agenda o Platform overview o Drivers o Database o Agents 4. Why Volttron? o Benefits for research & for industry 5. Going Forward Overview/Agenda 1. Introduction o Faults in AHU-VAV Systems 2. Diagnostics o Methods & Requirements 3. Volttron

  17. Protein Folding Dynamics Detected By Time-Resolved Synchrotron X-ray Small-Angle Scattering Technique

    SciTech Connect (OSTI)

    Fujisawa, Tetsuro; Takahashi, Satoshi [RIKEN Harima Institute, SPring-8 Center, Laboratory for Biometal Science, Hyogo 679-5148 (Japan); Institute for Protein Research, Osaka University Suita Osaka 565-0871/CREST, JST (Japan)

    2007-03-30

    The polypeptide collapse is an essential dynamics in protein folding. To understand the mechanism of the collapse, in situ observation of folding by various probes is necessary. The changes in secondary and tertiary structures in the folding process of globular proteins, whose chain lengths are less than 300 polypeptides, were observed by circular dichrosim and intrinsic fluorescence spectroscopies, respectively. On the other hand, those in protein compactness could be only detected by using time-resolved synchrotron x-ray small-angle scattering technique. The observed dynamics for several proteins with different topologies suggested a common folding mechanism termed 'collapse and search' dynamics, in which the polypeptide collapse precedes the formation of the native contact formation. In 'collapse and search' dynamics, the most outstanding feature lied in the compactness of the initial intermediates. The collapsed intermediates demonstrated the scaling relationship between radius of gyration (Rg) and chain length with a scaling exponent of 0.35 {+-} 0.11, which is close to the value (1/3) predicted by mechano-statistical theory for the collapsed globules of polymers in poor solvent. Thus, it was suggested that the initial collapse is caused by the coil-globule transition of polymers. Since the collapse is essential to the folding of larger proteins, further investigations on the collapse likely lead to an important insight into the protein folding phenomena.

  18. Imaging Faults with Reverse-Time Migration for Geothermal Exploration at Jemez Pueblo in New Mexico

    SciTech Connect (OSTI)

    Huang, Lianjie; Albrecht, Michael; Kaufman, Greg; Kelley, Shari; Rehfeldt, Kenneth; Zhang, Zhifu

    2011-01-01

    The fault zones at Jemez Pueblo may dominate the flow paths of hot water, or confine the boundaries of the geothermal reservoir. Therefore, it is crucial to image the geometry of these fault zones for geothermal exploration in the area. We use reverse-time migration with a separation imaging condition to image the faults at Jemez Pueblo. A finite-difference full-wave equation method with a perfectly-matching-layer absorbing boundary condition is used for backward propagation of seismic reflection data from receivers and forward propagation of wavefields from sources. In the imaging region, the wavefields are separated into the upgoing and downgoing waves, and leftgoing and rightgoing waves. The upgoing and downgoing waves are used to obtain the downward-looking image, and the leftgoing and rightgoing waves are used to form the left-looking image and right-looking image from sources. The left-looking and right-looking images are normally weaker than the downward-looking image because the reflections from the fault zones are much weaker than those from sedimentary layers, but these migration results contain the images of the faults. We apply our reverse-time migration with a wavefield separation imaging condition to seismic data acquired at Jemez Pueblo, and our preliminary results reveal many faults in the area.

  19. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, Lowell B.

    1998-01-01

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.

  20. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, L.B.

    1998-08-18

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.

  1. Pen Branch fault program: Consolidated report on the seismic reflection surveys and the shallow drilling

    SciTech Connect (OSTI)

    Stieve, A.L.; Stephenson, D.E.; Aadland, R.K.

    1991-03-23

    The Pen Branch fault was identified in the subsurface at the Savannah River Site (SRS) in 1989 based upon interpretation of earlier seismic reflection surveys and other geologic investigations (Seismorgraph Services Incorp., 1973; Chapman and DiStefano, 1989; Snipes, Fallaw and Price, 1989). A program was initiated at that time to determine the capability of the fault to release seismic energy (Price and others, 1989) as defined in the Nuclear Regulatory Commission regulatory guidelines, 10 CFR 100 Appendix A. This report presents the results of the Pen Branch fault investigation based on data acquired from seismic reflection surveys and shallow drilling across the fault completed at this time. The Earth Science Advisory Committee (ESAC) has reviewed the results of these investigations and unanimously agrees with the conclusion of Westinghouse Savannah River Company (WSRC) that the Pen Branch fault is a non-capable fault. ESAC is a committee of 12 earth science professionals from academia and industry with the charter of providing outside peer review of SRS geotechnical, seismic, and ground water modeling programs.

  2. Fault-tolerant interconnection network and image-processing applications for the PASM parallel processing system

    SciTech Connect (OSTI)

    Adams, G.B. III

    1984-01-01

    The demand for very high speed data processing coupled with falling hardware costs has made large-scale parallel and distributed computer systems both desirable and feasible. Two modes of parallel processing are single instruction stream-multiple data stream (SIMD) and multiple instruction stream-multiple data stream (MIMD). PASM, a partitionable SIMD/MIMD system, is a reconfigurable multimicroprocessor system being designed for image processing and pattern recognition. An important component of these systems is the interconnection network, the mechanism for communication among the computation nodes and memories. Assuring high reliability for such complex systems is a significant task. Thus, a crucial practical aspect of an interconnection network is fault tolerance. In answer to this need, the Extra Stage Cube (ESC), a fault-tolerant, multistage cube-type interconnection network, is define. The fault tolerance of the ESC is explored for both single and multiple faults, routing tags are defined, and consideration is given to permuting data and partitioning the ESC in the presence of faults. The ESC is compared with other fault-tolerant multistage networks. Finally, reliability of the ESC and an enhanced version of it are investigated.

  3. Criteria for design of the Yucca Mountain structures, systems and components for fault displacement

    SciTech Connect (OSTI)

    Stepp, C.; Hossain, Q.; Nesbit, S.; Hardy, M.

    1995-12-31

    The DOE intends to design the Yucca Mountain high-level waste facility structures, systems and components (SSCs) for fault displacements to provide reasonable assurance that they will meet the preclosure safety performance objectives established by 10 CFR Part 60. To the extent achievable, fault displacement design of the facility will follow guidance provided in the NRC Staff Technical Position. Fault avoidance will be the primary design criterion, especially for spatially compact or clustered SSCs. When fault avoidance is not reasonably achievable, expected to be the case for most spatially extended SSCs, engineering design procedures and criteria or repair and rehabilitation actions, depending on the SSC`s importance to safety, are provided. SSCs that have radiological safety importance will be designed for fault displacements that correspond to the hazard exceedance frequency equal to their established seismic safety performance goals. Fault displacement loads are generally localized and may cause local inelastic response of SSCs. For this reason, the DOE intends to use strain-based design acceptance criteria similar to the strain-based criteria used to design nuclear plant SSCs for impact and impulsive loads.

  4. Improvements in Mixing Time and Mixing Uniformity in Devices Designed for Studies of Protein Folding Kinetics

    SciTech Connect (OSTI)

    Yao, Shuhuai [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bakajin, Olgica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2007-08-01

    Using a microfluidic laminar flow mixer designed for studies of protein folding kinetics, we demonstrate a mixing time of 1 +/- 1 micros with sample consumption on the order of femtomoles. We recognize two limitations of previously proposed designs: (1) size and shape of the mixing region, which limits mixing uniformity and (2) the formation of Dean vortices at high flow rates, which limits the mixing time. We address these limitations by using a narrow shape-optimized nozzle and by reducing the bend of the side channel streamlines. The final design, which combines both of these features, achieves the best performance. We quantified the mixing performance of the different designs by numerical simulation of coupled Navier-Stokes and convection-diffusion equations and experiments using fluorescence resonance energy-transfer (FRET)-labeled DNA.

  5. Solvent Electrostriction-Driven Peptide Folding Revealed by Quasi Gaussian Entropy Theory and Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Noe, F [University of Heidelberg; Daidone, Isabella [University of Heidelberg; Smith, Jeremy C [ORNL; DiNola, Alfredo [University of Rome; Amadei, Andrea [University of Rome 'Tor Vergata', Rome, Italy

    2008-08-01

    A quantitative understanding of the complex relationship between microscopic structure and the thermodynamics driving peptide and protein folding is a major goal of biophysical chemistry. Here, we present a methodology comprising the use of an extended quasi-Gaussian entropy theory parametrized using molecular dynamics simulation that provides a complete description of the thermodynamics of peptide conformational states. The strategy is applied to analyze the conformational thermodynamics of MR121-GSGSW, a peptide well characterized in experimental studies. The results demonstrate that the extended state of the peptide possesses the lowest partial molar entropy. The origin of this entropy decrease is found to be in the increase of the density and orientational order of the hydration water molecules around the peptide, induced by the 'unfolding'. While such a reduction of the configurational entropy is usually associated with the hydrophobic effect, it is here found to be mainly due to the interaction of the solute charges with the solvent, that is, electrostriction.

  6. Solvent Electrostriction Driven Peptide Folding revealed by Quasi-Gaussian Entropy Theory and Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Noe, F [University of Heidelberg; Daidone, Isabella [University of Heidelberg; Smith, Jeremy C [ORNL; DiNola, Alfredo [University of Rome; Amadei, Andrea [University of Rome 'Tor Vergata', Rome, Italy

    2008-06-01

    A quantitative understanding of the complex relationship between microscopic structure and the thermodynamics driving peptide and protein folding is a major goal of biophysical chemistry. Here, we present a methodology comprising the use of an extended quasi-Gaussian entropy theory parametrized using molecular dynamics simulation that provides a complete description of the thermodynamics of peptide conformational states. The strategy is applied to analyze the conformational thermodynamics of MR121-GSGSW, a peptide well characterized in experimental studies. The results demonstrate that the extended state of the peptide possesses the lowest partial molar entropy. The origin of this entropy decrease is found to be in the increase of the density and orientational order of the hydration water molecules around the peptide, induced by the 'unfolding'. While such a reduction of the configurational entropy is usually associated with the hydrophobic effect, it is here found to be mainly due to the interaction of the solute charges with the solvent, that is, electrostriction.

  7. Promiscuous Substrate Recognition in Folding and Assembly Activities of the Trigger Factor Chaperone

    SciTech Connect (OSTI)

    Martinez-Hackert, E.; Hendrickson, W

    2009-01-01

    Trigger factor (TF) is a molecular chaperone that binds to bacterial ribosomes where it contacts emerging nascent chains, but TF is also abundant free in the cytosol where its activity is less well characterized. In vitro studies show that TF promotes protein refolding. We find here that ribosome-free TF stably associates with and rescues from misfolding a large repertoire of full-length proteins. We identify over 170 members of this cytosolic Escherichia coli TF substrate proteome, including ribosomal protein S7. We analyzed the biochemical properties of a TF:S7 complex from Thermotoga maritima and determined its crystal structure. Thereby, we obtained an atomic-level picture of a promiscuous chaperone in complex with a physiological substrate protein. The structure of the complex reveals the molecular basis of substrate recognition by TF, indicates how TF could accelerate protein folding, and suggests a role for TF in the biogenesis of protein complexes.

  8. Mesozoic and cenozoic tectonic evolution of the Maranon Basin in Southeastern Columbia, Eastern Ecuador and Northeastern Peru

    SciTech Connect (OSTI)

    Aleman, A.M.; Marksteiner, M. )

    1993-02-01

    The Late Triassic to Early Jurassic in the Maranon was characterized by tectonic quiescence and carbonate shelf deposition. During Middle to Late Jurassic, a northeast-southwest extensional event occurred which is documented by the presence of northwest oriented grabens filled with red beds and volcaniclastic rocks. Cretaceous deposition commenced during the Aptian and continued to the Early Campanian within the vast South America Cretaceous Seaway (SACS) that extended from Venezuela to Central Peru. These strata comprised of shallow marine clastics sources from the Brazilian and Guyana cratons to the east. Retreat of the SACS resulted from the Late Cretaceous (Peruvian) phase of the Andean Orogeny. Deposition became largely continental with sediments derived from the west. The deformation was comtemporaneous with oblique collision and accretion of an allochthonous terrain present in Colombia and Ecuador, as well as uplift of the Putumayo, Napo, Cutucu and Cenepa (PNCC) Mountains, westward erosion of the Napo/Chonta Formations, widespread deposition of red beds, volcanic activity in the foreland and the subtle inversion of half grabens. The Middle Eocene (Inca) phase of the Andean Orogeny, correlated to a relative increase in convergence rates along the western margin of South America (SA). This orogeny was characterized by the development of folds and reverse faults within a narrow and elongated belt, the reactivation of the PNCC Uplifts, the deposition of varicolored fluviatile deposits, the renewed inversion of half grabens, and volcanic activity close to the hinterland. The three main pulses of the Late Miocene to Pliocene phase of the Andean Orogeny correlate with high rates of convergence along the SA margin. This orogenic phase was characterized by thick fluviatile deposition, reactivation of the PNCC uplifts, eastward propagation of the fold and thrust belt, renewed inversion of the half grabens and alkaline volcanism in the foreland.

  9. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model

    SciTech Connect (OSTI)

    Agarwala, R. [National Institutes of Health, Bethesda, MD (United States); Batzoglou, S. [MIT Lab. for Computer Science, Cambridge, MA (United States); Dancik, V. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-12-01

    A long standing problem in molecular biology is to determine the three-dimensional structure of a protein, given its amino acid sequence. A variety of simplifying models have been proposed abstracting only the {open_quotes}essential physical properties{close_quotes} of real proteins. In these models, the three dimensional space is often represented by a lattice. Residues which are adjacent in the primary sequence (i.e. covalently linked) must be placed at adjacent points in the lattice. A conformation of a protein is simply a self-avoiding walk along the lattice. The protein folding problem STRING-FOLD is that of finding a conformation of the protein sequence on the lattice such that the overall energy is minimized, for some reasonable definition of energy. This formulation leaves open the choices of a lattice and an energy function. Once these choices are made, one may then address the algorithmic complexity of optimizing the energy function for the lattice. For a variety of such simple models, this minimization problem is in fact NP-hard. In this paper, we consider the Hydrophobic-Polar (HP) Model introduced by Dill. The HP model abstracts the problem by grouping the 20 amino acids into two classes: hydrophobic (or non-polar) residues and hydrophilic (or polar) residues. For concreteness, we will take our input to be a string from (H,P){sup +}, where P represents polar residues, and H represents hydrophobic residues. Dill et.al. survey the literature analyzing this model. 8 refs., 2 figs., 1 tab.

  10. Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin

    SciTech Connect (OSTI)

    Lee, G.H.; Kim, B.Y.; Shin, K.S.; Sunwoo, D.

    2006-02-15

    Analysis of multichannel seismic reflection profiles reveals that the northern East China Sea shelf basin experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous created a series of grabens and half grabens, filled by alluvial and fluviolacustrine deposits. Regional uplift and folding (Yuquan movement) in the late Eocene-early Oligocene terminated the initial rifting. Rifting resumed in the early Oligocene, while alluvial and fluviolacustrine deposition continued to prevail. A second phase of uplift in the early Miocene terminated the rifting, marking the transition to the postrift phase. The early postrift phase (early Miocene-late Miocene) is characterized by regional subsidence and westward and northwestward marine transgression. Inversion (Longjing movement) in the late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. The entire area entered a stage of regional subsidence again and has become a broad continental shelf. Source rocks include synrift lacustrine facies, fluvial shales, and coal beds. Synrift fluvial, lacustrine, and deltaic deposits, postrift littoral and/or shallow-marine sandstones, and fractured basement have the potential to provide reservoirs. Various types of hydrocarbon traps (e.g., faulted anticlines, overthrusts, rollover anticlines, faults, unconformity traps, combination structural-stratigraphic traps, weathered basement, and stratigraphic traps) are recognized, but many of these traps have not been tested.

  11. Hydrocarbon exploration through remote sensing and field work in the onshore Eastern Papuan Fold Belt, Gulf province, Papua New Guinea

    SciTech Connect (OSTI)

    Dekker, F.; Balkwill, H.; Slater, A. ); Herner, R. ); Kampschuur, W. )

    1990-05-01

    Over the years several types of remote sensing surveys have been acquired of the Eastern Papuan Fold Belt, in the Gulf Province of Papua New Guinea. These include aerial photographs, Landsat Multispectral Scanner (MSS), and Synthetic Aperture Radar (SAR). Each has been used by Petro-Canada Inc. for interpreting the geologic structure and stratigraphy of onshore hydrocarbon prospects. Analysis of available remotely sensed imagery reveals greater structural complexity than is shown on published geologic maps. Foremost among the images is SAR because of its low, artificial sun angle. Hence, a comprehensive view of the area has been acquired revealing many structural elements previously not appreciated. A distinct difference in structural style is found between the northern and southern segment of the Eastern Papuan fold belt in the study area. The northern segment shows discontinuous, open folds with widely separated anticlines set in featureless valleys. The southern segment is tightly folded, possessing few anticlines and synclines clearly recognizable on the imagery. However, structural components can be traced easily for tens of miles. Recent field work supports an SAR structural interpretation suggesting most, if not all, anticlines in the northern segment are overturned. The combination of remote sensing and field work proved invaluable in understanding the fold belt tectonics and has aided considerably in the selection of drilling locations.

  12. Final Project Report: Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections

    SciTech Connect (OSTI)

    Brambley, Michael R.; Fernandez, Nicholas; Wang, Weimin; Cort, Katherine A.; Cho, Heejin; Ngo, Hung; Goddard, James K.

    2011-05-01

    This report addresses original research by the Pacific Northwest National Laboratory for the California Institute for Energy and Environment on self-correcting controls for variable-air-volume (VAV) heating, ventilating and air-conditioning systems and focuses specifically on air handling and VAV box components of the air side of the system. A complete set of faults for these components was compiled and a fault mode analysis performed to understand the detectable symptoms of the faults and the chain of causation. A set of 26 algorithms was developed to facilitate the automatic correction of these faults in typical commercial VAV systems. These algorithms include training tests that are used during commissioning to develop models of normal system operation, passive diagnostics used to detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and finally fault correction algorithms. Ten of the twenty six algorithms were implemented in a prototype software package that interfaces with a test bed facility at PNNL's Richland, WA, laboratory. Measurement bias faults were instigated in the supply-air temperature sensor and the supply-air flow meter to test the algorithms developed. The algorithms as implemented in the laboratory software correctly detected, diagnosed and corrected these faults. Finally, an economic and impact assessment was performed for the State of California for deployment of self-correcting controls. Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1-5.8 TBu of energy savings are possible by year 15.

  13. Discriminating trpzip2 and trpzip4 peptides folding landscape using the two-dimensional infrared spectroscopy: A simulation study

    SciTech Connect (OSTI)

    Wu, Tianmin; Zhang, Ruiting; Li, Huanhuan; Zhuang, Wei, E-mail: wzhuang@dicp.ac.cn, E-mail: lijiangy@pku.edu.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China); Yang, Lijiang, E-mail: wzhuang@dicp.ac.cn, E-mail: lijiangy@pku.edu.cn [College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871 (China)] [College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871 (China)

    2014-02-07

    We analyzed, based on the theoretical spectroscopic modeling, how the differences in the folding landscapes of two ?-hairpin peptides trpzip2 and trpzip4 are reflected in their thermal unfolding infrared measurements. The isotope-edited equilibrium FTIR and two dimensional infrared spectra of the two peptides were calculated, using the nonlinear exciton propagation method, at a series of temperatures. The spectra calculations were based on the configuration distributions generated using the GB{sup OBC} implicit solvent MD simulation and the integrated tempering sampling technique. Conformational analysis revealed the different local thermal stabilities for these two peptides, which suggested the different folding landscapes. Our study further suggested that the ellipticities of the isotope peaks in the coherent IR signals are more sensitive to these local stability differences compared with other spectral features such as the peak intensities. Our technique can thus be combined with the relevant experimental measurements to achieve a better understanding of the peptide folding behaviors.

  14. The role of hydrogen bonds in protein folding and protein association

    SciTech Connect (OSTI)

    Ben-Naim, A. (National Inst. of Health, Bethesda, MD (USA))

    1991-02-07

    The contribution of a pair of functional groups that can form either intermolecular or intramolecular hydrogen bonds to the total standard free energy of the process of protein folding or protein association is examined. It is found that this contribution can be quite large, either positive or negative, depending on the particular process and on the solvent density. This is in contrast to the common belief that the hydrogen-bond energies tend to be compensated in these processes. For the binding process, in which the two functional groups are completely removed from the aqueous environment, the contribution of such a pair of functional groups to {Delta}G can be as high as +6.4 kcal/mol. This is the main reason why hydrophobic rather than hydrophilic surfaces tend to attach to each other. In contrast, when the two functional groups are only partially removed from the aqueous environment, as in the case of the formation of {alpha}-helix, their contribution to {Delta}G can be negative and of the order of about 1 kcal/mol.

  15. Novel fold of VirA, a type III secretion system effector protein from Shigella flexneri

    SciTech Connect (OSTI)

    Davis, Jamaine; Wang, Jiawei; Tropea, Joseph E.; Zhang, Di; Dauter, Zbigniew; Waugh, David S.; Wlodawer, Alexander

    2009-01-28

    VirA, a secreted effector protein from Shigella sp., has been shown to be necessary for its virulence. It was also reported that VirA might be related to papain-like cysteine proteases and cleave {alpha}-tubulin, thus facilitating intracellular spreading. We have now determined the crystal structure of VirA at 3.0 {angstrom} resolution. The shape of the molecule resembles the letter 'V,' with the residues in the N-terminal third of the 45-kDa molecule (some of which are disordered) forming one clearly identifiable domain, and the remainder of the molecule completing the V-like structure. The fold of VirA is unique and does not resemble that of any known protein, including papain, although its N-terminal domain is topologically similar to cysteine protease inhibitors such as stefin B. Analysis of the sequence conservation between VirA and its Escherichia coli homologs EspG and EspG2 did not result in identification of any putative protease-like active site, leaving open a possibility that the biological function of VirA in Shigella virulence may not involve direct proteolytic activity.

  16. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-06-30

    In the structure task, the authors completed reducing the data they had collected from a N-S transect on the east side of Seneca Lake. They have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement. These basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitely identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definite correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display an interpreted seismic line that crosses the Glodes Corners and Muck Farms fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies

  17. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2002-01-30

    In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that

  18. Final Project Report. Scalable fault tolerance runtime technology for petascale computers

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Sadayappan, P

    2015-06-16

    With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been a considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.

  19. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  20. Interplay between intrinsic and stacking-fault magnetic domains in bi-layered manganites

    SciTech Connect (OSTI)

    Hossain, M.A; Burkhardt, Mark H.; Sarkar, S.; Ohldag, H.; Chuang, Y.-D.; Scholl, A.; Young, A.T.; Doran, A.; Dessau, D.S.; Zheng, H.; Mitchell, J.F.; Durr, H.A.; Stohr, J.

    2012-09-11

    We present a low temperature X-ray photoemission electron microscopy study of the bi-layered manganite compound La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} (BL-LSMO) to investigate the influence of stacking faults, which are structurally and magnetically different from the bi-layered host. In BL-LSMO small magnetic moment persists to T* = 300K, well above the Curie temperature of 120K (T{sub C}). Our magnetic images show that 3D stacking faults are responsible for the T* transition. Furthermore, close to the T{sub C}, stacking faults are well coupled to the bi-layered host with latter magnetic domains controlling the spin direction of the stacking faults. Contrary to recent reports, we find that stacking faults do not seed magnetic domains in the host via an exchange spring mechanism and the intrinsic T{sub C} of the BL-LSMO is not lower than 120K.

  1. FITL: Extending LLVM for the Translation of Fault-Injection Directives

    SciTech Connect (OSTI)

    Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    The frequency of hardware errors in HPC systems continues to grow as system designs evolve toward exascale. Tolerating these errors efficiently and effectively will require software-based resilience solutions. With this requirement in mind, recent research has increasingly employed LLVM-based tools to simulate transient hardware faults in order to study the resilience characteristics of specific applications. However, such tools require researchers to configure their experiments at the level of the LLVM intermediate representation (LLVM IR) rather than at the source level of the applications under study. In this paper, we present FITL (Fault-Injection Toolkit for LLVM), a set of LLVM extensions to which it is straightforward to translate source-level pragmas that specify fault injection. While we have designed FITL not to be tied to any particular compiler front end or high-level language, we also describe how we have extended our OpenARC compiler to translate a novel set of fault-injection pragmas for C to FITL. Finally, we present several resilience studies we have conducted using FITL, including a comparison with a source-level fault injector we have built as part of OpenARC.

  2. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    SciTech Connect (OSTI)

    Vitali, Luigino; Mattiozzi, Pierpaolo

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

  3. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  4. Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics

    SciTech Connect (OSTI)

    Farkas, D.; Zhou, S.J.; Vailhe, C.; Mutasa, B.; Panova, J.

    1997-01-01

    We performed embedded atom method calculations on surface energies and unstable stacking fault energies for a series of intermetallics for which interatomic potentials of the embedded atom type have recently been developed. These results were analyzed and applied to the prediction of relative ductility of these materials using the various current theories. Series of alloys with the B2 ordered structure were studied, and the results were compared to those in pure body-centered cubic (bcc) Fe. Ordered compounds with L1{sub 2} and L1{sub 0} structures based on the face-centered cubic (fcc) lattice were also studied. It was found that there is a correlation between the values of the antiphase boundary (APB) energies in B2 alloys and their unstackable stacking fault energies. Materials with higher APB energies tend to have higher unstable stacking fault energies, leading to an increased tendency to brittle fracture. {copyright} {ital 1997 Materials Research Society.}

  5. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOE Patents [OSTI]

    Almasi, Gheorghe [Ardsley, NY; Blumrich, Matthias Augustin [Ridgefield, CT; Chen, Dong [Croton-On-Hudson, NY; Coteus, Paul [Yorktown, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E. [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk I. [Ossining, NY; Singh, Sarabjeet [Mississauga, CA; Steinmacher-Burow, Burkhard D. [Wernau, DE; Takken, Todd [Brewster, NY; Vranas, Pavlos [Bedford Hills, NY

    2008-06-03

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored in memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.

  6. Predicting methane accumulations generated from humic Carboniferous coals in the Donbas fold belt (Ukraine)

    SciTech Connect (OSTI)

    Alsaab, D.; Elie, M.; Izart, A.; Sachsenhofer, R.F.; Privalov, V.A.

    2008-08-15

    The numerical modeling of the Ukrainian part of the Donbas fold belt indicates that the coalification pattern was controlled mainly by the maximum burial depth of coal seams and the heat flow (HF) (40-75 mW/m{sup 2}) during the Permian. The coalification pattern was overprinted by magmatic events during the Late Permian in the south syncline (150 mW/m{sup 2}) and during the Permian-Triassic in the north of the Krasnoarmeisk region (120 mW/m{sup 2}). The coalification pattern shows a strong increase in vitrinite reflectance values toward the east and southeastern parts of the study area likely caused by (1) an eastward increase in burial depth, (2) a probable eastward increase in HF, and, (3) probable magmatic activity. An increase in total erosion toward the eastern and southeastern parts was also observed with a maximum erosional amount of approximately 8 km (5 mi) in the southeastern part of the study area. The basin modeling of this area predicts that the main phase of hydrocarbon generation occurred during the Carboniferous-Early Permian subsidence. The magmatic events that occurred during the Permian-Triassic caused renewed pulses of hydrocarbon generation. A large amount of the generated hydrocarbons was lost to the surface because of a lack of seals. However, the numerical simulation predicts accumulations of about 2 tcf (57 billion m{sup 3}) of methane generated from Carboniferous coals in the south and main synclines, where Lower Permian seal rocks are preserved. Finally, this study provides data on methane resources along the northern flank

  7. Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review | Department of Energy Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Presenter: Jin Wen, Drexel

  8. Microsoft PowerPoint - HPC - Resilience-Fault Injection Research Penta_Final [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3146 This document is approved for public release; further dissemination unlimited Resilience / Fault Injection Research ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0 10 20 30 40 50 60 70 80 32PB 64PB 96PB 128PB System Memory Capacity Uncorrected Error Rate (Relative to Cielo) ● ● ● ● ● ● 8Gbit / High FIT 8Gbit / Low FIT 16Gbit / High FIT 16Gbit / Low FIT 32Gbit / High FIT 32Gbit / Low FIT Resilience / Fault Injection Research

  9. Preliminary 3d depth migration of a network of 2d seismic lines for fault

    Office of Scientific and Technical Information (OSTI)

    imaging at a Pyramid Lake, Nevada geothermal prospect (Conference) | SciTech Connect Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect Citation Details In-Document Search Title: Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a

  10. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  11. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOE Patents [OSTI]

    Yuan, Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  12. Energy and Mass Dependences of the Parameters of the Semimicroscopic Folding Model for Alpha Particles at Low and Intermediate Energies

    SciTech Connect (OSTI)

    Kuterbekov, K.A.; Zholdybayev, T.K.; Kukhtina, I.N.; Penionzhkevich, Yu.E.

    2005-06-01

    The energy and mass dependences of the parameters of the semimicroscopic alpha-particle potential are investigated for the first time in the region of low and intermediate energies. Within the semimicroscopic folding model, both elastic and inelastic differential and total cross sections for reactions on various nuclei are well described by using global parameters obtained in this study.

  13. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    SciTech Connect (OSTI)

    C.J.Lewis; A.Lavine; S.L.Reneau; J.N.Gardner; R.Channell; C.W.Criswell

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluations and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east

  14. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    SciTech Connect (OSTI)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer3, lower clastic confining unit1, and Mesozoic granite confining unit).

  15. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    SciTech Connect (OSTI)

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones. In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.

  16. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less

  17. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  18. Alleghanian development of the Goat Rock fault zone, southernmost Appalachians: Temporal compatibility with the master decollement

    SciTech Connect (OSTI)

    Steltenpohl, M.G. (Auburn Univ., AL (United States)); Goldberg, S.A. (Univ. of North Carolina, Chapel Hill (United States)); Hanley, T.B. (Columbus College, GA (United States)); Kunk, M.J. (Geological Survey, Reston, VA (United States))

    1992-09-01

    The Goat Rock and associated Bartletts Ferry fault zones, which mark the eastern margin of the Pine Mountain Grenville basement massif, are controversial due to the suggestion that they are rare exposed segments of the late Paleozoic southern Appalachian master decollement. The controversy in part stems from reported middle Paleozoic (Acadian) radiometric dates postulated as the time of movement along these fault zones. Ultramylonite samples from the type area at Goat Rock Dam yield a 287 [plus minus] 15 Ma Rb-Sr isochron interpreted as the time of Sr isotopic rehomgenization during mylonitization. This date is corroborated by Late Pennsylvanian-Early Permian [sup 40]Ar/[sup 39]Ar mineral ages on hornblende (297-288 Ma) and muscovite (285-278 Ma) from neomineralized and dynamically recrystallized rocks within and straddling the fault zone. These Late Pennsylvanian-Early Permian dates indicate the time of right-slip movement (Alleghenian) along the Goat Rock fault zone, which is compatible with the timing suggested by COCORP for thrusting along the southern Appalachian master decollement.

  19. Preliminary photovoltaic arc-fault prognostic tests using sacrificial fiber optic cabling.

    SciTech Connect (OSTI)

    Johnson, Jay; Blemel, Kenneth D.; Peter, Francis

    2013-02-01

    Through the New Mexico Small Business Assistance Program, Sandia National Laboratories worked with Sentient Business Systems, Inc. to develop and test a novel photovoltaic (PV) arc-fault detection system. The system operates by pairing translucent polymeric fiber optic sensors with electrical circuitry so that any external abrasion to the system or internal heating causes the fiber optic connection to fail or detectably degrade. A periodic pulse of light is sent through the optical path using a transmitter-receiver pair. If the receiver does not detect the pulse, an alarm is sounded and the PV system can be de-energized. This technology has the unique ability to prognostically determine impending failures to the electrical system in two ways: (a) the optical connection is severed prior to physical abrasion or cutting of PV DC electrical conductors, and (b) the polymeric fiber optic cable melts via Joule heating before an arc-fault is established through corrosion. Three arc-faults were created in different configurations found in PV systems with the integrated fiber optic system to determine the feasibility of the technology. In each case, the fiber optic cable was broken and the system annunciated the fault.

  20. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    SciTech Connect (OSTI)

    Reheis, M.C.

    1991-09-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs.

  1. The crystal structure of a partial mouse Notch-1 ankyrin domain: Repeats 4 through 7 preserve an ankyrin fold

    SciTech Connect (OSTI)

    Lubman, Olga Y.; Kopan, Raphael; Waksman, Gabriel; Korolev, Sergey (Birbeck); (St. Louis-MED); (WU-MED)

    2010-07-20

    Folding and stability of proteins containing ankyrin repeats (ARs) is of great interest because they mediate numerous protein-protein interactions involved in a wide range of regulatory cellular processes. Notch, an ankyrin domain containing protein, signals by converting a transcriptional repression complex into an activation complex. The Notch ANK domain is essential for Notch function and contains seven ARs. Here, we present the 2.2 {angstrom} crystal structure of ARs 4-7 from mouse Notch 1 (m1ANK). These C-terminal repeats were resistant to degradation during crystallization, and their secondary and tertiary structures are maintained in the absence of repeats 1-3. The crystallized fragment adopts a typical ankyrin fold including the poorly conserved seventh AR, as seen in the Drosophila Notch ANK domain (dANK). The structural preservation and stability of the C-terminal repeats shed a new light onto the mechanism of hetero-oligomeric assembly during Notch-mediated transcriptional activation.

  2. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    SciTech Connect (OSTI)

    Foxall, W.

    1992-11-01

    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  3. A Summary of Information on the Behavior of the Yakima Fold Belt as a Structural Entity -- Topical Report

    SciTech Connect (OSTI)

    Last, George V.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis (PSHA) of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to the Yakima Fold Belt (YFB) that may bear on the question of whether or not the YFB behaves as a single seismotectonic province in which activity along one fold structure is representative of behavior along all other fold structures. This topic has met with a fairly high level of contention in the expert community and has the potential to result in significant impacts on an evaluation of seismic hazard at the Hanford Site. This report defines the relevant alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, it suggests some possible approaches for reducing uncertainties regarding this issue.

  4. Magnetostratigraphic constraints on the development of paired fold-thrust belts/foreland basins in the Argentine Andes

    SciTech Connect (OSTI)

    Reynolds, J.H. ); Damanti, J.F. ); Jordan, T.E. )

    1991-03-01

    Development of a paired fold thrust-thrust belt/foreland basin is correlated to the flattening of the subducting Nazca plate between 28-33{degree}S. Magnetostratigraphic studies in neogene basin-filling continental strata determine local basin subsidence rates and provide relatively precise chronostratigraphic correlation between different depositional environments. The data demonstrate that most existing lithostratigraphic units are diachronous and require new tectonic interpretations. Increases in sediment accumulation rates closely correspond to changes in provenance and indicate that the Frontal Cordillera, on the Chile-Argentina border was a positive topographic province by 18 Ma. The Precordillera evolved from {approx}16 Ma to the present as thrusting migrated from west to east. Published ages from intercalated airfall tuffs constrain some sedimentary sections in the eastern Sierras Pampeanas where the earliest uplift occurred since 10 Ma. The youngest uplifts are on the west side close to continuing thrusting in the Precordillera. Not all fold-thrust belt/foreland basin pairs are associated with flat subduction, suggesting that tectonic controls exceeding the scale of individual plate segments may be important. The hydrocarbon-producing Subandean fold-thrust belt/foreland basin, located in the area of 'steep' subduction that underlies northern Argentina and Bolivia (18-24{degree}S), is also believed to have evolved since middle Miocene time. Recently initiated magnetostratigraphic studies in the Subandean foreland basin will attempt to temporally constrain the Neogene tectonic evolution for comparison with the southern region.

  5. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    SciTech Connect (OSTI)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji; Dudley, Michael; Mueller, Stephan G.; Chung, Gil; Sanchez, Edward K.; Hansen, Darren; Loboda, Mark J.; Zhang, Lihua; Su, Dong; Kisslinger, Kim; Stach, Eric

    2014-09-14

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  6. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    SciTech Connect (OSTI)

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  7. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    SciTech Connect (OSTI)

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  8. Locating hardware faults in a data communications network of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  9. Gear-box fault detection using time-frequency based methods

    SciTech Connect (OSTI)

    Odgaard, Peter F.; Stoustrup, Jakob

    2015-12-31

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected. Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.

  10. A dynamical model for condition monitoring and fault diagnostics of spur gears

    SciTech Connect (OSTI)

    Paya, B.; Esat, I.; Badi, M.N.M.

    1996-12-31

    The symptoms of condition monitoring and fault diagnostics of machinery based on the dynamic modelling of spur gears are discussed in this paper. The mathematical model presented in the earlier work, assumes two degree of freedom for each gear and the rotor, and also incorporates a varying gear tooth stiffness. This system is assumed to be in good condition (i.e. no fault present). The results obtained from this analytical model are compared with the ones obtained from an experimental model gearbox. This experimental gearbox consists of two meshing spur gears driven by an electric motor. The comparison of the results are encouraging as fundamental (dominant) frequencies of the analytical results correlates very closely to the experimental ones. It is shown that certain vibration frequency of a real gearbox such as the tooth meshing frequencies can be achieved from its mathematical model.

  11. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect (OSTI)

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  12. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOE Patents [OSTI]

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  13. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    SciTech Connect (OSTI)

    Warinner, D.K.

    1980-01-01

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits.

  14. NREL Research Proves Wind Can Provide Ancillary Grid Fault Response | Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modernization | NREL Research Proves Wind Can Provide Ancillary Grid Fault Response April 1, 2016 Interior of the controllable grid interface test facility, showing a long hallway and shelves full of electronic equipment. The controllable grid interface test facility at the National Wind Technology Center makes it possible to research the effectiveness of wind energy in providing ancillary grid services such as frequency control. Photo by Dennis Schroeder/NREL 27442 Image of a single wind

  15. Fault-Aware Utility-Based Job Scheduling on Blue Gene/P systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Fault-Aware Utility-Based Job Scheduling on Blue Gene/P systems Authors: Tang, W., Lan, Z., Desai, N., Buettner, D. Job scheduling on large-scale systems is increasingly a complicated affair, with numerous factors influencing scheduling policy. Addressing these concerns results in sophisticated scheduling policies that can be difficult to reason about. In this paper, we present a general utility-based scheduling framework to balance different scheduling

  16. Microsoft Word - GroundFaultSAND-rev7-JJ.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3459 Unlimited Release Printed June 2013 Photovoltaic Ground Fault and Blind Spot Electrical Simulations Jack D. Flicker Jay Johnson Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract

  17. The BTeV DAQ and Trigger System - Some throughput, usability and fault tolerance aspects

    SciTech Connect (OSTI)

    Erik Edward Gottschalk et al.

    2001-08-20

    As presented at the last CHEP conference, the BTeV triggering and data collection pose a significant challenge in construction and operation, generating 1.5 Terabytes/second of raw data from over 30 million detector channels. We report on facets of the DAQ and trigger farms. We report on the current design of the DAQ, especially its partitioning features to support commissioning of the detector. We are exploring collaborations with computer science groups experienced in fault tolerant and dynamic real-time and embedded systems to develop a system to provide the extreme flexibility and high availability required of the heterogeneous trigger farm ({approximately} ten thousand DSPs and commodity processors). We describe directions in the following areas: system modeling and analysis using the Model Integrated Computing approach to assist in the creation of domain-specific modeling, analysis, and program synthesis environments for building complex, large-scale computer-based systems; System Configuration Management to include compilable design specifications for configurable hardware components, schedules, and communication maps; Runtime Environment and Hierarchical Fault Detection/Management--a system-wide infrastructure for rapidly detecting, isolating, filtering, and reporting faults which will be encapsulated in intelligent active entities (agents) to run on DSPs, L2/3 processors, and other supporting processors throughout the system.

  18. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    SciTech Connect (OSTI)

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  19. Geomechanical effects on CO{sub 2} leakage through fault zones during large-scale underground injection

    SciTech Connect (OSTI)

    Rinaldi, A.P.; Rutqvist, J.; Cappa, F.

    2013-09-01

    The importance of geomechanicsincluding the potential for faults to reactivate during large scale geologic carbon sequestration operationshas recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO{sub 2} to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this work extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO{sub 2} to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO{sub 2} injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Consequently, even if some changes in permeability occur, this does not mean that the CO{sub 2} will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  20. Lattice and off-lattice side chain models of protein folding: Linear time structure prediction better than 86% of optimal

    SciTech Connect (OSTI)

    Hart, W.E.; Istrail, S. [Sandia National Labs., Albuquerque, NM (United States). Algorithms and Discrete Mathematics Dept.

    1996-08-09

    This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.

  1. Trench logs from a strand of the Rock Valley Fault System, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Yount, J.C.; Shroba, R.R.; McMasters, C.R.; Huckins, H.E.; Rodriguez, E.A.

    1987-12-31

    The Rock Valley fault system trends northeasterly through the southeast corner of the Nevada Test Site. The system records left-lateral offset of Paleozoic and Tertiary rocks, although total offset amounts to only a few kilometers. Distinct scarps in alluvial deposits of Quaternary age and a concentration of seismicity, particularly at its north end, suggest that the Rock Valley fault system may be active. Two trenches were excavated by backhoe in 1978 across a 0.5-m-high scarp produced by a strand of the Rock Valley fault system. A detailed logging of the two Rock Valley fault trenches was undertaken during the spring of 1984. This report presents: (1) logs of both walls of the two trenches, (2) a general description of the lithologic units and the soils formed in these units that are exposed in and near the fault trenches, (3) observations of the clast fabric of unfaulted and faulted deposits exposed in the trench walls, and (4) a map of the surficial deposits in the vicinity of the trenches.

  2. Assessment of substrate-stabilizing factors for DnaK on the folding of aggregation-prone proteins

    SciTech Connect (OSTI)

    Ryu, Kisun; Kim, Chul Woo; Kim, Byung Hee [Department of Biotechnology, College of Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Han, Kyoung Sim [Protheon Incorporated, Yonsei Engineering Research Center B120E, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kim, Kyun-Hwan [Department of Pharmacology, School of Medicine, and Center for Diagnostic Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701 (Korea, Republic of); Choi, Seong Il [Department of Biotechnology, College of Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Institute of Life Science and Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)], E-mail: seongilchoi@daum.net; Seong, Baik L. [Department of Biotechnology, College of Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Protheon Incorporated, Yonsei Engineering Research Center B120E, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Institute of Life Science and Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)], E-mail: blseong@yonsei.ac.kr

    2008-08-15

    Hydrophobic interactions between molecular chaperones and their nonnative substrates have been believed to be mainly responsible for both substrate recognition and stabilization against aggregation. However, the hydrophobic contact area between DnaK and its substrate proteins is very limited and other factors of DnaK for the substrate stabilization could not be excluded. Here, we covalently fused DnaK to the N-termini of aggregation-prone proteins in vivo. In the context of a fusion protein, DnaK has the ability to efficiently solubilize its linked proteins. The point mutation of the residue of DnaK critical for the substrate recognition and the deletion of the C-terminal substrate-binding domain did not have significant effect on the solubilizing ability of DnaK. The results imply that other factors of DnaK, distinct from the hydrophobic shielding of folding intermediates, also contributes to stabilization of its noncovalently bound substrates against aggregation. Elucidation of the nature of these factors would further enhance our understanding of the substrate stabilization of DnaK for expedited protein folding.

  3. Laser-induced temperature jump/time-resolved infrared study of the fast events in protein folding

    SciTech Connect (OSTI)

    Woodruff, W.H.; Dyer, R.B.; Williams, S. [Los Alamos National Laboratory, NM (United States); Callender, H.; Gilmanshin, R. [CUNY, NY (United States)

    1996-10-01

    Laser-induced temperature jump followed by time-resolved infrared probe of reaction dynamics are used to study the temporal evolution of polypeptide structure during protein folding and unfolding. Reactions are initiated in times of 50 ps or longer by T-jumps of 10`s of degrees, obtained by laser excitation of water overtone absorbances. Observation of the Amide I transient absorbances reveal melting lifetimes of helices unconstrained by tertiary structure to be ca. 160 ns in a model 21-peptide and ca. 30 ns in {open_quotes}molten globule{close_quotes} apomyoglobin. No other processes are observed in these systems over the timescale 50 ps to 2 ms. Equilibrium data suggest the corresponding helix formation lifetimes to be ca. 16 and 1 ns, respectively. In {open_quotes}native{close_quotes} apomyoglobin two helix melting lifetimes are observed and we infer that a third occurs on a timescale inaccessible to our experiment (> 1 ms). The shorter observed lifetime, as in the molten globule, is ca. 30 ns. The longer lifetime is ca. 70 {mu}s. We suggest that the slower process is helix melting that is rate-limited by the unfolding of tertiary structure. Equilibrium data suggest a lifetime of ca. 1 {mu}s for the development of these tertiary folds.

  4. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    SciTech Connect (OSTI)

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  5. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    SciTech Connect (OSTI)

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  6. High energy arcing fault fires in switchgear equipment : a literature review.

    SciTech Connect (OSTI)

    Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

    2008-10-01

    In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

  7. Earthquake geology of the northern San Andreas Fault near Point Arena, California

    SciTech Connect (OSTI)

    Prentice, C.S.

    1989-01-01

    Excavations into a Holocene alluvial fan provided exposures of a record of prehistoric earthquakes near Point Arena, California. At least five earthquakes were recognized in the section. All of these occurred since the deposition of a unit that is approximately 2000 years old. Radiocarbon dating allows constraints to be placed on the dates of these earthquakes. A buried Holocene (2356-2709 years old) channel has been offset a maximum of 64 {plus minus} 2 meters. This implies a maximum slip rate of 25.5 {plus minus} 2.5 mm/yr. These data suggest that the average recurrence interval for great earthquakes on this segment of the San Andreas fault is long - between about 200 and 400 years. Offset marine terrace risers near Point Arena and an offset landslide near Fort Ross provide estimates of the average slip rate since Late Pleistocene time. Near Fort Ross, an offset landslide implies a slip rate of less than 39 mm/yr. Correlation and age estimates of two marine terrace risers across the San Andreas fault near Point Arena suggest slip rates of about 18-19 mm/yr since Late Pleistocene time. Tentative correlation of the Pliocene Ohlson Ranch Formation in northwestern Sonoma County with deposits 50 km to the northwest near Point Arean, provides piercing points to use in calculation of a Pliocene slip rate for the northern San Andreas fault. A fission-track age 3.3 {plus minus} 0.8 Ma was determined for zicrons separated from a tuff collected from the Ohlson Ranch Formation. The geomorphology of the region, especially of the two major river drainages, supports the proposed 50 km Pliocene offset. This implies a Pliocene slip rate of at least 12-20 mm/yr. These rates for different time periods imply that much of the Pacific-North American plate motion must be accommodated on other structures at this latitude.

  8. Low Cost Arc Fault Detection and Protection for PV Systems: January 30, 2012 - September 30, 2013

    SciTech Connect (OSTI)

    McCalmont, S.

    2013-10-01

    Final report for Tigo Energy Incubator project. The specific objective of this 18-month research effort was to develop an off-the-shelf arc-fault detector. The starting point of the project was a prototype detector that was constructed using discrete components and laboratory equipment. An intermediate objective was to build a technically viable detector using programmable components in the detector circuitry. The final objective was to build a commercially viable detector by reducing the cost of the circuitry through the use of more sophisticated programmable components and higher levels of integration.

  9. Composite refraction-reflection stack sections: Tracing faults in the Atlantic coastal plain sediments

    SciTech Connect (OSTI)

    Stephenson, D.E.; Coruh, C.; Costain, J.K.

    1993-05-01

    Seismic data from the Atlantic Coastal Plain are reprocessed and composite refraction-reflection stack sections produced to investigate basement faults that penetrate upward into Atlantic Coastal Plain sediments in South Carolina. Reprocessing recovered reflections from within the deep crust to the Moho as well as from within thin veneer (300) of the Atlantic Coastal Plain sediments. One of the major objectives of this paper is to discuss the use of shallow refracted arrivals to construct a composite refraction- reflection stack that allows better imaging of the subsurface at shallow depths.

  10. Hydrologic characterization of faults and other potentially conductive geologic features in the unsaturated zone

    SciTech Connect (OSTI)

    Javandel, I.; Shan, C.

    1990-01-01

    The capability of characterizing near-vertical faults and other potentially highly conductive geologic features in the vicinity of a high-level-waste repository is of great importance in site characterization of underground waste-isolation projects. The possibility of using transient air pressure data at depth for characterizing these features in the unsaturated zone are investigated. Analytical solutions for calculating the pressure response of such systems are presented. Solutions are given for two types of barometric pressure fluctuations, step function and sinusoidal. 3 refs., 9 figs.

  11. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; Bei, Hongbin; Zhang, Yanwen; Wang, Lumin; Weber, William J.

    2015-12-29

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  12. NO FAULT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    does it again! Thursday, December 18, 2014 - 2:23pm Employees donate bikes, toys, time, cash for Toys for Tots Employees at the Nevada National Security Site have outdone themselves again this year by collecting 123 bicycles and 17 barrels of toys for this year's Toys for Tots campaign. The items will be distributed to children in the Las Vegas, Nev., area. Last year the Marine Corps fulfilled the holiday hopes and dreams of 6.8 million less fortunate children in 762 communities nationwide.

  13. Faults and gravity anomalies over the East Mesa hydrothermal-geothermal system

    SciTech Connect (OSTI)

    Goldstein, N.E.; Carle, S.

    1986-05-01

    Detailed interpretations of gravity anomalies over geothermal systems may be extremely useful for mapping the fracture or fault systems that control the circulation of the thermal waters. This approach seems to be particularly applicable in areas like the Salton Trough where reactions between the thermal waters and the porous sediments produce authigenic-hydrothermal minerals in sufficient quantity to cause distinct gravity anomalies at the surface. A 3-D inversion of the residual Bouguer gravity anomaly over the East Mesa geothermal field was made to examine the densified volume of rock. We show that the data not only resolve a north-south and an intersecting northwest structure, but that it may be possible to distinguish between the active present-day hydrothermal system and an older and cooler part of the system. The densified region is compared spatially to self-potential, thermal and seismic results and we find a good concordance between the different geophysical data sets. Our results agree with previous studies that have indicated that the main feeder fault recharging the East Mesa reservoir dips steeply to the west.

  14. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect (OSTI)

    Stephen L. Karner, Ph.D

    2006-06-01

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir ultimately leading to improvements in managing the resource.

  15. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  16. Evaluation of Simple Causal Message Logging for Large-Scale Fault Tolerant HPC Systems

    SciTech Connect (OSTI)

    Bronevetsky, G; Meneses, E; Kale, L V

    2011-02-25

    The era of petascale computing brought machines with hundreds of thousands of processors. The next generation of exascale supercomputers will make available clusters with millions of processors. In those machines, mean time between failures will range from a few minutes to few tens of minutes, making the crash of a processor the common case, instead of a rarity. Parallel applications running on those large machines will need to simultaneously survive crashes and maintain high productivity. To achieve that, fault tolerance techniques will have to go beyond checkpoint/restart, which requires all processors to roll back in case of a failure. Incorporating some form of message logging will provide a framework where only a subset of processors are rolled back after a crash. In this paper, we discuss why a simple causal message logging protocol seems a promising alternative to provide fault tolerance in large supercomputers. As opposed to pessimistic message logging, it has low latency overhead, especially in collective communication operations. Besides, it saves messages when more than one thread is running per processor. Finally, we demonstrate that a simple causal message logging protocol has a faster recovery and a low performance penalty when compared to checkpoint/restart. Running NAS Parallel Benchmarks (CG, MG and BT) on 1024 processors, simple causal message logging has a latency overhead below 5%.

  17. Combined expert system/neural networks method for process fault diagnosis

    DOE Patents [OSTI]

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  18. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  19. Combined expert system/neural networks method for process fault diagnosis

    DOE Patents [OSTI]

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  20. A Summary of Coupled, Uncoupled, and Hybrid Tectonic Models for the Yakima Fold Belt--Topical Report

    SciTech Connect (OSTI)

    Chamness, Michele A.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize the range of opinions and supporting information expressed by the expert community regarding whether a coupled or uncoupled model, or a combination of both, best represents structures in the Yakima Fold Belt. This issue was assessed to have a high level of contention with up to moderate potential for impact on the hazard estimate. This report defines the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some possible approaches for reducing uncertainties regarding this issue.

  1. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.

  2. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    SciTech Connect (OSTI)

    Hsiao, C. H.; Ouyang, Chuenhou E-mail: houyang@mx.nthu.edu.tw; Yao, Y. D.; Lo, S. C.; Chang, H. W. E-mail: houyang@mx.nthu.edu.tw

    2015-10-05

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 10{sup 7 }erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L1{sub 0} FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm{sup −2}) with large perpendicular coercivity (6000 Oe) are obtained for samples prepared at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.

  3. Power line fault current coupling to nearby natural gas pipelines: Volume 3, Analysis of pipeline coating impedance: Final report

    SciTech Connect (OSTI)

    Dabkowski, J.; Frazier, M. J.

    1988-08-01

    This report is a compilation of results obtained from two research programs. The response of a pipeline and coating at the higher voltage excitation levels encountered under power line fault conditions appears to be dominated by conduction at holiday sites in the coating. A simple analytical model was developed for predicting the resistance of a pipeline coating holiday as a function of the voltage produced across the pipeline coating by a nearby faulted power transmission line. The model was initially validated using coated pipeline samples stressed by a capacitive discharge voltage. Additional validation tests were then performed at the Pacific Gas and Electric Company's High Voltage Engineering Research Facility using high voltage ac waveforms for fault simulation. The principle program objective was to develop, both by laboratory and controlled field testing, an electrical resistance characterization for the pipeline coating as a function of the applied voltage level. The development of this model will allow a more accurate prediction of coupled voltage levels to a pipeline during fault current conditions. 54 figs, 3 tabs.

  4. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed themore » ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.« less

  5. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less

  6. Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems

    DOE Patents [OSTI]

    Moradi, Hussein; Farhang, Behrouz; Subramanian, Vijayarangam

    2015-12-15

    Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle of the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.

  7. Wrench fault tectonics in northern New Guinea basin, Papua New Guinea

    SciTech Connect (OSTI)

    Trumbly, N.I.; Pigott, J.D.

    1984-04-01

    New Guinea lies on the northern Australian plate boundary and has been a sensitive tectonic recorder of Cenozoic plate interactions between the Australian and Pacific plates. The specific plate interactions are documented by the evolution of the Northern New Guinea fault system and the basin it overprints, the Northern New Guinea basin. Consideration of plate kinematics suggests convergence became increasingly oblique during the Cenozoic. Hydrocarbon exploration strategies within the Northern New Guinea basin must address not only sedimentation, but also must deal with the basin's complex structural and tectonic evolution. A static tectonic classification will not adequately define the Northern New Guinea basin. It is better described as an evolving basin being overprinted by wrenching.

  8. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect (OSTI)

    Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

    2011-10-31

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with “warm bore” diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged “spider” design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project “Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters” was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP’s product

  9. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    SciTech Connect (OSTI)

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-stream snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.

  10. Basic criteria for formation of growth twins in high stacking fault energy metals

    SciTech Connect (OSTI)

    Yu, K. Y.; Zhang, X.; Bufford, D.; Chen, Y.; Liu, Y.; Wang, H.

    2013-10-28

    Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity of these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system.

  11. A complex systems analysis of stick-slip dynamics of a laboratory fault

    SciTech Connect (OSTI)

    Walker, David M.; Tordesillas, Antoinette; Small, Michael; Behringer, Robert P.; Tse, Chi K.

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructed by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.

  12. Assessment study of superconducting fault-current limiters operating at 77K

    SciTech Connect (OSTI)

    Giese, R.F. ); Runde, M. )

    1992-01-01

    The possible impact of nitrogen-cooled superconductors on the design and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantage of operating superconductors at 77 K is that the refrigeration operating cost is reduced by a factor of up to 25, and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity of 77 K is several orders of magnitude larger than at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to normal state slow and difficult. Consequently, a high critical current density, probably at least 10{sup 5} A/cm{sup 2}, is required.

  13. Assessment study of superconducting fault-current limiters operating at 77K

    SciTech Connect (OSTI)

    Giese, R.F.; Runde, M.

    1992-07-01

    The possible impact of nitrogen-cooled superconductors on the design and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantage of operating superconductors at 77 K is that the refrigeration operating cost is reduced by a factor of up to 25, and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity of 77 K is several orders of magnitude larger than at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to normal state slow and difficult. Consequently, a high critical current density, probably at least 10{sup 5} A/cm{sup 2}, is required.

  14. Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems

    DOE Patents [OSTI]

    Moradi, Hussein; Farhang, Behrouz; Subramanian, Vijayarangam

    2015-12-22

    Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle of the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.

  15. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    SciTech Connect (OSTI)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  16. Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b)

    SciTech Connect (OSTI)

    Singh, Priya; Sarkar, Subir K.; Bandyopadhyay, Pradipta

    2014-07-07

    We present the results of a high-statistics equilibrium study of the folding/unfolding transition for the 20-residue mini-protein Trp-cage (TC5b) in water. The ECEPP/3 force field is used and the interaction with water is treated by a solvent-accessible surface area method. A Wang-Landau type simulation is used to calculate the density of states and the conditional probabilities for the various values of the radius of gyration and the number of native contacts at fixed values of energyalong with a systematic check on their convergence. All thermodynamic quantities of interest are calculated from this information. The folding-unfolding transition corresponds to a peak in the temperature dependence of the computed specific heat. This is corroborated further by the structural signatures of folding in the distributions for radius of gyration and the number of native contacts as a function of temperature. The potentials of mean force are also calculated for these variables, both separately and jointly. A local free energy minimum, in addition to the global minimum, is found in a temperature range substantially below the folding temperature. The free energy at this second minimum is approximately 5?k{sub B}T higher than the value at the global minimum.

  17. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect (OSTI)

    Gouge, M..; Schwenterly, S.W.; Hazelton, D.

    2011-06-15

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). Super

  18. Some fundamental aspects of fault-tree and digraph-matrix relationships for a systems-interaction evaluation procedure

    SciTech Connect (OSTI)

    Alesso, H.P.

    1982-02-28

    Recent events, such as Three Mile Island-2, Brown's Ferry-3, and Crystal River-3, have demonstrated that complex accidents can occur as a result of dependent (common-cause/mode) failures. These events are now being called Systems Interactions. A procedure for the identification and evaluation of Systems Interactions is being developed by the NRC. Several national laboratories and utilities have contributed preliminary procedures. As a result, there are several important views of the Systems Interaction problem. This report reviews some fundamental mathematical background of both fault-oriented and success-oriented risk analyses in order to bring out the advantages and disadvantages of each. In addition, it outlines several fault-oriented/dependency analysis approaches and several success-oriented/digraph-matrix approaches. The objective is to obtain a broad perspective of present options for solving the Systems Interaction problem.

  19. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile

    Broader source: Energy.gov [DOE]

    Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. 'Let the phage do the work': Using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants

    SciTech Connect (OSTI)

    Teschke, Carolyn M., E-mail: Teschke@uconn.ed [Departments of Molecular and Cell Biology, and Chemistry, 91 N. Eagleville Rd., U-3125, University of Connecticut, Storrs, CT 06269-3125 (United States); Parent, Kristin N. [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA (United States)

    2010-06-05

    The amino acid sequence of viral capsid proteins contains information about their folding, structure and self-assembly processes. While some viruses assemble from small preformed oligomers of coat proteins, other viruses such as phage P22 and herpesvirus assemble from monomeric proteins (Fuller and King, 1980). The subunit assembly process is strictly controlled through protein:protein interactions such that icosahedral structures are formed with specific symmetries, rather than aberrant structures. dsDNA viruses commonly assemble by first forming a precursor capsid that serves as a DNA packaging machine. DNA packaging is accompanied by a conformational transition of the small precursor procapsid into a larger capsid for isometric viruses. Here we highlight the pseudo-atomic structures of phage P22 coat protein and rationalize several decades of data about P22 coat protein folding, assembly and maturation generated from a combination of genetics and biochemistry.

  1. Comparison of chiller models for use in model-based fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya; Haves, Philip

    2001-06-07

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolTools{trademark}, which is empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

  2. ROSE::FTTransform - A Source-to-Source Translation Framework for Exascale Fault-Tolerance Research

    SciTech Connect (OSTI)

    Lidman, J; Quinlan, D; Liao, C; McKee, S

    2012-03-26

    Exascale computing systems will require sufficient resilience to tolerate numerous types of hardware faults while still assuring correct program execution. Such extreme-scale machines are expected to be dominated by processors driven at lower voltages (near the minimum 0.5 volts for current transistors). At these voltage levels, the rate of transient errors increases dramatically due to the sensitivity to transient and geographically localized voltage drops on parts of the processor chip. To achieve power efficiency, these processors are likely to be streamlined and minimal, and thus they cannot be expected to handle transient errors entirely in hardware. Here we present an open, compiler-based framework to automate the armoring of High Performance Computing (HPC) software to protect it from these types of transient processor errors. We develop an open infrastructure to support research work in this area, and we define tools that, in the future, may provide more complete automated and/or semi-automated solutions to support software resiliency on future exascale architectures. Results demonstrate that our approach is feasible, pragmatic in how it can be separated from the software development process, and reasonably efficient (0% to 30% overhead for the Jacobi iteration on common hardware; and 20%, 40%, 26%, and 2% overhead for a randomly selected subset of benchmarks from the Livermore Loops [1]).

  3. Fault-tolerant corrector/detector chip for high-speed data processing

    DOE Patents [OSTI]

    Andaleon, David D.; Napolitano, Jr., Leonard M.; Redinbo, G. Robert; Shreeve, William O.

    1994-01-01

    An internally fault-tolerant data error detection and correction integrated circuit device (10) and a method of operating same. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum is provided with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented.

  4. Fault-tolerant corrector/detector chip for high-speed data processing

    DOE Patents [OSTI]

    Andaleon, D.D.; Napolitano, L.M. Jr.; Redinbo, G.R.; Shreeve, W.O.

    1994-03-01

    An internally fault-tolerant data error detection and correction integrated circuit device and a method of operating same is described. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented. 8 figures.

  5. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    DOE Patents [OSTI]

    Riza, Nabeel Agha; Perez, Frank

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  6. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    SciTech Connect (OSTI)

    Zheng, Wenjun Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variantwhile the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  7. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    SciTech Connect (OSTI)

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer (SG); (Columbia); (JHU)

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  8. Studies of the pattern and ages of post-metamorphic faults in the Piedmont of Virginia and North Carolina

    SciTech Connect (OSTI)

    Glover, L. III; Costain, J.K.; Coruh, C.

    1988-04-01

    A geologic corridor from the Blue Ridge to the eastern Piedmont of Virginia is integrated into a tectonic model and extrapolated downward 10-15 km by means of seismic reflection and gravity studies. The Blue Ridge appears to be a hinge zone that faced a rift-generated Iapetus Ocean. An eastern continent with an Eocambrian and Cambrian magmatic arc and sediments of the same age, collided with the North American continental margin in the middle and late Ordovician. Subsequent Devono-Mississippian and Mississippian-Permian orogenesis continued to drive thin thrust nappes onto North America. Early Mesozoic rift basins record the beginning of the Atlantic basin and, from Middle Jurassic to Present, the margin of North America was covered by Coastal Plain sediments. Several constrained hypocenters of the central Virginia seismic zone, adjacent to a reflection profile, show an apparent relation to structure. We tentatively conclude that flat and ramp faults formed during Paleozoic nappe emplacement are currently being reactivated. The reactivation may be largely aseismic on the old thrust faults, but seismicity appears to be related to high angle transcurrent faults where new rock breakage may be occurring. 125 refs., 28 figs., 2 tabs.

  9. Investigation of the reaction {sup 208}Pb({sup 18}O, f): Folding angular distributions of fission fragments and gamma-ray multiplicity

    SciTech Connect (OSTI)

    Rusanov, A. Ya. Itkis, M. G.; Kondratiev, N. A.; Pokrovsky, I. V.; Salamatin, V. S.; Chubarian, G. G.

    2007-10-15

    Correlations between folding angular distributions of fission fragments and the gamma-ray multiplicity are studied for {sup 18}O + {sup 208}Pb interactions at energies of the beam of {sup 18}O ions in the range E{sub lab} = 78-198.5 MeV. The probabilities are determined for complete-and incomplete-fusion processes inevitably followed by the fission of nuclei formed in these processes. It is found that the probability of incomplete fusion followed by fission increases with increasing energy of bombarding ions. It is shown that, for the incomplete-fusion process, folding angular distributions of fission fragments have a two-component structure. The width of folding angular distributions (FWHM) for complete fusion grows linearly with increasing energy of {sup 18}O ions. The multiplicity of gamma rays from fission fragments as a function of the linear-momentum transfer behaves differently for different energies of projectile ions. This circumstance is explained here by the distinction between the average angular momenta of participant nuclei in the fusion and fission channels, which is due to the difference in the probabilities of fission in the cases where different numbers of nucleons are captured by the target nucleus.

  10. Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycHYopH chaperoneeffector complex

    SciTech Connect (OSTI)

    Vujanac, Milos; Stebbins, C. Erec, E-mail: stebbins@rockefeller.edu [The Rockefeller University, New York, NY 10065 (United States)

    2013-04-01

    The structure of a SycHYopH chaperoneeffector complex from Yersinia reveals the bacterial state of a protein that adopts different folds in the host and pathogen environments. Yersinia pestis injects numerous bacterial proteins into host cells through an organic nanomachine called the type 3 secretion system. One such substrate is the tyrosine phosphatase YopH, which requires an interaction with a cognate chaperone in order to be effectively injected. Here, the first crystal structure of a SycHYopH complex is reported, determined to 1.9 resolution. The structure reveals the presence of (i) a nonglobular polypeptide in YopH, (ii) a so-called ?-motif in YopH and (iii) a conserved hydrophobic patch in SycH that recognizes the ?-motif. Biochemical studies establish that the ?-motif is critical to the stability of this complex. Finally, since previous work has shown that the N-terminal portion of YopH adopts a globular fold that is functional in the host cell, aspects of how this polypeptide adopts radically different folds in the host and in the bacterial environments are analysed.

  11. Development of transfer zones and location of oil and gas fields in frontal part of Bolivian Andean fold-and-thrust belt

    SciTech Connect (OSTI)

    Baby, P. ); Specht, M.; Colletta, B.; Letouzey, J. ); Mendez, E. ); Guillier, B. )

    1993-02-01

    The frontal part of the Bolivian Andean thrust belt consists of a thick series of paleozoic to cenozoic sedimentary rocks (5 to 8 km thick) which are folded and thrusted towards the east on a sole thrust at the base of paleozoic series. The front of this tectonic wedge is characterized by transfer zones of various scales and geometries. The main oil and gas fields are located in these transfer zones. A study realized from YPFB (Yacimientos Petroliferos Fiscales Bolivianos) seismic data shows that in all the cases, the deformation is controlled by the geometry and thickness variations of the paleozoic basin. The most spectacular transfer zone appears at the bolivian orocline scale and corresponds to the famous bending of the andean thrust front close to Santa Cruz. More to the south (19 to 22[degrees] S) the southern foreland fold and thrust belt is characterized by a set of local right lateral offset transfer zones ([open quotes]en echellon[close quotes] folds). The difference of geometry and scale of the transfer zones seems to be related to the variation of the angle value between the shortening direction and the direction of the paleozoic basin borders. In order to test our interpretation, to constrain the boundary conditions and to study the thrust propagation sequence, we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  12. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    SciTech Connect (OSTI)

    Boles, James R.; Garven, Grant

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  13. Galectin-1 as a fusion partner for the production of soluble and folded human {beta}-1,4-galactosyltransferase-T7 in E. coli

    SciTech Connect (OSTI)

    Pasek, Marta; Boeggeman, Elizabeth; Ramakrishnan, Boopathy; Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 ; Qasba, Pradman K.

    2010-04-09

    The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of a large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.

  14. A novel micro-Raman technique to detect and characterize 4H-SiC stacking faults

    SciTech Connect (OSTI)

    Piluso, N. Camarda, M.; La Via, F.

    2014-10-28

    A novel Micro-Raman technique was designed and used to detect extended defects in 4H-SiC homoepitaxy. The technique uses above band-gap high-power laser densities to induce a local increase of free carriers in undoped epitaxies (n < 10{sup 16} at/cm{sup −3}), creating an electronic plasma that couples with the longitudinal optical (LO) Raman mode. The Raman shift of the LO phonon-plasmon-coupled mode (LOPC) increases as the free carrier density increases. Crystallographic defects lead to scattering or recombination of the free carriers which results in a loss of coupling with the LOPC, and in a reduction of the Raman shift. Given that the LO phonon-plasmon coupling is obtained thanks to the free carriers generated by the high injection level induced by the laser, we named this technique induced-LOPC (i-LOPC). This technique allows the simultaneous determination of both the carrier lifetime and carrier mobility. Taking advantage of the modifications on the carrier lifetime induced by extended defects, we were able to determine the spatial morphology of stacking faults; the obtained morphologies were found to be in excellent agreement with those provided by standard photoluminescence techniques. The results show that the detection of defects via i-LOPC spectroscopy is totally independent from the stacking fault photoluminescence signals that cover a large energy range up to 0.7 eV, thus allowing for a single-scan simultaneous determination of any kind of stacking fault. Combining the i-LOPC method with the analysis of the transverse optical mode, the micro-Raman characterization can determine the most important properties of unintentionally doped film, including the stress status of the wafer, lattice impurities (point defects, polytype inclusions) and a detailed analysis of crystallographic defects, with a high spectral and spatial resolution.

  15. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-01-01

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  16. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-12-31

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  17. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    SciTech Connect (OSTI)

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30

    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the line in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current

  18. Segregation At Stacking Faults Within The ?' Phase Of Two Ni-base Superalloys Following Intermediate Temperature Creep

    SciTech Connect (OSTI)

    Viswanathan, G. B.; Shi, R.; Genc, Arda; Vorontsov, V. A.; Kovarik, Libor; Rae, C.M. F.; Mills, M. J.

    2015-01-01

    Using state-of-the-art energy dispersive spectroscopy, it has been established for the first time that there exists significant compositional variation (enrichment of Co and Cr and deficiency of Ni and Al) associated with superlattice intrinsic stacking faults created in the ordered ?' precipitates following intermediate temperature deformation of two commercial superalloys. The results indicate that long range diffusion of these elements is intimately involved in the precipitate shearing process and is therefore closely linked to the time-dependent deformation of the alloys.

  19. Evaluation of chiller modeling approaches and their usability for fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya

    2001-05-01

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as

  20. A two-fold interpenetrating 3D metal-organic framework material constructed from helical chains linked via 4,4'-H{sub 2}bpz fragments

    SciTech Connect (OSTI)

    Xie Yiming; Zhao Zhenguo; Wu Xiaoyuan; Zhang Qisheng; Chen Lijuan; Wang Fei; Chen Shanci; Lu Canzhong

    2008-12-15

    A 3-connected dia-f-type metal-organic framework compound {l_brace}[Ag(L){sub 3/2}H{sub 2}PO{sub 4}]{r_brace}{sub n} (1) has been synthesized by self-assembly of 4,4'-H{sub 2}bpz (L=4,4'-H{sub 2}bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole) and Ag{sub 4}P{sub 2}O{sub 7} under hydrothermal conditions. It crystallizes in the tetragonal space group I4{sub 1}/acd with a=21.406(4) A, b=21.406(4) A, c=36.298(8) A, Z=32. X-ray single-crystal diffraction reveals that 1 has a three-dimensional framework with an unprecedented alternate left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net. Photoluminescent investigation reveals that the title compound displays interesting emissions in a wide region, which shows that the title compound may be a good potential candidate as a photoelectric material. - Graphical abstract: A 3-connected dia-f-type metal-organic framework compound [Ag(4,4'-bpz){sub 3/2}H{sub 2}PO{sub 4}] shows unprecedented alternating left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net.

  1. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)

    SciTech Connect (OSTI)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath

  2. Mismatch relaxation by stacking fault formation of AlN islands in AlGaN/GaN structures on m-plane GaN substrates

    SciTech Connect (OSTI)

    Smalc-Koziorowska, Julita; Sawicka, Marta; Skierbiszewski, Czeslaw; Grzegory, Izabella

    2011-08-08

    We study the mismatch relaxation of 2-5 nm thin elongated AlN islands formed during growth of AlGaN on bulk m-plane GaN by molecular beam epitaxy. The relaxation of these m-plane AlN layers is anisotropic and occurs through the introduction of stacking faults in [0001] planes during island coalescence, while no relaxation is observed along the perpendicular [1120] direction. This anisotropy in the mismatch relaxation and the formation of stacking faults in the AlN islands are explained by the growth mode of the AlN platelets and their coalescence along the [0001] direction.

  3. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    SciTech Connect (OSTI)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-04-14

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  4. Structure of the N-terminal domain of the protein Expansion: an ‘Expansion’ to the Smad MH2 fold

    SciTech Connect (OSTI)

    Beich-Frandsen, Mads; Aragón, Eric; Llimargas, Marta; Benach, Jordi; Riera, Antoni; Pous, Joan; Macias, Maria J.

    2015-04-01

    Expansion is a modular protein that is conserved in protostomes. The first structure of the N-terminal domain of Expansion has been determined at 1.6 Å resolution and the new Nα-MH2 domain was found to belong to the Smad/FHA superfamily of structures. Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.

  5. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  6. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    SciTech Connect (OSTI)

    Vainshtein, R. A.; Lapin, V. I.; Naumov, A. M.; Doronin, A. V.; Yudin, S. M.

    2010-05-15

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  7. Use of inverse time, adjustable instantaneous pickup circuit breakers for short circuit and ground fault protection of energy efficient motors

    SciTech Connect (OSTI)

    Heath, D.W.; Bradfield, H.L.

    1995-12-31

    Many energy efficient low voltage motors exhibit first half cycle instantaneous inrush current values greater than the National Electrical Code`s 13 times motor full load amperes maximum permissible setting for instantaneous trip circuit breakers. The alternate use of an inverse time circuit breaker could lead to inadequate protection if the breaker does not have adjustable instantaneous settings. Recent innovations in digital solid state trip unit technology have made available an inverse time, adjustable instantaneous trip circuit breaker in 15A to 150A ratings. This allows the instantaneous pickup to be adjusted to a value slightly above motor inrush so that low level faults will be cleared instantaneously while avoiding nuisance tripping at startup. Applications, settings and comparisons are discussed.

  8. Potential-induced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon

    SciTech Connect (OSTI)

    Ziebarth, Benedikt Gumbsch, Peter; Mrovec, Matous; Elssser, Christian

    2014-09-07

    Sodium decorated stacking faults (SFs) were recently identified as the primary cause of potential-induced degradation in silicon (Si) solar-cells due to local electrical short-circuiting of the p-n junctions. In the present study, we investigate these defects by first principles calculations based on density functional theory in order to elucidate their structural, thermodynamic, and electronic properties. Our calculations show that the presence of sodium (Na) atoms leads to a substantial elongation of the Si-Si bonds across the SF, and the coverage and continuity of the Na layer strongly affect the diffusion behavior of Na within the SF. An analysis of the electronic structure reveals that the presence of Na in the SF gives rise to partially occupied defect levels within the Si band gap that participate in electrical conduction along the SF.

  9. Structure and facies development of the Dutch/north German Rotliegende basin

    SciTech Connect (OSTI)

    Gralla, P. )

    1993-09-01

    The apparent east-west extension of the southern Rotliegende basin, stretching from southern England via the Netherlands and north Germany to Poland, developed from several subbasins running in a northwest-southeast direction. The orientation of the subbasins and the graben systems have largely been caused by a regional stress field, which existed in the Late Paleozic of northern central Europe. The maximum extension was in an east-west direction. The graben systems of northern Germany and the southern part of the North Sea are running roughly north-south and are connected via a parallel set of wrench faults. The subbasin with the largest Rotliegende thickness lies in the German part of the North Sea. It subsided in the region where the rift axis of the north-south-running north German graben system experienced left lateral displacments by northwest-southeast-running wrench faults. The active graben zone extended into the Horn-Bamle-Oslo graben. The initial Dutch subbasin was connected with the early central graben and merged with the north German subbasin in the course of the progressive sedimentation of the basin. In contrast to the north German subbasin, where the initial sedimentation was mainly determined by the north-south-directed graben tectonics, intensive northwest-southeast-directed step faults developed in the Dutch subbasin. The initial subbasins were arranged in an en echelon pattern and merged during the main subsidence of the basin. The origin of the subbasins is linked to the Stephanian basins. Their development continued while several climate changes occurred up to the early Mesozoic. The development of the intracontinental sedimentation from the small initial subbasin to the widespread southern Rotliegende basin can therefore be divided into three main stages: initial stage-tectonics more effective than climate cycles, main stage-equal effect of tectonics and climate cycles, and late stage-climate cycles more effective than tectonics.

  10. Crystal structures of the F and pSLT plasmid TraJ N-terminal regions reveal similar homodimeric PAS folds with functional interchangeability

    SciTech Connect (OSTI)

    Lu, Jun; Wu, Ruiying; Adkins, Joshua N.; Joachimiak, Andrzej; Glover, Mark

    2014-09-16

    In the F-family of conjugative plasmids, TraJ is an essential transcriptional activator of the tra operon that encodes most of the proteins required for conjugation. Here we report for the first time the X-ray crystal structures of the TraJ N-terminal regions from the prototypic F plasmid (TraJF11-130) and from the Salmonella virulence plasmid pSLT (TraJpSLT 1-128). Both proteins form similar homodimeric Per-ARNT-Sim (PAS) fold structures. Mutational analysis reveals that the observed dimeric interface is critical for TraJF transcriptional activation, indicating that dimerization of TraJ is required for its in vivo function. An artificial ligand (oxidized dithiothreitol) occupies a cavity in the TraJF dimer interface, while a smaller cavity in corresponding region of the TraJpSLT structure lacks a ligand. Gas chromatography/mass spectrometry-electron ionization analysis of dithiothreitol-free TraJF suggests indole may be the natural TraJ ligand; however, disruption of the indole biosynthetic pathway does not affect TraJF function. Heterologous PAS domains from pSLT and R100 TraJ can functionally replace the TraJF PAS domain, suggesting that TraJ allelic specificity is mediated by the region C-terminal to the PAS domain.

  11. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    SciTech Connect (OSTI)

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  12. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However,more » UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.« less

  13. The Pingding segment of the Altyn Tagh Fault (91 °E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    SciTech Connect (OSTI)

    Meriaux, A. -S.; Van der Woerd, J.; Tapponnier, P.; Ryerson, F. J.; Finkel, R. C.; Lasserre, C.; Xu, X.

    2012-09-25

    Morphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at ~90.5°E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9 ± 1.1 mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4°E) and Akato Tagh (~88°E) sites. This rate is ~10 mm/yr less than the upper rate determined near Tura at ~87°E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9 ± 4 mm/yr rate determined at ~90°E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Furthermore, whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue.

  14. The Pingding segment of the Altyn Tagh Fault (91 °E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meriaux, A. -S.; Van der Woerd, J.; Tapponnier, P.; Ryerson, F. J.; Finkel, R. C.; Lasserre, C.; Xu, X.

    2012-09-25

    Morphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at ~90.5°E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9 ± 1.1more » mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4°E) and Akato Tagh (~88°E) sites. This rate is ~10 mm/yr less than the upper rate determined near Tura at ~87°E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9 ± 4 mm/yr rate determined at ~90°E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Furthermore, whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue.« less

  15. Fault Tolerance and Scaling in e-Science Cloud Applications: Observations from the Continuing Development of MODISAzure

    SciTech Connect (OSTI)

    Li, Jie; Humphrey, Marty; Cheah, You-Wei; Ryu, Youngryel; Agarwal, Deb; Jackson, Keith; van Ingen, Catharine

    2010-04-01

    It can be natural to believe that many of the traditional issues of scale have been eliminated or at least greatly reduced via cloud computing. That is, if one can create a seemingly wellfunctioning cloud application that operates correctly on small or moderate-sized problems, then the very nature of cloud programming abstractions means that the same application will run as well on potentially significantly larger problems. In this paper, we present our experiences taking MODISAzure, our satellite data processing system built on the Windows Azure cloud computing platform, from the proof-of-concept stage to a point of being able to run on significantly larger problem sizes (e.g., from national-scale data sizes to global-scale data sizes). To our knowledge, this is the longest-running eScience application on the nascent Windows Azure platform. We found that while many infrastructure-level issues were thankfully masked from us by the cloud infrastructure, it was valuable to design additional redundancy and fault-tolerance capabilities such as transparent idempotent task retry and logging to support debugging of user code encountering unanticipated data issues. Further, we found that using a commercial cloud means anticipating inconsistent performance and black-box behavior of virtualized compute instances, as well as leveraging changing platform capabilities over time. We believe that the experiences presented in this paper can help future eScience cloud application developers on Windows Azure and other commercial cloud providers.

  16. Multi-scale simulation of lithium diffusion in the presence of a 30 partial dislocation and stacking fault in Si

    SciTech Connect (OSTI)

    Wang, Chao-Ying; Li, Chen-liang; Wu, Guo-Xun; Wang, Bao-Lai; Yang, Li-Jun; Zhao, Wei; Meng, Qing-Yuan

    2014-01-28

    The multi-scale simulation method is employed to investigate how defects affect the performances of Li-ion batteries (LIBs). The stable positions, binding energies and dynamics properties of Li impurity in Si with a 30 partial dislocation and stacking fault (SF) have been studied in comparison with the ideal crystal. It is found that the most table position is the tetrahedral (T{sub d}) site and the diffusion barrier is 0.63?eV in bulk Si. In the 30 partial dislocation core and SF region, the most stable positions are at the centers of the octagons (Oct-A and Oct-B) and pentahedron (site S), respectively. In addition, Li dopant may tend to congregate in these defects. The motion of Li along the dislocation core are carried out by the transport among the Oct-A (Oct-B) sites with the barrier of 1.93?eV (1.12?eV). In the SF region, the diffusion barrier of Li is 0.91?eV. These two types of defects may retard the fast migration of Li dopant that is finally trapped by them. Thus, the presence of the 30 partial dislocation and SF may deactivate the Li impurity and lead to low rate capability of LIB.

  17. Generating a fault-tolerant global clock using high-speed control signals for the MetaNet architecture

    SciTech Connect (OSTI)

    Ofek, Y. )

    1994-05-01

    This work describes a new technique, based on exchanging control signals between neighboring nodes, for constructing a stable and fault-tolerant global clock in a distributed system with an arbitrary topology. It is shown that it is possible to construct a global clock reference with time step that is much smaller than the propagation delay over the network's links. The synchronization algorithm ensures that the global clock tick' has a stable periodicity, and therefore, it is possible to tolerate failures of links and clocks that operate faster and/or slower than nominally specified, as well as hard failures. The approach taken in this work is to generate a global clock from the ensemble of the local transmission clocks and not to directly synchronize these high-speed clocks. The steady-state algorithm, which generates the global clock, is executed in hardware by the network interface of each node. At the network interface, it is possible to measure accurately the propagation delay between neighboring nodes with a small error or uncertainty and thereby to achieve global synchronization that is proportional to these error measurements. It is shown that the local clock drift (or rate uncertainty) has only a secondary effect on the maximum global clock rate. The synchronization algorithm can tolerate any physical failure. 18 refs.

  18. Distributed computing for signal processing: modeling of asynchronous parallel computation. Appendix C. Fault-tolerant interconnection networks and image-processing applications for the PASM parallel processing systems. Final report

    SciTech Connect (OSTI)

    Adams, G.B.

    1984-12-01

    The demand for very-high-speed data processing coupled with falling hardware costs has made large-scale parallel and distributed computer systems both desirable and feasible. Two modes of parallel processing are single-instruction stream-multiple data stream (SIMD) and multiple instruction stream - multiple data stream (MIMD). PASM, a partitionable SIMD/MIMD system, is a reconfigurable multimicroprocessor system being designed for image processing and pattern recognition. An important component of these systems is the interconnection network, the mechanism for communication among the computation nodes and memories. Assuring high reliability for such complex systems is a significant task. Thus, a crucial practical aspect of an interconnection network is fault tolerance. In answer to this need, the Extra Stage Cube (ESC), a fault-tolerant, multistage cube-type interconnection network, is defined. The fault tolerance of the ESC is explored for both single and multiple faults, routing tags are defined, and consideration is given to permuting data and partitioning the ESC in the presence of faults. The ESC is compared with other fault-tolerant multistage networks. Finally, reliability of the ESC and an enhanced version of it are investigated.

  19. Carbon deposition during brittle rock deformation: Changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes

    SciTech Connect (OSTI)

    Mathez, E A; Roberts, J J; Duba, A G; Kronenberg, A K; Karner, S L

    2008-05-16

    To investigate potential mechanisms for geoelectric phenomena accompanying earthquakes, we have deformed hollow cylinders of Sioux quartzite to failure in the presence of carbonaceous pore fluids and investigated the resulting changes in electrical conductivity and carbon distribution. Samples were loaded at room temperature or 400 C by a hydrostatic pressure at their outer diameter, increasing pressure at a constant rate to {approx}290 MPa. Pore fluids consisted of pure CO, CO{sub 2}, CH{sub 4} and a 1:1 mixture of CO{sub 2} and CH{sub 4}, each with pore pressures of 2.0 to 4.1 MPa. Failure occurred by the formation of mode II shear fractures transecting the hollow cylinder walls. Radial resistivities of the cylinders fell to 2.9 to 3.1 M{Omega}-m for CO tests and 15.2 to 16.5 M{Omega}-m for CO{sub 2}:CH{sub 4} tests, compared with >23 M{Omega}-m for dry, undeformed cylinders. Carbonaceous fluids had no discernable influence on rock strength. Based on mapping using electron microprobe techniques, carbon occurs preferentially as quasi-continuous films on newly-formed fracture surfaces, but these films are absent from pre-existing surfaces in those same experiments. The observations support the hypothesis that electrical conductivity of rocks is enhanced by the deposition of carbon on fracture surfaces and imply that electrical properties may change in direct response to brittle deformation. They also suggest that the carbon films formed nearly instantaneously as the cracks formed. Carbon film deposition may accompany the development of microfracture arrays prior to and during fault rupture and thus may be capable of explaining precursory and coseismic geoelectric phenomena.

  20. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel Todd

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  1. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOE Patents [OSTI]

    Leung, Vitus J.; Phillips, Cynthia A.; Bender, Michael A.; Bunde, David P.

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  2. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    SciTech Connect (OSTI)

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  3. Bisectional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-11-11

    An apparatus, program product and method logically divides a group of nodes and causes node pairs comprising a node from each section to communicate. Results from the communications may be analyzed to determine performance characteristics, such as bandwidth and proper connectivity.

  4. Bisectional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-08-04

    An apparatus and program product logically divide a group of nodes and causes node pairs comprising a node from each section to communicate. Results from the communications may be analyzed to determine performance characteristics, such as bandwidth and proper connectivity.

  5. Bisectional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-14

    An apparatus, program product and method logically divide a group of nodes and causes node pairs comprising a node from each section to communicate. Results from the communications may be analyzed to determine performance characteristics, such as bandwidth and proper connectivity.

  6. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC

    SciTech Connect (OSTI)

    Chen, Bin Chen, Jun; Yao, Yuanzhao; Sekiguchi, Takashi; Matsuhata, Hirofumi; Okumura, Hajime

    2014-07-28

    Using the fine control of an electron beam (e-beam) in scanning electron microscopy with the capabilities of both electrical and optical imaging, the stacking fault (SF) formation together with its tuning of carrier lifetime was in situ monitored and investigated in p-type 4H-SiC homoepitaxial films. The SFs were formed through engineering basal plane dislocations with the energy supplied by the e-beam. The e-beam intensity required for the SF formation in the p-type films was ?100 times higher than that in the n-type ones. The SFs reduced the minority-carrier lifetime in the p-type films, which was opposite to that observed in the n-type case. The reason for the peculiar SF behavior in the p-type 4H-SiC is discussed with the cathodoluminescence results.

  7. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect (OSTI)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  8. UFO (UnFold Operator) user guide

    SciTech Connect (OSTI)

    Kissel, L.; Biggs, F. ); Marking, T.R. )

    1991-06-01

    UFO is a collection of interactive utility programs for estimating unknown functions of one variable using a wide-ranging class of information as input, for miscellaneous data-analysis applications, for performing feasibility studies, and for supplementing our other software. Inverse problems, which include spectral unfolds, inverse heat-transfer problems, time-domain deconvolution, and unusual or difficult curve-fit problems, are classes of applications for which UFO is well suited. Extensive use of B-splines and (X,Y)-datasets is made to represent functions. The (X,Y)-dataset representation is unique in that it is not restricted to equally-spaced data. This feature is used, for example, in a table-generating algorithm that evaluates a function to a user-specified interpolation accuracy while minimizing the number of points stored in the corresponding dataset. UFO offers a variety of miscellaneous data-analysis options such as plotting, comparing, transforming, scaling, integrating; and adding, subtracting, multiplying, and dividing functions together. These options are often needed as intermediate steps in analyzing and solving difficult inverse problems, but they also find frequent use in other applications. Statistical options are available to calculate goodness-of-fit to measurements, specify error bands on solutions, give confidence limits on calculated quantities, and to point out the statistical consequences of operations such as smoothing. UFO is designed to do feasibility studies on a variety of engineering measurements. It is also tailored to supplement our Test Analysis and Design codes, SRAD Test-Data Archive software, and Digital Signal Analysis routines.

  9. Evolution on folding landscapes in combinatorial structures

    SciTech Connect (OSTI)

    Fraser, S.M.; Reidys, C.M.

    1997-11-01

    In this paper the authors investigate the evolution of molecular structures by random point mutations. They will consider two types of molecular structures: (a) (RNA) secondary structures, and (b) random structures. In both cases structure consists of: (1) a contact graph, and (2) a family of relations imposed on its adjacent vertices. The vertex set of the contact graph is simply the set of all indices of a sequence, and its edges are the bonds. The corresponding relations associated with the edges are viewed as secondary base pairing rules and tertiary interaction rules respectively. Mapping of sequences into secondary and random structures are modeled and analyzed. Here, the set of all sequences that map into a particular structure is modeled as a random graph in the sequence space, the so called neutral network and they study how neutral networks are embedded in sequence space. A basic replication of deletion experiment reveals how effective secondary and random structures can be searched by random point mutations and to what extent the structure effects the dynamics of this optimization process. In particular the authors can report a nonlinear relation between the fraction of tertiary interactions in random structures, and the times taken for a population of sequences to find a high fitness target random structure.

  10. Property:TopoFeatures | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area + Horst and Graben + Blue Mountain Geothermal Area + Horst and Graben + Brady Hot Springs Geothermal Area + Horst and Graben + C Coso Geothermal Area + Horst and...

  11. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-02-28

    In the structure task, we completed a N-S transect east of Seneca Lake that indicated a N-striking fault near the southeastern shore of Seneca Lake, and also indicated NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the NE-striking FIDs and faults are thought to be controlled by basement faults, rather than thrust ramps above the Salina salt controlled only by a far-field Alleghanian stress field. Structure contour maps based on well log analyses have been constructed but not interpreted. Soil gas data displayed a number of ethane-charged soil gas ''spikes'' on a N-S transect from Ovid south to near Valois. The soil gas team found a larger number of spikes in the northern half of the survey, suggesting more open fractures (and faults) in the northern half of the survey. Seismic data has been purchased and reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. The aeromagnetic survey is completed and the data is processed. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located.

  12. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001) interface by aberration-corrected high-resolution transmission electron microscopy

    SciTech Connect (OSTI)

    Wen, C.; Ge, B. H.; Cui, Y. X.; Li, F. H.; Zhu, J.; Yu, R.; Cheng, Z. Y.

    2014-11-15

    The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ?{sub xx} and ?{sub yy}, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ?{sub xx} and ?{sub yy} strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30 PDs. A pair of 30 PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  13. Evaluation of select heat and pressure measurement gauges for potential use in the NRC/OECD High Energy Arc Fault (HEAF) test program.

    SciTech Connect (OSTI)

    Lopez, Carlos; Wente, William Baker; Figueroa, Victor G.

    2014-01-01

    In an effort to improve the current state of the art in fire probabilistic risk assessment methodology, the U.S. Nuclear Regulatory Commission, Office of Regulatory Research, contracted Sandia National Laboratories (SNL) to conduct a series of scoping tests to identify thermal and mechanical probes that could be used to characterize the zone of influence (ZOI) during high energy arc fault (HEAF) testing. For the thermal evaluation, passive and active probes were exposed to HEAF-like heat fluxes for a period of 2 seconds at the SNLs National Solar Thermal Test Facility to determine their ability to survive and measure such an extreme environment. Thermal probes tested included temperature lacquers (passive), NANMAC thermocouples, directional flame thermometers, modified plate thermometers, infrared temperature sensors, and a Gardon heat flux gauge. Similarly, passive and active pressure probes were evaluated by exposing them to pressures resulting from various high-explosive detonations at the Sandia Terminal Ballistic Facility. Pressure probes included bikini pressure gauges (passive) and pressure transducers. Results from these tests provided good insight to determine which probes should be considered for use during future HEAF testing.

  14. A novel second-order non-linear optical coordination polymer with three-fold interpenetrated CdSO{sub 4}-type network constructed by carboxylate–sulfonate ligands and strontium ions

    SciTech Connect (OSTI)

    Guan, Lei; Wang, Ying

    2015-10-15

    A novel strontium carboxylate–sulfonate coordination polymer, [Sr(HSIP)(H{sub 2}O){sub 3}]{sub n·}nH{sub 2}O (1) (NaH{sub 2}SIP=5-sulfoisophthalic monosodium salt) has been synthesized by hydrothermal reaction. It was characterized by X-ray single crystal diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Each strontium atom is eight-coordinate with a distorted bicapped trigonal prismatic arrangement. The whole HSIP{sup 2−} ligand acts as a η{sup 5}μ{sup 4} bridge to generate three-fold interpenetrated CdSO{sub 4}-type network structure, which is constructed from the left- and right-handed helixes paralleled to each other bridged by the HSIP{sup 2−} ligands. The luminescence spectrum indicates an emission maximum at 459 nm. Compound 1 shows a second harmonic generation (SHG) response that is 4 times that of KH{sub 2}PO{sub 4}. - Graphical abstract: The whole HSIP{sup 2−} ligands act as η{sup 5}μ{sup 4} bridges with strontium ions, and the strontium ion is eight-coordinated, showing a distorted bicapped trigonal prism geometry. - Highlights: • A novel coordination polymer with a CdSO{sub 4}-type network structure was synthesized. • It shows a second harmonic generation response that is 4 times that of KH{sub 2}PO{sub 4}. • It is constructed from the helixes paralleled to each other.

  15. rzq8042.tmp

    Broader source: Energy.gov (indexed) [DOE]

    ... dip, an:i identification of stratigrathic contacts; ii) Structural geology: description of local and regional structural features (e.g., folding, faulting, tilting, jointing, ...

  16. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    fracture networks play only a minor role in fluid flow despite locally high fracture density and some fractures well-oriented for slip. At the surface, hydrothermal activity is...

  17. Inverter Ground Fault Overvoltage Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Task Force on Effective Grounding, ITFEG), led by Brian Lydic of Fronius USA, for providing the test plan that served as the basis for the test procedure used in this study. ...

  18. Fault Intersection | Open Energy Information

    Open Energy Info (EERE)

    Tectonic Setting Host Rock Age Host Rock Lithology Mean Capacity Mean Reservoir Temp Bac-Man Laguna Geothermal Area Philippine Island Arc Subduction Zone Volcanic 150 MW150,000 kW...

  19. Fault location in optical networks

    DOE Patents [OSTI]

    Stevens, Rick C.; Kryzak, Charles J.; Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Kornrumpf, William P.

    2008-07-01

    One apparatus embodiment includes an optical emitter and a photodetector. At least a portion of the optical emitter extends a radial distance from a center point. The photodetector provided around at least a portion of the optical emitter and positioned outside the radial distance of the portion of the optical emitter.

  20. Phanerozoic tectono-stratigraphic evolution of the Trans-Pecos and Permian basin regions (Mexico, Texas, New Mexico) using Landsat imagery, subsurface and outcrop data

    SciTech Connect (OSTI)

    Markello, J.R.; Sarg, J.F.

    1996-08-01

    Integrating regional Landsat imagery, outcrop field studies, and subsurface data has resulted in a more comprehensive understanding and delineation of the tectono-stratigraphic evolution of the Trans-Pecos region. Landsat imagery were acquired and registered to the existing 1:25000 scale maps and mosaiced to create a regional view of the Trans-Pecos and Permian basin region. The imagery were used to extrapolate and map key stratigraphic and tectonic elements after calibration from documented outcrop and subsurface data. The interpretations aided in the extrapolation of scattered control information and were critical in the complete reconstruction of the geologic history of the area. The Trans-Pecos Phanerozoic history comprises five tectono-depositional phases, and these have controlled the shape of the modem landscape: (1) Late Proterozoic rifting (Gondwana from Laurentia), and development of the Early-Middle Paleozoic Tobosa basin; (2) Pennsylvanian collision (South and North Americas), and differentiation of the Tobosa basin into the Midland, Delaware, Orogrande, and Pedregosa basins separated by basement blocks: Central Basin Platform, Diablo Platform, Burro-Florida Platform; (3) Middle Mesozoic transtensional rifting (Mexico from North America), and Late Jurassic failed rifting of the Mexican Chihuahua and Coahuila Troughs west and south of the Diablo Platform; (4) Late Mesozoic Laramide collision (Mexico and Texas), and development of the Chihuahua fold/thrust belt limited by the western margin of the Diablo Platform; (5) Late Cenozoic North American basin and Range rifting, and development of Rio Grande grabens, block-faulted mountains, and volcanics. The Tobosa basin was a passive-margin interior sag; its continental margin was south of the Marathons.

  1. Potiguar basin: geologic model and habitat of oil of a Brazilian equatorial basin

    SciTech Connect (OSTI)

    Falkenhein, F.U.; Barros, R.M.; Da Costa, I.G.; Cainelli, C.

    1984-04-01

    The Potiguar basin integrates the eastern part of the Brazilian equatorial Atlantic-type margin. The rifting stage of this basin occurred during the Neocomian and Aptian. The drifting stage and sea-floor spreading began in the Late Albian. The rifting stage clearly was intracratonic during the Neocomian and is recognized as a mosaic of half-grabens trending mostly northeast-southwest and filled with syntectonic lacustrine siliciclastics. The half-graben pattern exhibits rotation of beds into the major fault zone, and the preserved uplifted margins display either paleostructures of paleogeomorphic features with hydrocarbons. A regional pre-Aptian unconformity preceded the Aptian proto-oceanic rifting stage which was characterized by syntectonic fluvio-deltaic sediments. The Aptian tectonics were represented by reactivation of former lineaments superimposed by predominant east-west normal faulting. Structural highs during this stage are so far the most prolific oil accumulations. The most important source beds and reservoir rocks are both Neocomian and Aptian sediments. Geochemistry and hydrodynamics have shown that hydrocarbon migration was driven through fracture or fault zones in both Aptian or Albian plays. Lithofacies maps support this interpretation because pools occur whenever adjacent downthrown blocks present a high shale content.

  2. Sedimentation and reservoir distribution related to a tilted block system in the Sardinia Oligocene-Miocene rift (Italy)

    SciTech Connect (OSTI)

    Tremolieres, P.; Cherchi, A.; Eschard, R.; De Graciansky, P.C.; Montadert, L.

    1988-08-01

    In the western Mediterranean basin lies a rift system about 250 km long and 50 km wide and its infilling outcrop (central Sardinia). Seismic reflection surveys show its offshore extension. Block tilting started during the late Oligocene and lasted during Aquitanian-early Burdigalian time. Two main fault trends, with synthetic and antithetic throws, define the more-or-less collapsed blocks. This morphology guided the transit and trapping of sediments. The sedimentation started in a continental environment then, since the Chattian, in marine conditions. In the central part, the series can reach a thickness of 2,000 m. The basement composition and the volcanics products related to the main fault motion controlled the nature of the synrift deposits. According to their location in the rift context, the tilted blocks trap either continental deposits or marine siliciclastic or carbonate deposits. In the deeper part of the graben, sands were redeposited by gravity flows into the basinal marls. The younger prerift deposits are from Eocene to early Oligocene age and locally comprise thick coal layers. Postrift deposits, mainly marls, sealed the blocks and synrift sedimentary bodies. In middle and late Miocene time some faults were reactivated during compressional events. Then, a quaternary extensional phase created the Campidano graben, filled with about 1,000 m of sediments superimposed on the Oligocene-Miocene rift.

  3. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  4. Jurassic extension and Alpine inversion of the northern Morocco

    SciTech Connect (OSTI)

    Zizi, M. )

    1993-09-01

    The lower Mesozoic half grabens of northern Morocco form part of an extensional system that is related to the opening of the western Tethys. They appear to be somewhat younger than the Triassic-Jurassic systems associated with the opening the Atlantic Ocean. During the Tertiary and as consequence of the Alpine collision of Africa with Europe, these half graben systems were inverted as shown by the High and the Middle Atlas mountains. Seismic illustrations of similar but smaller inversion structures are available from the Guercif area and the [open quotes]Rides Prerifaines[close quotes] of northern Morocco. These seismic profiles serve as small models for the much larger Atlas Mountains. In the Guercif area, the inversions are limited in scope, but in the [open quotes]Ride Prerifaines[close quotes] are extensive decollement systems that sole out in the Triassic evaporites. These systems evolve into complex thrust faults and associated lateral ramps that are strongly influenced by the configuration of the Jurassic transtensional systems. Significant hydrocarbon accumulation have been known for some time from the [open quotes]Rides Prerifaines.[close quotes] A review of the geometry of the inverted half-graben systems, combined with detailed stratigraphic studies, is likely to lead to the discovery of additional reserves in the area.

  5. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2005-05-16

    Soil CO{sub 2} flux surveys have been conducted over known CO{sub 2} reservoirs at Farnham Dome, Utah, Crystal Geyser-Ten Mile Graben in Utah and Springerville-St. Johns, Arizona. No anomalous CO{sub 2} flux was detected at the Farnham Dome and Springerville-St. Johns. At Crystal Geyser-Ten Mile Graben, localized areas of anomalously high CO{sub 2} flux ({approx}100 g m{sup -2} day{sup -1}) occur along a fault zone near visibly degassing features. Isotopic measurements on CO{sub 2} collected from nearby springs indicate that it originated at depth. Evidence of widespread vein calcite at the surface (Farnham Dome) and travertine deposits at the other two areas suggests that discharge of CO{sub 2}-rich fluids has occurred in the past. Despite the lack of evidence for significant present day leakage of CO{sub 2} to the atmosphere at Springerville-St. Johns and Crystal Geyser-Ten Mile Graben, there are significant outflows of high-bicarbonate water in both areas suggesting continuous migration of CO{sub 2} in the aqueous phase from depth. The very localized nature of the CO{sub 2} flux anomalies, and the outflow of ground water containing dissolved CO{sub 2} present challenges for effective, long term monitoring of CO{sub 2} leakage.

  6. VERIFI code optimization yields three-fold increase in engine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Cunningham at (630) 252-8232 or media@anl.gov. Connect Find an Argonne expert by subject. Follow Argonne on Twitter, Facebook, Google+ and LinkedIn. For inquiries on...

  7. Brochure (8 1/2 x 11, landscape, 2-fold)

    National Nuclear Security Administration (NNSA)

    kind found. You should also determine whether any administrative or disciplinary action needs to be taken against the individuals who created HWE/ harassment. In doing so, you should consult the Department's Table of Penalties, your EEO Manager or OHCM EMRB. What if the inquiry indicates that there is no harassment or hostile work environment. Do I still need to do anything? You should reaffirm your commitment to nondiscrimination and harassment in the workplace with your employees. You should

  8. Energy Landscapes: From Protein Folding to Molecular Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    like kinesin, the efflux pump machinery, ATP synthase, the ribosome, and many others. ... often function by undergoing conformational changes under weak physiological signals. ...

  9. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  10. Protein-folding via divide-and-conquer optimization (Conference...

    Office of Scientific and Technical Information (OSTI)

    Berkeley, CA (US) Sponsoring Org: USDOE Laboratory Directed Research andDevelopment Country of Publication: United States Language: English Subject: 60 APPLIED LIFE SCIENCES

  11. UFO (UnFold Operator) default data format

    SciTech Connect (OSTI)

    Kissel, L.; Biggs, F. ); Marking, T.R. )

    1991-05-01

    The default format for the storage of x,y data for use with the UFO code is described. The format assumes that the data stored in a file is a matrix of values; two columns of this matrix are selected to define a function of the form y = f(x). This format is specifically designed to allow for easy importation of data obtained from other sources, or easy entry of data using a text editor, with a minimum of reformatting. This format is flexible and extensible through the use of inline directives stored in the optional header of the file. A special extension of the format implements encoded data which significantly reduces the storage required as compared wth the unencoded form. UFO supports several extensions to the file specification that implement execute-time operations, such as, transformation of the x and/or y values, selection of specific columns of the matrix for association with the x and y values, input of data directly from other formats (e.g., DAMP and PFF), and a simple type of library-structured file format. Several examples of the use of the format are given.

  12. Hundred-Fold Improvement in Temperature Mapping Reveals the Stresses...

    Office of Science (SC) Website

    ... Data presented in this article were acquired at the Center for Electron Microscopy and Microanalysis at the University of Southern California. Work at the Molecular Foundry was ...

  13. DOE Science Showcase - Protein Folding | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - reports from DOE science, technology and engineering programs. ... National Library of EnergyBeta - search results from across the DOE Complex. Science.gov - ...

  14. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    genetic code embodied by the nucleotide sequences in DNA and collected in the form of genes is well known. Biological macromolecules like proteins comprise strings of amino acids...

  15. Simplified Protein Models: Predicting Folding Pathways and Structure...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2013-07-11 OSTI Identifier: 1103786 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: ...

  16. Folding and association of a homotetrameric protein complex in...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2013-01-11 OSTI Identifier: 1101879 Type: Publisher's Accepted Manuscript Journal Name: Physical Review E Additional Journal Information: Journal Volume: 87; ...

  17. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lid. A Molecular Origami Machine The genetic code embodied by the nucleotide sequences in DNA and collected in the form of genes is well known. Biological macromolecules like...

  18. Tank 19F Folding Crawler Final Evaluation, Rev. 0

    SciTech Connect (OSTI)

    Nance, T.

    2000-10-25

    The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.

  19. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect (OSTI)

    Sharma, Sandeep K. [Biochemisches Institut, Universitaet Zuerich, CH-8057 Zuerich (Switzerland); Departement de Biologie Moleculaire Vegetale, Universite de Lausanne, CH-1015 Lausanne (Switzerland); Goloubinoff, Pierre [Departement de Biologie Moleculaire Vegetale, Universite de Lausanne, CH-1015 Lausanne (Switzerland); Christen, Philipp [Biochemisches Institut, Universitaet Zuerich, CH-8057 Zuerich (Switzerland)], E-mail: christen@bioc.uzh.ch

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  20. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    incorrect or "misfolding" of proteins has been linked to many diseases, including Alzheimer's, Parkinson's, and some forms of cancer. So far, however, a complete...