Powered by Deep Web Technologies
Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Contaminant Boundary at the Faultless Underground Nuclear Test  

SciTech Connect

The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty in the three-dimensional spatial distribution of lithology and hydraulic conductivity from the 1999 model as well as the uncertainty in the other flow and transport parameters from the 2000 DDA model. Additionally, the new model focuses on a much smaller region than was included in the earlier models, that is, the subsurface within the UC-1 land withdrawal area where the 1999 model predicted radionuclide transport will occur over the next 1,000 years. The purpose of this unclassified document is to present the modifications to the CNTA groundwater flow and transport model, to present the methodology used to calculate contaminant boundaries, and to present the Safe Drinking Water Act and risk-derived contaminant boundaries for the Faultless underground nuclear test CAU.

Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

2003-04-01T23:59:59.000Z

2

Field investigation at the Faultless Site Central Nevada Test Area  

DOE Green Energy (OSTI)

An evaluation of groundwater monitoring at non-Nevada Test Site underground nuclear test sites raised questions about the potential for radionuclide migration from the Faultless event and how to best monitor for such migration. With its long standing interest in the Faultless area and background in Nevada hydrogeology, the Desert Research Institute conducted a field investigation in FY92 to address the following issues: The status of chimney infilling (which determines the potential for migration); the best level(s) from which to collect samples from the nearby monitoring wells, HTH-1 and HTH-2; the status of hydraulic heads in the monitoring well area following records of sustained elevated post-shot heads. The field investigation was conducted from July 27 to 31 and August 4 to 7, 1992. Temperature and electrical conductivity logging were performed in HTH-1, HTH-2, and UC-1-P-2SR. Water samples were collected from HTH-1 and HTH-2. Lawrence Livermore National Laboratory (LLNL) also collected samples during the July trip, including samples from UC-1-P-2SR. This report presents the data gathered during these field excursions and some preliminary conclusions. Full interpretation of the data in light of the issues listed above is planned for FY93.

Chapman, J.B.; Mihevc, T.M.; Lyles, B.

1992-11-01T23:59:59.000Z

3

Development and Testing of a Groundwater Management Model for the Faultless Underground Nuclear Test, Central Nevada Test Area  

DOE Green Energy (OSTI)

This document describes the development and application of a user-friendly and efficient groundwater management model of the Central Nevada Test Area (CNTA) and surrounding areas that will allow the U.S. Department of Energy and state personnel to evaluate the impact of future proposed scenarios. The management model consists of a simple hydrologic model within an interactive groundwater management framework. This framework is based on an object user interface that was developed by the U.S. Geological Survey and has been used by the Desert Research Institute researchers and others to couple disparate environmental resource models, manage the necessary temporal and spatial data, and evaluate model results for management decision making. This framework was modified and applied to the CNTA and surrounding Hot Creek Valley. The utility of the management model was demonstrated through the application of hypothetical future scenarios including mineral mining, regional expansion of agriculture, geothermal energy production, and export of water to large urban areas outside the region. While the results from some of the scenarios indicated potential impacts to the region near CNTA and others did not, together they demonstrate the usefulness of the management tool for managers who need to evaluate the impact proposed changes in groundwater use in or near CNTA may have on radionuclide migration.

Douglas P. Boyle; Gregg Lamorey; Scott Bassett; Greg Pohll; Jenny Chapman

2006-01-25T23:59:59.000Z

4

The application of borehole logging to characterize the hydrogeology of the Faultless site, Central Nevada Test Area  

SciTech Connect

The Central Nevada Test Area was the site of the Faultless underground nuclear test that could be a source of radionuclide contamination to aquifers in Hot Creek Valley, Nevada. Field studies in 1992 and 1993 have used hydrologic logging and water sampling to determine the adequacy of the current groundwater monitoring network and the status of water-level recovery to pre-shot levels in the nuclear chimney. The field studies have determined that there is a possibility for contaminant migration away from the Faultless event though the pre-event water level has not been attained, while new data raise questions about the ability of the current monitoring network to detect migration. Hydrologic logs from the postshot hole (drilled into the chimney created by the nuclear detonation) reveal inflow around 485 m below land surface. The physical and chemical characteristics of the inflow water indicate that its source is much deeper in the chimney, perhaps driven upward in a convection cell generated by heat near the nuclear cavity. Logging and sampling at monitoring wells HTH-1 and HTH-2 revealed that the completion of HTH-1 may be responsible for its elevated water level (as compared to pre-nuclear test levels) and may have also created a local mound in the water table in the alluvium that accounts for higher post-test water levels at HTH-2. This mound would serve to divert flow around the monitoring wells, so that only migration of contaminants through the underlying, higher pressure, volcanic units is currently monitored. A hydraulic high found in an abandoned hole located between the nuclear chimney and the monitoring wells further reduces the likelihood of HTH-1 or HTH-2 intercepting contaminant migration.

Chapman, J.B.; Mihevc, T.M.; Lyles, B.F.

1994-08-01T23:59:59.000Z

5

HYDROGEOLOGIC MONITORING AT TIlE FAULTLESS' SITE,  

Office of Legacy Management (LM)

HYDROGEOLOGIC MONITORING AT TIlE FAULTLESS' SITE, -NYE COUNTY, NEVADA By William Thordarsm " . . U. S: GEOLOGl'CAL SURVEY Open-File Report 84-580 ' , ' - ' . " . ':Prepa'i'ed": in...

6

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

7

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

National Nuclear Security Administration (NNSA)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

8

Underground nuclear energy complexes - technical and economic advantages  

SciTech Connect

Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

2010-01-01T23:59:59.000Z

9

INDUSTRIAL HYGIENE ASPECTS OF UNDERGROUND NUCLEAR WEAPON TEST DEBRIS RECOVERY  

SciTech Connect

The formation of a collapse crater by underground nuclear explosions is described. Safety problems associated with the re-entry of underground nuclear explosion areas include cavity collapse, toxic gases, explosive gases, radioactive gases, radioactive core, and hazards from the movement of heavy equipment on unstable ground. Data irom television, geophones, and telemetered radiation detectors determine when radiation and toxic material surveys of the area can be made and drills can be used to obtain samples of the bubble crust for analysis. Hazards to persornel engaged in obtaining weapon debris samples are reviewed. Data are presented on the radiation dose received by personnel at the Nevada Test Site engaged in this work during 1962. (C.H.)

Wilcox, F.W.

1963-03-27T23:59:59.000Z

10

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater and Radionuclide Migration in the  

E-Print Network (OSTI)

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater, using FEHM, evaluate perturbed groundwater behavior associated with underground nuclear tests to an instantaneous pressurization event caused by a nuclear test when different permeability and porosity

11

FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST  

NLE Websites -- All DOE Office Websites (Extended Search)

FIELD FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST AREA DOEINV/10845--T3 DE93 005915 by JennyB. Chapman, Thdd M. Mihevc and Brad Lyles Water Resources Center Desert Research Institute DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring

12

ENGINEERING STUDY ON UNDERGROUND CONSTRUCTION OF NUCLEAR POWER REACTORS  

SciTech Connect

The advantages, disadvantages, and cost of constructing a auclear power reactor underground are outlinedData on underground construction of hydroelectric plants, other structures, and underground reactor projects in Norway and Sweden are reviewed. A hypothetical underground Experimental Boiling Water Reactor design and sketch are given with cost estimates(T.R.H.)

Beck, C.

1958-04-15T23:59:59.000Z

13

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

NLE Websites -- All DOE Office Websites (Extended Search)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

14

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

National Nuclear Security Administration (NNSA)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

15

Letter Report: Scoping Analysis of Gas Phase Transport from the Rulison Underground Nuclear Test  

DOE Green Energy (OSTI)

This letter report documents the results of a computer model to quantify the travel time of tritium (radioactive hydrogen) from an underground nuclear detonation in 1969 toward a proposed producing gas well located 1,500 feet (457 meters) away.

Clay Cooper

2004-05-06T23:59:59.000Z

16

Thermally Induced Groundwater Flow Resulting from an Underground Nuclear Test  

SciTech Connect

The authors examine the transient residual thermal signal resulting from an underground nuclear test (buried below the water table) and its potential to affect local groundwater flow and radionuclide migration in a saturated, fractured, volcanic aquifer system. Thermal profiles measured in a drillback hole between 154 days and 6.5 years after the test have been used to calibrate a non-isothermal model of fluid flow. In this process, they have estimated the magnitude and relative changes in permeability, porosity and fracture density between different portions of the disturbed and undisturbed geologic medium surrounding the test location. The relative impacts of buoyancy forces (arising from the thermal residual of the test and the background geothermal gradient) and horizontal pressure gradients on the post-test flow system are better understood. A transient particle/streamline model of contaminant transport is used to visualize streamlines and streaklines of the flow field and to examine the migration of non-reactive radionuclides. Sensitivity analyses are performed to understand the effects of local and sub-regional geologic features, and the effects of fractured zones on the movement of groundwater and thermal energy. Conclusions regarding the overall effect of the thermal regime on the residence times and fluxes of radionuclides out of the system are drawn, and implications for more complicated, reactive contaminant transport are discussed.

Maxwell, R.M.; Tompson, A.F.B.; Rambo, J.T.; Carle, S.F.; Pawloski, G.A.

2000-12-16T23:59:59.000Z

17

Coordination of EPRI Risk Ranking Methodologies for Nuclear Power Plant Groundwater Protection & Underground Piping Programs  

Science Conference Proceedings (OSTI)

The nuclear power industry committed to the Groundwater Protection Initiative (GPI) and the Underground Piping and Tanks Initiative (UPTI) to improve the management of soil and groundwater contamination, and the management of underground piping and tanks. These two Initiatives, while they have different objectives, are closely aligned in the area of preventing leaks and spills of licensed materials. The results of this Electric Power Research Institute (EPRI) work will provide nuclear power plant sites w...

2011-12-14T23:59:59.000Z

18

Radionuclide Partitioning in an Underground Nuclear Test Cavity  

Science Conference Proceedings (OSTI)

In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors: chemical volatility effects that occur during the initial plasma condensation, and groundwater remobilization that occurs over a much longer time frame. Fission product partitioning is very sensitive to the early cooling history of the test cavity because the decay of short-lived (t{sub 1/2} data to update the range in partitioning values for contaminant transport models at the Nevada National Security Site (formerly known as the Nevada Test Site).

Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

2009-01-09T23:59:59.000Z

19

Radionuclide Partitioning in an Underground Nuclear Test Cavity  

SciTech Connect

In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors: chemical volatility effects that occur during the initial plasma condensation, and groundwater remobilization that occurs over a much longer time frame. Fission product partitioning is very sensitive to the early cooling history of the test cavity because the decay of short-lived (t{sub 1/2} < 1 hour) fission-chain precursors occurs on the same time scale as melt glass condensation. Fission product chains that include both volatile and refractory elements, like the mass 99, 125, and 129 chains, can show large variations in partitioning behavior depending on the cooling history of the cavity. Uranium exhibits similar behavior, though the chemical processes are poorly understood. The water temperature within the Chancellor cavity remains elevated (75 C) more than two decades after the test. Under hydrothermal conditions, high solubility chemical species such as {sup 125}Sb and {sup 129}I are readily dissolved and transported in solution. SEM analyses of melt glass samples show clear evidence of glass dissolution and secondary hydrothermal mineral deposition. Remobilization of {sup 99}Tc is also expected during hydrothermal activity, but moderately reducing conditions within the Chancellor cavity appear to limit the transport of {sup 99}Tc. It is recommended that the results from this study should be used together with the IAEA data to update the range in partitioning values for contaminant transport models at the Nevada National Security Site (formerly known as the Nevada Test Site).

Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

2009-01-09T23:59:59.000Z

20

Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test  

SciTech Connect

The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report  

Science Conference Proceedings (OSTI)

Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

1998-07-01T23:59:59.000Z

22

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

23

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

24

Underground Nuclear Explosions and the Control of Earthquakes Author(s): Cesare Emiliani, Christopher G. A. Harrison, Mary Swanson  

E-Print Network (OSTI)

Underground Nuclear Explosions and the Control of Earthquakes Author(s): Cesare Emiliani- ground nuclear explosions has been ex- plored in some detail during the past 2 years. In an examination with under- ground nuclear explosions has been ex- plored in some detail during the past 2 years

Miami, University of

25

Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power  

SciTech Connect

Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

26

Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test  

Science Conference Proceedings (OSTI)

Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

2004-03-01T23:59:59.000Z

27

H FINAL REPORT OF OFF-SITE SURVEILLANCE FOR THE FAULTLESS EVENT,  

Office of Legacy Management (LM)

WRHL-Slr WRHL-Slr i, ' H FINAL REPORT OF OFF-SITE SURVEILLANCE FOR THE FAULTLESS EVENT, January 19. 1968 by the Southwe stern Radiological Health Laboratory Department of Health, Education. and Welfare Public Health Service Consume r Protection and Environmental Health Service April 1969 This surveillance perforrned under a Memorandum of Understanding (No. SF 54 373) for the U. S. ATOMIC ENERGY COMMISSION LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Atomic Energy Commission, nor any person acting on behalf of the Commission: A. makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the in- formation contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not in- fringe privately owned

28

Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment  

SciTech Connect

Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

2012-07-03T23:59:59.000Z

29

Utilization of the noble gases in studies of underground nuclear detonations  

SciTech Connect

From symposium on noble gases; Las Vegas, Nevada, USA (24 Sep 1973). The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases except argon have been used as tracers, as have /sup 127/Xe and /sup 85/Kr. /sup 37/Ar and /sup 85/Kr have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases and the degree to which the sampled gas truly represents the underground gas mixture can be studied with the aid of the fission- product gases. /sup 222/Ra and He are released to the cavity from the surrounding rock and are therefore useful in studies of the interaction of the detonation with the surrounding medium. (auth)

Smith, C.F.

1973-09-17T23:59:59.000Z

30

Biological effects of underground nuclear testing on marine organisms. II. Observed effects of Amchitka Island, Alaska, tests on marine fauna  

SciTech Connect

>From conference on the environmental effects of explosives and explosions; White Oak, Maryland, USA (30 May 1973). The biological effects of the Longshot, Milrow, and Cannikin underground nuclear tests at Amchitka lsland, Alaska, on marine mammals, fishes, and birds are summarized. The biological effects observed were related to the water-borne shock waves produced by the explosions. (CH)

Isakson, J.S.

1973-01-01T23:59:59.000Z

31

Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico  

SciTech Connect

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

1996-09-01T23:59:59.000Z

32

Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado  

SciTech Connect

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient.

Earman, S.; Chapman, J.; Andricevic, R.

1996-09-01T23:59:59.000Z

33

ENVIRONMENTAL IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS  

Office of Legacy Management (LM)

IlONITORING REPORT FOR THE NEVADA TEST SITE IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1975 Nonitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U . S . ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION EMSL-LV-5 39-4 May 1976 ENVIRONMENTAL 14ONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December I975 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of

34

TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada  

Science Conference Proceedings (OSTI)

Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

2002-09-01T23:59:59.000Z

35

Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico  

SciTech Connect

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values.

Earman, S.; Chapman, J.; Andricevic, R.

1996-09-01T23:59:59.000Z

36

Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico  

SciTech Connect

A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site.

Pohll, G.; Pohlmann, K.

1996-08-01T23:59:59.000Z

37

Measurement and evaluation of high-rise building response to ground motion generated by underground nuclear explosions  

SciTech Connect

As part of the structural response research program being conducted for ERDA, the response behavior of high-rise buildings in Las Vegas, Nevada, due to ground motion caused by underground nuclear explosions (UNEs) at the Nevada Test Site (NTS) has been measured for the past 12 years. Results obtained include variation in dynamic response properties as a function of amplitude of motion, influence of nonstructural partitions in the building response, and comparison of calculated and measured response. These data for three reinforced concrete high- rise buildings, all designed as moment-resisting space frames are presented. (auth)

Honda, K.K.

1976-01-01T23:59:59.000Z

38

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

Pawloski, G A

2012-01-30T23:59:59.000Z

39

Enhanced-safety underground nuclear power plants based on the use of proven ship-building equipment and technology  

SciTech Connect

Investigations performed in the last few years by the State Science Center of the Russian Federation - Academician A. N. Krylov Central Scientific-Research Institute, together with specialized enterprises of the Ministry of Atomic Energy of the Russian Federation, Sudprom, and other agencies of Russia, have shown the promise of marine nuclear power plants for producing underground nuclear power plants with a higher degree of protection from external and internal actions of different intensity. The concept was developed on the basis of an analysis of the energy supply in different regions of Russia and the near-abroad using fossil fuels (lignite, oil, natural gas). The change in the international environment, which makes it possible to convert the military technology, frees the industrial potential and skilled workers in Russia for development of products for the national economy. Stricter international standards and rules for increased safety and protection of nuclear power plants made it necessary to develop a new generation of reactors for ground-based power plants, which under the modern economic conditions cannot be implemented within the time periods acceptable for economics for most of the countries surrounding Russia. In the development of a new generation of ground-based nuclear power plants, the intense improvement of the aviation and space technology must be taken into account. This is connected with the increase in the catastrophes and the threat they present to the safety of unprotected power plants. This article is an abstract of the entire report.

Pashin, V.M.; Petrov, E.L.; Khazov, B.S.

1995-10-01T23:59:59.000Z

40

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

Pawloski, G A

2011-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

About underground nuclear tests, magnetometers, and (last but not least) the ionosphere  

SciTech Connect

About six to eight minutes after an underground test, an acoustic wave reaches the E and F layers of the ionosphere. Recent radiosonde experiments and propagation calculations verify that a detectable disturbance results therefrom. Next, the authors are investigating whether or not the interaction of that acoustic motion with the Earth`s magnetic field might result in a detectable magnetic disturbance at the surface. There are several interaction concepts by which they might estimate this signal: (1) the ionospheric plasma displacement interacts such that a transverse current is induced in it via v x B, that volume current may be represented as a current dipole moment, by which to estimate the magnetic field change at the Earth`s surface below; (2) the displaced free electrons bend in the Earth`s field, collectively, this cyclotron spiraling gives rise to an equivalent magnetic dipole moment; (3) the conducting ionosphere behaves as a diamagnetic layer, which drags the magnetic field with it as it moves. That might be observed downstream, at the axial intercept.

Wouters, L.F.

1978-09-25T23:59:59.000Z

42

Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium  

SciTech Connect

The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

Taylor, S.R.; Kamm, J.R. [eds.

1993-11-01T23:59:59.000Z

43

Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado  

SciTech Connect

DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab.

Chapman, J.; Earman, S.; Andricevic, R.

1996-10-01T23:59:59.000Z

44

Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1  

Science Conference Proceedings (OSTI)

Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud for consolidation in another pit. In addition to the mud pits, the hot mix plant was also remediated. Ongoing monitoring data does not indicate that radionuclides are currently seeping into the marine environment. Additionally, the groundwater modeling results indicate no seepage is expected for tens to thousands of years. If seepage does occur in the future, however, the rich, diverse ecosystems around the island could be at risk, as well as people eating foods from the area. An independent science study was conducted by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in accordance with the Amchitka Independent Science Plan (2003). The study report was published on August 1, 2005. The CRESP study states ''our geophysical and biological analyses did not find evidence of risk from radionuclides from the consumption of marine foods, nor indication of any current radionuclide contaminated migration into the marine environment from the Amchitka test shots''. The study also found evidence supporting the groundwater modeling conclusions of very slow contaminant transport (CRESP, 2005). While no further action is recommended for the subsurface of the Amchitka Site, long-term stewardship of Amchitka Island will be instituted and will continue into the future. This will include institutional controls management and enforcement, post-completion monitoring, performance of five-year reviews, public participation, and records management. Long-term stewardship will be the responsibility of the U.S. Department of Energy Office of Legacy Management. The Department of Energy is recommending completion of the investigation phase of the Amchitka Sites. The recommended remedy for the Amchitka Site is No Further Action with Long-Term Monitoring and Surveillance. The future long-term stewardship actions will be governed by a Long-Term Surveillance and Maintenance Plan. This Plan is currently being developed with input from the State, landowner, and other interested or affected stakeholders.

Echelard, Tim

2006-09-01T23:59:59.000Z

45

Ground motion from earthquakes and underground nuclear weapons tests: a comparison as it relates to siting a nuclear waste storage facility at NTS  

Science Conference Proceedings (OSTI)

Ground motion generated by a magnitude 4.3 earthquake at Massachusetts Mountain on the Nevada Test Site was measured at the control point and compared with ground motion generated at about the same distance by four underground nuclear weapons tests. The depth of the earthquake was between 4 and 4.6 km. The resulting signal at the distance considered was almost entirely body-wave components and had little or no contribution from the surface wave. The motion from the relatively shallower weapons tests had a signal with a pronounced surface-wave component. Comparison of the Pseudo Relative Response Velocity (PSRV) plots shows the earthquake signal richer in high frequencies and the weapons-test signals richer in low frequencies. If relationship between ground motion from the two sources can be confirmed for other earthquakes, weapons test ground motion could be used to estimate earthquake ground motion for magnitudes for which probability of occurrence in a given montoring period would be very small.

Vortman, L.J.

1982-01-01T23:59:59.000Z

46

Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

Pawloski, G A

2012-06-18T23:59:59.000Z

47

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

48

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Twitter YouTube NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile...

49

Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository  

SciTech Connect

A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs.

Kana, D.D.; Vanzant, B.W.; Nair, P.K. [Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses; Brady, B.H.G. [ITASCA Consulting Group, Inc., Minneapolis, MN (USA)

1991-06-01T23:59:59.000Z

50

PNNL offers 'virtual tour' of Shallow Underground Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL offers 'virtual tour' of Shallow Underground Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

51

Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface  

Science Conference Proceedings (OSTI)

At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

Pawloski, G A

2012-04-25T23:59:59.000Z

52

Underground infrastructure damage for a Chicago scenario  

SciTech Connect

Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

53

Underground Layout Configuration  

SciTech Connect

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

54

Vitrified underground structures  

DOE Patents (OSTI)

A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

Murphy, Mark T. (Kennewick, WA); Buelt, James L. (Richland, WA); Stottlemyre, James A. (Richland, WA); Tixier, Jr., John S. (Richland, WA)

1992-01-01T23:59:59.000Z

55

TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS  

Science Conference Proceedings (OSTI)

This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak shear waves, while an explosion in low strength, high-porosity alluvium results in much weaker compressional waves and low-frequency compressional and shear waves of nearly equal amplitude. Further work will attempt to model available near-field seismic data from explosions conducted at NTS, where we have accurate characterization of the sub-surface from the wealth of geological and geophysical data from the former nuclear test program. Secondly, we are modeling seismic wave propagation with free-surface topography in WPP. We have model the October 9, 2006 and May 25, 2009 North Korean nuclear tests to investigate the impact of rugged topography on seismic waves. Preliminary results indicate that the topographic relief causes complexity in the direct P-waves that leads to azimuthally dependent behavior and the topographic gradient to the northeast, east and southeast of the presumed test locations generate stronger shear-waves, although each test gives a different pattern. Thirdly, we are modeling intermediate period motions (10-50 seconds) from earthquakes and explosions at regional distances. For these simulations we run SPECFEM3D{_}GLOBE (a spherical geometry spectral element code). We modeled broadband waveforms from well-characterized and well-observed events in the Middle East and central Asia, as well as the North Korean nuclear tests. For the recent North Korean test we found that the one-dimensional iasp91 model predicts the observed waveforms quite well in the band 20-50 seconds, while waveform fits for available 3D earth models are generally poor, with some exceptions. Interestingly 3D models can predict energy on the transverse component for an isotropic source presumably due to surface wave mode conversion and/or multipathing.

Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

2009-07-06T23:59:59.000Z

56

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

57

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

58

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

59

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

60

Today and Future Neutrino Experiments at Krasnoyarsk Nuclear Reactor  

E-Print Network (OSTI)

The results of undergoing experiments and new experiment propositions at Krasnoyarsk underground nuclear reactor are presented

Yu. V. Kozlov; S. V. Khalturtsev; I. N. Machulin; A. V. Martemyanov; V. P. Martemyanov; A. A. Sabelnikov; V. G. Tarasenkov; E. V. Turbin; V. N. Vyrodov; L. A. Popeko; A. V. Cherny; G. A. Shishkina

1999-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vibrations from underground blasting  

SciTech Connect

The Bureau of Mines has investigated vibration levels produced by blasting at four underground sites to establish how such factors as type of explosive, delay blasting, charge weight, and geology affect amplitudes of ground motion. A summary of the work is presented and the results of further analysis of the data are discussed. Square root scaling was found applicable to two of the underground sites and could be applied with minor error to all the sites. Comparison of empirical propagation equations in the different rock types indicates that although the site effect is apparent, the combined data may be used as a basis for engineering estimates of vibration amplitudes from subsurface blasting in many different rock types. Recommendations for predicting and minimizing vibration amplitudes from underground blasts are given.

Snodgrass, J.J.; Siskind, D.E.

1964-01-01T23:59:59.000Z

62

Underground Infrastructure Research and Education  

E-Print Network (OSTI)

productivity, environmental improvement and renewal of the aging underground infrastructure. OrganizationalCenter for Underground Infrastructure Research and Education CUIRE Board Members Sam Arnaout Pipe Association Tim Kennedy, AMERON NOV Chad Kopecki, Dallas Water Utilities David Marshall, Tarrant

Texas at Arlington, University of

63

Animals that Hide Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

64

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

65

Underground Distribution Sensors  

Science Conference Proceedings (OSTI)

Rising costs of new infrastructure, increasing demand, and a declining number of available workers will drive utilities to operate as efficiently as possible. The practice of overbuilding infrastructure to improve or maintain reliability will be viewed as cost-inefficient. Utilities will be forced to operate distribution systems more dynamically and efficiently. Distribution sensors will help provide the needed information to utilities to achieve the goal of dynamic efficiency. The Underground Distributi...

2009-03-31T23:59:59.000Z

66

Plutonium Pits | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear weapons without underground nuclear testing; weapons go through a surveillance process, where they are regularly taken apart, examined, and tests run on their components....

67

Distribution Grounding of Underground Facilities  

Science Conference Proceedings (OSTI)

This report describes Phase I of a two-phase project to assess industry practices and standards for grounding and bonding of medium-voltage underground residential distribution (URD) and underground commercial distribution (UCD) circuits and worker safety in worksites with these systems.The report includes an overview of the issues and concerns associated with underground distribution systems safety and, in particular, worker safety in worksites. It identifies the industry and utility ...

2013-12-20T23:59:59.000Z

68

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

69

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

70

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

71

Biological effects of underground nuclear testing on marine organisms. I. Review of documented shock effects, discussion of mechanisms of damage, and predictions of Amchitka test effects  

SciTech Connect

From conference on the environmental effects of explosives and explosions; White Oak, Maryland, USA (30 May 1973). The potential mechanisms of biological damage to fish resulting from a nuclear-induced shock wave appear to involve mechanical damage from bottom acceleration and rockspall; the synergistic effect of compression to decompression producing the mechanical expansion of gas spaces within the organism; effects of cavitation; and possibly the alteration of blood constituents. The indirect effects of the shock wave should also be considered in a truly ecological approach. Loss of fish or other marine organisms may reduce food resources for other species and place an unusual stress upon the community's food web and increased predation created by the influx of a formerly minor constituent may also be a real consideration. The determinants of biological damage involve the anatomical morphology, the ecological characteristics of the various members of the fish community, and the physical characteristics of the environment as produced by the introduced shock wave. (auth)

Simenstad, C.A.

1973-01-01T23:59:59.000Z

72

Quick egress from deep underground  

SciTech Connect

A method of storage of missiles deep underground in a protected environment capable of withstanding nuclear blasts while allowing access for maintenance and rapid egress when necessary-- even after exposure to severe environments due to an explosion at or near the surface of the earth. To accomplish this, the objects to be stored are contained in a closed container of positive buoyancy in quicksand. A shaft is excavated in the earth and filled with sand. The water content of the sand backfill is controlled and maintained at that percentage of saturation which will provide the best compromise between rapidity and ease of container egress on one hand and resistance to hostile surface environments on the other. Means for the introduction of additional water at the bottom of the sand-filled shaft are provided. When the sand column is fluidized by the injection of water at the bottom thereof, quicksand is formed in the shaft and the container can be drawn to the bottom by a tether line. When water injection is stopped, the sand returns to its normal solid condition and provides a protective layer for the buried container while restraining it in its deep buried position. The sand, in its normal tightly packed solid condition also acts to preserve the egress path to the surface by preventing the entry of dislodged earth material in the attack environment. To access the container for maintenance or for use of the contents, the shaft is again fluidized allowing the container to float to the surface.

Funston, N.E.

1976-09-21T23:59:59.000Z

73

Depleted argon from underground sources  

Science Conference Proceedings (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

74

Illinois Natural Gas Underground Storage Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Illinois Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

75

Massachusetts Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

76

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

77

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

78

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

79

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

80

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

82

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

83

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

84

Increased Power Flow Guidebook - Underground Cables  

Science Conference Proceedings (OSTI)

Utilities must consider a number of factors when evaluating uprating and upgrading options for underground transmission cables. This comprehensive guidebook documents the state-of-science for increasing power flow capacities of underground transmission cables. It provides an overview of underground transmission cable ratings and uprating techniques so that the maximum utilization can be obtained from the existing underground transmission infrastructure.

2003-12-01T23:59:59.000Z

85

Water intrusion in underground structures  

E-Print Network (OSTI)

This thesis presents a study of the permissible groundwater infiltration rates in underground structures, the consequences of this leakage and the effectiveness of mitigation measures. Design guides and codes do not restrict, ...

Nazarchuk, Alex

2008-01-01T23:59:59.000Z

86

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

87

Systems management support for ERCDC study of undergrounding and berm containment. Interim report. Preliminary program assessment and follow-on program development  

SciTech Connect

Interim results of a study being conducted with respect to the technological aspects of the costs and benefits of underground nuclear power plant construction in direct support of the California Energy Commission's legislative mandate in this area are presented. The program was directed towards problem scoping, methodology evaluation, program definition and planning for subsequent, more detailed investigations of underground facility designs and their potential advantages and disadvantages. The material presented describes the results of (a) systems analyses which were conducted to determine logical requirements for determination of those elements of a nuclear power plant which should be constructed underground; (b) bounding estimates of incremental plant costs for a variety of underground concepts; (c) applicable prior experience in underground facility design and construction which could be used to identify potential sources of strength and weaknessees of underground nuclear power plants; (d) estimates of seismic environments for underground construction in California; (e) preliminary descriptions of underground reactor accident scenarios; (f) bounding estimates of the consequences of such accidents, in terms of comparisons of relative emissions of radioactivity with respect to similar accidents for surface-sited nuclear power plants and (g) results of analyses of several other important technological aspects of the problem. A description is also provided of the program development work performed to provide planning and criteria for subsequent investigations to determine: (a) definitive underground nuclear power plant designs and costs, and (b) estimates of accident consequences in underground nuclear power plants.

1977-08-01T23:59:59.000Z

88

Sensors for Underground Distribution Systems  

Science Conference Proceedings (OSTI)

A variety of different sensors are needed for underground distribution applications. These include sensors for temperature monitoring to track possible overload issues and other issues that can cause heating in underground systems (for example, arcing), sensors for fault detection and characterization, and sensors for voltage and current monitoring to support a wide range of applications (for example, SCADA, volt/var control, and load flow management). In 2008, EPRI evaluated the present state of medium-...

2010-03-31T23:59:59.000Z

89

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

90

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

91

North Carolina Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

92

South Carolina Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

93

New Jersey Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

94

North Carolina Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

95

Rhode Island Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

96

South Carolina Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

97

New Jersey Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

98

Rhode Island Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

99

2009 underground/longwall mining buyer's guide  

Science Conference Proceedings (OSTI)

The guide lists US companies supplying equipment and services to underground mining operations. An index by product category is included.

NONE

2009-06-15T23:59:59.000Z

100

The Basics of Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

... interstate pipeline companies rely heavily on underground storage to facilitate load balancing and system ... costs. "Open Access ... independent operators ...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Underground Transmission Systems Reference Book  

Science Conference Proceedings (OSTI)

The Underground Transmission Systems Reference Book covers all stages of cable system design and operation, from initial planning studies to failure analysis. It contains contributions from many of the industry's experts and represents practices from all parts of the United States.

1993-03-01T23:59:59.000Z

102

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

103

Instrumentation and monitoring of a full-scale shaft seal installed at atomic energy of canada limited's underground research laboratory.  

E-Print Network (OSTI)

??Atomic Energy of Canada Limited’s Underground Research Laboratory was built to allow study of concepts for the long-term disposal of Canada’s used nuclear fuel in… (more)

Holowick, Blake

2010-01-01T23:59:59.000Z

104

Validation Analysis of the Groundwater Flow and Transport Model of the Central Nevada Test Area  

Science Conference Proceedings (OSTI)

The Central Nevada Test Area (CNTA) is a U.S. Department of Energy (DOE) site undergoing environmental restoration. The CNTA is located about 95 km northeast of Tonopah, Nevada, and 175 km southwest of Ely, Nevada (Figure 1.1). It was the site of the Faultless underground nuclear test conducted by the U.S. Atomic Energy Commission (DOE's predecessor agency) in January 1968. The purposes of this test were to gauge the seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley (outside the Nevada Test Site [NTS]) and to determine the suitability of the site for future large detonations. The yield of the Faultless underground nuclear test was between 200 kilotons and 1 megaton (DOE, 2000). A three-dimensional flow and transport model was created for the CNTA site (Pohlmann et al., 1999) and determined acceptable by DOE and the Nevada Division of Environmental Protection (NDEP) for predicting contaminant boundaries for the site.

A. Hassan; J. Chapman; H. Bekhit; B. Lyles; K. Pohlmann

2006-09-30T23:59:59.000Z

105

DOE to host workshop to explore use of WIPP as 'next generation' underground laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop to Explore Use of WIPP Workshop to Explore Use of WIPP As 'Next Generation' Underground Laboratory CARLSBAD, N.M., June 9, 2000 - The U.S. Department of Energy's (DOE) Carlsbad Area Office is sponsoring the "Workshop on the Next Generation U.S. Underground Science Facility" June 12-14 at the Pecos River Village Conference Center, 711 Muscatel, in Carlsbad. The purpose of the workshop is to explore the potential use of the DOE's Waste Isolation Pilot Plant (WIPP) underground as a next generation laboratory for conducting nuclear and particle astrophysics and other basic science research, and how that might be accomplished. "WIPP's underground environment represents one of only a few choices open to the research community for siting experiments that require shielding from cosmic rays," said Dr.

106

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Underground Transmission Vault Inspection Using Robotic Techniques  

Science Conference Proceedings (OSTI)

Underground power lines require inspection and maintenance to ensure long-term performance and reliable operation. In addition to terminations at both ends of the underground lines, access to the lines for inspection and maintenance is obtained through underground vaults or manholes. General practices require utility personnel to enter the vaults for visual inspection and to make the necessary measurements using portable instruments.The Electric Power Research Institute has developed the ...

2013-11-22T23:59:59.000Z

108

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

109

,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

110

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

111

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

112

Cover story: Digging up the hacking underground  

Science Conference Proceedings (OSTI)

The hacking underground is driven by three things: money, information, and reputation. Danny Bradbury takes a walk through its dark tunnels

Danny Bradbury

2010-09-01T23:59:59.000Z

113

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967"...

114

,"California Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","62013"...

115

,"California Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","62013" ,"Release...

116

,"California Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","62013" ,"Release...

117

,"Ohio Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

118

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

119

,"Kansas Natural Gas Underground Storage Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

120

,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Oklahoma Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

122

,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

123

,"Indiana Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

124

,"Colorado Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

125

Massachusetts Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

126

,"Minnesota Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

127

,"Arkansas Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

128

,"Nebraska Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

129

,"Louisiana Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

130

,"Missouri Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

131

,"Maryland Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

132

CFD Simulation of Underground Coal Gasification.  

E-Print Network (OSTI)

??Underground Coal Gasification (UCG) is a process in which coal is converted to syngas in-situ. UCG has gained popularity recently as it could be used… (more)

Sarraf Shirazi, Ahad

2012-01-01T23:59:59.000Z

133

,"West Virginia Natural Gas Underground Storage Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

134

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

135

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

136

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

137

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

138

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

139

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

140

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

142

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

143

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

144

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

145

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

146

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

147

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

148

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

149

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

150

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

151

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

152

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

153

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

154

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

155

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

156

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

157

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

158

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

159

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

160

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

162

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

163

Existing and Proposed Underground Storage Facilities  

U.S. Energy Information Administration (EIA)

Energy Information Administration 158 Natural Gas 1996: Issues and Trends Table F1. Summary of Existing Underground Natural Gas Storage, by Region and Type of ...

164

,"Michigan Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

165

,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

166

Sequoia ranked third in TOP500 list | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Program, helps ensure the safety, security and effectiveness of the nation's aging nuclear weapons stockpile without the use of underground testing. Sequoia was first...

167

Underground storage tank management plan  

Science Conference Proceedings (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

168

The underground electromagnetic pulse: Four representative models  

Science Conference Proceedings (OSTI)

I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.

Wouters, L.F.

1989-06-01T23:59:59.000Z

169

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

170

Atmospheric Muon Flux at Sea Level, Underground, and Underwater  

E-Print Network (OSTI)

The vertical sea-level muon spectrum at energies above 1 GeV and the underground/underwater muon intensities at depths up to 18 km w.e. are calculated. The results are particularly collated with a great body of the ground-level, underground, and underwater muon data. In the hadron-cascade calculations, the growth with energy of inelastic cross sections and pion, kaon, and nucleon generation in pion-nucleus collisions are taken into account. For evaluating the prompt muon contribution to the muon flux, we apply two phenomenological approaches to the charm production problem: the recombination quark-parton model and the quark-gluon string model. To solve the muon transport equation at large depths of homogeneous medium, a semi-analytical method is used. The simple fitting formulas describing our numerical results are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially all underground data on the muon intensity correlate with each other and with predicted depth-intensity relation for conventional muons to within 10%. However, the high-energy sea-level data as well as the data at large depths are contradictory and cannot be quantitatively decribed by a single nuclear-cascade model.

E. V. Bugaev; A. Misaki; V. A. Naumov; T. S. Sinegovskaya; S. I. Sinegovsky; N. Takahashi

1998-03-30T23:59:59.000Z

171

Twenty Years of Underground Research at Canada's URL  

Science Conference Proceedings (OSTI)

Construction of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) began in 1982. The URL was designed to address the needs of the Canadian nuclear fuel waste management program. Over the years, a comprehensive program of geologic characterization and underground hydrogeologic, geotechnical and geomechanical projects have been performed, many of which are ongoing. The scientific work at the URL has evolved through a number of different phases to meet the changing needs of Canada's waste management program. The various phases of the URL have included siting, site evaluation, construction and operation. Collaboration with international organizations is encouraged at the URL, with the facility being a centre of excellence in an International Atomic Energy Agency (IAEA) network of underground facilities. One of AECL's major achievements of the past 20 year program has been the preparation and public defense of a ten-volume Environmental Impact Statement (EIS) for a conceptual deep geologic repository. Completion of this dissertation on the characterization, construction and performance modeling of a conceptual repository in the granite rock of the Canadian Shield was largely based on work conducted at the URL. Work conducted over the seven years since public defense of the EIS has been directed towards developing those engineering and performance assessment tools that would be required for implementation of a deep geologic repository. The URL continues to be a very active facility with ongoing experiments and demonstrations performed for a variety of Canadian and international radioactive waste management organizations.

Chandler, N. A.

2003-02-27T23:59:59.000Z

172

Illinois Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Illinois Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

173

Texas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Natural Gas Underground Storage Capacity (Million...

174

Texas Natural Gas Underground Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Texas Natural Gas Underground Storage Net...

175

Texas Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Injections into Underground Storage (Million Cubic Feet) Texas Natural Gas Injections into Underground...

176

Texas Natural Gas Underground Storage Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Texas Natural Gas Underground Storage Withdrawals...

177

The Value of Underground Storage in Today's Natural Gas Industry  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii The Value of Underground Storage in Today's Natural Gas Industry Preface The Value of Underground Storage in Today's Natural ...

178

Rules and Regulations for Underground Storage Facilities Used...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum...

179

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

180

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

182

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

183

Connecticut Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

184

Alaska Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

185

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

186

Alaska Natural Gas Underground Storage Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

187

Wisconsin Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

188

Georgia Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

189

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

190

Alaska Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 9302013 Next Release Date: 10312013 Referring Pages: Underground Base Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Base...

191

New Jersey Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

192

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

193

Alaska Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

194

Rhode Island Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

195

Alaska Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

9302013 Next Release Date: 10312013 Referring Pages: Underground Working Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Working...

196

South Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

197

North Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

198

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

199

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

200

Louisiana Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Louisiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

202

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

203

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

204

Washington Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Washington Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

205

Iowa Natural Gas Underground Storage Acquifers Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

206

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

207

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

208

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

209

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

210

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

211

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

212

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

213

Tennessee Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Tennessee Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

214

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

215

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

216

Oregon Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

217

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

218

Colorado Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

219

Montana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

220

Minnesota Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Arkansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

222

Minnesota Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Minnesota Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

223

Iowa Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

224

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

225

Nebraska Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

226

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

227

Texas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

228

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

229

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

230

Pennsylvania Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Pennsylvania Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

231

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

232

Kentucky Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

233

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

234

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

235

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

236

Michigan Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

237

Ohio Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

238

Mississippi Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Mississippi Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

239

Underground storage of natural gas, liquid hydrocarbons, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)...

240

Idaho Natural Gas Underground Storage Injections All Operators...  

Gasoline and Diesel Fuel Update (EIA)

Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

242

Underground radio technology saves miners and emergency response...  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital...

243

Depleted Argon from Underground Sources  

Science Conference Proceedings (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

244

Underground-desiccant cooling system  

DOE Green Energy (OSTI)

The Underground-Desiccant Cooling System relies on the successful coordination of various components. The central feature of the system is a bed of silica gel which will absorb moisture from house air until the gel has become saturated. When this point has been reached, the silica gel must be regenerated by passing hot air through it. For this project, the hot air is produced by air-type solar collectors mounted on the roof and connected with the main air-handling system by means of ducts attached to the outside of the house. As the air is dehumidified its temperature is raised somewhat by the change of state. The dried but somewhat heated air, after leaving the silica gel bed, passes through a rock bin storage area and then past a water coil chiller before being circulated through the house by means of the previously existing ductwork. The cooling medium for both the rock bin and the chiller coil is water which circulates through underground pipes buried beneath the back yard at a depth of about 10 to 12 ft. When the silica gel is being regenerated by the solar collectors, house air bypasses the desiccant bed but still passes through the rock bin and the chiller coil and is cooled continuously. The system is designed for maximum flexibility so that full use can be made of the solar collectors. Ducting is arranged so that the collectors provide heat for the house in the winter and there is also a hot-water capability year-round.

Finney, O.

1982-10-01T23:59:59.000Z

245

Focused evaluation of selected remedial alternatives for the underground test area  

SciTech Connect

The Nevada Test Site (NTS), located in Nye County in southern Nevada, was the location of 928 nuclear tests conducted between 1951 and 1992. Of the total tests, 824 were nuclear tests performed underground. This report describes the approach taken to determine whether any specific, proven, cost-effective technologies currently exist to aid in the removal of the radioactive contaminants from the groundwater, in the stabilization of these contaminants, and in the removal of the source of the contaminants.

NONE

1997-04-01T23:59:59.000Z

246

,"Washington Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Net Withdrawals (MMcf)" 32888,-1451 32919,-3625 32947,-1954 32978,-938 33008,0 33039,2640 33069,2937 33100,2937 33131,1069 33161,205 33192,81...

247

Best practices for underground diesel emissions  

Science Conference Proceedings (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

248

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

249

,"California Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:37 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CA2"...

250

,"California Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:08 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060CA2"...

251

Massachusetts Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

252

Georgia Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

253

Connecticut Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Connecticut Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

254

Delaware Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

255

Wisconsin Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

256

,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:28 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060TX2"...

257

Underground Storage of Natural Gas (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

258

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

259

First Edition Underground Distribution Reference Book  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is developing a first edition of the Underground Distribution Systems Reference (Bronze Book). This report will join the EPRI series of transmission and distribution technical reference reports, commonly known by the color of their covers. The report will be a desk and field compendium on the general principles involved in the planning, design, manufacture, installation design, installation, testing, operation, and maintenance of underground distribution syste...

2009-12-22T23:59:59.000Z

260

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

262

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

263

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

264

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

265

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

266

Potential underground risks associated with CAES.  

Science Conference Proceedings (OSTI)

CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

2010-10-01T23:59:59.000Z

267

Twelve Year Study of Underground Corrosion of Activated Metals  

Science Conference Proceedings (OSTI)

The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

M. Kay Adler Flitton; Timothy S. Yoder

2012-03-01T23:59:59.000Z

268

New Texas Oil Project Will Help Keep Carbon Dioxide Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and...

269

Missouri Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Missouri Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990...

270

Wyoming Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808...

271

Washington Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Washington Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990...

272

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations  

E-Print Network (OSTI)

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations Ignasi in forthcoming publications. Keywords-grounding analysis; earthing analysis, underground substations; I to a river (at substations next to hydroelectric dams), or the grounding system of a buried electrical

Colominas, Ignasi

273

Forced cooling of underground electric power transmission lines : design manual  

E-Print Network (OSTI)

The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

Brown, Jay A.

1978-01-01T23:59:59.000Z

274

Montana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Montana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

275

Utah Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Utah Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

276

Virginia Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Virginia Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

277

Kansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

278

Alabama Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Alabama Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

279

Michigan Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Michigan Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

280

Maryland Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Maryland Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Arkansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Arkansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

282

Iowa Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Iowa Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

283

Colorado Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Colorado Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

284

Illinois Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Illinois Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

285

Nebraska Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Nebraska Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

286

Texas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Texas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

287

Ohio Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Ohio Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

288

Missouri Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Missouri Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

289

Oklahoma Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oklahoma Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

290

Indiana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Indiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

291

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

292

Oregon Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oregon Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

293

Kentucky Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kentucky Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

294

Underground Natural Gas Storage Wells in Bedded Salt (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

295

New Mexico Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) New Mexico Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

296

Estimates of Peak Underground Working Gas Storage Capacity in...  

U.S. Energy Information Administration (EIA) Indexed Site

Administration report, The Basics of Underground Storage, http:www.eia.doe.govpuboilgasnaturalgasanalysispublicationsstoragebasicsstoragebasics.html. 2 Working gas is...

297

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

298

Robotic location of underground chemical sources  

Science Conference Proceedings (OSTI)

This paper describes current progress in a project to develop robotic systems for locating underground chemical sources. There are a number of economic and humanitarian applications for this technology. Finding unexploded ordinance, land mines, and sources ... Keywords: Chemical diffusion, Chemical source location, De-mining, Robotics

R. Andrew Russell

2004-01-01T23:59:59.000Z

299

Underground Structure Monitoring with Wireless Sensor Networks  

E-Print Network (OSTI)

University of Science and Technology {limo, liu}@cse.ust.hk ABSTRACT Environment monitoring in coal mines, Underground, Coal Mine 1. INTRODUCTION A Wireless Sensor Network (WSN) is a self-organized wireless network and widths of several meters) has been a crucial task to ensure safe working conditions in coal mines where

Liu, Yunhao

300

Electrical Safety Practices in Underground Transmission Systems  

Science Conference Proceedings (OSTI)

This report addresses utility safety practices relating to underground transmission cables and provides analytical approaches and worked examples for induced voltages and currents for several scenarios that may be encountered by utilities.BackgroundSafety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public ...

2012-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Underground Energy Storage Program. 1983 annual summary  

DOE Green Energy (OSTI)

The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

Kannberg, L.D.

1984-06-01T23:59:59.000Z

302

A Method for Detecting Miners in Underground Coal Mine Videos  

Science Conference Proceedings (OSTI)

Detecting miners in underground coal mine videos is significant for the production safety. But, the miners are very similar to the background in underground coal mine videos, it is difficult to detect. In this paper, we proposed a method to detect miners ... Keywords: moving detection, miner detection, underground coal mine video

Limei Cai; Jiansheng Qian

2009-12-01T23:59:59.000Z

303

October 15, 2001 PRE-INSULATED UNDERGROUND PIPE FOR STEAM  

E-Print Network (OSTI)

SERVICE PART 1 ­ GENERAL 1.01 SUMMARY Underground steam and condensate distribution systems includingOctober 15, 2001 02558-1 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE SERVICE CONSTRUCTION STANDARD SPECIFICATION SECTION 02558 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE

304

Utilization of Oil Shale Retorting Technology and Underground Overview  

Science Conference Proceedings (OSTI)

The paper analyzes the world's oil shale development and status of underground dry distillation technology and, through case studies proved the advantages of underground dry distillation technology. Global oil shale resource-rich, many countries in the ... Keywords: oil shale, ground retorting, underground dry distillation, shale oil, long slope mining

Chen Shuzhao; Guo Liwen; Xiao Cangyan; Wang Haijun

2011-02-01T23:59:59.000Z

305

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

306

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

307

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

308

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

309

cnta.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Central Nevada Test Area Site Description and History The Central Nevada Test Area (CNTA) is located in the Hot Creek Valley of south-central Nevada, approxi- mately 70 miles northeast of Tonopah. The CNTA consists of three parcels totaling 2,560 acres. The parcels are spaced approximately 3 miles apart along a roughly north-south line. The total acreage is currently withdrawn from all forms of appropriation associated with mining laws and leasing. The U.S. Atomic Energy Commission, a predecessor agency of the U.S. Department of Energy (DOE), acquired the CNTA in the early 1960s to develop alternative sites to the Nevada Test Site for underground nuclear testing. Three emplacement boreholes (UC-1, UC-3, and UC-4) were drilled on the three parcels at the CNTA for underground nuclear testing. The initial underground nuclear test at CNTA, code-named Project Faultless, was

310

Rotary steerable motor system for underground drilling  

Science Conference Proceedings (OSTI)

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

311

Greenhouse of an underground heat accumulation system  

SciTech Connect

A greenhouse of an underground heat accumulation system is described wherein the radiant energy of the sun or wasted thermal energy is accumulated in the soil below the floor of the greenhouse over a prolonged period of time, and spontaneous release of the accumulated energy into the interior of the greenhouse begins in the wintertime due to a time lag of heat transfer through the soil. The release of the accumulated energy lasts throughout the winter.

Fujie, K.; Abe, K.; Uchida, A.

1983-11-01T23:59:59.000Z

312

Bangkok area grid extensions go underground  

SciTech Connect

To reinforce electricity supply in the growing load center of Bangkok, the Metropolitan Electricity Authority is constructing a 230-kV underground, oil-filled cable system from Bangkapi substation, located on the outskirts of the city, to Chidlom substation in the heart of the city's business area. The project covers design, supply, and delivery to site of all the materials and equipments, installation, assembly of equipment and commissioning tests of the system.

1976-12-01T23:59:59.000Z

313

Electrical Safety Practices of Underground Transmission Systems  

Science Conference Proceedings (OSTI)

Safety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public and are diligent about monitoring compliance. However, underground transmission cables present unique requirements that might not be covered in existing utility safety practices. This report addresses the grounding requirements and induced voltage calculation procedures that should be considered when performing operation, mainten...

2010-12-23T23:59:59.000Z

314

Underground particle fluxes in the Soudan mine.  

E-Print Network (OSTI)

This is a summary of our knowledge of the underground particle fluxes in the vicinity of Soudan 2 and of the future MINOS detector. It includes a brief description of the measured muon fluxes and of the gamma ray spectra deduced from measurements of 238 U, 232 Th and 40 K concentrations in the rock. Counting rates in gaseous and scintillation detectors are estimated. Some data on what is known about the chemical composition of the local rocks are included; these are relevant to an understanding of the underground muon rates and also to a calculation of low energy neutron fluxes. 1 Introduction As plans for the MINOS detector and for the excavation of a new detector hall progress, some people have begun asking what is known of the fluxes of various particles underground. The muon flux is relevant for possibly calibrating and certainly for monitoring the long term behavior of the detector. It will likely be the determining factor in the eventual trigger rate if the MINOS det...

Keith Ruddick; Keith Ruddick; Th

1996-01-01T23:59:59.000Z

315

Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

Irene Farnham

2011-05-01T23:59:59.000Z

316

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

317

Underground Transmission Cable System Installation and Construction Practices Manual  

Science Conference Proceedings (OSTI)

Installation and construction remain the most expensive implementation components of underground transmission cable systems. Recent advancements in underground transmission have led to more demand for best practices and innovative ways to reduce installation and construction costs in a cable project. EPRI has funded many projects over the years to improve the efficiency and reduce the cost of underground transmission cable installation. Other organizations such as Association of Edison Illuminating Compa...

2009-12-22T23:59:59.000Z

318

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

319

,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

320

Pipelines and Underground Gas Storage (Iowa) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reaching Underground Sources (from MIT Energy Initiative's Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaching Underground Sources (from MIT Energy Initiative's Energy Futures, Spring 2012) American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Reaching...

322

U.S. Natural Gas Pipeline and Underground Storage Expansions ...  

U.S. Energy Information Administration (EIA)

Pipeline transportation and underground storage are vital and complementary components of the U.S. natural gas system. While mainline gas transmission ...

323

,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

324

,"Ohio Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

325

Alaska Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

326

Connecticut Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

327

Delaware Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

328

Georgia Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

329

Wisconsin Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

330

Estimate of Maximum Underground Working Gas Storage Capacity in ...  

U.S. Energy Information Administration (EIA)

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update This report provides an update to an estimate for U.S. aggregate ...

331

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301935" ,"Release Date:","9302013" ,"Next Release Date:","10312013" ,"Excel File Name:","ngstorsumd...

332

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013"...

333

NETL: News Release - Storing Liquefied Natural Gas in Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 22, 2003 Storing Liquefied Natural Gas in Underground Salt Caverns Could Boost Global LNG Trade Novel Process May be Half the Cost of Conventional Liquid Tank Terminals...

334

,"Michigan Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013"...

335

Idaho Natural Gas Underground Storage Net Withdrawals All Operators...  

Annual Energy Outlook 2012 (EIA)

Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

336

,"New Mexico Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

337

,"New Mexico Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","82013" ,"Release...

338

,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

339

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

340

Method of locating underground mines fires  

DOE Patents (OSTI)

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Underground Energy Storage Program. 1984 annual summary  

DOE Green Energy (OSTI)

Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.

Kannberg, L.D.

1985-06-01T23:59:59.000Z

342

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

343

Underground coal gasification using oxygen and steam  

Science Conference Proceedings (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

344

Cash, Money Laundering, and the Size of Underground Economy  

E-Print Network (OSTI)

Givenavastempiricalevidencethatcashiswidelyusedinthe underground economy, inter-governmental bodies like FATF recommend policy measures aimed at limitation of cash and at combat of money laundering. We show that there is no simple monotone relationship between policy and the size of underground economy, so that the policy has at best a limited scope.

Alexei Deviatov

2009-01-01T23:59:59.000Z

345

Underground Transmission Construction: Vault and Manhole Design and Current Practices  

Science Conference Proceedings (OSTI)

Underground transmission (UT) cable systems are alternatives to overhead transmission lines, especially if the costs in design and construction of the UT cable systems are further reduced. Among the major activities of an underground transmission cable project, vault (manhole) designs and related safety issues need to be addressed. Manhole design and construction account for one of the major costs in a cable project.

2009-12-08T23:59:59.000Z

346

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

347

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground Storage (Base...

348

Underground Event Mitigation: State-of-Science Workshop Report  

Science Conference Proceedings (OSTI)

This report summarizes a workshop on underground event mitigation held in Phoenix, Arizona, in October 2002. EPRI sponsored the workshop to present a comprehensive review of the state of the science and knowledge of underground events and mitigation measures and to provide a forum for discussion of future needs of the utility industry and directions for further EPRI-sponsored work in this area.

2002-11-25T23:59:59.000Z

349

Thorium-Fueled Underground Power Plant Based on Molten Salt Technology  

Science Conference Proceedings (OSTI)

This paper addresses the problems posed by running out of oil and gas supplies and the environmental problems that are due to greenhouse gases by suggesting the use of the energy available in the resource thorium, which is much more plentiful than the conventional nuclear fuel uranium. We propose the burning of this thorium dissolved as a fluoride in molten salt in the minimum viscosity mixture of LiF and BeF{sub 2} together with a small amount of {sup 235}U or plutonium fluoride to initiate the process to be located at least 10 m underground. The fission products could be stored at the same underground location. With graphite replacement or new cores and with the liquid fuel transferred to the new cores periodically, the power plant could operate for up to 200 yr with no transport of fissile material to the reactor or of wastes from the reactor during this period. Advantages that include utilization of an abundant fuel, inaccessibility of that fuel to terrorists or for diversion to weapons use, together with good economics and safety features such as an underground location will diminish public concerns. We call for the construction of a small prototype thorium-burning reactor.

Moir, Ralph W.; Teller, Edward [Lawrence Livermore National Laboratory (United States)

2005-09-15T23:59:59.000Z

350

Hydrologic Resources Management Program and Underground Test Area Project FY2005 Progress Report  

Science Conference Proceedings (OSTI)

This report describes FY 2005 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains five chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and Bechtel Nevada (BN).

Eaton, G F; Genetti, V; Hu, Q; Hudson, G B; Kersting, A B; Lindvall, R E; Moran, J E; Nimz, G J; Ramon, E C; Rose, T P; Shuller, L; Williams, R W; Zavarin, M; Zhao, P

2007-03-23T23:59:59.000Z

351

The Strip and Underground Mine Reclamation Act (Montana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on strip and underground mining activities for coal and uranium, and authorizes the Department of Environmental Quality to administer a

352

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

353

Siting of nuclear facilities. Selections from Nuclear Safety  

SciTech Connect

The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

Buchanan, J.R.

1976-07-01T23:59:59.000Z

354

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

355

Geostock's containment method reduces underground storage leakage  

SciTech Connect

Geostock's hydraulic containment method of safely containing liquid hydrocarbons in unlined underground storage caverns, so that there is no danger of leakage into the surrounding ground makes use of the surrounding ground water, whose static head is kept higher than the pressure of the stored product. For leakage prevention, the static head must be larger than the potential of the stored product plus a safety margin. The safety margin involves a shape factor, dependent on the size and shape of the cavity (examples are given), and a factor which allows for unforeseen conditions. The depth required for the ground water to possess a sufficiently large static head depends on the type and pressure of the stored product, the hydrogeological environment, and the geometry of the facility. Geostock has used the hydraulic containment method in a domestic heating oil facility at May sur Orne, Fr., and also in three propane storage facilities in France.

Not Available

1980-06-23T23:59:59.000Z

356

Nuclear Fuel Cycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cycle Cycle Nuclear Fuel Cycle This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. The mission of NE-54 is primarily focused on activities related to the front end of the nuclear fuel cycle which includes mining, milling, conversion, and enrichment. Uranium Mining Both "conventional" open pit, underground mining, and in situ techniques are used to recover uranium ore. In general, open pit mining is used where deposits are close to the surface and underground mining is used

357

Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States  

DOE Green Energy (OSTI)

The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

Chas. T. Main, Inc.

1982-03-01T23:59:59.000Z

358

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

359

Applications of TIERRAS for underground particle cascade simulations  

SciTech Connect

In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

Tueros, M. J.

2010-11-24T23:59:59.000Z

360

Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

IT Corporation, Las Vegas

2002-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrologic Resources Management Program and Underground Test Area Project FY 2000 Progress Report  

SciTech Connect

This report highlights the results of FY 2000 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) Project. This is the latest in a series of annual reports published by LLNL-ANCD to document recent investigations of radionuclide migration and transport processes at the Nevada Test Site (NTS). The HRMP is sponsored by Defense Programs (DP) at the U.S. Department of Energy, Nevada Operations Office (DOENV), and supports DP operations at the NTS through studies of radiochemical and hydrologic processes that are relevant to the DP mission. Other organizations that support the HRMP include Los Alamos National Laboratory (LANL), the U.S. Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the U.S. Environmental Protection Agency (EPS), and Bechtel Nevada (BN). The UGTA Project is sponsored by the Environmental Management (EM) program at DOENV; its goal is to determine the extent of radionuclide contamination in groundwater resulting from underground nuclear testing at the NTS. The project strategy follows guidelines set forth in a Federal Facilities Agreement and Consent Order between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Participating contractors include LLNL (both ANCD and the Energy and Environmental Sciences Directorate), LANL, USGS, DRI, BN, and IT Corporation (with subcontract support from Geotrans Inc.).

Davisson, M L; Eaton, G F; Hakemi, N L; Hudson, G B; Hutcheon, I D; Lau, C A; Kersting, A B; Kenneally, J M; Moran, J E; Phinney, D L; Rose, T P; Smith, D K; Sylwester, E R; Wang, L; Williams, R; Zavarin, M

2001-07-01T23:59:59.000Z

362

"DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments  

SciTech Connect

The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

2009-05-28T23:59:59.000Z

363

An optimal leakage detection strategy for underground pipelines using magnetic induction-based sensor networks  

Science Conference Proceedings (OSTI)

It is difficult to detect small leakages in underground pipelines with high accuracy and low-energy cost due to the inaccessible underground environments. To this end, the Magnetic Induction (MI)-based wireless sensor network for underground pipeline ... Keywords: deployment and activation of sensors, energy consumption, estimation accuracy, leakage detection and localization, underground pipelines

Xin Tan, Zhi Sun

2013-08-01T23:59:59.000Z

364

Analysis of the Changing Microbial Phase in an Underground River Anaerobic Digestion Reactor  

Science Conference Proceedings (OSTI)

The underground river anaerobic fermentation system was adopted in this experiment was that a pipeline buried underground just like an underground river. The hydrolysis, acidification and degradation of initial fermentation were carried out when raw ... Keywords: underground river anaerobic digestion reactor, microbial phase, methane-producing bacteria, dominant bacteria

Bingbing Li; Xiao Bo; Zhiquan Hu

2009-10-01T23:59:59.000Z

365

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

366

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

367

Prince George's County Underground Storage Act (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prince George's County Underground Storage Act (Maryland) Prince George&#039;s County Underground Storage Act (Maryland) Prince George's County Underground Storage Act (Maryland) < Back Eligibility Commercial Retail Supplier Tribal Government Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the surface of a maximum of 12,000 acres of land, and may be owned by a public body. A permit from the Department of the Environment, along with an order from the Public Service Commission, is required prior to the use of eminent domain. The Act contains further information on eminent domain, landowner, and property

368

DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Underground Med Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines were used at Los Alamos Scientific Laboratory to transport liquid wastes from Technical Areas 1, 3, 48, and 43 to a chemical waste treatment plant (Technical Area 45). NM.02-1 Site Disposition: Eliminated - Remedial action being performed by another DOE office NM.02-1

369

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

370

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

371

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

372

Utah Natural Gas in Underground Storage - Change in Working Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2...

373

Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944...

374

Utah Natural Gas in Underground Storage (Working Gas) (Million...  

Annual Energy Outlook 2012 (EIA)

Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993...

375

Illinois Natural Gas in Underground Storage (Base Gas) (Million...  

Gasoline and Diesel Fuel Update (EIA)

Base Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 571,959 571,959...

376

Illinois Natural Gas in Underground Storage (Working Gas) (Million...  

Gasoline and Diesel Fuel Update (EIA)

Working Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 234,149...

377

Underground Facility at Nevada National Security Site | National...  

National Nuclear Security Administration (NNSA)

for Our Jobs Our Jobs Working at NNSA Blog U1A Underground Facility at Nevada National Security Site Home > About Us > Our Programs > Defense Programs > Office of Research,...

378

Operations modeling and analysis of an underground coal mine  

Science Conference Proceedings (OSTI)

In general, it is quite difficult to describe and model operations and conveyance systems precisely in underground coal mines because of geological components, poor visibility, unreliable installed facilities, and difficult work conditions. In this study, ...

Kanna Miwa; Soemon Takakuwa

2011-12-01T23:59:59.000Z

379

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

Maxwell, Bruce D.

380

California Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ohio Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467...

382

Alaska Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Volume (Million Cubic Feet) Alaska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 16,578 28,110 27,940 28,203...

383

Alaska Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 17,902 17,902 83,592...

384

Alaska Natural Gas Underground Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -380...

385

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 5:36:07 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGAEPG0SACW0NUSMMCF","NA1394NUS8"...

386

Colorado Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

387

Second Panel of Disposal Rooms Completed in WIPP Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 DOENews -2- Underground waste disposal panels are arranged in parallel sets of seven rooms each. Each set of seven...

388

Underground barrier construction apparatus with soil-retaining shield  

DOE Patents (OSTI)

An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

Gardner, Bradley M. (Idaho Falls, ID); Smith, Ann Marie (Pocatello, ID); Hanson, Richard W. (Spokane, WA); Hodges, Richard T. (Deer Park, WA)

1998-01-01T23:59:59.000Z

389

U.S. Working Natural Gas Underground Storage Depleted Fields...  

Annual Energy Outlook 2012 (EIA)

Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

390

U.S. Working Natural Gas Underground Storage Acquifers Capacity...  

Gasoline and Diesel Fuel Update (EIA)

Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

391

One-man video verite: thoughts on Scenes from underground  

E-Print Network (OSTI)

This thesis considers the making of a documentary videotape on the Red Line Subway Extension project in Cambridge and Somerville, Massachusetts entitled Scenes From Underground. It traces my initial plans for an expository ...

Strongin, Barry

1984-01-01T23:59:59.000Z

392

Michigan Natural Gas Underground Storage Salt Caverns Capacity ...  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's:

393

Michigan Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

394

New Mexico Natural Gas Number of Underground Storage Depleted...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

395

New Mexico Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 20,204 20,204...

396

,"New Mexico Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:22 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NM2" "Date","New...

397

New Mexico Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

398

,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:22 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NM2" "Date","New...

399

,"New Mexico Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:54 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

400

New Mexico Natural Gas Number of Underground Storage Acquifers...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"New Mexico Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:53 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

402

New Mexico Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

403

Texas Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 134,707 134,707...

404

Degradation of transuranic waste drums in underground storage  

Science Conference Proceedings (OSTI)

The Hanford site is one of several U.S. Department of Energy locations that has transuranic radioactive Waste in storage, resulting from nuclear weapons material production. Transuranic waste has extremely long-lived radionuclides requiring great care in management; such waste is slated for eventual disposal in the Waste Isolation Pilot Plant in New Mexico. Most of this waste is stored in 208-{ell} (55-gal) drums below ground. At the Hanford site 37 641 drums are stored in several trenches. The drums were stacked up to five high with plywood sheeting between the layers and on top of the stacks. Plastic tarps were used to cover the drums and the plywood, with several feet of earth backfilled on top of the plastic. A fraction of the drums ({approximately}20%) were covered only with earth, not with plywood and plastic. The drums are either painted low-carbon steel or galvanized low-carbon steel. They have been placed in storage from 1970 to 1988, resulting in between 7 and 25 yr of storage. The environment is either soil or air atmosphere. The air atmosphere environment also includes, for some drum surfaces, contact with the underside of the tarp. The temperature of the air atmosphere is relatively uniform. Year-round measurements have not been taken, but available data suggest that the temperature span should be from {approximately} 10 to 30{degrees}C (50 to 86{degrees}F). Humidity in underground storage module mock-ups has been measured at nearly 90% during testing in the summer months. Subsequent tests have shown that the humidity probably drops to 50 to 60% during other seasons. This report describes results of a project to inspect the condition of the waste drums.

Duncan, D.; DeRosa, D.C.; Demiter, J.A. [Westinghouse Hanford Company, Richland, WA (United States)

1995-12-31T23:59:59.000Z

405

Underground Transmission Cable System Construction and Installation Practices Manual  

Science Conference Proceedings (OSTI)

A reliable underground transmission line depends on reliable cable system manufacturing, design, construction, installation, and operation and maintenance. Construction and installation remain the most expensive component to implement. Recent advances in underground transmission have led to more demand for best practices and innovative ways to reduce construction and installation costs in a cable project. The Electric Power Research Institute (EPRI) has funded many projects over the years to improve the ...

2010-12-03T23:59:59.000Z

406

Future Inspection and Monitoring of Underground Transmission Lines  

Science Conference Proceedings (OSTI)

Underground transmission lines have performed reliably for the power transmission industry. Nonetheless, there are opportunities to improve on-line condition assessment of the underground cable systems. Some of these opportunities can be realized by incorporating improved sensors, more efficient power sources to the sensors, enhanced data collection systems, and better integration with utilities operations systems. This report describes technologies that can be applied in future inspection and monitoring...

2009-12-01T23:59:59.000Z

407

Applications of Increased Power Flow Strategies for Underground Cables  

Science Conference Proceedings (OSTI)

In 2003, the Electric Power Research Institute (EPRI) recognized that there were no detailed resources on the topic of increased power flow (sometimes called uprating) for underground cable systems. Transmission cables were often the focus of evaluations where utilities were seeking to get the greatest improvement in load transfer for a given investment. The 2003 EPRI report, Increased Power Flow Guidebook: Underground Cables, describes basic cable rating principles and ...

2013-11-21T23:59:59.000Z

408

EPRI Underground Transmission Systems Reference Book (Green Book)  

Science Conference Proceedings (OSTI)

This report is an updated edition of the Underground Transmission Systems Reference Book, which was originally published in 1992. Published in the first edition with a green cover, the book has become commonly known throughout the industry as the Green Book. The book provides a desk and field compendium on the general principles involved in the planning, design, manufacture, installation design, installation, testing, operation, and maintenance of underground cable systems.

2007-03-29T23:59:59.000Z

409

Underground-Energy-Storage Program, 1982 annual report  

DOE Green Energy (OSTI)

Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

Kannberg, L.D.

1983-06-01T23:59:59.000Z

410

LLNL Capabilities in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

Friedmann, S J; Burton, E; Upadhye, R

2006-06-07T23:59:59.000Z

411

Prediction of Underground Argon Content for Dark Matter Experiments  

E-Print Network (OSTI)

In this paper, we demonstrate the use of physical models to evaluate the production of $^{39}$Ar and $^{40}$Ar underground. Considering both cosmogenic $^{39}$Ar production and radiogenic $^{40}$Ar production in situ and from external sources, we can derive the ratio of $^{39}$Ar to $^{40}$Ar in underground sources. We show for the first time that the $^{39}$Ar production underground is dominated by stopping negative muon capture on $^{39}$K and ($\\alpha,n)$ induced subsequent $^{39}$K(n,p)$^{39}$Ar reactions. The production of $^{39}$Ar is shown as a function of depth. We demonstrate that argon depleted in $^{39}$Ar can be obtained only if the depth of the underground resources is greater than 500 m.w.e. below the surface. Stopping negative muon capture on $^{39}$K dominates over radiogenic production at depths of less than 2000 m.w.e., and that production by muon-induced neutrons is subdominant at any depth. The depletion factor depends strongly on both radioactivity level and potassium content in the rock. We measure the radioactivity concentration and potassium concentration in the rock for a potential site of an underground argon source in South Dakota. Depending on the probability of $^{39}$Ar and $^{40}$Ar produced underground being dissolved in the water, the upper limit of the concentration of $^{39}$Ar in the underground water at this site is estimated to be in a range of a factor of 1.6 to 155 less than the $^{39}$Ar concentration in the atmosphere. The calculation tools presented in this paper are also critical to the dating method with $^{39}$Ar.

D. -M. Mei; Z. -B. Yin; J. Spaans; M. Koppang; A. Hime; C. Keller; V. M. Gehman

2009-12-29T23:59:59.000Z

412

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Oil Project Will Help Keep Carbon Dioxide Underground Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

413

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

414

Underground Injection Control (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control (West Virginia) Injection Control (West Virginia) Underground Injection Control (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners

415

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

416

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

417

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

418

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

419

Office of Enforcement Final Notice of Violation to Pacific Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Final Notice of Violation to Pacific Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Office of Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Pursuant to section 234C of the Atomic Energy Act, as amended, 42 U.S.C. § 2282c, and the Department of Energy's (DOE) regulations at 10 C.F.R. Part 851, Worker Safety and Health Program, DOE is issuing this Final Notice of Violation (FNOV) to Pacific Underground Construction, Inc. (PUC). The FNOV finds PUC liable for violating DOE's worker safety and health requirements. The FNOV is based upon the Office of Enforcement's July 23, 2008, Investigation Report and a careful and thorough review of all evidence presented to DOE by PUC, including your response to the Preliminary Notice

420

Underground radio technology saves miners and emergency response personnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital Alert Technologies, Inc. (Vital Alert) has launched a wireless, two-way real-time voice communication system that is effective through 1,000+ feet of solid rock. April 3, 2012 Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock strata and other solid media. Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

422

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

423

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

424

Feasibility study of underground energy storage using high-pressure, high-temperature water. Final report  

DOE Green Energy (OSTI)

A technical, operational and economic feasibility study on the storage of energy as heated high pressure water in underground cavities that utilize the rock overburden for containment is presented. Handling peak load requirements of electric utility power networks is examined in some detail. The cavity is charged by heating water with surplus steaming capacity during periods of low power requirement. Later this hot water supplies steam to peaking turbines when high load demands must be met. This system can be applied to either new or existing power plants of nuclear or fossil fuel type. The round trip efficiency (into storage and back) is higher than any other system - over 90%. Capital costs are competitive and the environmental impact is quite benign. Detailed installation and design problems are studied and costs are estimated. The continental United States is examined for the most applicable geology. Formations favorable for these large cavities exist in widespread areas.

Dooley, J.L.; Frost, G.P.; Gore, L.A.; Hammond, R.P.; Rawson, D.L.; Ridgway, S.L.

1977-01-01T23:59:59.000Z

425

First Results from the Cryogenic Dark Matter Search in the Soudan Underground Lab  

E-Print Network (OSTI)

We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg-d of Ge net exposure after cuts for recoil energies between 10-100 keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. These data set the world's lowest exclusion limits on the coherent WIMP-nucleon scalar cross-section for all WIMP masses above 15 GeV, ruling out a significant range of neutralino supersymmetric models. The minimum of the limit curve at the 90% C.L. is 4 x 10^{-43} cm^2 at a WIMP mass of 60 GeV.

Akerib, D S; Armel-Funkhouser, M S; Attisha, M J; Baudis, L; Bauer, D A; Beaty, J; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Callahan, D; Castle, J P; Chang, C L; Choate, R; Crisler, M B; Cushman, P; Dixon, R; Dragowsky, M R; Driscoll, D D; Duong, L; Emes, J; Ferril, R; Filippini, J; Gaitskell, R J; Haldeman, M; Hale, D; Holmgren, D; Huber, M E; Johnson, B; Johnson, W; Kamat, S; Kozlovsky, M; Kula, L; Kyre, S; Lambin, B; Lu, A; Mahapatra, R; Manalaysay, A G; Mandic, V; May, J; McDonald, R; Merkel, B; Meunier, P; Mirabolfathi, N; Morrison, S; Nelson, H; Nelson, R; Novak, L; Ogburn, R W; Orr, S; Perera, T A; Perillo-Isaac, M C; Ramberg, E; Rau, W; Reisetter, A; Ross, R R; Saab, T; Sadoulet, B; Sander, J; Savage, C; Schmitt, R L; Schnee, R W; Seitz, D N; Serfass, B; Smith, A; Smith, G; Spadafora, A L; Sundqvist, K; Thompson, J P F; Tomada, A; Wang, G; Williams, J; Yellin, S; Young, B A

2004-01-01T23:59:59.000Z

426

Relevance of underground natural gas storage to geologic sequestration of carbon dioxide  

E-Print Network (OSTI)

2002). U.S. Natural Gas Storage. http://www.eia.doe.gov/oil_OF UNDERGROUND NATURAL GAS STORAGE TO GEOLOGIC SEQUESTRATIONof underground natural gas storage (UNGS), which started in

Lippmann, Marcelo J.; Benson, Sally M.

2002-01-01T23:59:59.000Z

427

Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 849,115 666,248 313,952 100,096 58,314 80,472 115,649 125,989 55,418 51,527 183,799 473,674 2012 619,332 515,817 205,365 126,403 73,735 90,800 129,567 133,919 66,652 85,918 280,933 489,707 2013 791,849 646,483 480,032 134,680 48,945 68,117 98,141 101,568 66,273 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators

428

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

429

Underground Coal Mine Monitoring with Wireless Sensor Networks  

E-Print Network (OSTI)

10 Underground Coal Mine Monitoring with Wireless Sensor Networks MO LI and YUNHAO LIU Hong Kong University of Science and Technology Environment monitoring in coal mines is an important application queries under instable circumstances. A prototype is deployed with 27 mica2 motes in a real coal mine. We

Liu, Yunhao

430

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 5:36:07 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393NUS2","NA1392NUS2","NA1391NUS2","...

431

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations  

Science Conference Proceedings (OSTI)

Most of the research and development work done until now in earthing analysis is devoted to cases where the soil can be modelled in terms of an homogeneous and isotropic semi-infinite continuous medium, being the soil resistivity an order of magnitude ... Keywords: grounding analysis, earthing analysis, underground substations

Ignasi Colominas; Jose Paris; Xesus Nogueira; Fermin Navarrina; Manuel Casteleiro

2012-05-01T23:59:59.000Z

432

Coal properties and system operating parameters for underground coal gasification  

Science Conference Proceedings (OSTI)

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

433

Advanced Underground Vehicle Power and Control Fuelcell Mine Locomotive  

E-Print Network (OSTI)

-- Tethered -- Diesel -- Battery · Solution by fuelcells will provide cost offsets -- Lower recurring costs -- Higher availability -- Lower ventilation costs A PROBLEM AND OPPORTUNITY Underground Traction Power #12 available battery-powered 4-ton locomotive · Remove traction battery module and use existing electric drive

434

The Legal Rights and Liabilities of Underground CO2 Storage  

Science Conference Proceedings (OSTI)

This report reviews the legal and regulatory landscape of CO2 storage through an analysis of current rules from state and federal agencies that have jurisdiction now, or may have jurisdiction in the future, and which will impact the planning, construction, management and operation of underground CO2 storage projects.

2009-10-28T23:59:59.000Z

435

Magneto-inductive networked rescue system (MINERS): taking sensor networks underground  

Science Conference Proceedings (OSTI)

Wireless underground networks are an emerging technology which have application in a number of scenarios. For example, in a mining disaster, flooding or a collapse can isolate portions of underground tunnels, severing wired communication links and preventing ... Keywords: magnetic, magneto-inductive, mining, network, search and rescue, triaxial, underground

Andrew Markham; Niki Trigoni

2012-04-01T23:59:59.000Z

436

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

437

GRR/Section 14-HI-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-HI-c - Underground Injection Control Permit GRR/Section 14-HI-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-c - Underground Injection Control Permit 14HIC - UndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Safe Drinking Water Branch Regulations & Policies Hawaii Administrative Rules Title 11, Chapter 23 Triggers None specified Click "Edit With Form" above to add content 14HIC - UndergroundInjectionControlPermit (1).pdf 14HIC - UndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The developer must receive an Underground Injection Control Permit from the

438

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 22452248, AUGUST 1, 2000 Subsurface nuclear tests monitoring through the  

E-Print Network (OSTI)

nuclear tests down to 1 kiloton (kt) TNT equivalent anywhere on the planet. The IMS is based upon four waves will help check for underground, under­water and atmospheric nuclear tests. The fourth networkGEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245­2248, AUGUST 1, 2000 Sub­surface nuclear

Hourdin, Chez Frédéric

439

Department of Energy Announces 15 Projects Aimed at Secure Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Projects Aimed at Secure 15 Projects Aimed at Secure Underground Storage of CO2 Department of Energy Announces 15 Projects Aimed at Secure Underground Storage of CO2 August 11, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide (CO2) in geologic formations. Funded at $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies, and making the U.S. a leader in

440

one mile underground into a deep saline formation. The injection  

NLE Websites -- All DOE Office Websites (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Westinghouse Earns Mine Safety Award for Exceptional Underground Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Westinghouse Earns Mine Safety Award Westinghouse Earns Mine Safety Award For Exceptional Underground Operations CARLSBAD, N.M., October 5, 2000 - For the 14 th consecutive year, the Westinghouse Waste Isolation Division (WID) has been recognized for "excellence in underground operations" at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). On September 19, New Mexico State Inspector of Mines Gilbert Miera and the New Mexico Mining Association presented Westinghouse with the "Mine Operator of the Year" award. The presentation took place at the New Mexico Mining Association's annual convention in Farmington. The "Mine Operator of the Year" award recognizes Westinghouse's close attention to safety in a mining environment. WID received the award in the category of "non-producing

442

Advanced Underground Gas Storage Concepts Refrigerated-Mined Cavern Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

UNDERGROUND GAS STORAGE CONCEPTS UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE FINAL REPORT DOE CONTRACT NUMBER DE-AC26-97FT34349 SUBMITTED BY: PB-KBB INC. 11757 KATY FREEWAY, SUITE 600 HOUSTON, TX 77079 SEPTEMBER 1998 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

443

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

444

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

445

Methodology for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

Methodology for EIA Weekly Underground Natural Gas Storage Estimates Methodology for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 25, 2008 This report consists of the following sections: Survey and Survey Processing - a description of the survey and an overview of the program Sampling - a description of the selection process used to identify companies in the survey Estimation - how the regional estimates are prepared from the collected data Computing the 5-year Averages, Maxima, Minima, and Year-Ago Values for the Weekly Natural Gas Storage Report - the method used to prepare weekly data to compute the 5-year averages, maxima, minima, and year-ago values for the weekly report Derivation of the Weekly Historical Estimates Database - a description of the process used to generate the historical database for the

446

Ventilation and air-conditioning concept for CNGS underground areas  

E-Print Network (OSTI)

The aim of the CNGS project is to prove the existence of neutrino oscillation by generating an intense neutrino beam from CERN in the direction of the Gran Sasso laboratory in Italy, where two large neutrino detectors are built to detect the neutrinos. All the components for producing the neutrino beam will be situated in the underground tunnels, service galleries and chambers. The ventilation and air-conditioning systems installed in these underground areas have multiple tasks. Depending on the operating mode and structure to be air-conditioned, the systems are required to provide fresh air, cool the machine, dehumidify areas housing sensible equipment or assure the smoke removal in a case of a fire. This paper presents the technical solutions foreseen to meet these requirements.

Lindroos, J

2002-01-01T23:59:59.000Z

447

Underground coal mining technology: An overview and a look ahead  

SciTech Connect

Underground coal mining systems have kept pace with developments that have occurred in other types of mining. A diversified group of machines are now available with high horsepower motors, built-in microprocessor technology, and numerous options to satisfy miners' needs in various geological environments. The results will be a greater degree of mechanization and recovery of coal from inclined seams, thins seams, and seams mined in lifts from shallow as well as deeper deposits. This article is based on a general survey carried out by the authors to determine the current status of mechanization and systems development in underground coal mining. It indicates that the next two decades will see increasing use of longwall mining, which has already reached a high degree of sophistication.

Singhal, R.K. (Canmet Coal Research Lab., Devon, Alberta (CA)); Fytas, K. (Laval Univ., Quebec City, PQ (Canada)); Lama, R.D. (Kembla Coal and Coke Proprietary Ltd., Wollongong, NSW (AU))

1989-09-01T23:59:59.000Z

448

Underground coal gasification: a brief review of current status  

SciTech Connect

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

449

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

450

Construction of the NuMI underground laboratory facilities  

SciTech Connect

At Fermilab, a 4000-ft long underground complex has recently been constructed for a high-energy physics experiment. The complex is sited up to 350 ft, below grade principally in bedrock. The rock excavations were mined by TBM and drill and blast methods and supported by a combination of rock bolts, dowels and shotcrete. Water control was achieved using a combination of pre- and post-excavation grouting, drainage systems, drip shielding and air desiccation measures.

Laughton, Christopher; Bruen, Michael P

2003-01-01T23:59:59.000Z

451

Updating the EPRI Underground Transmission Systems Reference Book  

Science Conference Proceedings (OSTI)

EPRI is sponsoring the development of a new updated edition of the Underground Transmission Systems Reference Book (EPRI report TR-101670), which was originally published in 1992. Published in the first edition with a green cover, the book has become commonly known throughout the industry as the Green Book. Since publication of the first edition, there have been significant changes in both technology and the needs of utilities. This project will compile the most up-to-date technical information on underg...

2005-11-07T23:59:59.000Z

452

EPRI Underground Distribution Systems Reference Book (The Bronze Book)  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has developed the first edition of the EPRI Underground Distribution Systems Reference Book (Bronze Book). This reference, authored by leading industry expert authors, joins the EPRI series of Power Delivery technical references, commonly known by the color of their covers. The Bronze Book has been written to be a meaningful reference to utility engineers and personnel involved in the planning, design, manufacture, installation, operation, and maintenance of ...

2010-12-20T23:59:59.000Z

453

Underground Cable Fault Location Reference and Application Guide  

Science Conference Proceedings (OSTI)

This report summarizes underground cable fault location methods and details the application of the methods for transmission and distribution cable systems. It summarizes both terminal location and tracer location methods that can be applied to transmission and distribution cable systems. The report is an update to a summary of fault location methods. It provides practical technical material in the art and science of locating cable faults, including a description of common fault location instruments and p...

2011-12-23T23:59:59.000Z

454

Electrical Safety Practices of Underground Transmission Systems--2011 Update  

Science Conference Proceedings (OSTI)

Safety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public and are diligent about monitoring compliance. However, underground transmission cables present unique requirements that might not be covered in existing utility safety practices. This report addresses the grounding requirements and induced voltage calculation procedures that should be considered when performing operation, maintena...

2011-12-05T23:59:59.000Z

455

Iowa Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Iowa Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 228,019 220,410 215,229 215,377 219,838 224,572 230,226 236,154 239,871 243,782 241,829 227,519 1991 225,964 215,495 211,852 213,588 218,084 228,720 234,297 240,868 252,335 263,855 255,740 241,570 1992 221,741 209,087 205,548 208,105 217,022 225,236 236,833 247,704 258,372 267,472 258,308 237,797 1993 218,826 208,027 205,378 210,868 217,693 225,793 236,688 247,032 259,649 265,238 258,580 240,957 1994 222,694 213,205 210,208 212,114 217,678 224,185 234,433 245,426 257,120 266,215 261,645 243,875 1995 223,356 212,480 208,011 207,340 211,295 219,417 229,558 244,448 256,135 263,260 252,590 237,557

456

Utah Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 56,937 55,229 54,606 57,328 55,249 67,314 75,921 83,365 86,778 66,668 58,461 1991 61,574 54,369 50,745 51,761 54,314 60,156 66,484 70,498 74,646 75,367 70,399 63,453 1992 59,541 59,119 59,059 60,896 64,403 67,171 70,690 75,362 78,483 79,756 74,021 67,181 1993 61,308 56,251 52,595 52,028 58,713 65,349 69,968 75,120 80,183 85,406 79,818 75,184 1994 70,826 63,733 66,678 68,028 74,061 78,089 83,551 89,773 98,223 102,035 99,841 94,306 1995 86,450 83,059 79,507 80,647 84,154 90,012 97,005 100,430 101,993 102,510 103,779 93,925

457

New York Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) New York Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 124,150 116,994 113,349 121,215 131,103 139,757 148,861 155,592 158,419 160,981 150,947 1991 127,051 118,721 114,190 117,571 124,275 132,029 140,317 149,058 157,799 163,054 158,736 151,036 1992 146,171 131,831 119,880 122,969 132,698 142,107 153,543 163,508 169,298 172,708 169,361 158,828 1993 145,521 129,184 118,756 122,771 133,838 144,835 154,895 162,969 172,642 174,589 171,253 161,801 1994 143,310 129,129 120,675 129,563 138,273 150,582 159,688 168,628 173,584 174,977 172,352 163,470 1995 149,768 135,478 129,570 130,077 138,659 150,010 156,744 165,026 173,947 175,635 165,945 148,196

458

Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Injections into Underground Storage (Million Cubic Feet) Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,740 243 1,516 3,236 5,817 8,184 5,657 5,928 4,903 4,971 1,423 854 1991 1,166 155 231 1,829 4,897 8,985 6,518 8,058 11,039 10,758 2,782 860 1992 488 43 1,246 3,184 7,652 7,568 11,453 11,281 11,472 9,000 1,228 1,203 1993 0 0 733 5,547 6,489 7,776 10,550 10,150 12,351 8,152 2,437 0 1994 0 75 1,162 3,601 7,153 7,638 11,999 12,405 13,449 10,767 2,678 0 1995 0 0 251 1,041 5,294 9,889 12,219 17,805 13,756 8,855 1,283 391 1996 2 2 0 40 1,921 7,679 12,393 13,168 12,537 10,556 2,760 0

459

Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 296,629 281,511 286,917 279,978 298,202 307,083 317,720 325,432 332,591 338,392 353,804 327,277 1991 283,982 278,961 284,515 298,730 313,114 323,305 324,150 328,823 338,810 342,711 317,072 306,300 1992 288,415 280,038 276,287 282,263 290,192 301,262 318,719 326,705 339,394 346,939 330,861 299,990 1993 275,054 253,724 246,989 257,844 277,833 296,860 311,870 325,201 341,207 348,646 330,986 316,146 1994 285,115 259,794 257,148 273,797 298,007 311,154 327,281 340,312 349,174 353,630 350,671 334,502 1995 310,835 297,169 287,302 291,768 308,245 320,842 327,910 326,131 338,685 351,385 343,918 320,269

460

Montana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 293,785 290,491 289,197 288,193 293,815 288,808 290,947 293,015 295,663 296,921 295,421 290,602 1991 289,270 287,858 286,548 286,491 287,718 288,959 290,667 292,107 292,226 290,844 288,112 284,559 1992 281,148 279,325 278,909 279,042 280,038 280,751 281,777 282,543 282,117 280,760 277,412 271,811 1993 266,711 262,291 259,532 257,822 256,665 255,940 257,149 257,450 257,904 257,816 253,710 250,503 1994 246,679 239,940 238,777 237,993 238,931 240,738 242,090 243,176 244,948 245,981 244,275 241,603 1995 238,103 236,109 235,420 236,218 237,498 239,637 242,554 245,760 246,856 246,301 243,255 238,004

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

AGA Western Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 888,010 816,597 813,746 830,132 876,457 908,444 941,985 966,686 1,002,402 1,021,144 997,644 956,234 1995 902,782 884,830 865,309 860,012 897,991 945,183 975,307 986,131 1,011,948 1,032,357 1,033,363 982,781 1996 896,744 853,207 837,980 849,221 885,715 916,778 929,559 928,785 946,748 949,983 939,649 899,689 1997 833,239 796,139 788,601 801,955 844,880 890,703 923,845 947,277 969,170 980,388 967,286 880,627 1998 828,658 780,476 768,264 773,053 823,311 872,913 900,181 925,287 965,846 1,001,548 1,009,978 953,379

462

Indiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Indiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 96,943 93,233 91,600 91,945 93,696 95,361 97,632 101,323 105,497 108,028 108,772 105,317 1991 99,409 90,625 87,381 86,706 88,659 89,700 93,022 97,673 102,161 119,470 106,066 101,121 1992 94,379 89,893 85,767 85,259 86,457 88,999 94,154 98,267 103,478 106,422 103,871 100,288 1993 95,109 90,016 87,368 88,414 89,388 91,515 95,971 100,516 104,709 106,058 104,160 101,505 1994 95,846 92,274 90,200 89,473 89,417 91,870 97,002 101,310 105,300 109,518 110,149 107,215 1995 101,661 95,902 93,464 92,724 93,156 94,955 97,862 101,470 106,201 110,610 111,401 106,609

463

Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736 181,774 172,140 171,465 177,888 185,725 193,275 198,075 204,437 205,524 199,683 188,970 1994 170,283 157,974 153,378 158,141 167,847 177,200 186,856 193,717 197,308 200,665 200,993 192,700 1995 179,376 166,756 162,223 165,687 178,354 185,982 192,799 196,645 203,357 205,882 196,585 185,704

464

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

465

AGA Eastern Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223 247,897 166,356 39,330 28,875 1997 16,058 14,620 25,278 93,501 207,338 258,086 250,776 252,129 233,730 152,913 53,097 10,338 1998 21,908 13,334 48,068 139,412 254,837 234,427 234,269 207,026 178,129 144,203 52,518 28,342

466

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 2,322 1994-Jan 01/07 2,186 01/14 2,019 01/21 1,782 01/28 1,662 1994-Feb 02/04 1,470 02/11 1,303 02/18 1,203 02/25 1,149 1994-Mar 03/04 1,015 03/11 1,004 03/18 952 03/25 965 1994-Apr 04/01 953 04/08 969 04/15 1,005 04/22 1,085 04/29 1,161 1994-May 05/06 1,237 05/13 1,325 05/20 1,403 05/27 1,494

467

Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 79,285 79,603 80,373 85,161 89,985 93,156 99,475 104,348 108,323 111,705 112,191 106,545 1991 91,368 86,763 86,679 92,641 96,297 98,701 100,991 103,104 108,211 112,270 104,184 98,741 1992 89,008 87,873 85,498 85,665 89,979 94,898 99,555 100,116 106,504 107,770 107,015 100,433 1993 94,466 86,908 80,802 83,305 90,316 94,786 99,933 103,264 109,076 109,790 108,869 101,774 1994 92,881 89,305 92,689 97,058 101,796 102,770 109,298 114,566 116,697 120,326 121,207 115,933 1995 107,126 102,620 98,569 103,285 110,250 111,888 116,039 116,791 123,081 125,717 116,280 109,906

468

Texas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Texas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 456,385 449,625 443,662 508,009 518,658 531,197 544,212 538,450 539,191 556,768 562,961 526,092 1991 444,671 436,508 436,440 453,634 468,302 487,953 491,758 497,878 513,315 517,099 502,004 486,831 1992 455,054 440,895 435,515 438,408 456,948 469,532 491,515 508,950 511,787 516,598 496,232 459,458 1993 414,216 388,921 376,731 396,804 423,544 444,755 453,961 466,560 450,853 457,581 445,059 431,719 1994 381,924 342,046 350,039 374,226 407,219 419,997 446,215 462,725 485,146 495,417 500,640 478,036 1995 465,108 443,908 434,564 455,756 479,313 497,829 498,982 490,940 510,646 520,173 509,944 463,202

469

Colorado Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Colorado Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 66,554 61,757 56,567 52,684 52,375 56,614 62,829 68,028 73,035 74,259 80,053 1991 71,524 69,768 62,807 61,367 62,448 66,425 70,705 75,800 80,506 82,065 83,134 82,145 1992 78,319 74,888 68,199 64,030 63,685 65,682 69,830 76,095 82,007 84,134 81,041 78,303 1993 73,838 68,733 66,224 62,799 65,511 70,157 73,322 77,155 81,457 81,981 79,475 78,303 1994 72,798 67,880 65,147 60,034 65,538 67,050 71,639 76,943 82,093 82,347 80,736 77,356 1995 73,047 69,545 64,567 59,852 62,142 70,945 73,047 77,326 80,150 81,357 82,831 77,475

470

Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 50,980 47,820 48,924 49,656 52,214 53,271 55,370 58,030 60,465 61,702 59,577 58,586 1991 55,450 52,159 50,537 51,458 52,941 54,594 55,998 58,233 60,342 61,017 61,304 61,207 1992 56,350 51,413 48,752 47,855 51,162 53,850 55,670 58,057 60,123 61,373 61,882 59,775 1993 56,503 52,155 50,240 49,746 51,939 53,114 54,206 55,924 58,423 61,103 61,504 58,605 1994 52,059 49,590 50,127 51,375 53,420 54,885 56,985 58,443 59,992 61,761 60,987 59,854 1995 57,642 53,398 53,293 53,049 55,049 57,080 56,891 58,074 60,121 61,273 60,740 57,798

471

Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,878 27,848 27,810 27,846 27,946 28,419 28,946 29,427 29,707 29,734 29,656 29,429 1991 27,498 27,132 26,811 26,616 26,747 27,086 27,573 27,587 27,587 27,587 26,958 26,294 1992 25,642 25,124 24,681 24,523 24,507 25,016 25,868 26,532 26,966 26,770 26,404 25,781 1993 25,148 24,276 23,798 23,676 22,852 22,866 22,856 22,856 22,856 22,731 22,096 21,239 1994 19,771 18,729 17,426 17,116 17,647 18,199 18,762 19,566 19,776 19,712 19,354 18,757 1995 17,752 16,999 16,460 16,330 16,541 17,854 19,348 20,738 20,895 20,815 20,197 18,048

472

Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 516,257 477,783 453,124 462,399 511,406 619,401 671,431 711,942 717,828 719,002 665,421 1991 543,808 501,265 471,608 482,628 527,550 545,866 569,927 607,093 651,148 669,612 658,358 627,857 1992 559,416 497,895 441,187 445,158 485,227 535,829 579,713 622,943 665,414 690,920 692,280 650,707 1993 580,189 479,149 417,953 444,095 494,680 547,289 592,762 632,195 680,452 695,718 689,050 639,761 1994 532,216 455,494 434,081 475,107 527,242 583,595 634,007 677,221 700,758 716,066 696,721 656,431 1995 590,100 497,162 469,515 481,690 525,118 578,640 611,291 648,080 695,988 713,882 669,744 594,750

473

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

474

Modeling of contaminant transport in underground coal gasification  

Science Conference Proceedings (OSTI)

In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

Lanhe Yang; Xing Zhang [China University of Mining and Technology, Xuzhou (China). College of Resources and Geosciences

2009-01-15T23:59:59.000Z

475

Illinois Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Illinois Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 806,109 754,941 721,785 717,863 749,618 782,498 812,054 847,731 881,760 900,526 903,640 870,265 1991 801,635 753,141 727,699 720,275 751,641 781,883 810,535 844,477 877,485 904,206 885,341 851,258 1992 791,129 743,484 716,909 709,150 742,812 774,578 805,097 843,543 878,334 905,597 887,454 844,108 1993 783,875 735,236 710,377 713,214 746,899 779,762 810,546 844,320 882,456 907,957 898,655 854,691 1994 781,826 737,719 723,108 722,735 746,576 776,189 808,832 843,372 880,762 907,622 898,872 866,846 1995 803,422 745,457 721,311 716,886 745,970 774,803 804,912 837,002 868,941 899,868 885,665 841,580

476

Ohio Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Ohio Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 439,384 418,280 409,494 412,498 435,089 454,844 474,266 493,301 510,714 521,774 518,006 489,515 1991 477,781 454,923 439,191 448,258 461,362 490,259 505,168 523,544 538,399 546,343 533,483 506,672 1992 463,200 428,363 392,474 394,514 420,383 452,412 478,259 500,938 516,378 527,568 522,419 491,542 1993 452,510 407,121 368,376 371,641 401,431 433,291 462,741 490,248 515,994 522,961 510,471 470,120 1994 413,475 378,216 361,279 377,103 406,526 438,293 471,603 498,156 519,996 530,505 526,490 498,597 1995 448,479 410,867 391,082 385,953 413,796 445,322 472,162 495,448 513,913 522,766 498,715 455,782

477

Kansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 245,145 234,971 229,066 227,002 227,589 232,695 244,279 256,395 272,036 278,715 307,106 283,959 1991 247,980 246,067 240,702 238,606 244,878 254,222 257,114 260,728 271,373 282,551 273,225 274,836 1992 267,254 254,115 244,632 239,589 241,818 244,415 248,599 260,231 270,362 273,183 262,414 247,855 1993 229,148 213,533 208,832 213,112 235,850 247,585 253,023 261,780 276,136 278,233 268,816 259,719 1994 243,371 229,217 228,379 229,034 240,066 245,355 256,229 268,820 278,655 283,143 276,402 266,198 1995 251,176 239,135 228,409 230,202 239,892 252,703 252,472 252,461 269,034 280,066 272,406 255,483

478

Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 377,554 379,627 371,519 372,188 379,245 393,418 407,240 421,000 435,705 450,886 459,955 452,883 1991 405,740 373,892 361,085 367,797 387,769 411,591 425,349 435,719 453,303 477,425 464,906 433,184 1992 387,456 358,639 345,049 348,097 369,129 388,728 403,713 413,375 432,171 452,989 447,115 411,919 1993 365,128 321,651 298,841 302,181 340,366 375,731 402,638 430,431 466,345 481,609 468,227 421,634 1994 376,035 357,247 343,892 365,948 400,035 421,714 451,504 474,085 497,428 506,525 502,477 463,847 1995 412,075 372,991 364,320 374,312 392,968 420,738 441,510 442,655 466,060 480,119 455,669 408,882

479

California Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) California Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 369,842 350,519 355,192 376,146 401,513 414,633 418,894 421,696 426,235 440,326 397,785 1991 376,267 376,879 359,926 380,826 407,514 431,831 445,387 448,286 448,383 448,081 441,485 417,177 1992 374,166 357,388 341,665 355,718 382,516 404,547 418,501 431,069 445,438 455,642 446,085 390,868 1993 357,095 337,817 348,097 356,320 385,972 399,994 423,027 433,552 448,573 461,473 446,120 411,943 1994 372,605 328,438 327,546 346,463 374,574 394,821 412,465 421,818 438,754 450,997 434,260 408,636 1995 377,660 373,010 365,068 362,271 388,641 414,650 428,646 426,927 442,131 460,286 462,316 436,346

480

Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 799 683 623 539 539 539 673 807 919 1,022 1,126 1,127 1999 996 872 741 661 658 802 909 985 1,089 1,194 1,251 1,195 2000 1,031 855 792 729 711 711 711 711 711 760 874 959 2001 963 903 830 761 865 978 1,009 1,072 1,118 1,180 938 937 2002 987 988 990 990 965 962 949 945 942 940 852 852 2003 744 634 566 519 554 630 705 800 803 848 848 787 2004 684 633 621 652 685 731 794 849 854 879 867 826 2005 784 704 605 524 483 466 466 466 428 419 413 400

Note: This page contains sample records for the topic "faultless underground nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 82,538 81,491 81,181 82,095 83,472 85,002 83,477 83,923 85,020 84,918 81,317 1991 79,407 78,372 77,653 78,788 81,843 83,985 83,721 83,657 84,562 84,253 83,847 81,475 1992 79,888 78,880 78,837 79,448 81,080 83,708 85,758 86,968 88,154 87,853 85,260 81,824 1993 78,414 76,448 75,412 76,380 79,328 82,649 85,226 87,084 88,593 88,564 86,793 84,418 1994 81,833 79,100 79,242 80,202 82,339 83,239 85,362 85,709 87,835 88,765 88,935 86,932 1995 84,820 83,825 82,895 82,697 83,340 84,206 35,388 35,566 35,950 35,183 33,585 31,992

482

Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are inactive or abandoned. However, some leachfields may still receive liquids from runoff during storm events. Results from the 2000-2001 site characterization activities conducted by International Technology (IT) Corporation, Las Vegas Office are documented in the Corrective Action Investigation Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. This document is located in Appendix A of the Corrective Action Decision Document for CAU 262. Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. (DOE/NV, 2001).

K. B. Campbell

2002-06-01T23:59:59.000Z

483

The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies  

SciTech Connect

Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

Pawloski, G A; Wurtz, J; Drellack, S L

2009-12-29T23:59:59.000Z

484

Microsoft Word - 2006 Final CNTA Field Data Report.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

NV/13609-49 NV/13609-49 Hydrologic Data and Evaluation for Wells Near the Faultless Underground Nuclear Test, Central Nevada Test Area Prepared by Brad Lyles, Phil Oberlander, David Gillespie, Dee Donithan, and Jenny Chapman submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada May 2006 Publication No. 45219 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public from: U.S. Department of Commerce

485

Revitalized Board Lays Out New Path amid EM's Recent Underground Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalized Board Lays Out New Path amid EM's Recent Underground Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes August 20, 2012 - 12:00pm Addthis Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures.

486

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection - Does the DOGGR Approve the Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project After the end of the comment period and after reviewing any proposed revisions furnished by the Regional Board, the State Board decides whether to approve the Underground Injection Project. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.12_-_Does_the_DOGGR_Approve_the_Underground_Injection_Project&oldid=539630

487

GRR/Section 18-WA-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-WA-a - Underground Storage Tank Process GRR/Section 18-WA-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-WA-a - Underground Storage Tank Process 18-WA-a - Underground Storage Tank Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.76 Washington Administrative Code Chapter 173-360 Triggers None specified Washington has a federally-approved state Underground Storage Tank (UST) program regulated by the Washington State Department of Ecology (WSDE) under Revised Code of Washington Chapter 90.76 and Washington Administrative Code Chapter 173-360. Washington defines an "Underground

488

GRR/Section 18-OR-a - State Underground Storage Tank | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-OR-a - State Underground Storage Tank GRR/Section 18-OR-a - State Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-a - State Underground Storage Tank 18ORAStateUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-150: Underground Storage Tank Rules Triggers None specified Click "Edit With Form" above to add content 18ORAStateUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 18-OR-a.1 - Application for General Permit Registration Certificate, EPA

489

GRR/Section 14-WA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-c - Underground Injection Control Permit GRR/Section 14-WA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-c - Underground Injection Control Permit 14-WA-c - Underground Injection Control Permit.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Chapter 173-218 WAC Non-endangerment Standard Triggers None specified The Safe Drinking Water Act requires Washington to implement technical criteria and standards to protect underground sources of drinking water from contamination. Under Chapter 173-218 WAC, the Washington State Department of Ecology (WSDE) regulates and permits underground injection control (UIC) wells in Washington. The Environmental Protection Agency

490

Advanced underground Vehicle Power and Control: The locomotive Research Platform  

DOE Green Energy (OSTI)

Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

Vehicle Projects LLC

2003-01-28T23:59:59.000Z

491

Figure 6.6 Natural Gas Underground Storage, End of Year  

U.S. Energy Information Administration (EIA)

1954-2011 Base Gas and Working Gas in Underground Storage, 1954-2011 188 U.S. Energy Information Administration / Annual Energy Review 2011

492

Remote control, signalization and communication system at Eynez fully mechanized underground colliery, Turkey  

Science Conference Proceedings (OSTI)

The peculiarities of application of the mine observation system Senturion 600 are considered for continuous gas control at Eynez underground colliery.

Pamukcu, C. [Dokuz Eylul University, Izmir (Turkey)

2007-07-15T23:59:59.000Z

493

Salt caverns account for 23% of U.S. underground natural gas ...  

U.S. Energy Information Administration (EIA)

The U.S. has three primary types of underground natural gas storage facilities: depleted fields, aquifers, and salt caverns. Depleted natural gas fields provide by ...

494

Stability Analyses of Differently Shaped Salt Caverns for Underground Natural Gas Storage.  

E-Print Network (OSTI)

??The primary purpose of underground storage for natural gas is to balance the variable demand for gas in high consumption seasons against the constant supply… (more)

Onal, Erol

2013-01-01T23:59:59.000Z

495

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground...  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection Project < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List...

496

Table 6.6 Natural Gas Underground Storage, End of Year 1954-2011 ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... Commission, Form FPC-8, "Underground Gas Storage Report." - 1979-1984-U.S. Energy Information

497

U.S. Underground Storage of Natural Gas in 1997: Existing and Proposed  

Reports and Publications (EIA)

Examines recent and proposed expansions of underground natural gas storage capacity and deliverability in the United States, as of September 1, 1997.

Information Center

1997-09-01T23:59:59.000Z

498

Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566 1,703 2,173 2,383 2,618 2,699 3,101 3,024 3,158 2,969 2000 2,055 2,053 2,368 2,302 2,392 2,999 3,080 3,080 2,970 2,828 2,624 2,539 2001 2,210 2,451 1,847 2,041 1,997 2,574 2,728 2,841 2,859 2,739 5,527 5,538

499

Michigan Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Michigan Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 706,889 648,325 624,515 616,656 665,124 729,161 807,726 878,119 930,596 949,922 938,864 867,940 1991 743,402 679,102 654,930 682,092 729,387 786,753 845,224 891,823 911,554 952,843 894,499 818,602 1992 733,877 658,347 592,859 592,608 637,515 705,740 780,590 849,043 917,537 946,090 899,631 810,348 1993 710,139 607,908 543,589 559,454 637,732 723,706 807,040 889,450 955,444 989,143 937,100 847,136 1994 702,694 613,074 582,416 623,584 696,448 770,914 845,328 922,211 987,829 1,019,096 999,421 936,290 1995 830,235 717,515 666,164 665,004 718,094 783,569 857,995 914,295 966,578 998,665 931,432 813,622

500

West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 406,358 395,084 390,792 397,000 415,841 433,111 451,251 467,272 480,567 484,278 484,868 464,807 1991 434,160 413,996 410,940 418,771 433,924 450,027 464,274 474,984 483,421 487,004 475,927 453,446 1992 423,942 396,889 367,681 369,328 393,606 411,353 433,399 452,065 465,496 478,316 472,378 449,402 1993 417,527 374,171 344,142 349,414 388,771 415,925 435,814 454,993 475,298 482,458 468,770 435,687 1994 379,825 347,246 330,957 352,059 377,614 406,195 433,763 456,009 476,854 482,830 475,145 450,055 1995 406,251 364,959 352,876 358,628 383,018 407,328 422,458 431,357 449,075 463,546 440,460 401,144