Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Enhanced Fault Detection Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search Dictionary.png Enhanced Fault Detection Technology Enhanced fault detection technology enables higher precision and greater discrimination of fault location and type with coordinated measurement among multiple devices. For distribution applications, this technology can detect and isolate faults without full-power re-closing, reducing the frequency of through-fault currents. Using high resolution sensors and fault signatures, this technology can better detect high impedance faults. For transmission applications, this technology will employ high speed communications between multiple elements (e.g., stations) to protect entire regions, rather than just single elements. It can also use the latest digital techniques to advance beyond conventional impedance relaying of

2

Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

Johnson, K. E.; Fleming, P. A.

2011-06-01T23:59:59.000Z

3

Solar system fault detection  

SciTech Connect

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, Robert B. (Wheatridge, CO); Pruett, Jr., James C. (Lakewood, CO)

1986-01-01T23:59:59.000Z

4

Solar system fault detection  

DOE Patents (OSTI)

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, R.B.; Pruett, J.C. Jr.

1984-05-14T23:59:59.000Z

5

Dynamic Fault Detection Chassis  

Science Conference Proceedings (OSTI)

Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

Mize, Jeffery J [ORNL

2007-01-01T23:59:59.000Z

6

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N. (Bethel Park, PA)

1999-01-01T23:59:59.000Z

7

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

Jha, K.N.

1999-05-18T23:59:59.000Z

8

Multiple signal fault detection using fuzzy logic  

Science Conference Proceedings (OSTI)

In this paper, we describe a multiple Signal Fault Detection system that employs fuzzy logic at two levels of detection: signal segment fault and signal fault. The system involves signal segmentation, feature extraction and fuzzy logic based segment ...

Yi Lu Murphey; Jacob Crossman; ZhiHang Chen

2003-06-01T23:59:59.000Z

9

Benchmarking of Fault-Location Technologies  

Science Conference Proceedings (OSTI)

This report resumes the studies on fault-location technologies that were conducted in 2009. These studies were undertaken in a joint project done with the collaboration of Hydro-Qubec, Long Island Power Authority, and the Electric Power Research Institute (EPRI). Two fault-location technologies were tested, the Reactance to Fault (RTF) implemented in the PQView application and the Voltage Drop Fault Location (VDFL) implemented in the MILE application. The RTF is based on substation voltage and current me...

2011-03-31T23:59:59.000Z

10

Observer-based fault detection for nuclear reactors  

E-Print Network (OSTI)

This is a study of fault detection for nuclear reactor systems. Basic concepts are derived from fundamental theories on system observers. Different types of fault- actuator fault, sensor fault, and system dynamics fault ...

Li, Qing, 1972-

2001-01-01T23:59:59.000Z

11

Fault detection and diagnosis of technical systems  

Science Conference Proceedings (OSTI)

Sensors, actuators and/or physical components in technical systems are often affected by unpermitted or un-expected deviations from normal operation behaviour. The fault diagnosis task consists of determination of the fault type with as many details ... Keywords: fault detection and diagnosis, residuals, symptoms, technical systems

Ioana Fagarasan; S. ST. Iliescu

2008-06-01T23:59:59.000Z

12

Outlier Detection Rules for Fault Detection in Solar Photovoltaic Arrays  

E-Print Network (OSTI)

fault detection. Furthermore, the proposed models become more reliable as the number of PV measurements analysis specifically for PV installation. Several fault detection models and monitoring systems have been studied for PV systems [8]­[14]. PV monitoring and fault detection models based on energy yield and power

Lehman, Brad

13

An arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn, opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N.

1997-12-01T23:59:59.000Z

14

Fault Detection, Location, Isolation and Reconnection in ...  

A University of Colorado research team led by Jae-Do Park has developed a fault detection, location and isolation scheme for a low-voltage DC-bus microgrid system, ...

15

Fault detection of fault ride through for doubly-fed induction generator based wind energy systems.  

E-Print Network (OSTI)

??Fault detection and mitigation is of high importance for existing DFIG based wind energy conversion systems. Keeping the doubly-fed induction generator (DFIG) online during faults… (more)

Ramroop, Shoba AD

2008-01-01T23:59:59.000Z

16

Detect and classify faults using neural nets  

SciTech Connect

The analysis of transmission line faults is essential to the proper performance of the power system. It is required if protective relays are to take the appropriate action and in monitoring the performance of relays, circuit breakers, and other protective and control elements. The detection and classification of transmission line faults is a fundamental component of such fault analysis. Another application of fault analysis is in software packages for automated analysis of digital fault recorder (DFR) files. Recently, such a package, called DFR Assistant, was developed for substation applications. This program can be installed locally in a substation, in which case it is connected directly to the DFR via a high speed parallel link, or it can be installed at a central station, in which case it can be configured to automatically analyze events coming from all DFRs.

Kezunovic, M.; Rikalo, I.

1996-10-01T23:59:59.000Z

17

Online fault detection and tolerance for photovoltaic energy harvesting systems  

Science Conference Proceedings (OSTI)

Photovoltaic energy harvesting systems (PV systems) are subject to PV cell faults, which decrease the efficiency of PV systems and even shorten the PV system lifespan. Manual PV cell fault detection and elimination are expensive and nearly impossible ... Keywords: fault detection, fault tolerance, photovoltaic panel reconfiguration, photovoltaic system

Xue Lin; Yanzhi Wang; Di Zhu; Naehyuck Chang; Massoud Pedram

2012-11-01T23:59:59.000Z

18

Applications of fault detection methods to industrial processes  

Science Conference Proceedings (OSTI)

Components of industrial processes are often affected by un-permitted or un-expected deviations from normal operation behaviour. The fault detection task consists of determination of the fault present in a system and the time of detection. In addition ... Keywords: fault detection and diagnosis, industrial processes, residuals, symptoms

Ioana Fagarasan; S. S. T. Iliescu

2008-06-01T23:59:59.000Z

19

Design and Evaluation of Hybrid Fault-Detection Systems  

Science Conference Proceedings (OSTI)

As chip densities and clock rates increase, processors are becoming more susceptible to transient faults that can affect program correctness. Up to now, system designers have primarily considered hardware-only and software-only fault-detection mechanisms ...

George A. Reis; Jonathan Chang; Neil Vachharajani; Ram Rangan; David I. August; Shubhendu S. Mukherjee

2005-06-01T23:59:59.000Z

20

Distributed sensor system for fault detection and isolation in multistage manufacturing systems  

Science Conference Proceedings (OSTI)

With rapid innovations in sensing technology and the rising complexity in manufacturing processes, increasingly less expensive and smart devices with multiple heterogeneous on-board sensors, networked through wired or wireless links and deployable ... Keywords: DSS, MMS, data management, decision making, distributed control, distributed sensor systems, fault detection, fault isolation, industrial automation, information processing, multistage manufacturing systems, optimal design, sensor networks

Du Shi-Chang; Xi Li-Feng; Shi Jian-Jun

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ANFIS based sensor fault detection for continuous stirred tank reactor  

Science Conference Proceedings (OSTI)

In this paper, an Adaptive Neuro-Fuzzy Inference System (ANFIS) based Sensor fault detection and isolation for Continuous Stirred Tank Reactor (CSTR) is proposed. CSTR is a highly nonlinear process exhibiting stable and unstable steady state at different ... Keywords: ANFIS observer, Continuous stirred tank reactor, Dedicated observer, Fault detection

U. Sabura Banu; G. Uma

2011-03-01T23:59:59.000Z

22

Symbolic identification for fault detection in aircraft gas turbine engines  

E-Print Network (OSTI)

Symbolic identification for fault detection in aircraft gas turbine engines S Chakraborty, S Sarkar and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines identification, gas turbine engines, language-theoretic analysis 1 INTRODUCTION The propulsion system of modern

Ray, Asok

23

Fault detection in multivariate signals with applications to gas turbines  

Science Conference Proceedings (OSTI)

This paper proposes a fault detection method for multivariate signals. The method assesses whether or not the multivariate autocovariance functions of two independently sampled system signals coincide. If the first signal is known to be sampled from ... Keywords: autocovariances, fault detection, spectral analysis, stationary time series

Hany Bassily; Robert Lund; John Wagner

2009-03-01T23:59:59.000Z

24

On-line early fault detection and diagnosis of municipal solid waste incinerators  

Science Conference Proceedings (OSTI)

A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

Zhao Jinsong [College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: jinsongzhao@mail.tsinghua.edu.cn; Huang Jianchao [College of Information Science and Technology, Beijing Institute of Technology, Beijing 10086 (China); Sun Wei [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

2008-11-15T23:59:59.000Z

25

Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems  

E-Print Network (OSTI)

Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems Xue Lin 1 , Yanzhi, yanzhiwa, dizhu, pedram}@usc.edu, 2 naehyuck@elpl.snu.ac.kr ABSTRACT Photovoltaic energy harvesting systems (PV systems) are subject to PV cell faults, which decrease the efficiency of PV systems and even

Pedram, Massoud

26

Dynamic transient fault detection and recovery for embedded processor datapaths  

Science Conference Proceedings (OSTI)

As microprocessors continue to evolve and grow in functionality, the use of smaller nanometer technology scaling coupled with high clock frequencies and exponentially increasing transistor counts dramatically increases the susceptibility of transient ... Keywords: datapath, embedded, fault tolerance, reliability, soft errors

Garo Bournoutian; Alex Orailoglu

2012-10-01T23:59:59.000Z

27

Neural net application to transmission line fault detection and classification  

E-Print Network (OSTI)

Today, in electric power systems, a large amount of data is made readily available at the occurrence of a fault due to the use of advanced communication systems, digital relays and fault recorders. Such systems are intended to obtain data from contacts of the relays and circuit breakers under operation. In addition, corresponding voltages and currents are recorded during prefault, fault and postfault periods. Restoration of power Systems after a fault occurred requires quick judgment. Hence, fault analysis, as the first step of restoration is very important. However, since faults in power systems are various and relaying systems may be complex, fault analysis is difficult to automate. Common practice in power utility companies, today, is to perform fault analysis by expert operators using their knowledge about the power systems and experience with past faults. Because of the time required to deal with complex fault situations, detailed fault analysis can not be performed by human operators in a short time. Therefore, on-line automated fault analysis system is strongly desired. Traditional approaches to the problem of analysis is to construct a heuristic, rule-based system which embodies a portion of the compiled experience of a human expert. These systems perform fault analysis by mapping fault indications to fault hypotheses. 'These hypotheses are used as inputs for next level of rules. After completion of inferencing process, conclusions are given. The knowledge acquisition process is exhaustive and time consuming. Also, data processing is usually too slow to be effectively applied in a real-time environment. Neural computing is one of the rapidly expanding areas of current research. Neural nets have some obvious advantages over expert systems. They are computationally more effective because of their parallel processing capabilities. Also, there is no need for detailed knowledge acquisition part, because neural nets learn by example. This thesis presents results of a study on using the new neural net system that can perform both on-line and off-line fault detection and classification. Fault analysis is conceptualized as a pattern classification problem which involves the association of input patterns representing the power system state to one or more fault conditions.

Rikalo, Igor

1994-01-01T23:59:59.000Z

28

Fault Detection and Isolation in Low-Voltage DC Distribution ...  

A University of Colorado research team led by Jae-Do Park has developed a fault detection and isolation scheme for a low-voltage DC-bus microgrid system, ...

29

Adaptive Control and Fault Detection of HVAC Equipment in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptive Control and Fault Detection of HVAC Equipment in Commercial Buildings Speaker(s): John Seem Date: February 27, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of...

30

Non-intrusive fault detection in reciprocating compressors  

E-Print Network (OSTI)

This thesis presents a set of techniques for non-intrusive sensing and fault detection in reciprocating compressors driven by induction motors. The procedures developed here are "non-intrusive" because they rely only on ...

Schantz, Christopher James

2011-01-01T23:59:59.000Z

31

Soft Computing Application in Fault Detection of Induction Motor  

Science Conference Proceedings (OSTI)

The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr. [Electrical Engineering Department, BESUS, Shibpur (India)

2010-10-26T23:59:59.000Z

32

A Fault Detection and Diagnosis Method for HVAC Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

A Fault Detection and Diagnosis Method for HVAC Systems A Fault Detection and Diagnosis Method for HVAC Systems Speaker(s): Peng Xu Date: December 2, 2002 - 12:00pm Location: Bldg. 90 There is a growing consensus that most buildings do not perform as well as intended and that faults in HVAC systems are widespread in commercial buildings. An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests

33

Detection of Rooftop Cooling Unit Faults Based on Electrical Measurements  

Science Conference Proceedings (OSTI)

Non-intrusive load monitoring (NILM) is accomplished by sampling voltage and current at high rates and reducing the resulting start transients or harmonic contents to concise ''signatures''. Changes in these signatures can be used to detect, and in many cases directly diagnose, equipment and component faults associated with roof-top cooling units. Use of the NILM for fault detection and diagnosis (FDD) is important because (1) it complements other FDD schemes that are based on thermo-fluid sensors and analyses and (2) it is minimally intrusive (one measuring point in the relatively protected confines of the control panel) and therefore inherently reliable. This paper describes changes in the power signatures of fans and compressors that were found, experimentally and theoretically, to be useful for fault detection.

Armstrong, Peter R.; Laughman, C R.; Leeb, S B.; Norford, L K.

2006-01-31T23:59:59.000Z

34

A fuzzy neural network based fault detection scheme for synchronous generator with internal fault  

Science Conference Proceedings (OSTI)

A fuzzy neural network (FNN) based inter-turn short circuit fault detection scheme for generator is proposed. The second harmonic magnitude of field current and the negative sequence components of voltages and currents are used as inputs for the FNN ...

Hongwei Fang; Changliang Xia

2009-08-01T23:59:59.000Z

35

Fault detection of multivariable system using its directional properties  

E-Print Network (OSTI)

A novel algorithm for making the combination of outputs in the output zero direction of the plant always equal to zero was formulated. Using this algorithm and the result of MacFarlane and Karcanias, a fault detection scheme was proposed which utilizes the directional property of the multivariable linear system. The fault detection scheme is applicable to linear multivariable systems. Results were obtained for both continuous and discrete linear multivariable systems. A quadruple tank system was used to illustrate the results. The results were further verified by the steady state analysis of the plant.

Pandey, Amit Nath

2004-12-01T23:59:59.000Z

36

Fault Detection and Isolation of a Cryogenic Rocket Engine Combustion Chamber Using a Parity Space Approach  

Science Conference Proceedings (OSTI)

his paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three ... Keywords: Fault Detection, Fault Isolation, Fault Diagnosis, Parity Space, Rocket Engine

Paul van Gelder; André Bos

2009-07-01T23:59:59.000Z

37

Fault Detection and Diagnostics for Commercial Heating ...  

Science Conference Proceedings (OSTI)

... As the technology matures there will be opportunities to impact building energy efficiency standards such as ASHRAE 189.1 (Standard for the ...

2012-12-17T23:59:59.000Z

38

Sensor Fault Detection in Power Plants Andrew Kusiak1  

E-Print Network (OSTI)

and Soroush 2003 . Any false reading could lead to di- sastrous outcomes. In a coal-fired power plant, faultySensor Fault Detection in Power Plants Andrew Kusiak1 and Zhe Song2 Abstract: This paper presents approach handles data from temporal processes by periodic updates of the knowledge base. An industrial

Kusiak, Andrew

39

Dominant Feature Identification for Industrial Fault Detection and Isolation Applications  

Science Conference Proceedings (OSTI)

Fault Detection and Isolation (FDI) is crucial to reduce production costs and down-time in industrial machines. In this paper, we show how to find a reduced feature subset which is optimal in both estimation and clustering least square errors using a ... Keywords: Least Square Error (LSE), Neural Network (NN), Principal Component Analysis (PCA), Principal Feature Analysis (PFA), Singular Value Decomposition (SVD)

Jun-Hong Zhou; Chee Khiang Pang; Frank L. Lewis; Zhao-Wei Zhong

2011-08-01T23:59:59.000Z

40

Low cost fault detection system for railcars and tracks  

E-Print Network (OSTI)

A "low cost fault detection system" that identifies wheel flats and defective tracks is explored here. This is achieved with the conjunction of sensors, microcontrollers and Radio Frequency (RF) transceivers. The objective of the proposed research is to identify faults plaguing railcars and to be able to clearly distinguish the faults of a railcar from the inherent faults in the track. The focus of the research though, is mainly to identify wheel flats and defective tracks. The thesis has been written with the premise that the results from the simulation software GENSYS are close to the real time data that would have been obtained from an actual railcar. Based on the results of GENSYS, a suitable algorithm is written that helps segregate a fault in a railcar from a defect in a track. The above code is implemented using hardware including microcontrollers, accelerometers, RF transceivers and a real time monitor. An enclosure houses the system completely, so that it is ready for application in a real environment. This also involves selection of suitable hardware so that there is a uniform source of power supply that reduces the cost and assists in building a robust system.

Vengalathur, Sriram T.

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Application of Control Charts for Detecting Faults in Variable ...  

Science Conference Proceedings (OSTI)

... where Tzone = zone temperature, CSP = cooling setpoint ... Fault Implementation and Impact To test ... fault imple- mentations and impacts are provided ...

42

Sensor fault detection using the Mahalanobis distance  

Science Conference Proceedings (OSTI)

A method is described by which a localized sensor abnormality can be detected using the Mahalanobis distance. The Mahalanobis distance is approximately the weighted distance from the hyperplane formed by the principal components to the particular observation. Qualitatively, the principal components correspond to the physical laws that govern the behavior of the systems and constraints placed on the system. If there are more sensors than principal components, there are redundant measurements. This redundancy can be used to detect abnormalities that are due either to sensor failure or a localized change in the system being measured. The method compares the distribution of the Mahalanobis distance during normal operation with the distribution during the current operation. A likelihood ratio test is then used to determine if a sensor has gone bad or if operations in the reactor are different from normal. The sensor whose value is not normal is identified by comparing Mahalanobis distances computed with one sensor masked. When the abnormal sensor is masked, the Mahalanobis distance for this subset of sensors will be within prespecified bounds. The method is demonstrated on 20 subassembly output thermocouples in the core of Experimental Breeder Reactor II.

White, A.M.; Gross, K.C. (Argonne National Lab., IL (United States)); Kubic, W.L (Los Alamos National Lab., NM (United States))

1993-01-01T23:59:59.000Z

43

A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS  

E-Print Network (OSTI)

1 A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS T. I describes a control scheme with fault detection capabilities suitable for application to HVAC systems as a reference of correct operation. Faults that occur in the HVAC system under control cause the PI

44

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

pathways in the Monterey Formation, California: Americanalong faults in the Monterey Formation, coastal California.

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

45

Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

DOE Green Energy (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

46

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

47

Methodology for fault detection and diagnostics in an ocean turbine using vibration analysis and modeling.  

E-Print Network (OSTI)

??This thesis describes a methodology for mechanical fault detection and diagnostics in an ocean turbine using vibration analysis and modeling. This methodology relies on the… (more)

Mjit, Mustapha.

2009-01-01T23:59:59.000Z

48

Optimal Bayesian estimation and control scheme for gear shaft fault detection  

Science Conference Proceedings (OSTI)

Fault detection and diagnosis of gear transmission systems have attracted a lot of attention in recent years, but there are very few papers dealing with the early detection of shaft cracks. In this paper, a new methodology for predicting failures of ... Keywords: EM algorithm, Gear shaft fault detection, Hidden Markov modeling, Multivariate Bayesian control, Time synchronous averaging, Wavelet transform

Rui Jiang; Jing Yu; Viliam Makis

2012-12-01T23:59:59.000Z

49

Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors  

Science Conference Proceedings (OSTI)

This paper presents an application of recurrent neuro-fuzzy systems to fault detection and isolation in nuclear reactors. A general framework is adopted, in which a fuzzification module is linked to an inference module that is actually a neural network ... Keywords: Diagnostic system, Fault detection and isolation, Human-machine integration, Neuro-fuzzy systems, Nuclear power plants, Recurrent neural networks

Alexandre Evsukoff; Sylviane Gentil

2005-01-01T23:59:59.000Z

50

Integrated Fault Detection and Isolation: Application to a Winery's Wastewater Treatment Plant  

Science Conference Proceedings (OSTI)

In this paper, an integrated object-oriented fuzzy logic fault detection and isolation (FDI) module for a biological wastewater treatment process is presented. The defined FDI strategy and the software implementation are detailed. Using experimental ... Keywords: anaerobic digestion, fuzzy logic, object-oriented programming, on-line fault detection and isolation (FDI), wastewater treatment

Antoine Genovesi; Jérôme Harmand; Jean-Philippe Steyer

2000-07-01T23:59:59.000Z

51

Sliding mode for detection and accommodation of computation time delay fault  

Science Conference Proceedings (OSTI)

Computation time delay in digital control systems reduces its robustness as well as degrades its performance. In this paper, the computation time delay is assumed to be constant and smaller than the sampling time and is treated as a fault to be detected, ... Keywords: Computation time delay, Discrete-time sliding mode control, Fault detection, Sliding mode observer

José Paulo F. Garcia; Lizete Maria C. F. Garcia; Gisele C. Apolinário; Fernando B. Rodrigues

2009-10-01T23:59:59.000Z

52

Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept  

E-Print Network (OSTI)

307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

Ray, Asok

53

Bearing Fault Detection in DFIG-Based Wind Turbines Using the First Intrinsic Mode Function  

E-Print Network (OSTI)

Bearing Fault Detection in DFIG-Based Wind Turbines Using the First Intrinsic Mode Function Y become a focal point in the research of renewable energy sources. In order to make the DFIG-based wind for bearing fault detection in DFIG-based wind turbines. The proposed method uses the first Intrinsic Mode

Paris-Sud XI, Université de

54

Spline regression based feature extraction for semiconductor process fault detection using support vector machine  

Science Conference Proceedings (OSTI)

Quality control is attracting more attention in semiconductor market due to harsh competition. This paper considers Fault Detection (FD), a well-known philosophy in quality control. Conventional methods, such as non-stationary SPC chart, PCA, PLS, and ... Keywords: Fault detection, Feature extraction, Semiconductor manufacturing, Spline regression, Support vector machine

Jonghyuck Park; Ick-Hyun Kwon; Sung-Shick Kim; Jun-Geol Baek

2011-05-01T23:59:59.000Z

55

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

diagnostic method for vapor compression air conditioners”,evaluation of faults in vapor compression cycle equipment”,Diagnostic Methods to Vapor Compression Cooling Equipment“,

Najafi, Massieh

2010-01-01T23:59:59.000Z

56

A Hierarchical Rule-Based Fault Detection and Diagnostic Method for HVAC Systems  

E-Print Network (OSTI)

A rule-based, system-level fault detection and diagnostic (FDD) method for HVAC systems was developed. It functions as an interface between multiple, equipment-specific FDD tools and a human operator. The method resolves and prioritizes conflicting fault reports from equipment-specific FDD tools, performs FDD at the system level, and presents an integrated view of an HVAC system’s fault status to an operator. A simulation study to test and evaluate the method was conducted.

Jeffrey Schein; Steven T. Bushby

2005-01-01T23:59:59.000Z

57

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

based methods of fault detection and diagnosis (FDD).Component-level FDD, which is the subject of the work

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

58

Development of Characterization Technology for Fault Zone Hydrology  

SciTech Connect

Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

2010-08-06T23:59:59.000Z

59

Fault Detection, Diagnosis and Prediction in Electrical Valves Using Self-Organizing Maps  

Science Conference Proceedings (OSTI)

This paper presents a proactive maintenance scheme for fault detection, diagnosis and prediction in electrical valves. The proposed scheme is validated with a case study, considering a specific valve used for controlling the oil flow in a distribution ... Keywords: Fault prediction, Proactive maintenance, Self-organizing maps, Test of electromechanical systems

Luiz Fernando Gonçalves; Jefferson Luiz Bosa; Tiago Roberto Balen; Marcelo Soares Lubaszewski; Eduardo Luis Schneider; Renato Ventura Henriques

2011-08-01T23:59:59.000Z

60

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

one example being Dixie Valley, Nevada, an active normalrock at various sites: Dixie Valley, Nevada; Wasatch, Utah;20 m in parts of the Dixie Valley and Wasatch fault zones.

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Program on Technology Innovation: Application of a High Temperature Superconducting Fault Current Limiter at AEP's Sporn Substation  

Science Conference Proceedings (OSTI)

This report describes the application of a Superconducting Fault Current Limiter (SFCL) to address fault current over-duty problems in American Electric Power's 138kV Sporn Substation. EPRI is current developing SFCL technology targeted to address fault current over-duty problems at the transmission voltage level of 138kV and higher. The technology under development is termed the Matrix Fault Current Limiter (MFCL) due to the modular nature arrangements of its High Temperature Superconducting (HTS) eleme...

2007-10-30T23:59:59.000Z

62

System for detecting and limiting electrical ground faults within electrical devices  

DOE Patents (OSTI)

An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

Gaubatz, Donald C. (Cupertino, CA)

1990-01-01T23:59:59.000Z

63

System and method for bearing fault detection using stator current noise cancellation  

Science Conference Proceedings (OSTI)

A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

Zhou, Wei (Los Angeles, CA); Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA); Harley, Ronald G. (Lawrenceville, GA); Theisen, Peter J. (West Bend, WI)

2010-08-17T23:59:59.000Z

64

System and method for motor fault detection using stator current noise cancellation  

Science Conference Proceedings (OSTI)

A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

Zhou, Wei (Los Angeles, CA); Lu, Bin (Kenosha, WI); Nowak, Michael P. (Menomonee Falls, WI); Dimino, Steven A. (Wauwatosa, WI)

2010-12-07T23:59:59.000Z

65

Fault detection in reaction wheel of a satellite using observer-based dynamic neural networks  

Science Conference Proceedings (OSTI)

This paper presents a methodology for the actuator fault detection in the satellite's attitude control system (ACS) by using a dynamic neural network based observer. In this methodology, a neural network is used to model a nonlinear dynamical system. ...

Zhongqi Li; Liying Ma; Khashayar Khorasani

2005-05-01T23:59:59.000Z

66

Kalman filter-based multialternative method for fault detection and estimation  

Science Conference Proceedings (OSTI)

Proposed was a computationally efficient multialternative method for detection and estimation of faults additively involved in the right-hand sides of the linear equations of the state and measurement vectors. In distinction to the classical approach ...

D. A. Koshaev

2010-05-01T23:59:59.000Z

67

IMPLEMENTION AND TESTING OF A FAULT DETECTION SOFTWARE TOOL FOR IMPROVING CONTROL SYSTEM  

E-Print Network (OSTI)

affect the performance of the control scheme and its fault detection sensitivity. 5.2.3 Trend Logging. The process of selecting trend-logging procedures exposed several generic problems faced by building operators

Diamond, Richard

68

Optimizing automated gas turbine fault detection using statistical pattern recognition  

SciTech Connect

A method enabling the automated diagnosis of Gas Turbine Compressor blade faults, based on the principles of statistical pattern recognition is initially presented. The decision making is based on the derivation of spectral patterns from dynamic measurements data and then the calculation of discriminants with respect to reference spectral patterns of the faults while it takes into account their statistical properties. A method of optimizing the selection of discriminants using dynamic measurements data is also presented. A few scalar discriminants are derived, in such a way that the maximum available discrimination potential is exploited. In this way the success rate of automated decision making is further improved, while the need for intuitive discriminant selection is eliminated. The effectiveness of the proposed methods is demonstrated by application to data coming from an Industrial Gas Turbine while extension to other aspects of Fault Diagnosis is discussed. 9 refs.

Loukis, E.; Mathioudakis, K.; Papailiou, K. (Athens National Technical Univ. (Greece))

1992-01-01T23:59:59.000Z

69

Optimizing automated gas turbine fault detection using statistical pattern recognition  

SciTech Connect

A method enabling the automated diagnosis of gas turbine compressor blade faults, based on the principles of statistical pattern recognition, is initially presented. The decision making is based on the derivation of spectral patterns from dynamic measurement data and then the calculation of discriminants with respect to reference spectral patterns of the faults while it takes into account their statistical properties. A method of optimizing the selection of discriminants using dynamic measurement data is also presented. A few scalar discriminants are derived, in such a way that the maximum available discrimination potential is exploited. In this way the success rate of automated decision making is further improved, while the need for intuitive discriminant selection is eliminated. The effectiveness of the proposed methods is demonstrated by application to data coming from an industrial gas turbine while extension to other aspects of fault diagnosis is discussed.

Loukis, E.; Mathioudakis, K.; Papailiou, K. (National Technical Univ. of Athens (Greece). Lab. of Thermal Turbomachines)

1994-01-01T23:59:59.000Z

70

Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report  

Science Conference Proceedings (OSTI)

This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.

Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

2009-03-31T23:59:59.000Z

71

Limitations for detecting small-scale faults using the coherency analysis of seismic data  

E-Print Network (OSTI)

Coherency analyzes the trace to trace amplitude similarities recorded by seismic waves. Coherency algorithms have been used to identify the structural or stratigraphic features of an area but the limitations for detecting small-scale features are not known. These limitations become extremely important when interpreting coherency within poorly acquired or processed data sets. In order to obtain a better understanding of the coherency limitations, various synthetic seismic data sets were created. The sensitivity of the coherency algorithms to variations in wave frequency, signal-to-noise ratio and fault throw was investigated. Correlation between the coherency values of a faulted reflector and the known offset shows that coherency has the ability to detect the presence of various scale features that may be previously thought to be below seismic resolution or difficult to discriminate with conventional interpretation methods. Coherency values had a smaller standard deviation and were less sensitive to noise when processed with a temporal window length less than one period. A fault could be detected by coherency when the signal-to-noise ratio was >3. A fault could also be detected as long as the throw-to-wavelength ratio was >5% or two-way traveltime-toperiod >10%. Therefore, this study suggests that coherency has the ability to detect a fault as long as the frequency of the data imaging that fault has a period no greater than one order of magnitude to the traveltime through the fault and that the signal can easily be distinguished from noise. Results from application of the coherency analysis were applied to the characterization of a very deep fault and fracture system imaged by a field seismic data set. A series of reverse and strike-slip faults were detected and mapped. Magnitudes of the throws for these faults were not known, but subtle amplitude anomalies in seismic sections confirmed the coherency analysis. The results of this study suggest that coherency has demonstrated an ability to detect features that would normally beoverlooked using traditional interpretation methods and has many future implications for poorly imaged seismic areas, such as sub-salt.

Barnett, David Benjamin

2003-05-01T23:59:59.000Z

72

Reliability testing of active SDHW components. Part III. Development of a fault detection system  

SciTech Connect

This report describes a fault detection system developed for solar domestic hot water systems that will assist the homeowner and repairman in detecting major operational faults with the system. A study by the Florida Solar Energy Center showed that most homeowners were unaware of how well their systems were operating. With this need in mind, we developed a system that will detect and display circulation failures, nighttime circulation, freeze protection failure, and overheating protection failure. Cost of the unit using retail prices for components is less than $55.00 (1985 $), excluding the sensors. Fault detection systems are necessary, since it is difficult for homeowners to know the status of their system. Our device is sufficiently developed for industry to use, although further development of some of the sensors and some cost reduction is necessary.

Farrington, R.B.

1986-01-01T23:59:59.000Z

73

Evaluation of a Decoupling-Based Fault Detection and Diagnostic Technique - Part I: Field Emulation Evaluation  

E-Print Network (OSTI)

Existing methods addressing automated fault detection and diagnosis (FDD) for vapor compression air conditioning system have good performance for faults that occur individually, but they have difficulty in handling multiple-simultaneous faults. The decoupling-based (DB) FDD method explicitly addresses diagnostics for multiple-simultaneous faults for the first time. This paper is the first part of a two-part evaluation of the DB FDD technique whose intent is to validate the DB FDD performance and demonstrate its applications. The first part focuses on sensitivity and robustness evaluation through controlled field emulation testing. Sensitivity tests with artificially introduced faults show that individual faults can be identified before they cause a 5% of degradation in cooling capacity, EER and sensible heat ratio. Robustness tests for forty-one multiple-simultaneous-fault combinations demonstrate that no wrong diagnosis occurs with only two false alarms and two sensitivity losses for a liquid-line restriction. The second part, accompanying the first one, focuses on field applications in California.

Li, H.; Braun, J.

2006-01-01T23:59:59.000Z

74

Development of an Automated Fault Detection and Diagnosis tool for AHU's  

E-Print Network (OSTI)

Heating Ventilation and Air Conditioning (HVAC) system energy consumption on average accounts for 40percent of an industrial sites total energy consumption. Studies have indicated that 20 - 30 percent energy savings are achievable by re-commissioning HVAC systems to rectify faulty operation with savings of over 20 percent of total energy cost possible by continuously commissioning. Automated Fault Detection and Diagnosis (AFDD) is a process concerned with automating the detection of faults and their causes in physical systems. AFDD can be used to identify faults in HVAC systems with a view to reducing their energy consumption. An AFDD tool has been designed and developed to allow the performance analysis of AHU's by utilizing knowledge-based principles. Based on an initial alpha testing phase on 12 AHU's across four large industrial pilot sites, in excess of 120,000 euro of energy savings have been detected by the AFDD tool and verified by site survey.

Bruton, K.; Raftery, P.; Aughney, N.; Keane, M.; O'Sullivan, D.

2012-01-01T23:59:59.000Z

75

RARX algorithm based model development and application to real-time data for On-line fault detection  

E-Print Network (OSTI)

Assimilation of cost-effective Fault Detection and Diagnosis (FDD) technique in building management system can save enormous amount of energy and material. In this paper, Recursive Autoregressive Exogenous Algorithm is used to develop dynamic FDD model for variable air volume air handling units. A methodology, based upon frequency response of the model is evolved for automatic fault detection and diagnosis. Results are validated with data obtained from a real building after introducing artificial faults. It is concluded that the method is quite robust and can detect and diagnose several types of faults

Harunori Yoshida; Sanjay Kumar

1999-01-01T23:59:59.000Z

76

AH-64D main transmission accessory drive spur gear installation fault detections  

Science Conference Proceedings (OSTI)

The US Army has launched an aggressive program to implement condition based maintenance on its rotary wing assets. Condition Based Maintenance takes advantage of technology developments in the areas of machinery monitoring, signal processing and fault ... Keywords: Apache, Clutch, Diagnostic, Rotorcraft, Transmission

Jonathan Keller; Damian Carr; Frances Love; Paul Grabill; Hieu Ngo; Perumal Shanthakumaran

2012-04-01T23:59:59.000Z

77

Fault detection and isolation in aircraft gas turbine engines. Part 2: validation on a simulation test bed  

E-Print Network (OSTI)

319 Fault detection and isolation in aircraft gas turbine engines. Part 2: validation of fault detection and isolation (FDI) in aircraft gas turbine engines. The FDI algorithms are built upon,onasimulationtestbed.Thetestbedisbuiltuponanintegratedmodelofageneric two-spool turbofan aircraft gas turbine engine including the engine control system. Keywords: aircraft

Ray, Asok

78

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

Wright, “Condition monitoring in HVAC subsystems using firstmonitoring packaged HVAC equipment. ASHRAE Transactions”,Detection and Diagnosis of HVAC Systems Using Support Vector

Najafi, Massieh

2010-01-01T23:59:59.000Z

79

Research on Fault Detection and Diagnosis of Scrolling Chiller with ANN  

E-Print Network (OSTI)

At first the basic research about FDD is summarized, and a detection model based on ANN is initially set up. The paper presents experiments that simulate seven faults, including change flow rate of chilled water, cooling water and refrigerant, charge non-condense gas, shift temperature of cooling water and alter outside cold load. A set of characteristic parameters are defined in order to differentiate these faults and clarify the reasons. Finally, an FDD tool is programmed based on ANN with experimental results which form a training stylebook and test stylebook.

Zhou, Y.; Zheng, J.; Liu, Z.; Yang, C.; Peng, P.

2006-01-01T23:59:59.000Z

80

A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation  

Science Conference Proceedings (OSTI)

In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

Zhang Yumin; Lum, Kai-Yew [Temasek Laboratories, National University of Singapore, Singapore 117508 (Singapore); Wang Qingguo [Depa. Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

2009-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint  

DOE Green Energy (OSTI)

Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

2013-01-01T23:59:59.000Z

82

Methods for Fault Detection, Diagnostics and Prognostics for Building Systems - A Review Part I  

Science Conference Proceedings (OSTI)

This paper provides an overview of fault detection, diagnostics, and prognostics (FDD&P) starting with descriptions of the fundamental processes and some important definitions. This is followed by a review of FDD&P research in the HVAC&R field, and the paper concludes with discussions of the current state of applications in buildings and likely contributions to operating and maintaining buildings in the future.

Katipamula, Srinivas; Brambley, Michael R.

2005-01-31T23:59:59.000Z

83

Methods for Fault Detection, Diagnostics and Prognostics for Building Systems - A Review Part II  

Science Conference Proceedings (OSTI)

This paper provides the second part of an overview of fault detection, diagnostics, and prognostics (FDD&P) starting with descriptions of the fundamental processes and some important definitions. This is followed by a review of FDD&P research in the HVAC&R field, and the paper concludes with discussions of the current state of applications in buildings and likely contributions to operating and maintaining buildings in the future.

Katipamula, Srinivas; Brambley, Michael R.

2005-04-01T23:59:59.000Z

84

Fault finder  

DOE Patents (OSTI)

A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

Bunch, Richard H. (1614 NW. 106th St., Vancouver, WA 98665)

1986-01-01T23:59:59.000Z

85

Fault Detection in Distributed Climate Sensor Networks using Dynamic Bayesian Networks  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement program operated by U.S. Department of Energy is one of the largest climate research programs dedicated to the collection of long-term continuous measurements of cloud properties and other key components of the earth’s climate system. Given the critical role that collected ARM data plays in the analysis of atmospheric processes and conditions and in the enhancement and evaluation of global climate models, the production and distribution of high-quality data is one of ARM’s primary mission objectives. Fault detection in ARM’s distributed sensor network is one critical ingredient towards maintaining high quality and useful data. We are modeling ARM’s distributed sensor network as a dynamic Bayesian network where key measurements are mapped to Bayesian network variables. We then define the conditional dependencies between variables by discovering highly correlated variable pairs from historical data. The resultant dynamic Bayesian network provides an automated approach to identifying whether certain sensors are malfunctioning or failing in the distributed sensor network. A potential fault or failure is detected when an observed measurement is not consistent with its expected measurement and the observed measurements of other related sensors in the Bayesian network. We present some of our experiences and promising results with the fault detection dynamic Bayesian network.

Chin, George; Choudhury, Sutanay; Kangas, Lars J.; McFarlane, Sally A.; Marquez, Andres

2010-12-07T23:59:59.000Z

86

Evaluation of a Decoupling-Based Fault Detection and Diagnostic Technique - Part II: Field Evaluation and Application  

E-Print Network (OSTI)

Existing methods addressing automated fault detection and diagnosis (FDD) for vapor compression air conditioning system have good performance for faults that occur individually, but they have difficulty in handling multiple-simultaneous faults. The decoupling-based (DB) FDD method explicitly addresses diagnostics for multiple-simultaneous faults for the first time. This paper is the second part of a two-part evaluation of the decoupling-based (DB) fault detection and diagnosis (FDD) technique whose intent is to validate the DB FDD performance and demonstrate its applications. The first part focuses on sensitivity and robustness evaluation through controlled field emulation testing. In this paper, the technique is applied to a number of field sites in California. Detailed results are given for a single site and summary results are given for the other sites. In sum, about 70% of the investigated systems are impacted by faults and about 40% have more than one fault. Service is justified for about 40% of the units. Most of the diagnosed faults are verified through field visits.

Li, H.; Braun, J.

2006-01-01T23:59:59.000Z

87

Automating Power System Fault Diagnosis through Multi-Agent System Technology  

Science Conference Proceedings (OSTI)

Fault diagnosis within electrical power systems is a time consuming and complex task. SCADA systems, digital fault recorders, travelling wave fault locators and other monitoring devices are drawn upon to inform the engineers of incidents, problems and ...

S. D. J. McArthur; E. M. Davidson; J. A. Hossack; J. R. McDonald

2004-01-01T23:59:59.000Z

88

Building Technologies Office: Innovative Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating (WMV 49 MB) Heat Pump Water Heater Technology (WMV 12 MB) HVAC Technologies Residential Air Conditioning Fault Detection and Diagnostics (FDD) and Programs to Support...

89

A survey of land mine detection technology  

Science Conference Proceedings (OSTI)

This paper describes the state of the art in land mine detection technology and algorithms. Landmine detection is a growing concern due to the danger of buried landmines to people's lives, economic growth and development. Most of the injured people have ...

L. Robledo; M. Carrasco; D. Mery

2009-01-01T23:59:59.000Z

90

Advanced technologies for perimeter intrusion detection sensors  

SciTech Connect

The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

Williams, J.D.

1995-03-01T23:59:59.000Z

91

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

ExcelSyus - Excel Energy Technologies, Ltd. http://pdf Trends in Energy Management TechnologyTrends in Energy Management Technology Fault Detection and

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

92

BASIC METHODS FOR AUTOMATED FAULT DETECTION AND ENERGY DATA VALIDATION IN EXISTING DISTRICT HEATING SYSTEMS  

E-Print Network (OSTI)

behaviour over time, as expected for any kind of instrumentation. For example, incorrect information can be generated if there is a bias change or high level of noise in the signal from a sensor, or if there is a malfunctioning flow meter or temperature sensor. Defect or incorrectly dimensioned valves can degrade the energy efficiency of the system and also need to be detected through the effects on the measurements. Fault detection and diagnostics (FDD) of district heating substations (DHS) are important activities because malfunctioning components can lead to incorrect billing and waste of energy. Although FDD has been an activate research area for nearly two decades, only a few simple tools are commonly deployed in the district energy industry. Some of the methods proposed in the literature are promising, but their complexity may prevent broader application. Other methods require sensor data that are not commonly available, or cannot be expected to function well in practice due to oversimplification. Here we present two basic methods for improved FDD and data validation that are compatible with the data acquisition systems that are commonly used today. We propose that correlation analysis can be used to identify substations with similar supply temperatures and that the corresponding temperature difference is a useful quantity for FDD. The second method is a limitchecking approach for the validation of thermal power usage, which is sensitive to faults affecting both the primary flow and temperature sensors in a DHS. These methods are suitable for automated FDD and are demonstrated with hourly data provided by a Swedish district energy company.

Fredrik S; Jonas Gustafsson; Robert Eklund; Jerker Delsing

2012-01-01T23:59:59.000Z

93

Applied change of mean detection techniques for HVAC fault detection and diagnosis and power monitoring  

E-Print Network (OSTI)

A signal processing technique, the detection of abrupt changes in a time-series signal, is implemented with two different applications related to energy use in buildings. The first application is a signal pre-processor for ...

Hill, Roger Owen

1995-01-01T23:59:59.000Z

94

Comparison of chiller models for use in model-based fault detection  

Science Conference Proceedings (OSTI)

Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolTools{trademark}, which is empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

Sreedharan, Priya; Haves, Philip

2001-06-07T23:59:59.000Z

95

Comparison of Chiller Models for Use in Model-Based Fault Detection  

E-Print Network (OSTI)

Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolToolsTM, which is empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

Sreedhara, P.; Haves, P.

2001-01-01T23:59:59.000Z

96

A Qualitive Modeling Approach for Fault Detection and Diagnosis on HVAC Systems  

E-Print Network (OSTI)

This paper describes the basics and first test results of a model based approach using qualitative modeling to perform Fault Detection and Diagnostics (FDD) on HVAC and R systems. A quantized system describing the qualitative behavior of a dynamical system is established by transforming numerical inputs into qualitative values or states. Then, the qualitative model is used to determine system-states or outputs that may occur in the future. The qualitative model determines the probability that a subsequent condition might occur. The model can then be used for FDD purposes by comparing the expected states of the faultless system with the occurring states of the real process. The paper presents the first results of the model, trained with measurement data of an air handling unit (AHU) heating coil. The authors plan to extend the model to further AHU components and to test them against real data to assess their performance for FDD and their economic viability in terms of engineering efforts and costs by comparing them with a rule-based FDD system. It is then planned to implement and test the models on several large HVAC and R systems operating at two major European airports in the framework of the FP7 European project CASCADE ICT for Energy Efficient Airports.

Muller, T.; Rehault, N.; Rist, T.

2013-01-01T23:59:59.000Z

97

A model-based fault detection and diagnostic methodology for secondary HVAC systems.  

E-Print Network (OSTI)

??In the U.S., buildings consume 39 % of primary energy, of which, 13.5% is attributed to HVAC systems. Faults, arising from sensors, equipment, and control… (more)

Li, Shun

2009-01-01T23:59:59.000Z

98

Fault detection methods for vapor-compression air conditioners using electrical measurements  

E-Print Network (OSTI)

(cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

Laughman, Christopher Reed.

2008-01-01T23:59:59.000Z

99

TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY 3463 MAGIC DRIVE, SUITE T-19 SAN ANTONIO, TX 78229 March 29, 2009 Office of the...

100

Available Technologies: Remote Detection of Blood Flow in ...  

Remote Detection of Blood Flow in Living Systems with Background-free MRI IB-2444. APPLICATIONS OF TECHNOLOGY: Clinical and experimental MRI; Portable ...

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of chiller modeling approaches and their usability for fault detection  

Science Conference Proceedings (OSTI)

Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

Sreedharan, Priya

2001-05-01T23:59:59.000Z

102

EDA solutions to new-defect detection in advanced process technologies  

Science Conference Proceedings (OSTI)

For decades, EDA test generation tools for digital logic have relied on the Stuck-At fault model, despite the fact that process technologies moved forward from TTL (for which the Stuck-At fault model was originally developed) to nanometer-scale CMOS. ...

Erik Jan Marinissen; Gilbert Vandling; Sandeep Kumar Goel; Friedrich Hapke; Jason Rivers; Nikolaus Mittermaier; Swapnil Bahl

2012-03-01T23:59:59.000Z

103

Available Technologies: Remote NMR/MRI Detection  

Low field encoding : High field detection = better sensitivity. APPLICATIONS: Enhanced sensitivity expands the uses of nuclear magnetic resonance ...

104

Generic Technologies for the Targeted Detection and ...  

Science Conference Proceedings (OSTI)

... A preliminary assay that uses non-polymerase chain reaction-based (non-PCR-based) single nucleotide polymorphism (SNP) detection methods ...

2011-10-19T23:59:59.000Z

105

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

SciTech Connect

An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests of the sort using in commissioning. This paper presents the results of field tests of mixing box and VAV fan system models in an experimental facility and a commercial office building. The models were found to be capable of representing the performance of correctly operating mixing box and VAV fan systems and detecting several types of incorrect operation.

Xu, Peng; Haves, Philip

2002-05-16T23:59:59.000Z

106

Modern breast cancer detection: a technological review  

Science Conference Proceedings (OSTI)

Breast cancer is a serious threat worldwide and is the number two killer of women in the United States. The key to successful management is screening and early detection. What follows is a description of the state of the art in screening and detection ...

Adam B. Nover; Shami Jagtap; Waqas Anjum; Hakki Yegingil; Wan Y. Shih; Wei-Heng Shih; Ari D. Brooks

2009-01-01T23:59:59.000Z

107

Low Cost Arc Fault Detection and Protection for PV Systems: January 30, 2012 - September 30, 2013  

SciTech Connect

Final report for Tigo Energy Incubator project. The specific objective of this 18-month research effort was to develop an off-the-shelf arc-fault detector. The starting point of the project was a prototype detector that was constructed using discrete components and laboratory equipment. An intermediate objective was to build a technically viable detector using programmable components in the detector circuitry. The final objective was to build a commercially viable detector by reducing the cost of the circuitry through the use of more sophisticated programmable components and higher levels of integration.

McCalmont, S.

2013-10-01T23:59:59.000Z

108

Comparison of chiller models for use in model-based fault detection  

E-Print Network (OSTI)

detection and diagnosis (FDD). Factors that are consideredtheir applicability to model based FDD of vapor compressionextended equipment life. FDD involves two steps: detecting

Sreedharan, Priya; Haves, Philip

2001-01-01T23:59:59.000Z

109

Detection and diagnosis of faults and energy monitoring of HVAC systems with least-intrusive power analysis  

E-Print Network (OSTI)

Faults indicate degradation or sudden failure of equipment in a system. Widely existing in heating, ventilating, and air conditioning (HVAC) systems, faults always lead to inefficient energy consumption, undesirable indoor ...

Luo, Dong, 1966-

2001-01-01T23:59:59.000Z

110

Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray  

E-Print Network (OSTI)

. Roberts, W. E. Vesely, D. F. Haasl, and F. F. Goldberg, Fault Tree Handbook. NUREG-0942, U. S. Nuclear

Ray, Asok

111

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

and diagnosis for cooling towers. ASHRAE Trans. , vol.107,of faults in the cooling tower circuit of a central chilled

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

112

NETL: News Release - DOE Researchers Developing Technology to Safely Detect  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2006 3, 2006 DOE Researchers Developing Technology to Safely Detect Flaws in Plastic Gas Pipelines Tiny, Robot-Borne Sensor to Find Defects, Predict Ruptures Without Disrupting Service WASHINGTON, DC - The Department of Energy's National Energy Technology Laboratory is developing the first technology that can detect flaws in plastic natural gas pipelines without disrupting pipeline operations. It potentially is applicable to almost one-quarter of the Nation's natural gas pipeline system. Safe and inexpensive, the new technology deploys a tiny robot inside plastic pipelines. The robot carries a sensor controlled by a microcomputer which can identify cracks, dents, pinholes, and other anomalies by measuring variations in electric fields on the outside of pipe walls. The technology allows inspection of plastic pipelines from the inside without interrupting the flow of gas, taking them out of service, or digging them up. It can detect potential gas pipeline failures well in advance of a rupture.

113

Research on energy consumption detection system based on OPC technology  

Science Conference Proceedings (OSTI)

For developing of energy consumption detection systems, the system integration becomes more and more difficult. The OPC Object Linking and Embedding OLE for process control technology is used to simplify the problem. The system integration can be improved ...

Changtao Wang; Zhonghua Han; Bin Ma

2013-06-01T23:59:59.000Z

114

Adoption protocols for fanout-optimal fault-tolerant termination detection  

Science Conference Proceedings (OSTI)

Termination detection is relevant for signaling completion (all processors are idle and no messages are in flight) of many operations in distributed systems, including work stealing algorithms, dynamic data exchange, and dynamically structured computations. ... Keywords: high performance computing, termination detection

Jonathan Lifflander; Phil Miller; Laxmikant Kale

2013-08-01T23:59:59.000Z

115

Definition: Enhanced Fault Protection | Open Energy Information  

Open Energy Info (EERE)

Enhanced Fault Protection Enhanced Fault Protection Enhanced fault protection requires higher precision and greater discrimination of fault location and type with coordinated measurement among multiple devices. For distribution applications, these systems will detect and isolate faults without full-power re-closing, reducing the frequency of through-fault currents. Using high resolution sensors and fault signatures, these systems can better detect high impedance faults. For transmission applications, these systems will employ high speed communications between multiple elements (e.g., stations) to protect entire regions, rather than just single elements. They will also use the latest digital techniques to advance beyond conventional impedance relaying of transmission lines.[1] Related Terms

116

Evaluation of chiller modeling approaches and their usability for fault detection  

E-Print Network (OSTI)

Techniques for Model-Based FDD Methods Applied to Vaporfault detection and diagnosis (FDD). Several factors must beapplicability to model based FDD of vapor compression air

Sreedharan, Priya

2001-01-01T23:59:59.000Z

117

Thin-Film Fiber Optic Sensors for Power Control and Fault Detection. Final Report  

Science Conference Proceedings (OSTI)

Described is the development of an optical current measurement device, an active power conditioning system, and sol gel type thin films for the detection of magnetic fields.

Duncan, Paul Grems

2003-09-30T23:59:59.000Z

118

In-situ fault detection apparatus and method for an encased energy storing device  

DOE Patents (OSTI)

An apparatus and method for detecting a breach in an electrically insulating surface of an electrically conductive power system enclosure within which a number of series connected energy storing devices are disposed. The energy storing devices disposed in the enclosure are connected to a series power connection. A detector is coupled to the series connection and detects a change of state in a test signal derived from the series connected energy storing devices. The detector detects a breach in the insulating layer of the enclosure by detecting a state change in the test signal from a nominal state to a non-nominal state. A voltage detector detects a state change of the test signals from a nominal state, represented by a voltage of a selected end energy storing device, to a non-nominal state, represented by a voltage that substantially exceeds the voltage of the selected opposing end energy storing device. Alternatively, the detector may comprise a signal generator that produces the test signal as a time-varying or modulated test signal and injects the test signal into the series connection. The detector detects the state change of the time-varying or modulated test signal from a nominal state, represented by a signal substantially equivalent to the test signal, to a non-nominal state, representative by an absence of the test signal.

Hagen, Ronald A. (Stillwater, MN); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rosenthal, Brian (Stillwater, MN); Rouillard, Jean (Saint-Luc, CA)

2000-01-01T23:59:59.000Z

119

Fast Fault Recovery in Switched Networks for Carrying IP Telephony Traffic.  

E-Print Network (OSTI)

?? One of the most parts of VOIP management is fault management and, in having a good fault management, finding good mechanisms to detect faults… (more)

Eisazadeh, Ali Akbar

2010-01-01T23:59:59.000Z

120

EPRI Fault Current Management Guidebook, Fifth Edition  

Science Conference Proceedings (OSTI)

This document is an update of EPRI report 1020029, Fault Current Management Guidebook, Fourth Edition, on fault current effects and management in transmission and distribution systems. This guide is intended to be a snapshot of available references, information, and literature on the effects of high fault current on a number of power system components and various available and emerging fault-current-limiting technologies.

2011-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Memory Fault Modeling Trends: A Case Study  

Science Conference Proceedings (OSTI)

In recent years, embedded memories are the fastest growing segment of system on chip. They therefore have a major impact on the overall Defect per Million (DPM). Further, the shrinking technologies and processes introduce new defects that cause previously ... Keywords: data backgrounds, dynamic faults, fault coverage, fault models, memory tests, static faults

Said Hamdioui; Rob Wadsworth; John Delos Reyes; Ad J. Van De Goor

2004-06-01T23:59:59.000Z

122

PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace October 20, 2011 - 5:25pm Addthis Charles Gentile (center) and other members of the MINDS team, including Ken Silber (right) and Bill Davis (left) work on new techniques to identify radionuclides. | Photo by Elle Starkman/Princeton Plasma Physics Laboratory Office of Communications Charles Gentile (center) and other members of the MINDS team, including Ken Silber (right) and Bill Davis (left) work on new techniques to identify radionuclides. | Photo by Elle Starkman/Princeton Plasma Physics Laboratory Office of Communications April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What are the key facts?

123

New sensor technology detects chemical, biological, nuclear and explosive  

NLE Websites -- All DOE Office Websites (Extended Search)

New New sensor technology detects chemical, biological, nuclear and explosive materials Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share New sensor technology detects chemical, biological, nuclear and explosive materials Applications for homeland security, emergency planning Instruments in Argonne's Terahertz Test Facility, such as the one Sami Gopalsami is using, can detect trace chemicals at the part-per-billion level.

124

A Necessary Duty, A Hideous Fault: Digital Technology and the Ethics of Archaeological Conservation  

E-Print Network (OSTI)

Archaeological conservation is the process by which conservators prevent deterioration of archaeological remains and provide insight into the nature of recovered material. This thesis examines the effect of digital technology upon the ethics of the conservation profession and upon the attitude of the lay-public towards archaeology. The ethical issues raised by the use of digital technology are discussed, particularly the ways in which these issues differ from those raised by traditional conservation methods. Technological advancements, particularly those occurring in the 20th century, changed the way artifacts are conserved and studied. Conservation arose out of a craft-restoration tradition and evolved into a profession which, in addition to necessary artistic and aesthetic considerations, uses a demonstrable scientific method in order to preserve artifacts. The creation of guidelines for practice and various codes of ethics is the turning point in this evolution, marking the point after which conservation became a scientific profession. Advances in computer technology have permitted the widespread use of devices such as 3-D scanners, digital CT scanners, and digital cameras in the conservation of archaeological artifacts. All of these pieces of equipment produced digital files which must be stored. Currently, the pace of technological change renders most data inaccessible within ten years, and data conservation problems such as storage, access, and file format have not been adequately addressed by the professional conservation community. There is a distinct lack of formal ethical guidelines concerning these issues; this thesis concludes that there is an extreme need for measured consideration before digital methods are used in archaeological conservation. The creation of high-fidelity replicas presents a problem for the museum audience. The public connects with artifacts on an emotional level which is altered when a replica is displayed instead of an original. Digital reconstructions abound in popular culture, heavily influencing public opinion, and often resulting in widespread misperception of the information which can be extracted from archaeological evidence. As a result, conservators of the future must be cautious when creating digital artifacts, and must be meticulously careful to make the nature of digital reconstruction clear to the audience, in order to avoid spreading misinformation.

Smith, Megan H.

2010-05-01T23:59:59.000Z

125

A knowledge-based system approach for sensor fault modeling, detection and mitigation  

Science Conference Proceedings (OSTI)

Sensors are vital components for control and advanced health management techniques. However, sensors continue to be considered the weak link in many engineering applications since often they are less reliable than the system they are observing. This ... Keywords: Detection, Expert system, Neural Network, Sensor failure

Jonny Carlos da Silva; Abhinav Saxena; Edward Balaban; Kai Goebel

2012-09-01T23:59:59.000Z

126

Ontological semantic technology for detecting insider threat and social engineering  

Science Conference Proceedings (OSTI)

This paper describes a computational system for detecting unintentional inferences in casual unsolicited and unrestricted verbal output of individuals, potentially responsible for leaked classified information to people with unauthorized access. Uses ... Keywords: default override, insider threat, natural language information assurance and security, ontological semantic technology, social engineering, unintended inference

Victor Raskin; Julia M. Taylor; Christian F. Hempelmann

2010-09-01T23:59:59.000Z

127

Photofission-Based, Nuclear Material Detection: Technology Demonstration  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL), the Los Alamos National Laboratory (LANL), and the Advanced Research and Applications Corporation (ARACOR) [Sunnyvale, California] performed a photonuclear technology demonstration for shielded nuclear material detection during August 21–22, 2002, at the LANL TA-18 facility. The demonstration used the Pulsed Photonuclear Assessment Technique (PPAT) that focused on the application of a photofission-based, nuclear material detection method as a viable complement to the ARACOR Eagle inspection platform. The Eagle is a mobile and fully operational truck and cargo inspection system that uses a 6-MeV electron accelerator to perform real-time radiography. This imaging is performed using an approved “radiation-safe” or “cabinet safe” operation relative to the operators, inspectors, and any stowaways within the inspected vehicles. While the PPAT has been primarily developed for active interrogation, its neutron detection system also maintains a complete and effective passive detection capability.

Jones, James Litton; Yoon, Woo Yong; Haskell, Kevin James; Norman, Daren Reeve; Moss, C. E.; Goulding, C. A.; Hollas, C. L.; Myers, W. L.; Franco, Ed

2002-12-01T23:59:59.000Z

128

Techniques and Technologies for Field Detection of Asbestos Containing Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Environmental Management DOE-Complex Wide Techniques and Technologies for Field Detection of Asbestos Containing Materials Challenge Asbestos has been used in numerous applications at DOE sites including sprayed-on fireproofing, asphalt and vinyl floor tile, and asbestos-cement (transite) siding. Inhalation of asbestos can result in non-malignant asbestosis, lung cancer and mesothelioma in workers. Currently, 40 CFR 763, Subpart E requires a certain number of bulk samples of suspected asbestos-containing material (ACM) to be collected within each designated homogeneous area (HA). If real time (or near-real), in-situ detection techniques/technologies of ï‚£ 5, and preferably ï‚£ 3 weight percent asbestos, were available, sample numbers

129

Developments in Nanosecond Pulse Detection Methods and Technology  

E-Print Network (OSTI)

A promising method for the detection of UHE neutrinos is the Lunar Cherenkov technique, which utilises Earth-based radio telescopes to detect the coherent Cherenkov radiation emitted when a UHE neutrino interacts in the outer layers of the Moon. The LUNASKA project aims to overcome the technological limitations of past experiments to utilise the next generation of radio telescopes in the search for these elusive particles. To take advantage of broad-bandwidth data from potentially thousands of antennas requires advances in signal processing technology. Here we describe recent developments in this field and their application in the search for UHE neutrinos, from a preliminary experiment using the first stage of an upgrade to the Australia Telescope Compact Array, to possibilities for fully utilising the completed Square Kilometre Array. We also explore a new real time technique for characterising ionospheric pulse dispersion which specifically measures ionospheric electron content that is line of sight to the moon.

R. A. McFadden; N. D. R. Bhat; R. D. Ekers; C. W. James; D. Jones; S. J. Tingay; P. P. Roberts; C. J. Phillips; R. J. Protheroe

2008-01-22T23:59:59.000Z

130

DC Arc Fault Detection and Circuit Interruption Technologies for Photovoltaic Systems  

Science Conference Proceedings (OSTI)

In the United States, much like the rest of the world, rapid growth in photovoltaic (PV) systems is currently taking place. These systems are being installed in open fields, on parking structures, and on residential or commercial rooftops. Unfortunately, electrical arcing within a PV system’s DC circuits has caused some fires. DC-sourced electrical fires are difficult to extinguish if arcing originates from unprotected source circuits within a PV array. Several high-visibility structural fires ...

2013-12-20T23:59:59.000Z

131

Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies  

Science Conference Proceedings (OSTI)

This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval ... Keywords: Fault Detection, Fault-Tolerant Control, Interval Models, Robustness, Set-Membership

Vicenç Puig

2010-12-01T23:59:59.000Z

132

Detection Technologies, Arms control and nonproliferation technologies. Third/fourth quarters 1993  

SciTech Connect

This issue of Arms Control and Nonproliferation Technologies is another in a series of issues about specific means for detecting and identifying proliferation and other suspect activities outside the realm of arms control treaties. All the projects discussed are funded by the Office of Research and Development of the Department of Energy`s Office of Nonproliferation and National Security.

Staehle, G; Stull, S; Talaber, C; Moulthrop, P [eds.

1993-12-31T23:59:59.000Z

133

Optimal fault location  

E-Print Network (OSTI)

Basic goal of power system is to continuously provide electrical energy to the users. Like with any other system, failures in power system can occur. In those situations it is critical that correct remedial actions are applied as soon as possible after the accurate fault condition and location are detected. This thesis has been focusing on automated fault location procedure. Different fault location algorithms, classified according to the spatial placement of physical measurements on single ended, multiple ended and sparse system-wide, are investigated. As outcome of this review, methods are listed as function of different parameters that influence their accuracy. This comparison is than used for generating procedure for optimal fault location algorithm selection. According to available data, and position of the fault with respect to the data, proposed procedure decides between different algorithms and selects an optimal one. A new approach is developed by utilizing different data structures such as binary tree and serialization in order to efficiently implement algorithm decision engine. After accuracy of algorithms is strongly influenced by available input data, different data sources are recommended in proposed architecture such as the digital fault recorders, circuit breaker monitoring, SCADA, power system model and etc. Algorithm for determining faulted section is proposed based on the data from circuit breaker monitoring devices. This algorithm works in real time by recognizing to which sequence of events newly obtained recording belongs. Software prototype of the proposed automated fault location analysis is developed using Java programming language. Fault location analysis is automatically triggered by appearance of new event files in a specific folder. The tests were carried out using the real life transmission system as an example.

Knezev, Maja

2007-12-01T23:59:59.000Z

134

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

135

A profiling method by PCB hooking and its application for memory fault detection in embedded system operational test  

Science Conference Proceedings (OSTI)

Context: An operational test means a system test that examines whether or not all software or hardware components comply with the requirements given to a system which is deployed in an operational environment. Objective: It is a necessary lightweight-profiling ... Keywords: Embedded software, Embedded system, Operational test, PCB hooking, Profiling method, Runtime memory fault

Jooyoung Seo; Byoungju Choi; Suengwan Yang

2011-01-01T23:59:59.000Z

136

DIFFERENTIAL FAULT SENSING CIRCUIT  

DOE Patents (OSTI)

A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

Roberts, J.H.

1961-09-01T23:59:59.000Z

137

Los Alamos technologies help scientists detect, record & interpret  

NLE Websites -- All DOE Office Websites (Extended Search)

March » March » 'Monster' burst of gamma rays Los Alamos technologies help scientists detect, record & interpret 'monster' burst of gamma rays The burst was detected by NASA's Swift satellite. March 21, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Nancy Ambrosiano Communications Office

138

Application of Support Vector Machine (SVM) and Proximal Support Vector Machine (PSVM) for fault classification of monoblock centrifugal pump  

Science Conference Proceedings (OSTI)

Monoblock centrifugal pumps are widely used in a variety of applications. Defects and malfunctions (faults) of these pumps result in significant economic loss. Therefore, the pumps must be under constant monitoring. When a possible fault is detected, ... Keywords: CAV, PSVM, bearing faults, cavitation, decision trees, fault classification, fault diagnosis, impeller faults, monoblock centrifugal pumps, proximal SVM, seal faults, support vector machines, vibration signals

N. R. Sakthivel; V. Sugumaran; Binoy B. Nair

2010-12-01T23:59:59.000Z

139

Distribution Fault Location Support Tools, Algorithms, and Implementation Approaches  

Science Conference Proceedings (OSTI)

Distribution grid modernization applications such as fault location and automatic sectionalizing require an accurate assessment of fault current. More-accurate prediction of fault locations will shorten the fault investigation (patrol) time, which in turn can reduce the total restoration time and duration of the outage experienced by the customer. This EPRI technical update report presents information on fault location applications, enumerates different methods used to detect the location of faults, ...

2013-08-14T23:59:59.000Z

140

Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology  

SciTech Connect

The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fault diagnosis in reversible circuits under missing-gate fault model  

Science Conference Proceedings (OSTI)

This article presents a novel technique for fault detection as well as fault location in a reversible combinational circuit under the missing gate fault model. It is shown that in an (nxn) reversible circuit implemented with k-CNOT gates, addition of ...

Hafizur Rahaman; Dipak K. Kole; Debesh K. Das; Bhargab B. Bhattacharya

2011-07-01T23:59:59.000Z

142

Model-based fault detection and isolation of a liquid-cooled frequency converter on a wind turbine  

Science Conference Proceedings (OSTI)

With the rapid development of wind energy technologies and growth of installed wind turbine capacity in the world, the reliability of the wind turbine becomes an important issue for wind turbine manufactures, owners, and operators. The reliability of ...

Peng Li, Peter Fogh Odgaard, Jakob Stoustrup, Alexander Larsen, Kim Mørk

2012-01-01T23:59:59.000Z

143

Coordinated Fault-Tolerance for High-Performance Computing Final Project Report  

Science Conference Proceedings (OSTI)

With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. #15; Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? #15; What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? #15; What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? #15; What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? #15; What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. #15; Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of existing publish-subscribe tools. #15; We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. #15; Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. #15; Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.

Panda, Dhabaleswar Kumar [The Ohio State University; Beckman, Pete

2011-07-01T23:59:59.000Z

144

High-level test synthesis for delay fault testability  

Science Conference Proceedings (OSTI)

A high-level test synthesis (HLTS) method targeted for delay fault testability is presented. The proposed method, when combined with hierarchical test pattern generation for embedded modules, guarantees 100% delay test coverage for detectable faults ...

Sying-Jyan Wang; Tung-Hua Yeh

2007-04-01T23:59:59.000Z

145

Argonne Technology Provides More Rapid Detection of Strontium in  

E-Print Network (OSTI)

some of NASA's work in nanotechnology is available online at: http://techtransfer.gsfc.nasa.gov/Nanotechnology-video.html For more information about NASA Goddard's Office of Technology Transfer, please visit: http://techtransfer

Kemner, Ken

146

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS  

E-Print Network (OSTI)

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano M. da Silva, B.S. A Thesis;i Abstract Induction motors are used worldwide as the "workhorse" in industrial applications material. However, induction motor faults can be detected in an initial stage in order to prevent

Povinelli, Richard J.

147

Detecting information technology impact on firm performance using DEA and decision tree  

Science Conference Proceedings (OSTI)

In a modern organisation, it is crucial and common for managers to effectively detect the impact of Information Technology (IT) on firm performance. This allows companies to maintain a competitive edge in rapidly changing business environments ... Keywords: DEA, IT impact, classification, data envelopment analysis, decision tree, decison making, firm performance, information technology, organisational performance

Desheng Wu

2006-06-01T23:59:59.000Z

148

EPRI Fault Current Management Guidebook, Sixth Edition (Maroon Book)  

Science Conference Proceedings (OSTI)

This document is an update of the document Fault Current Management Guidebook, Fifth Edition on fault current effects and management in transmission and distribution systems. This guide is intended to be a snapshot of available references, information, and literature on the effects of high fault current on a number of power system components and various available and emerging fault-current-limiting technologies.Results and FindingsDue to increased ...

2012-12-31T23:59:59.000Z

149

Advanced fault diagnosis techniques and their role in preventing cascading blackouts  

E-Print Network (OSTI)

This dissertation studied new transmission line fault diagnosis approaches using new technologies and proposed a scheme to apply those techniques in preventing and mitigating cascading blackouts. The new fault diagnosis approaches are based on two time-domain techniques: neural network based, and synchronized sampling based. For a neural network based fault diagnosis approach, a specially designed fuzzy Adaptive Resonance Theory (ART) neural network algorithm was used. Several ap- plication issues were solved by coordinating multiple neural networks and improving the feature extraction method. A new boundary protection scheme was designed by using a wavelet transform and fuzzy ART neural network. By extracting the fault gen- erated high frequency signal, the new scheme can solve the difficulty of the traditional method to differentiate the internal faults from the external using one end transmis- sion line data only. The fault diagnosis based on synchronized sampling utilizes the Global Positioning System of satellites to synchronize data samples from the two ends of the transmission line. The effort has been made to extend the fault location scheme to a complete fault detection, classification and location scheme. Without an extra data requirement, the new approach enhances the functions of fault diagnosis and improves the performance. Two fault diagnosis techniques using neural network and synchronized sampling are combined as an integrated real time fault analysis tool to be used as a reference of traditional protective relay. They work with an event analysis tool based on event tree analysis (ETA) in a proposed local relay monitoring tool. An interactive monitoring and control scheme for preventing and mitigating cascading blackouts is proposed. The local relay monitoring tool was coordinated with the system-wide monitoring and control tool to enable a better understanding of the system disturbances. Case studies were presented to demonstrate the proposed scheme. An improved simulation software using MATLAB and EMTP/ATP was devel- oped to study the proposed fault diagnosis techniques. Comprehensive performance studies were implemented and the test results validated the enhanced performance of the proposed approaches over the traditional fault diagnosis performed by the transmission line distance relay.

Zhang, Nan

2006-12-01T23:59:59.000Z

150

Artificial Intelligence Based Green Technology Retrofit for Misfire Detection in Old Engines  

Science Conference Proceedings (OSTI)

The core theme of the paper is misfire detection using random forest algorithm and decision tree based machine learning models for emission minimization in gasoline passenger vehicles. The engine block vibration signals are used for misfire detection. ... Keywords: Emission Control, Engine Condition Monitoring, Green Technology, IC Engine, Misfire, Rule Based Models, Signal Processing

S. Babu Devasenapati; K. I. Ramachandran

2012-01-01T23:59:59.000Z

151

Rigorous Development of Dependable Systems Using Fault Tolerance Views  

Science Conference Proceedings (OSTI)

This paper introduces the Mode and Fault Tolerance Views approach to stepwise rigorous development of critical systems. It supports systematic, structured and recursive modelling of system fault tolerance, including error detection, error recovery and ... Keywords: formal methods, Event-B, fault tolerance, modal systems, case study, AOCS

Ilya Lopatkin; Alexei Iliasov; Alexander Romanovsky

2011-11-01T23:59:59.000Z

152

Assessing vehicle detection utilizing video image processing technology  

E-Print Network (OSTI)

Urban freeways are the backbone of the highway transportation system and the demand on this system is growing. The increase in demand creates an increase in traffic congestion. Past construction solutions to relieve congestion are less viable today due to rising costs and government regulations. Effectively managing the operations of the existing highway transportation network is an alternative for congestion mitigation. The research documented in this study analyzes a trip-wire video image processing system's ability and limitations in accurately detecting passenger cars with and without passenger cars traveling in the adjacent travel lane. This study also analvzes a video image processing system's ability to determine passenger car speeds. Testing was performed at Texas A&M University's Riverside Campus research facility. Testing analyzed three camera heights, 30 feet, 40 feet and 49 feet-6 inches, in conjunction with three passenger car speeds, 20 mph, 45 mph and 55 mph. The video image processing system used in the study was the Autoscop0m 2004 by Image Sensing Systems, Inc. The camera imaging device was a one-half (1/2) inch interline transfer microlens charged coupled device (CCD). The camera lens was a six (6) mm, fl.2 auto ifis lens. An analysis of variance (ANOVA) test indicated both camera height and travel lane location affected the system's ability to accurately detect passenger cars. Generally, higher camera heights and travel lanes farther from the camera produced accurate passenger car detection farther upstream from the camera. Also, it was determined that passenger cars traveling in adjacent travel lanes did not significantly influence the video image processing system's ability to accurately detect passenger cars. The paired t-test indicated that passenger car speeds determined by the video image processing system were significantly different when compared to passenger car speeds obtained by a radar speed gun. The results of this thesis research study provide some guidance on the use and placement of a video image processing system in a freeway application. This study also provides some recommendations regarding future video image processing system research and development.

Hartmann, Duane E

1996-01-01T23:59:59.000Z

153

Neural Fault Diagnosis and Fuzzy Fault Control for a Complex Dynamic System  

E-Print Network (OSTI)

Fault diagnosis has become an issue of primary importance in modern process automation as it provides the prerequisites for the task of fault detection. The ability to detect the faults is essential to improve reliability and security of a complex control system. Parameter estimation methods, state observation schemes, statistical likelihood ratio tests, rule-based expert system reasoning, pattern recognition techniques, and artificial neural network approaches are the most common methodologies developed actively during recent years. In this paper, we describe a completed feasibility study demonstrating the merit of employing pattern recognition and an artificial neural network for fault diagnosis through back propagation learning algorithm and making the use of fuzzy approximate reasoning for fault control via parameter changes in a dynamic system. As a test case, a complex magnetic levitation vehicle (MLV) system is studied. Analytical fault symptoms are obtained by system dynamics m...

Ching-yu Tyan; Paul P. Wang; Dennis R. Bahler

1995-01-01T23:59:59.000Z

154

TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY  

NLE Websites -- All DOE Office Websites (Extended Search)

TRACER DETECTION TECHNOLOGY CORP. TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY 3463 MAGIC DRIVE, SUITE T-19 SAN ANTONIO, TX 78229 March 29, 2009 Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW. Washington, DC 20585. GC-62@hq.doe.gov ATTN: TECHNOLOGY TRANSFER QUESTIONS. Response to Request for Information - Federal Register "The Costs and Benefits of Dealing with Federal Laboratories" This "white paper" is intended to deal constructively with issues relating to technology transfer and interaction of small businesses with federal laboratories, and should be considered a response to #6 (other). As a small businessman and entrepreneur engaged in the

155

TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRACER DETECTION TECHNOLOGY CORP. TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY 3463 MAGIC DRIVE, SUITE T-19 SAN ANTONIO, TX 78229 March 29, 2009 Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW. Washington, DC 20585. GC-62@hq.doe.gov ATTN: TECHNOLOGY TRANSFER QUESTIONS. Response to Request for Information - Federal Register "The Costs and Benefits of Dealing with Federal Laboratories" This "white paper" is intended to deal constructively with issues relating to technology transfer and interaction of small businesses with federal laboratories, and should be considered a response to #6 (other). As a small businessman and entrepreneur engaged in the

156

Detection, diagnosis, and prognosis in geothermal well technology  

DOE Green Energy (OSTI)

For successful and safe operation of a geothermal well, the condition of the casing and cement must be accurately determined. Measurements on casing wall thickness, corrosion damage, holes, cracks, splits, etc., are needed to assess casing integrity. Cement bond logs are needed to detect channels or water pockets in cement behind pipe and to determine the state of the cement bond to the pipe and formation. Instrumentation for making such measurements is limited by the temperature capabilities (<175/sup 0/C) of existing logging equipment developed for the oil and gas industry. The instruments that are needed for geothermal casing and cementing inspection are reviewed; the principle deficiencies in their high temperature use are identified; and Sandia's upgrade research program on multi-arm caliper and acoustic cement bond logging tool is described. The key electronic section in a multi-arm caliper will consist of 275/sup 0/C circuits. In an acoustic cement bond logging tool, a simple circuit with possibilities of using commercially available components for high temperature operation is being developed. These new tools will be field tested for operation at a minimum temperature of 275/sup 0/C and pressure of 7000 psi for up to 1000 hours.

Veneruso, A.F.; Chang, H.T.

1980-01-01T23:59:59.000Z

157

Utilities Inspection Technologies  

E-Print Network (OSTI)

Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been employed in industrial facilities within the Navy. Specific systems include compressed air, electrical distribution, natural gas, steam, and hot water. Technologies include: • Enhanced optical methods (infrared thermography, boroscopes, and fiberscopes) • Acoustic emissions and vibration signature analysis • Locating and quantifying methods (deep probe temperature analysis, electromagnetic pipe and cable locators, holiday and fault locators, and radar mapping).

Messock, R. K.

1993-03-01T23:59:59.000Z

158

Advanced Nuclear Technology: Quality Control of Concrete During Construction - Voids Detection  

Science Conference Proceedings (OSTI)

The main type of degradation of concrete structures during the construction of nuclear power plants has been the existence of honeycombs and voids due to inadequate concrete design and placement. The detection of these honeycombs and voids in concrete structures has been attempted with nondestructive evaluation technologies with limited success. The addition of steel-concrete construction techniques further complicates the ability of these technologies to ...

2012-12-22T23:59:59.000Z

159

Fault-based test suite prioritization for specification-based testing  

Science Conference Proceedings (OSTI)

Context: Existing test suite prioritization techniques usually rely on code coverage information or historical execution data that serve as indicators for estimating the fault-detecting ability of test cases. Such indicators are primarily empirical in ... Keywords: Fault class hierarchy, Fault-based prioritization, Fault-based testing, Software testing, Specification-based testing, Test suite prioritization

Yuen Tak Yu; Man Fai Lau

2012-02-01T23:59:59.000Z

160

A Power Transmission Line Fault Distance Estimation VLSI Chip: Design and Defect Tolerance  

Science Conference Proceedings (OSTI)

This paper presents a system-on-a-chip for fault detection and fault-distance-estimation for power transmission lines in the smart grid. Toward this goal we have designed and fabricated three chips: PGS4, PGS5 and PGS6, each successively more advanced ... Keywords: Smart grid, fault distance, arcing fault, system on a chip, defect tolerance, Radojevic algorithm.

E. MacLean; V. K. Jain

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transient fault modeling and fault injection simulation  

E-Print Network (OSTI)

An accurate transient fault model is presented in this thesis. A 7-term exponential current upset model is derived from the results of a device-level, 3-dimensional, single-event-upset simulation. A curve-fitting algorithm is used to extract the numerical model from the empirical data. The model is implemented in a HSPICE simulation environment as a current-injection source for fault simulation. The current transient model is used to conduct electrical-level fault injection simulations on a static RAM cell and subcircuits from two commercial microprocessors. The results from the 7-term exponential model are compared with the results from the widely accepted double-exponential transient model. The experimental data indicate that, for a given charge level, the 7-term exponential fault model results in a higher chance of having a latch error. More importantly, different latch-error patterns are captured from the target circuits under the new fault model.

Yuan, Xuejun

1996-01-01T23:59:59.000Z

162

Fault Current Limiters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fault Fault Current Limiters Superconducting & Solid-state Power Equipment Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power What are FCLs? A fault is an unintentional short circuit, or partial short-circuit, in an electric circuit. A variety of factors such as lightning, downed power lines, or crossed power lines cause faults. During a fault, excessive current-called fault current- flows through the electrical system often resulting in a failure of one section of that system by causing a

163

Increasing fault-tolerance in cellular automata-based systems  

Science Conference Proceedings (OSTI)

In the light of emergence of cellular computing, new cellular computing systems based on yet-unknown methods of fabrication need to address the problem of fault tolerance in a way which is not tightly connected to used technology. This may not be possible ... Keywords: Byl's loop, Game of Life, TMR, cellular automata, cellular computing, fault tolerance, rule 30, static module redundance

Lud?k Žaloudek; Lukáš Sekanina

2011-06-01T23:59:59.000Z

164

Automatic Fault Characterization via Abnormality-Enhanced Classification  

Science Conference Proceedings (OSTI)

Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

Bronevetsky, G; Laguna, I; de Supinski, B R

2010-12-20T23:59:59.000Z

165

Model Acceptability Measure for the Identification of Failures in Qualitative Fault Monitoring Systems  

E-Print Network (OSTI)

This paper deals with two of the main tasks of Fault Monitoring Systems (FMS): fault detection and fault identification. During fault detection, the FMS should recognize that the plant behavior is abnormal, and therefore, that the plant is not working properly. During fault identification, the FMS should conclude which type of failure has occurred. The first goal of this work is to consolidate a new fault detection technique, called enveloping, that was developed in the context of the Fuzzy Inductive Reasoning Fault Monitoring System (FIRFMS). The second and primary goal of this paper is to introduce the model acceptability measure as a tool to enhance and make more robust the fault identification process in the context of FIRFMS. The enveloping technique and the model acceptability measure are applied to an electric circuit model previously used for such purpose in the literature. It is shown that the new methods outperform the ones previously advocated in FIRFMS for that purpose 1 ...

Antoni Escobet Angela; Angela Nebot; Francois E. Cellier

1999-01-01T23:59:59.000Z

166

New fault locating system for air-insulated substations using optical current detector  

Science Conference Proceedings (OSTI)

This paper deals with a newly developed fault locating system. This fault locating system helps to shorten the time required for restoration of service after the occurrence of a busbar fault in an air-insulated distribution substation. Recent optical and electronic technologies allow highly accurate and compact fault locating system, which consists of optical current detectors using Faraday effect and a fault locating processor employing digital data processing technique. The fault location is made by discriminating the direction of zero-sequence currents. Through various tests and field operations it has been confirmed that the system has sufficient performance for practical application.

Yoshida, Y.; Kawazoe, S. (Kansai Electric Power Co., Inc., Osaka (Japan)); Ibuki, K.; Yamada, K.; Ochi, N. (Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan). Itami Works)

1992-10-01T23:59:59.000Z

167

Soft computing approach to fault diagnosis of centrifugal pump  

Science Conference Proceedings (OSTI)

Fault detection and isolation in rotating machinery is very important from an industrial viewpoint as it can help in maintenance activities and significantly reduce the down-time of the machine, resulting in major cost savings. Traditional methods have ... Keywords: Centrifugal pump, Decision tree algorithm, Fault diagnosis, Gene expression programming, Proximal support vector machine, Statistical features, Support vector machine

N. R. Sakthivel; Binoy.B.Nair; V. Sugumaran

2012-05-01T23:59:59.000Z

168

VCSEL fault location apparatus and method  

DOE Patents (OSTI)

An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

2007-05-15T23:59:59.000Z

169

Development of a Surface Enhanced Raman Spectroscopy Platform Technology to Detect Cardiac Biomarkers of Myocardial Infarction  

E-Print Network (OSTI)

The clinical evaluation of people with possible myocardial infarction (MI) is often limited by atypical symptoms and inconclusive initial electrocardiograms. A recent consensus from the American College of Cardiology has redefined acute MI to include cardiac markers as central to diagnosis. To address this clinical need, a sensitive microfluidic surface-enhanced Raman spectroscopy (SERS) nanochannel-based optical device is being developed for ultimate use as a point-of-care device for the simultaneous measurement of MI blood biomarkers. The device can provide enhancements of the Raman signal of the analyte measured of up to 1013 using a mechanical aggregation technique at the interface of nanofluidic structures enabling repeatable SERS measurements. Specifically in this research iterations of a sensitive, low volume SERS platform technology were designed that provided quantitative information across a specific range. With the SERS platforms studied, not only were SERS enhancements of up to 1013 achieved but also imprecision values of less than 10% across the 10-50 pM range using a ratiometric approach and qualitative detection down to 100 aM was achieved. Beyond assessment of SERS substrates, assay designs were investigated and characterized including, label-free techniques and competitive immunoassay formats. Lastly, detecting the SERS signal of multiplexed reporter molecules was investigated. By identifying the analyte and assay constraints the design and optimization of future assays will be aided using this SERS platform technology.

Benford, Melodie Elane

2013-05-01T23:59:59.000Z

170

Low-cost motor drive embedded fault diagnosis systems  

E-Print Network (OSTI)

Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low cost incipient fault detection of inverter-fed driven motors. Basically, low order inverter harmonics contributions to fault diagnosis, a motor drive embedded condition monitoring method, analysis of motor fault signatures in noisy line current, and a few specific applications of proposed methods are studied in detail. First, the effects of inverter harmonics on motor current fault signatures are analyzed in detail. The introduced fault signatures due to harmonics provide additional information about the motor faults and enhance the reliability of fault decisions. It is theoretically and experimentally shown that the extended fault signatures caused by the inverter harmonics are similar and comparable to those generated by the fundamental harmonic on the line current. In the next chapter, the reference frame theory is proposed as a powerful toolbox to find the exact magnitude and phase quantities of specific fault signatures in real time. The faulty motors are experimentally tested both offline, using data acquisition system, and online, employing the TMS320F2812 DSP to prove the effectiveness of the proposed tool. In addition to reference frame theory, another digital signal processor (DSP)-based phasesensitive motor fault signature detection is presented in the following chapter. This method has a powerful line current noise suppression capability while detecting the fault signatures. It is experimentally shown that the proposed method can determine the normalized magnitude and phase information of the fault signatures even in the presence of significant noise. Finally, a signal processing based fault diagnosis scheme for on-board diagnosis of rotor asymmetry at start-up and idle mode is presented. It is quite challenging to obtain these regular test conditions for long enough time during daily vehicle operations. In addition, automobile vibrations cause a non-uniform air-gap motor operation which directly affects the inductances of electric motor and results quite noisy current spectrum. The proposed method overcomes the challenges like aforementioned ones simply by testing the rotor asymmetry at zero speed.

Akin, Bilal

2007-08-01T23:59:59.000Z

171

High impedance fault location in transmission line using nonlinear frequency analysis  

Science Conference Proceedings (OSTI)

The detection and location of high impedance faults on power system has been one of the most difficult problems in power transmission and distribution systems. According to a very highly nonlinear behavior of high impedance faults, a methodology is presented ... Keywords: high impedance fault, nonlinear frequency analysis, power line carrier, transmission line

Min-You Chen; Jin-Qian Zhai; Zi-Qiang Lang; Ju-Cheng Liao; Zhao-Yong Fan

2010-09-01T23:59:59.000Z

172

Fault Intersection | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fault Intersection Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Fault Intersection Dictionary.png Fault Intersection: Fault intersections are junctions between normal faults and either transversely oriented strike-slip or oblique-slip faults. Subsurface fluid flow in these areas is enhanced by multiple minor faults that connect the major intersecting structures, forming highly fractured zones or dilational quadrants with increased permeability. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal

173

The application of satellite time references to HVDC fault location  

Science Conference Proceedings (OSTI)

An HVdc fault location scheme is described which relies on very precise detection of the time of arrival of fault created surges at both ends of the line. Such detection is achieved by a very accurate data acquisition and processing system combined with the time reference signals provided by a global positioning system receiver. Extensive digital simulation is carried out to determine the voltage and current waveforms, to identify the main sources of error and suggest possible compensation techniques.

Dewe, M.B.; Sankar, S.; Arrillaga, J. (Univ. of Canterbury, Christchurch (New Zealand))

1993-07-01T23:59:59.000Z

174

Parallel fault backtracing for calculation of fault coverage  

Science Conference Proceedings (OSTI)

A new improved method for calculation of fault coverage with parallel fault backtracing in combinational circuits is proposed. The method is based on structurally synthesized BDDs (SSBDD) which represent gate-level circuits at higher, macro level where ...

Raimund Ubar; Sergei Devadze; Jaan Raik; Artur Jutman

2008-01-01T23:59:59.000Z

175

Fracture detection and mapping for geothermal reservoir definition: an assessment of current technology, research, and research needs  

DOE Green Energy (OSTI)

The detection and mapping of fractures and other zones of high permeability, whether natural or manmade, has been a subject of considerable economic and scientific interest to the pertroleum industry and to the geothermal community. Research related to fractured geothermal reservoirs has been conducted under several past DOE geothermal energy development programs. In this paper we review the present state of technology in fracture detection and mapping. We outline the major problems and limitations of the ''conventional'' techniques, and current research in new technologies. We also present research needs.

Goldstein, N.E.

1984-11-01T23:59:59.000Z

176

Computer hardware fault administration  

DOE Patents (OSTI)

Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

Archer, Charles J. (Rochester, MN); Megerian, Mark G. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

2010-09-14T23:59:59.000Z

177

Fault Locating, Prediction and Protection (FLPPS)  

Science Conference Proceedings (OSTI)

One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

2010-09-30T23:59:59.000Z

178

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

179

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

180

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

182

Embedded holonic fault diagnosis of complex transportation systems  

Science Conference Proceedings (OSTI)

The use of electronic equipment and embedded computing technologies in modern complex transportation systems continues to grow in a highly competitive market, in which product maintainability and availability is vital. These technological advances also ... Keywords: Cooperative fault diagnosis, Corrective maintenance, Embedded diagnosis, Holonic architecture, Model-based diagnosis, Railway transportation system

Antoine Le Mortellec; Joffrey Clarhaut; Yves Sallez; Thierry Berger; Damien Trentesaux

2013-01-01T23:59:59.000Z

183

Science & Technology Review June 2012  

SciTech Connect

This month's issue has the following articles: (1) A New Era in Climate System Analysis - Commentary by William H. Goldstein; (2) Seeking Clues to Climate Change - By comparing past climate records with results from computer simulations, Livermore scientists can better understand why Earth's climate has changed and how it might change in the future; (3) Finding and Fixing a Supercomputer's Faults - Livermore experts have developed innovative methods to detect hardware faults in supercomputers and help applications recover from errors that do occur; (4) Targeting Ignition - Enhancements to the cryogenic targets for National Ignition Facility experiments are furthering work to achieve fusion ignition with energy gain; (5) Neural Implants Come of Age - A new generation of fully implantable, biocompatible neural prosthetics offers hope to patients with neurological impairment; and (6) Incubator Busy Growing Energy Technologies - Six collaborations with industrial partners are using the Laboratory's high-performance computing resources to find solutions to urgent energy-related problems.

Poyneer, L A

2012-04-20T23:59:59.000Z

184

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

185

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

186

Technologies  

Laser fusion experiment yields record energy. August 26, 2013. LLNL Home. Latest News Headlines. Association between virus, bladder cancers detected. September 10, 2013.

187

Fault Current Management Guidebook - Updated  

Science Conference Proceedings (OSTI)

Under the new paradigm of power market operation, electric utilities are forcing more power through the existing transmission lines; and these increased loads will increase the fault current level throughout the power system. Also, new generation sources including distributed generation added at the transmission and distribution network will increase power flows and, consequently, fault current levels. Under increased power flow conditions on the existing assets, managing fault currents is crucial in ord...

2007-12-20T23:59:59.000Z

188

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

189

Fault Mapping | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Fault Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fault Mapping Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Locates active faults in the area of interest Hydrological: Can reveal whether faults are circulating hydrothermal fluids Thermal: Dictionary.png

190

Fault tree analysis and fuzzy expert systems: Early warning and emergency response of landfill operations  

Science Conference Proceedings (OSTI)

In this paper we argue that Early Warning Systems for engineering facilities can be developed by combining and integrating existing technologies and theories. As example, we present an efficient integration of fuzzy expert systems, fault tree analysis ... Keywords: Accidents, Early Warning System, Expert systems, Fault tree analysis, Fuzzy logic, Landfills, Operational problems, Possibility theory, Public Access to Environmental Information

I. M. Dokas; D. A. Karras; D. C. Panagiotakopoulos

2009-01-01T23:59:59.000Z

191

A compiler-based infrastructure for fault-tolerant co-design  

Science Conference Proceedings (OSTI)

The protection of processor-based systems to mitigate the harmful effects of transient faults (hardening) is gaining importance as technology shrinks. Hybrid hardware/software hardening approaches are promising alternatives in the design of such ... Keywords: co-design, fault-tolerance, hardening, single event effect (SEE), single event upset (SEU)

Felipe Restrepo-Calle; Antonio Martínez-Álvarez; Hipólito Guzmán-Miranda; F. R. Palomo; M. A. Aguirre; Sergio Cuenca-Asensi

2010-06-01T23:59:59.000Z

192

Early Tube Leak Detection in a HRSG Application Using Acoustic Monitoring Technology  

Science Conference Proceedings (OSTI)

Acoustic monitoring has become an essential part of early tube leak detection for conventional boilers. Acoustic monitoring is intended for steam leak detection in pressurized vessels, including power boilers, recovery boilers, and feedwater heaters. The system performs acoustic monitoring by continuously measuring the internal sounds from the boiler, signaling an alarm when the sound exceeds a preset threshold for a ...

2012-12-12T23:59:59.000Z

193

Major Normal Fault | Open Energy Information  

Open Energy Info (EERE)

Major Normal Fault Major Normal Fault Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Major Normal Fault Dictionary.png Major Normal Fault: Normal faults are structures in which the hanging wall is down dropped along the fault plane relative to the foot wall. They are the predominant type of structure in extensional tectonic environments, but are commonly encountered in a number of geologic settings. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault Fault Intersection Accommodation Zone Displacement Transfer Zone Pull-Apart in Strike-Slip Fault Zone

194

Global Nuclear Security Technology Division (GNSTD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Nonproliferation Technology Nuclear Material Detection & Characterization Nuclear Security Advanced Technologies Safeguards & Security Technology Threat Reduction...

195

Identifying Efficiency Degrading Faults in Split Air Conditioning Systems  

E-Print Network (OSTI)

Studies estimate that as much as 50% of packaged air conditioning systems operate in faulty conditions that degrade system efficiency. Common faults include: under- and over-charged systems (too much or too little refrigerant), faulty expansions valves (stuck valves, valve hunting, poorly tuned valve controllers), and fouled evaporators and condensers. Furthermore, air conditioning systems can often be adjusted to improve efficiency while continuing to meet cooling loads (adjusting system pressures, decreasing superheat setpoints). This study presents the design of a low cost device that can non-invasively measure system operating conditions, diagnose faults, estimate potential energy savings, and provide recommendations on how the system should be adjusted or repaired. Using eight external temperature measurements, the device potentially can detect and diagnose up to ten faults commonly found in HVAC systems. Steady state temperatures are compared to threshold values obtained from literature and HVAC manufacturers to detect and determine the severity of faults and subsequent reductions in coefficient of performance. Preliminary tests reveal the potential for the device to detect and diagnose common efficiency-degrading faults in HVAC systems.

Terrill, T. J.; Brown, M. L.; Cheyne, R. W. Jr.; Cousins, A. J.; Daniels, B. P.; Erb, K. L.; Garcia, P. A.; Leutermann, M. J.; Nel, A. J.; Robert, C. L.; Widger, S. B.; Williams, A. G.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

196

Definition: Fault Mapping | Open Energy Information  

Open Energy Info (EERE)

Mapping Jump to: navigation, search Dictionary.png Fault Mapping Faults are structural features of crustal rocks that are caused by tectonic forces. These features can create...

197

Carbon nanotube synthesis and detection : limiting the environmental impact of novel technologies  

E-Print Network (OSTI)

Driven by commercial promise, the carbon nanotube (CNT) industry is growing rapidly, yet little is known about the potential environmental impacts of these novel materials. In particular, there are no methods to detect ...

Plata, Desirée L

2009-01-01T23:59:59.000Z

198

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1  

E-Print Network (OSTI)

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1 , David for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most in a substantial increase in energy use. For example, failure of an HVAC fan may prevent cool air from one

199

Improving Model-Based Gas Turbine Fault Diagnosis Using Multi-Operating Point Method  

Science Conference Proceedings (OSTI)

A comprehensive gas turbine fault diagnosis system has been designed using a full nonlinear simulator developed in Turbotec company for the V94.2 industrial gas turbine manufactured by Siemens AG. The methods used for detection and isolation of faulty ... Keywords: monitoring, fault diagnosis, extended Kalman filter, gas turbine, simulator

Amin Salar; Seyed Mehrdad Hosseini; Behnam Rezaei Zangmolk; Ali Khaki Sedigh

2010-11-01T23:59:59.000Z

200

Millimeter Wave Sensor Technologies Track Biometrics; Detect Chemicals, Gases, and Radiation  

Security threats come in many forms—airborne, radiative, gaseous, human, or infiltrative—and it can be costly and impractical to deploy a broad suite of detector technologies to identify all potential hazards in public places. Argonne’s millimeter ...

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Algorithmic Based Fault Tolerance Applied to High Performance Computing  

E-Print Network (OSTI)

We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithmic Based Fault Tolerance technique (Huang and Abraham, 1984) to the need of parallel distributed computation. We obtain a strongly scalable mechanism for fault tolerance. We can also detect and correct errors (bit-flip) on the fly of a computation. To assess the viability of our approach, we have developed a fault tolerant matrix-matrix multiplication subroutine and we propose some models to predict its running time. Our parallel fault-tolerant matrix-matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster jacquard.nersc.gov) and returns a correct result while one process failure has happened. This represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest failure-free implementation. We predict (and have observed) that, as we increase the processor count, the overhead of the fault tolerance drops significantly.

Bosilca, George; Dongarra, Jack; Langou, Julien

2008-01-01T23:59:59.000Z

202

June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing  

E-Print Network (OSTI)

June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities in High

Engelmann, Christian

203

June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing  

E-Print Network (OSTI)

June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak Solutions for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities

Engelmann, Christian

204

Using light detection and ranging (LiDAR) technology to assess bird-habitat relationships| A case study from the Northwoods of Maine.  

E-Print Network (OSTI)

?? Airborne light detection and ranging (LiDAR) is a remote sensing technology that quantifies the travel time of photons emitted in pulses from a LiDAR… (more)

Newton, Wesley Eugene

2012-01-01T23:59:59.000Z

205

Program on Technology Innovation: Bat Detection and Shutdown System for Utility-Scale Wind Turbines  

Science Conference Proceedings (OSTI)

Although development of renewable energy sources is generally believed to be a sound environmental decision, wind power development has been criticized for posing potential threats to bats. The objective of this project is to develop and deploy an ultrasonic microphone array on a wind turbine. The array will detect bats near the turbine upon which it is deployed and automatically curtail operations when bats are detected in or near the rotor-swept area. The first two objectives of this project were to se...

2010-11-12T23:59:59.000Z

206

Hydrogen Detection in Nuclear Power Plants: Comparison of Potential, Existing, and Innovative Technologies  

Science Conference Proceedings (OSTI)

The ability to monitor hydrogen volumes accurately and quickly within containment environments at nuclear power plants is a critical capability, especially during accident conditions where hydrogen generation may be occurring within the reactor vessel. Since the initial installation of hydrogen monitoring systems in plants following the Three Mile Island accident in 1979, new technologies have been developed and offer performance advantages when compared with existing installed sensors. In addition ...

2013-12-13T23:59:59.000Z

207

Modeling and Methodology for Incorporating Existing Technologies to Produce Higher Probabilities of Detecting Suicide Bombers  

Science Conference Proceedings (OSTI)

Among the many weapons currently used by terrorist organizations against public welfare and coalition forces, human-born Improvised Explosive Devices IEDs present a significant threat. Commonly referred to as suicide bombers, these individuals enter ... Keywords: Central Limit Theorem, Chi-Squared Goodness of Fit, Descriptive Statistics, Exponential Distributions, Mathematical Modeling, Methodology, Radar Cross Section, Radar Detection, Simulation Models, Suicide Bombs, Target Threshold

William P. Fox, John Binstock, Mike Minutas

2013-07-01T23:59:59.000Z

208

High Temperature Superconducting Matrix Fault Current Limiter: Proof-of-Concept Test Results  

Science Conference Proceedings (OSTI)

This report describes the design and proof-of-concept test results of a pre-prototype superconducting fault current limiter (FCL). The device employs SuperPower's Matrix Fault Current Limiter (MFCL) technology and BSCCO-2212 bulk material manufactured by Nexans SuperConductors' melt cast processing (MCP) technique. The MFCL technology is targeted to address fault current over-duty problems at the transmission voltage level of 138kV and higher. In addition to EPRI sponsorship, this $12M development progra...

2004-09-27T23:59:59.000Z

209

An overproduce-and-choose strategy to create classifier ensembles with tuned SVM parameters applied to real-world fault diagnosis  

Science Conference Proceedings (OSTI)

We present a supervised learning classification method for model-free fault detection and diagnosis, aiming to improve the maintenance quality of motor pumps installed on oil rigs. We investigate our generic fault diagnosis method on 2000 examples of ... Keywords: classifier ensemble, fault diagnosis, feature extraction, feature selection, multi-label classification, support vector machine

Estefhan Dazzi Wandekokem; Flávio M. Varejão; Thomas W. Rauber

2010-11-01T23:59:59.000Z

210

Program on Technology Innovation: Development of Thin-Film Sensors to Detect Stress Corrosion Crack Initiation  

Science Conference Proceedings (OSTI)

A great amount of effort has been expended measuring stress corrosion crack (SCC) growth rates and investigating the mechanisms of SCC propagation. By contrast, relatively little effort has been devoted to studies of SCC initiation. The small amount of work on SCC initiation is due, in part, to the difficulty in investigating this phase of cracking. The main objective of the present investigation is to develop a thin-film sensor suitable for detecting and studying the initiation of intergranular stress c...

2005-12-02T23:59:59.000Z

211

Fault Tree Analysis - A Bibliography  

Science Conference Proceedings (OSTI)

Fault tree analysis is a top-down approach to the identification of process hazards. It is touted as one of the best methods for systematically identifying and graphically displaying the many ways something can go wrong. This bibliography references ...

Program NASA Scientific and Technical Information

2000-07-01T23:59:59.000Z

212

SWIFT: Software Implemented Fault Tolerance  

Science Conference Proceedings (OSTI)

To improve performance and reduce power, processor designers employ advances that shrink feature sizes, lower voltage levels, reduce noise margins, and increase clock rates. However, these advances make processors more susceptible to transient faults ...

George A. Reis; Jonathan Chang; Neil Vachharajani; Ram Rangan; David I. August

2005-03-01T23:59:59.000Z

213

Groundwater penetrating radar and high resolution seismic for locating shallow faults in unconsolidated sediments  

Science Conference Proceedings (OSTI)

Faults in shallow, unconsolidated sediments, particularly in coastal plain settings, are very difficult to discern during subsurface exploration yet have critical impact to groundwater flow, contaminant transport and geotechnical evaluations. This paper presents a case study using cross-over geophysical technologies in an area where shallow faulting is probable and known contamination exists. A comparison is made between Wenner and dipole-dipole resistivity data, ground penetrating radar, and high resolution seismic data. Data from these methods were verified with a cone penetrometer investigation for subsurface lithology and compared to existing monitoring well data. Interpretations from these techniques are compared with actual and theoretical shallow faulting found in the literature. The results of this study suggests that (1) the CPT study, combined with the monitoring well data may suggest that discontinuities in correlatable zones may indicate that faulting is present (2) the addition of the Wenner and dipole-dipole data may further suggest that offset zones exist in the shallow subsurface but not allow specific fault planes or fault stranding to be mapped (3) the high resolution seismic data will image faults to within a few feet of the surface but does not have the resolution to identify the faulting on the scale of our models, however it will suggest locations for upward continuation of faulted zones (4) offset 100 MHz and 200 MHz CMP GPR will image zones and features that may be fault planes and strands similar to our models (5) 300 MHz GPR will image higher resolution features that may suggest the presence of deeper faults and strands, and (6) the combination of all of the tools in this study, particularly the GPR and seismic may allow for the mapping of small scale, shallow faulting in unconsolidated sediments.

Wyatt, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States)]|[South Carolina Univ., Columbia, SC (United States). Earth Sciences and Resources Inst.; Waddell, M.G. [South Carolina Univ., Columbia, SC (United States). Earth Sciences and Resources Inst.; Sexton, B.G. [Microseeps Ltd., Pittsburgh, PA (United States)

1993-12-31T23:59:59.000Z

214

Transmission Line Protection Support Tools: Fault Location Algorithms and the Potential of Using Intelligent Electronic Device Data for Protection Applications  

Science Conference Proceedings (OSTI)

Overhead transmission lines experience short-circuit faults due to lightning, stormy weather conditions, animal or tree contact, and insulation failure in power system equipment. To ensure continuity of electric service, utilities try to quickly determine the location of the fault, perform maintenance or repair, and return the line to service. Due to advances in modern technology, locating faults in a networked transmission system is now possible with substantial accuracy. Voltage and current ...

2013-12-23T23:59:59.000Z

215

Transmission Line Protection Support Tools: Fault Location Algorithms and Potential of using IED Data for Protection Applications  

Science Conference Proceedings (OSTI)

Transmission lines experience faults due to lightning, stormy weather conditions, animal or tree contact and insulation failure in various power system equipment. To ensure continuity of power, utility personnel try to quickly determine the location of fault, perform necessary repair and return the line to service. Due to advances in modern technology, locating faults in a networked transmission system is now possible. Voltage and current waveforms recorded by intelligent electronic devices (IED) ...

2012-12-31T23:59:59.000Z

216

Passive fault current limiting device  

DOE Patents (OSTI)

A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

Evans, D.J.; Cha, Y.S.

1999-04-06T23:59:59.000Z

217

Error mitigation of Point-to-Point communication for fault-tolerant computing  

Science Conference Proceedings (OSTI)

Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware's environment, faulty connectors, and system degradation over time. 12This ability applies to military, space, and industrial computing applications. ...

Robert L. Akamine; Robert F. Hodson; Brock J. LaMeres; Robert E. Ray

2011-03-01T23:59:59.000Z

218

A new sensor fault diagnosis technique based upon subspace identification and residual filtering  

Science Conference Proceedings (OSTI)

This paper presents a new methodology for designing a detection, isolation, and identification scheme for sensor faults in linear time-varying systems. Practically important is that the proposed methodology is constructed on the basis of historical data ...

Srinivasan Rajaraman; Uwe Kruger; M. Sam Mannan; Juergen Hahn

2006-08-01T23:59:59.000Z

219

Automatic fault extraction and simulation of layout realistic faults for integrated analogue circuits  

Science Conference Proceedings (OSTI)

A comprehensive tool has been implemented for the comparison of different test preparation techniques and target faults. It comprises of the realistic fault characterisation program LIFT that can extract sets of various faults from a given analogue or ... Keywords: AnaFAUL, LIFT, VCO, analogue integrated circuits, automatic analogue fault simulation program, catastrophic faults, circuit analysis computing, circuit layout, fault diagnosis, integrated analogue circuits, integrated circuit layout, integrated circuit testing, mixed analogue-digital integrated circuits, mixed-signal circuit, parametric faults, realistic fault characterisation program, simulation, test preparation, voltage-controlled oscillators

C. Sebeke; J. P. Teixeira; M. J. Ohletz

1995-03-01T23:59:59.000Z

220

Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995  

SciTech Connect

Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Final Project Report: Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections  

SciTech Connect

This report addresses original research by the Pacific Northwest National Laboratory for the California Institute for Energy and Environment on self-correcting controls for variable-air-volume (VAV) heating, ventilating and air-conditioning systems and focuses specifically on air handling and VAV box components of the air side of the system. A complete set of faults for these components was compiled and a fault mode analysis performed to understand the detectable symptoms of the faults and the chain of causation. A set of 26 algorithms was developed to facilitate the automatic correction of these faults in typical commercial VAV systems. These algorithms include training tests that are used during commissioning to develop models of normal system operation, passive diagnostics used to detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and finally fault correction algorithms. Ten of the twenty six algorithms were implemented in a prototype software package that interfaces with a test bed facility at PNNL's Richland, WA, laboratory. Measurement bias faults were instigated in the supply-air temperature sensor and the supply-air flow meter to test the algorithms developed. The algorithms as implemented in the laboratory software correctly detected, diagnosed and corrected these faults. Finally, an economic and impact assessment was performed for the State of California for deployment of self-correcting controls. Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1-5.8 TBu of energy savings are possible by year 15.

Brambley, Michael R.; Fernandez, Nicholas; Wang, Weimin; Cort, Katherine A.; Cho, Heejin; Ngo, Hung; Goddard, James K.

2011-05-01T23:59:59.000Z

222

Implementation of a Dual Containment/Surveillance System utilizing scene-change detection and radio frequency technology  

SciTech Connect

This paper will examine the implementation of scene-change detection and radio frequency technology within a Dual Containment/Surveillance (C/S) System. Additionally, this paper will examine the human performance factors in the operation of these systems. Currently, Westinghouse Savannah River Company utilizes the Continuous Item Monitoring and Surveillance System (CIMS) in the performance of Dual C/S to monitor special nuclear materials within International Atomic Energy Agency (IAEA) Safeguards and Domestic Safeguards. CIMS is comprised of the Material Monitoring System (MMS) (R), a multi-media electronic surveillance system developed by Sandia National Laboratory which incorporates the use of active seals commonly called Radio Frequency Tamper Indicating Devices (RFTIDs), NT Vision (R) as developed by Los Alamos National Laboratory, a Microsoft Windows NT (R) based operating system providing for domestic scene-change detection and the Digital Multi-Camera Optical Surveillance System (DMOS) (R) which provides scene-change detection for IAEA. Although this paper will focus on the implementation of Dual C/S utilizing the Continuous Item Monitoring and Surveillance System, the necessity for a thorough review of Safeguards and Security requirements with organizations and personnel having minimal to no prior MPC&A training will also be covered. Successful Dual C/S implementation plans must consider not only system design and failure modes, but must also be accompanied with the appropriate ''mind shift'' within operations and technical personnel. This is required to ensure completion of both physical and electronic activities, and system design changes are performed conscientiously and with full awareness of MPC&A requirements.

FITZGERALD, ERIC; KOENIG, RICHARD

2005-06-27T23:59:59.000Z

223

Discrimination among mechanical fault types in induction motors using electrical measurements  

E-Print Network (OSTI)

Rotating machine failures are a major cause of downtime in a wide variety of industrial processes and are a burden on maintenance personnel and facilities. Some of these failures occur suddenly and are seemingly unpredictable. However, the overwhelming majority develop slowly over time and produce characteristic warning signs. A system capable of detecting and diagnosing these incipient faults before they become critical would significantly reduce downtime and serve to facilitate maintenance and repair of these machines. The ability to accurately distinguish between different types of incipient faults would be a critical aspect of such a system. In this research, a model-based method for diagnosing motor faults is examined and tested using two squirrel-cage AC induction motors with staged fault conditions. The proposed method involves the multi-resolution signal analysis of the current residuals. These residuals are generated by comparing the measured motor current with the current predicted by a recurrent neural network. The frequency content of the distortion of the residuals is used to identify the type of fault present. Although "steady-state" conditions are examined exclusively in this research, the nonstationarities of the current signals are sufficient to warrant the use of multi-resolution analysis. The fault diagnosis system is tested using data taken from an 800 hp motor and a 3 hp motor. The method is successful in identifying residual distortion in the frequency range expected for broken-bar faults. Because the magnitude of the distortion grows with increasing fault severity, the method is also useful for evaluating fault severity for broken-bar faults. However, the current distortions caused by rotor eccentricities and damaged bearings are too small to be identified in a statistically significant manner using this approach. Nevertheless, this research demonstrates the feasibility of a general method by which the characteristic frequencies produced by a particular type of fault can be identified in the output of a system.

McFatter, Justin Robert

2002-01-01T23:59:59.000Z

224

Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report  

SciTech Connect

The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack?from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

Lumsdaine, Andrew

2013-03-08T23:59:59.000Z

225

Definition: Fault Current Limiting | Open Energy Information  

Open Energy Info (EERE)

Limiting Limiting Jump to: navigation, search Dictionary.png Fault Current Limiting Fault current limiting can be achieved through sensors, communications, information processing, and actuators that allow the utility to use a higher degree of network coordination to reconfigure the system to prevent fault currents from exceeding damaging levels. Fault current limiting can also be achieved through the implementation of special stand alone devices known as Fault Current Limiters (FCLs) which act to automatically limit high through currents that occur during faults.[1] Related Terms fault, fault current limiter References ↑ SmartGrid.gov 'Description of Functions' Temp LikeLike UnlikeLike You like this.Sign Up to see what your friends like. late:ISGANAttributionsmart grid,smart grid,smart grid,smart grid,

226

Definition: Fault Current Limiter | Open Energy Information  

Open Energy Info (EERE)

Limiter Limiter Jump to: navigation, search Dictionary.png Fault Current Limiter A fault current limiter prevents current in an electrical circuit from exceeding a predetermined level by increasing the electrical impedance of that circuit before the current through the circuit exceeds that level. Fault current limiters are designed so as to minimize the impedance of the circuit under normal conditions to reduce losses, but increase the impedance of the circuit under fault conditions to limit fault current.[1] View on Wikipedia Wikipedia Definition A Fault Current Limiter (FCL) is a device which limits the prospective fault current when a fault occurs (e.g. in a power transmission network). The term includes superconducting devices and non-superconducting devices, however some of the more simple non-superconducting devices (such

227

Quaternary faulting of Deschutes County, Oregon.  

E-Print Network (OSTI)

??Sixty-one normal faults were identified in a 53-kilometer long by 21-kilometer wide northwest-trending zone in central and northern Deschutes County, Oregon. The faults are within… (more)

Wellik, John M.

2008-01-01T23:59:59.000Z

228

Distribution Fault Location and Waveform Characterization  

Science Conference Proceedings (OSTI)

Automated fault location algorithms for distribution systems require monitoring equipment to record voltage and current waveforms during an event. In addition, most of these algorithms require circuit-impedance parameters to evaluate the fault location. Locating incipient faults and fault waveform characterization is the main aim of this project. This project builds on work done in 2008 towards sub-cycle blip identification using an algorithm based on arc voltage.

2009-12-11T23:59:59.000Z

229

Location for high impedance fault and polluted insulator in transmission line-based non-linear frequency analysis  

Science Conference Proceedings (OSTI)

The efficiency of power systems is based mainly on the continuity of the service, avoiding faults that suppose economic losses for utilities and users. It is very important to detect, locate and eliminate the faults of power systems, especially on power ...

Minyou Chen; Jinqian Zhai; Ziqiang Lang; Jucheng Liao; Gang Hu

2012-03-01T23:59:59.000Z

230

High temperature superconducting fault current limiter  

DOE Patents (OSTI)

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

231

Autonomic fault mitigation in embedded systems  

Science Conference Proceedings (OSTI)

Autonomy, particularly from a maintenance and fault-management perspective, is an increasingly desirable feature in embedded (and non-embedded) computer systems. The driving factors are several-including increasing pervasiveness of computer systems, ... Keywords: Autonomic computing, Embedded systems, Fault mitigation, Fault tolerance, Hierarchical concurrent finite-state machines, Model-based design

Sandeep Neema; Ted Bapty; Shweta Shetty; Steven Nordstrom

2004-10-01T23:59:59.000Z

232

CRT RSA algorithm protected against fault attacks  

Science Conference Proceedings (OSTI)

Embedded devices performing RSA signatures are subject to Fault Attacks, particularly when the Chinese Remainder Theorem is used. In most cases, the modular exponentiation and the Garner recombination algorithms are targeted. To thwart Fault Attacks, ... Keywords: RSA, chinese remainder theorem, fault attacks, modular exponentiation, simple power analysis, smart card

Arnaud Boscher; Robert Naciri; Emmanuel Prouff

2007-05-01T23:59:59.000Z

233

Designing Fault-Tolerant Mobile Systems  

Science Conference Proceedings (OSTI)

The purpose of this paper is to investigate how several innovative techniques, not all initially intended for fault-tolerance, can be applied in providing fault tolerance of complex mobile agent systems. Due to their roaming nature, mobile agents usually ... Keywords: exception handling, fault tolerance, mobile agents, software engineering, system structuring

Giovanna Di Marzo Serugendo; Alexander B. Romanovsky

2002-11-01T23:59:59.000Z

234

Software and Hardware Techniques for SEU Detection in IP Processors  

Science Conference Proceedings (OSTI)

In the recent years both software and hardware techniques have been adopted to carry out reliable designs, aimed at autonomously detecting the occurrence of faults, to allow discarding erroneous data and possibly performing the recovery of the system. ... Keywords: Fault injection, Hardware/software techniques, Reliability, Single-event upset faults

C. Bolchini; A. Miele; M. Rebaudengo; F. Salice; D. Sciuto; L. Sterpone; M. Violante

2008-06-01T23:59:59.000Z

235

Fault tolerant framework and techniques for component-based autonomous robot systems  

Science Conference Proceedings (OSTI)

Due to the benefits of its reusability and productivity, the component-based approach has become the primary technology in service robot software frameworks, such as MRDS (Microsoft Robotics Developer Studio), RTC (Robot Technology Component), ROS (Robot ... Keywords: component-based design, fault-tolerance, framework, service robot

Heejune Ahn; Sang Chul Ahn; Junyoung Heo; Sung Y. Shin

2011-03-01T23:59:59.000Z

236

A methodology for experimentally verifying simulation models for distribution transformer internal faults  

E-Print Network (OSTI)

Internal winding faults comprise 70-80% of modem transformer breakdown. In this era of deregulation, this phenomenon is likely to increase since loading transformers to their optimum capacity is becoming normal practice. These internal faults result from degradation of the transformer winding insulation, which tends to cause a breakdown in the dielectric strength. This breakdown either causes adjacent windings to short or a winding to be shorted to a grounded part of the transformer. Such faults can be very catastrophic and hence expensive. Utilities therefore welcome inexpensive methods employed to detect such faults in the incipient stage. The long-term objective of this research is the development of an inexpensive technique for the detection of transformer incipient winding faults. As part of this research, the thesis presents: 1. Internal winding models of single-phase, distribution transformers. These models are adapted from an earlier work of modeling internal winding faults of three-phase power transformers. They are compatible with the Alternative Transients Program and enable the transformer winding terminal parameters to be monitored. They allow the simulation of faults between any turn and the earth or between any two turns of the transformer windings. 2. Simulation of various internal winding faults of a single-phase distribution transformer using the models. 3. A general methodology to experimentally verify simulation models for distribution transformer internal winding faults including details of the design and layout of a field experimental setup containing a 25kVA, 7200V/240V/120V single-phase, custom-built transformer and a 25kW resistor load bank. 4. A comparison of the simulation and corresponding field experiment results. Although the simulation models neglected factors such as saturation and consequently transformer nonlinearities, the simulation and field results were very similar. As a contribution, the experimental setup presented in this work could generally be used for simulation model verification by following the proposed methodology with appropriate modifications. The validated models can be utilized to generate fault data for all kinds of scenarios including those that would be impossible to stage experimentally due to high levels of fault currents. These data can be used as a basis for a single-phase transformer incipient fault detection system.

Palmer-Buckle, Peter

1999-01-01T23:59:59.000Z

237

Use of SCADA Data for Failure Detection in Wind Turbines  

SciTech Connect

This paper discusses the use of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines.

Kim, K.; Parthasarathy, G.; Uluyol, O.; Foslien, W.; Sheng, S.; Fleming, P.

2011-10-01T23:59:59.000Z

238

Fault-ignorant Quantum Search  

E-Print Network (OSTI)

We investigate the problem of quantum searching on a noisy quantum computer. Taking a 'fault-ignorant' approach, we analyze quantum algorithms that solve the task for various different noise strengths, which are possibly unknown beforehand. We prove lower bounds on the runtime of such algorithms and thereby find that the quadratic speedup is necessarily lost (in our noise models). However, for low but constant noise levels the algorithms we provide (based on Grover's algorithm) still outperform the best noiseless classical search algorithm.

Peter Vrana; David Reeb; Daniel Reitzner; Michael M. Wolf

2013-07-02T23:59:59.000Z

239

Detachment Faulting and Geothermal Resources - An Innovative Integrated  

Open Energy Info (EERE)

Detachment Faulting and Geothermal Resources - An Innovative Integrated Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This program is designed to provide valuable new subsurface information about one of the Nation's arguably most promising high-temperature geothermal targets. Until now, the Emigrant Geothermal Prospect has been tested by only shallow and relatively shallow thermal-gradient boreholes and a small number of exploration wells, all of which have lacked any detailed 2-D or 3-D structural context. The applicants propose to conduct an innovative integration of detailed 2- D and 3-D structural reconstructions (structural mapping and reflection/refraction source seismology integrated with available data).

240

CONTROL AND FAULT DETECTOR CIRCUIT  

DOE Patents (OSTI)

A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

Winningstad, C.N.

1958-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault  

E-Print Network (OSTI)

Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure and constitution and the mechanical and chemical processes responsible for them. The 140 km long Kern Canyon fault (KCF) is a fault of 15 km right-lateral separation exhumed from seismogenic depth that cuts batholithic and metamorphic rocks of the southern Sierra Nevada. The fault consists of at least three distinct phases: an early phase of lower-greenschist-grade ductile shear with an S-C' phyllonite, a subsequent, dominant phase of brittle faulting characterized by a through-going zone of cataclastic rock, and a late stage of minor faulting along discontinuous, thin, hematitic gouge zones. The S-C' fabric and subsidiary fault-slip data indicate that both the phyllonitic and cataclastic zones are approximately vertical and strike-slip; slip lineations within the hematitic gouge suggest oblique-slip. The phyllonite zone trends N20-40E and accommodated ~175 m of separation. The cataclastic zone cuts the phyllonite, trends N21E, and consists of foliated and non-foliated cataclasites; it accommodates the majority of displacement along the fault. Abundant veins and fluid-assisted alteration in the rock surrounding the fault zone attest to the presence of fluids of evolving chemistry during both ductile and brittle faulting. Mass balance calculations indicate quartz loss during phyllonite faulting and imply that the fault system was open and experienced a negative change in volume during phyllonite faulting. Mesoscale and microscale fracture intensities decrease with log distance from the foliated cataclasites and approach a relatively low level at approximately 500 m. The internal structure of the Kern Canyon fault is similar to other large displacement faults in that it consists of a broad zone of fractured and altered rock and a narrow zone of intense cataclasis.

Neal, Leslie Ann

2002-01-01T23:59:59.000Z

242

Wind Turbines Condition Monitoring and Fault Diagnosis Using Generator Current Amplitude  

E-Print Network (OSTI)

detection in a Doubly-Fed Induction Generator (DFIG) based wind turbine for stationary and nonstationary cases. Index Terms--Wind turbine, DFIG, fault detection, diagnosis, amplitude modulation, Hilbert and maintaining older system, becomes more costly and challenging with obsolescence of key components. DFIG

Paris-Sud XI, Université de

243

Apex or Salient of Normal Fault | Open Energy Information  

Open Energy Info (EERE)

Apex or Salient of Normal Fault Apex or Salient of Normal Fault Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Apex or Salient of Normal Fault Dictionary.png Apex or Salient of Normal Fault: Normal faults may intersect in the subsurface to form a fault apex or salient. Apices or salients of normal faults account for 3% of structural controls in the Great Basin. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault Fault Intersection Accommodation Zone Displacement Transfer Zone Pull-Apart in Strike-Slip Fault Zone Intrusion Margins and Associated Fractures Stratigraphic Boundaries

244

Hardware Fault Insertion Techniques and Tools  

E-Print Network (OSTI)

The concept of dependability validation becomes more and more important regarding big public telecom systems. This is why fault insertion has been widely accepted as a means of testing the fault handling mechanisms of the systems. This master thesis classifies and compares fault insertion techniques used within the industry. It also looks into internal fault insertion techniques used by the people at Ericsson Telecom working with the AXD301 ATM switch. Hardware Fault Insertion Techniques and Tools 2 Acknowledgements The following people at Ericsson has contributed to this thesis in one way or another: Roger Nordmark Mattias Rimbark Bengt Kvist Anders strm Kenny Ohlsson Johan Jeppson Johan Eklv Also a thank you to my supervisor at KTH: Axel Jantsch A special thanks also to my good friend and colleague: Robert Thorhuus Hardware Fault Insertion Techniques and Tools 3 Abbreviations ASIC - Application Specific Integrated Circuit ATM - Asynchronous Transfer Mode BSDL - Boundary Scan De...

Emil Savqvist; Roger Nordmark; Mattias Rimbark; Bengt Kvist; Anders Åström; Kenny Ohlsson; Johan Eklöv; Axel Jantsch; Robert Thorhuus; Hw Hard Ware

2000-01-01T23:59:59.000Z

245

Fault Current Management Guidebook--Updated  

Science Conference Proceedings (OSTI)

Due to increased load demands and reduced incentives to build new transmission, energy companies are increasing power flows on existing transmission assets, which will increase fault current levels throughout the power system. Also, new generation sources to be added at the transmission and distribution network will increase power flows and, consequently, fault current levels. Under increased power flow conditions on existing assets, managing fault currents is crucial for avoiding damage to equipment as ...

2006-11-28T23:59:59.000Z

246

Fault Tree Based Diagnostics Using Fuzzy Logic  

Science Conference Proceedings (OSTI)

Fuzzy set theory is investigated as a tool for the diagnostics of systems described by means of a fault tree. The objective is to diagnose component failures from the observation of fuzzy symptoms using the information contained in a fault tree. A two-step ... Keywords: causal reasoning, component failures, failure analysis, failure modes, fault tree based diagnostics, fuzzy logic, fuzzy symptoms, minimal cut-sets, triggered gates, two-step procedure

P. Gmytrasiewicz; J. A. Hassberger; J. C. Lee

1990-11-01T23:59:59.000Z

247

www.elsevier.com/locate/arcontrol Bibliographical review on reconfigurable fault-tolerant control systems  

E-Print Network (OSTI)

In this paper, a bibliographical review on reconfigurable (active) fault-tolerant control systems (FTCS) is presented. The existing approaches to fault detection and diagnosis (FDD) and fault-tolerant control (FTC) in a general framework of active fault-tolerant control systems (AFTCS) are considered and classified according to different criteria such as design methodologies and applications. A comparison of different approaches is briefly carried out. Focuses in the field on the current research are also addressed with emphasis on the practical application of the techniques. In total, 376 references in the open literature, dating back to 1971, are compiled to provide an overall picture of historical, current, and future developments in this area.

Youmin Zhang A; Jin Jiang B

2007-01-01T23:59:59.000Z

248

Demid Borodin Performance-Oriented Fault  

E-Print Network (OSTI)

timetables on track. Working much like a sophisticated spell-checker for software, Goanna detects issues / Bldg 193 (Dept. of Electrical and Electronic Engineering) The University of Melbourne VIC 3010 Tel: +61 research. NICTA drives innovation through high-quality research, research training and technology transfer

Gaydadjiev, Georgi

249

Geothermal reservoir technology  

DOE Green Energy (OSTI)

A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

Lippmann, M.J.

1985-09-01T23:59:59.000Z

250

Integrated Technology for Distribution Systems Applications: Survey and Testing of Voltage Detecting/Indicating Devices for AC Power Lines  

Science Conference Proceedings (OSTI)

This report summarizes product reviews and testing commercially available voltage-sensing devices used to detect energized electric distribution lines, with particular focus on minimum detection and indication performance. To adequately detect line energization across the entire spectrum of possible voltage levels on a power line (from 40 Vac to full line voltage), multiple devices are currently necessary. The ideal improvement to address current gaps in voltage sensing would be the development of a ...

2013-12-17T23:59:59.000Z

251

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

252

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Machines Corporation Electronic Machines Corporation Smart Infrared Inspection System Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor Smart Infrared Inspection System (SIRIS) * Grant for a demonstration of thermal imaging technologies - Identify, in real time, faults and failures in tires, brakes and bearings mounted on commercial motor vehicles - Employ system along the interstate - Explore whether statistical tools can be developed that can predict impending tire, brake, or bearing failures SIRIS - Details * $1.4 M Research Grant * 3-year Project * Grant competitively awarded September 2006 to IEM, Inc. of Troy, NY * Supplemental $500K from NYSERDA for improved high

253

ARMor: fully verified software fault isolation  

Science Conference Proceedings (OSTI)

We have designed and implemented ARMor, a system that uses software fault isolation (SFI) to sandbox application code running on small embedded processors. Sandboxing can be used to protect components such as the RTOS and critical control loops from ... Keywords: arm executables, automated theorem proving, program logic, software fault isolation

Lu Zhao; Guodong Li; Bjorn De Sutter; John Regehr

2011-10-01T23:59:59.000Z

254

A switch level fault simulation environment  

Science Conference Proceedings (OSTI)

This paper presents a fault simulation environment which accepts pure switch level or mixed switch/RT level descriptions of the design under test. Switch level fault injection strategies for the stuck-at, transition and logic bridge models are presented. ...

V. Krishnaswamy; J. Casas; T. Tetzlaff

2000-06-01T23:59:59.000Z

255

Representing parameterised fault trees using Bayesian networks  

Science Conference Proceedings (OSTI)

Fault trees are used to model how failures lead to hazards and so to estimate the frequencies of the identified hazards of a system. Large systems, such as a rail network, do not give rise to endless different hazards. Rather, similar hazards arise repeatedly ... Keywords: Bayesian network, fault tree, risk analysis

William Marsh; George Bearfield

2007-09-01T23:59:59.000Z

256

Gas Turbine Fault Diagnosis using Random Forests  

Science Conference Proceedings (OSTI)

In the present paper, Random Forests are used in a critical and at the same time non trivial problem concerning the diagnosis of Gas Turbine blading faults, portraying promising results. Random forests-based fault diagnosis is treated as a Pattern Recognition ...

Manolis Maragoudakis; Euripides Loukis; Panayotis-Prodromos Pantelides

2008-06-01T23:59:59.000Z

257

BASE: Using abstraction to improve fault tolerance  

Science Conference Proceedings (OSTI)

Software errors are a major cause of outages and they are increasingly exploited in malicious attacks. Byzantine fault tolerance allows replicated systems to mask some software errors but it is expensive to deploy. This paper describes a replication ... Keywords: Byzantine fault tolerance, N-version programming, asynchronous systems, proactive recovery, state machine replication

Miguel Castro; Rodrigo Rodrigues; Barbara Liskov

2003-08-01T23:59:59.000Z

258

Numeric simulation of faults in electrical networks  

Science Conference Proceedings (OSTI)

In the paper is presented a virtual simulator for three-phased medium voltage electric circuits. The simulator allows analyzing transient regimes caused by the faults produced in electric distribution networks (simple grounding, double grounding, broken ... Keywords: faults in electric network, numerical simulation, three phased circuits, transient regimes

Toader Dumitru; Haragus Stefan; Blaj Constantin

2009-03-01T23:59:59.000Z

259

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems  

E-Print Network (OSTI)

in Fault Diagnostics for HVAC Systems Massieh Najafi 1 ,tools for determining HVAC diagnostics, methods todetect faults in HVAC systems are still generally

Najafi, Massieh

2010-01-01T23:59:59.000Z

260

Modeling and simulation of HVAC faults in EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

simulation of HVAC faults in EnergyPlus Title Modeling and simulation of HVAC faults in EnergyPlus Publication Type Conference Paper Refereed Designation Refereed Year of...

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modeling and Measurement Constraints in Fault Diagnostics for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Title Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Publication Type Journal...

262

fault diagnosis of a high voltage transmission line using waveform ...  

E-Print Network (OSTI)

Oct 4, 2013 ... FAULT DIAGNOSIS OF A HIGH VOLTAGE TRANSMISSION LINE USING ... Fault types such as single line to ground, line to line, double line to ...

263

CIFTS: Coordinated Infrastructure for Fault-Tolerant Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

CIFTS: Coordinated Infrastructure for Fault-Tolerant Systems CIFTS: Coordinated Infrastructure for Fault-Tolerant Systems Current systems software components for large-scale...

264

CIFTS: A Coordinated Infrastructure for Fault-Tolerant Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

CIFTS: A Coordinated Infrastructure for Fault-Tolerant Systems Title CIFTS: A Coordinated Infrastructure for Fault-Tolerant Systems Publication Type Conference Paper Year of...

265

Technology Partnerships Office  

Science Conference Proceedings (OSTI)

... It should also find application in detection or any other component presently detectable through PCR, DNA probe technology or immunoassay but ...

266

Automated Fault Location In Smart Distribution Systems  

E-Print Network (OSTI)

Fault location in distribution systems is a critical component of outage management and service restoration, which directly impacts feeder reliability and quality of the electricity supply. Improving fault location methods supports the Department of Energy (DOE) “Grid 2030” initiatives for grid modernization by improving reliability indices of the network. Improving customer average interruption duration index (CAIDI) and system average interruption duration index (SAIDI) are direct advantages of utilizing a suitable fault location method. As distribution systems are gradually evolving into smart distribution systems, application of more accurate fault location methods based on gathered data from various Intelligent Electronic Devices (IEDs) installed along the feeders is quite feasible. How this may be done and what is the needed methodology to come to such solution is raised and then systematically answered. To reach this goal, the following tasks are carried out: 1) Existing fault location methods in distribution systems are surveyed and their strength and caveats are studied. 2) Characteristics of IEDs in distribution systems are studied and their impacts on fault location method selection and implementation are detailed. 3) A systematic approach for selecting optimal fault location method is proposed and implemented to pinpoint the most promising algorithms for a given set of application requirements. 4) An enhanced fault location method based on voltage sag data gathered from IEDs along the feeder is developed. The method solves the problem of multiple fault location estimations and produces more robust results. 5) An optimal IED placement approach for the enhanced fault location method is developed and practical considerations for its implementation are detailed.

Lotfifard, Saeed

2011-08-01T23:59:59.000Z

267

Optimal partitioned fault-tolerant bus layout for reducing power in nanometer designs  

Science Conference Proceedings (OSTI)

As technology scales down to nanometer dimensions, coupling capacitances between adjacent bus wires grow rapidly, and have a significant impact on power consumption and signal integrity of an integrated circuit. As buses are major components of a design, ... Keywords: coupling capacitance, fault-tolerant, low power, reliability

Shanq-Jang Ruan; Edwin Naroska; Chun-Chih Chen

2006-04-01T23:59:59.000Z

268

Test Generation for Crosstalk-Induced Faults: Framework and Computational Results  

Science Conference Proceedings (OSTI)

Due to technology scaling and increasing clock frequency, problems due to noise effects lead to an increase in design/debugging efforts and a decrease in circuit performance. This paper addresses the problem of efficiently and accurately generating two-vector ... Keywords: crosstalk, fault modeling, mixed-signal test, time-based test generation

Wei-Yu Chen; Sandeep K. Gupta; Melvin A. Breuer

2002-02-01T23:59:59.000Z

269

Research on Fault Diagnosis of Hydropower Unit Based on Expert System and Hybrid Reasoning  

Science Conference Proceedings (OSTI)

With the rapid development of computer and monitoring technologies in recent years, more and more online monitoring equipment of hydropower units have been installed and applied in hydropower plants, and so began the long-term accumulation of data. Although ... Keywords: fault diagnosis, hydropower unit, expert system, hybrid reasoning

Ye Zhou; Luoping Pan

2012-05-01T23:59:59.000Z

270

Fault diagnosis for smart grid with uncertainty information based on data  

Science Conference Proceedings (OSTI)

The concept of Smart Grid has gained significant acceptance during the last several years due to the high cost of energy, environment concerns, and major advances in distributed generation (DG) technologies. Distribution systems have traditionally been ... Keywords: fault diagnosis, intuitionistic uncertainty sets, rough sets, smart grid

Qiuye Sun; Zhongxu Li; Jianguo Zhou; Xue Liang

2011-05-01T23:59:59.000Z

271

A neuro-computational approach to chiller fault identification and isolation  

E-Print Network (OSTI)

This thesis develops a steady state model of a reciprocating, single-stage, vapor compression chiller, based on thermodynamic principles and the ASHRAE HVAC-1 primary toolkit model, to predict and diagnose the behavior of the chiller. The characteristics of the chiller are identified by measuring certain parameters. Once the parameters are identified, the system boundaries are established, with certain parameters tainted by faults being isolated from the input parameters and, in turn, being derived from them using a nonlinear equation solver. A model-based approach is followed for chiller fault detection and diagnosis. The model generates residues by comparing the output of the chiller model with that of the same model albeit with some faults embedded. A nonzero residue indicates the presence of a fault. Various neuro-based classification techniques such as Adaptive Neuro-Fuzzy Inference Systems (grid partition and subtractive clustering) and Artificial Neural Networks (ANN) are evaluated, culminating in fault identification and isolation by an ANN system, batch trained with a fault matrix using the Levenberg-Marquardt learning algorithm, on a feed-forward back propagation network. Finally, additive sensor noise is introduced in select parameters and its effect on the overall accuracy of the model is tabulated.

Prabhu, Rahul Srinivas

2002-01-01T23:59:59.000Z

272

Fault diagnosis using substation computer  

SciTech Connect

A number of substation integrated control and protection systems (ICPS) are being developed around the world, where the protective relaying, control, and monitoring functions of a substation are implemented using microprocessors. In this design, conventional relays and control devices are replaced by clusters of microprocessors, interconnected by multiplexed digital communication channels using fibre optic, twisted wire pairs or coaxial cables. The ICPS incorporates enhanced functions of value to the utility and leads to further advancement of the automation of transmission substations. This paper presents an automated method of fault diagnosis which can be incorporated in the station computer of an integrated control and protection system. The effectiveness of this method is demonstrated using a transmission-level substation as an example.

Jeyasurya, B. (Indian Inst. of Tech., Bombay (India)); Venkata, S.S. (Washington Univ., Seattle, WA (USA). Dept. of Electrical Engineering); Vadari, S.V. (ESCA Corp., Bellevue, WA (USA)); Postforoosh, J. (T and D. Protection Group, Puget Sound Power and Light, Bellevue, WA (US))

1990-04-01T23:59:59.000Z

273

Cooperative application/OS DRAM fault recovery.  

Science Conference Proceedings (OSTI)

Exascale systems will present considerable fault-tolerance challenges to applications and system software. These systems are expected to suffer several hard and soft errors per day. Unfortunately, many fault-tolerance methods in use, such as rollback recovery, are unsuitable for many expected errors, for example DRAM failures. As a result, applications will need to address these resilience challenges to more effectively utilize future systems. In this paper, we describe work on a cross-layer application/OS framework to handle uncorrected memory errors. We illustrate the use of this framework through its integration with a new fault-tolerant iterative solver within the Trilinos library, and present initial convergence results.

Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico, Albuquerque, NM); Heroux, Michael Allen; Hoemmen, Mark; Brightwell, Ronald Brian

2012-05-01T23:59:59.000Z

274

Mechanical Models of Fault-Related Folding  

SciTech Connect

The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

Johnson, A. M.

2003-01-09T23:59:59.000Z

275

Fault tree analysis of the EBR-II reactor shutdown system  

SciTech Connect

As part of the level I Probabilistic Risk Assessment of the Experimental Breeder Reactor II (EBR-II), detailed fault trees for the reactor shutdown system are developed. Fault tree analysis is performed for two classes of transient events that are of particular importance to EBR-II operation: loss-of-flow and transient-overpower. In all parts of EBR-II reactor shutdown system, redundancy has been utilized in order to reduce scram failure probability. Therefore, heavy emphasis is placed in the fault trees on the common cause failures (CCFs) among similar mechanical components of the control and safety rods and among similar electrical components in redundant detection channels and shutdown strings. Generic beta-factors that cover all types of similar components and reflect redundancy level are used to model the CCFs. Human errors are addressed in the fault trees in two major areas: errors that would prevent the automatic scram channels from detecting the abnormal events and errors that would prevent utilization of the manual scram capability. The fault tree analysis of the EBR-II shutdown system has provided not only a systematic process for calculating the probabilities of system failures but also useful insights into the system and how its elements interact during transient events that require shutdown.

Kamal, S.A.; Hill, D.J.

1992-12-01T23:59:59.000Z

276

Quantification of Priority-OR gates in temporal fault trees  

Science Conference Proceedings (OSTI)

Fault Tree Analysis has been used in reliability engineering for many decades and has seen various modifications to enable it to analyse fault trees with dynamic and temporal gates so it can incorporate sequential failure in its analysis. Pandora is ... Keywords: Markov chains, Monte Carlo, Pandora, dynamic fault trees, fault trees, safety

Ernest Edifor; Martin Walker; Neil Gordon

2012-09-01T23:59:59.000Z

277

A transmission line fault locator based on Elman recurrent networks  

Science Conference Proceedings (OSTI)

In this paper, a transmission line fault location model which is based on an Elman recurrent network (ERN) has been presented for balanced and unbalanced short circuit faults. All fault situations with different inception times are implemented on a 380-kV ... Keywords: Elman networks, Fault location, Transmission lines, Wavelet transform

Sami Ekici; Selcuk Yildirim; Mustafa Poyraz

2009-01-01T23:59:59.000Z

278

Secure multipliers resilient to strong fault-injection attacks using multilinear arithmetic codes  

Science Conference Proceedings (OSTI)

Public-key cryptographic devices are vulnerable to fault-injection attacks. As countermeasures, a number of secure architectures based on linear and nonlinear error detecting codes were proposed. Linear codes provide protection only against primitive ... Keywords: arithmetic codes, cryptography, multipliers, sidechannel attacks

Zhen Wang, Mark Karpovsky, Ajay Joshi

2012-06-01T23:59:59.000Z

279

Fault intersections and hybrid transform faults in the southern Salton Trough geothermal area, Baja California, Mexico  

DOE Green Energy (OSTI)

Analysis of 55 wells drilled at the Cerro Prieto Geothermal Field and a suite of geological and geophysical studies throughout the southern Salton Trough from the Mexican-United States border to the Gulf of California clarify two concepts important to geothermal development: (1) increased natural convective fluid flow and better permeability should occur at intersecting faults both regionally and within a producing field, and (2) the Cerro Prieto and Imperial faults are best conceived of as hybrid types having features of both San Andreas style wrench faults and oceanic tranform faults.

Vonder Haar, S.; Puente Cruz, I.

1979-07-01T23:59:59.000Z

280

Fault tolerance for holonomic quantum computation  

E-Print Network (OSTI)

We review an approach to fault-tolerant holonomic quantum computation on stabilizer codes. We explain its workings as based on adiabatic dragging of the subsystem containing the logical information around suitable loops along which the information remains protected.

Ognyan Oreshkov; Todd A. Brun; Daniel A. Lidar

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Use of the continuous wavelet tranform to enhance early diagnosis of incipient faults in rotating element bearings  

E-Print Network (OSTI)

This thesis focused on developing a new wavelet for use with the continuous wavelet transform, a new detection method and two de-noising algorithms for rolling element bearing fault signals. The work is based on the continuous wavelet transform and implements a unique Fourier Series estimation algorithm that allows for least squares estimation of arbitrary frequency components of a signal. The final results of the research also included use of the developed detection algorithm for a novel method of estimating the center frequency and bandwidth for use with the industry standard detection algorithm, envelope demodulation, based on actual fault data. Finally, the algorithms and wavelets developed in this paper were tested against seven other wavelet based de-noising algorithms and shown to be superior for the de-noising and detection of inner and outer rolling element race faults.

Weatherwax, Scott Eric

2008-08-01T23:59:59.000Z

282

A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases  

SciTech Connect

Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

Brent Marquis

2007-05-31T23:59:59.000Z

283

Review of Existing Technology for Detection of Graphitization Damage in Carbon and Carbon-Molybhenum Steel Piping and Tubing  

Science Conference Proceedings (OSTI)

Unanticipated, and often catastrophic, damage continues to be observed in high-energy piping components of fossil-fuel-fired boilers. This damage is a significant source of concern for owner/operators. Specifically, the concerns for continued operation of potentially degraded components arise from the uncertainties associated with the identification of all anticipated active damage mechanisms, the nondestructive evaluation (NDE) methods and procedures used to detect and quantify all possible active ...

2012-12-12T23:59:59.000Z

284

Program on Technology Innovation: Detection of Instability Using Synchrophasors: A Theoretical Investigation on Observability with S ynchrophasor Networks  

Science Conference Proceedings (OSTI)

The objective of this project was to develop some concepts and computational algorithms for the estimation of the states of power systems equipped with synchrophasors. The study focuses on the estimation of the angles and the angular velocities around unstable trajectories. The goal was to provide complete information about the state of a system for the detection and control of instability. Observability is a fundamental concept that was introduced in this project. It was used to determine the ...

2013-09-27T23:59:59.000Z

285

Predictive analysis of concealed social network activities based on communication technology choices: early-warning detection of attack signals from terrorist organizations  

E-Print Network (OSTI)

activities based on communication technology choices: early-of what their communications technology choices may revealall avail- able communications technology use records over

Drozdova, Katya; Samoilov, Michael

2010-01-01T23:59:59.000Z

286

Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation  

Science Conference Proceedings (OSTI)

Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

2011-05-15T23:59:59.000Z

287

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

and radiation in a multiphase, multicomponent, porous mediumin modeling multiphase flow in porous and fractured media,phase and multiphase non-Darcy flow in porous and fractured

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

288

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

~FY2009 1. Field Investigation Conduct field investigationsinformation and conduct surface geologic investigation andat the detailed investigation stage. Conduct comprehensive

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

289

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.fluid flow, multicomponent transport, and heat transfer in porous and fractured media,fluid flow, solute transport, and heat transfer occur in porous and fractured media.

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

290

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

113, 51-68. Swedish Nuclear Fuel and Waste Management Co. ,SEPM, 52 p. Swedish Nuclear Fuel and Waste Management Co. ,Disposal of Canada’s Nuclear Fuel Waste. AECL -10711, COG-

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

291

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

transport, and heat transfer processes in porous media.transport, and heat transfer, we assume that these processesprocesses, as described by Equation (4) or (8), as well as heat transfer,

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

292

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

London) Special Publication 148, p. 117-134. Flint, A.L. ,Flint, L.E. , Bodvarsson, G.S. , Kwicklis, E.M. , andVol. 32, No. 9, 825-828, 2004b. Flint, A.L. , Flint, L.E. ,

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

293

Development of Characterization Technology for Fault Zone Hydrology  

E-Print Network (OSTI)

conducted using electrical resistivity survey and seismicWF3 WF2 WF1 TR1 Electrical Resistivity Seismic Reflectionat depth. Four electrical resistivity surveys and three

Karasaki, Kenzi

2010-01-01T23:59:59.000Z

294

A fault location approach for fuzzy fault section estimation on radial distribution feeders  

E-Print Network (OSTI)

Locating the faulted section of a distribution system is a difficult task because of lack of accurate system models and the presence of uncertainty in the data used for estimating the fault section. Many of the methods used to account for the uncertainty use fuzzy logic techniques to estimate bounds of possibility of the input data and calculated quantities, or probabilistic modeling of the input data to estimate the likelihood of the location of the fault on a particular section of the feeder. Heuristic knowledge of control center dispatchers has also been used for uncertainty management. This thesis presents the design and implementation of a phase selector algorithm and a fault distance algorithm for use in an automated modular scheme for fault section estimation on radial distribution systems. These two algorithms will be executed in combination with two other fault location algorithms. The scheme is executed using the data record of an abnormal event in a three-stage scheme. The phase selector algorithm was used to obtain event-phase possibility values representing the possibility of involvement of each of the phases and the neutral in an event. A section-event possibility value that indicated the possibility that a section of the feeder was involved in the fault was evaluated using the event-phase possibility values and line section phase topology information. The fault distance algorithm was used to eliminate sections of the feeder that were not likely to be possible faulted section candidates by assuming a bolted fault and estimating its location. Each line section was assigned a fault possibility value of zero or one according to its location relative to the location of the fault. The phase selector algorithm was tested using real data measured at feeder substations and the fault distance algorithm was tested using data obtained by staging faults on a model of an overhead feeder using EMTP/ATP simulation. The results obtained from the tests were promising. A simple illustration of the combination of the results of the two algorithms is given. The result of this combination shows the potential of the simultaneous use of the two algorithms.

Andoh, Kwame Sarpong

2000-01-01T23:59:59.000Z

295

Stress and fault rock controls on fault zone hydrology, Coso geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Details Activities (1) Areas (1) Regions (0) Abstract: In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability. At reservoir depths, borehole image, temperature, and mud logs indicate fluid flow is concentrated in extensively fractured damage zones of large faults well-oriented for slip.

296

Constructions of fault tolerant linear compressors and linear decompressors  

E-Print Network (OSTI)

Abstract — The constructions of optical buffers is one of the most critically sought after optical technologies in all-optical packet-switched networks, and constructing optical buffers directly via optical Switches and fiber Delay Lines (SDL) has received a lot of attention recently in the literature. A practical and challenging issue of the constructions of optical buffers that has not been addressed before is on the fault tolerant capability of such constructions. In this paper, we focus on the constructions of fault tolerant linear compressors and linear decompressors. The basic network element for our constructions is scaled optical memory cell, which is constructed by a 2 × 2 optical crossbar switch and a fiber delay line. We give a multistage construction of a self-routing linear compressor by a concatenation of scaled optical memory cells. We also show that if the delays, say d1, d2,..., dM, of the fibers in the scaled optical memory cells satisfy a certain condition (specifically, the condition in (A2) given in Section I), then our multistage construction can be operated as a self-routing linear compressor with maximum delay ? M?F even after up to F of the M scaled optical memory cells fail to function properly, where 0 ? F ? M ? 1. Furthermore, we prove that our multistage construction with the fiber delays d1, d2,..., dM given by the generalized Fibonacci series of order F is the best among all constructions of a linear compressor that can tolerate up to F faulty scaled optical memory cells by using M scaled optical memory cells. Similarly results are also obtained for the constructions of fault tolerant linear decompressors. I.

Cheng-shang Chang; Tsz-hsuan Chao; Jay Cheng; Duan-shin Lee

2007-01-01T23:59:59.000Z

297

Multi-offset vertical seismic profiles: fracture and fault identification for Appalachian basin reservoirs - two case examples  

SciTech Connect

Many Appalachian basin reservoirs occur in older rocks that are commonly fractured and faulted. These fractures and faults very often act as the reservoir trapping mechanism, especially in lithologies with no log-detectable matrix porosity. Traditional logging techniques, although possibly showing fault or fracture presence in the well bore, seldom provide clues to the extent of fracturing or location of nearby faults. Surface seismic data should show faults and perhaps even fracturing, but showing these features is often not possible in rugged terrain or in areas with thick coverings of unconsolidated surface material. Traditional seismic also has resolutions lower than that needed to detect small faults (less than 70 ft). Two case examples are shown from the northern Appalachian basin. The first example utilizes Schlumberger's slim hole seismic tool in cased holes in an area of thick unconsolidated glacial material along the Bass Island trend of western New York. The second example utilizes Schlumberger's SAT tool in an open-hole environment in an area of northwestern Pennsylvania with disturbed surface bedding and poor conventional surface seismic returns. The slim hole tool provides good data but with only slightly greater resolution than surface Vibroseis data. The SAT tool provides excellent resolution (down to 25 ft) in highly disturbed bedding.

Wyatt, D.E.; Bennett, B.A.; Walsh, J.J.

1988-08-01T23:59:59.000Z

298

Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack  

Science Conference Proceedings (OSTI)

ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the line in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics controller, Intelligent power-electronics Device, IED

Dr. Ram Adapa; Mr. Dante Piccone

2012-04-30T23:59:59.000Z

299

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

techniques for model-based FDD methods applied to vapordetection and diagnosis (FDD) has been an active area for6-17]. In building HVAC systems, FDD has received increasing

Najafi, Massieh

2010-01-01T23:59:59.000Z

300

Model identification with application to building control and fault detection  

E-Print Network (OSTI)

(cont.) may still be solved as an unconstrained linear least squares problem. To enforce the constraint on system eigenvalues, the problem is formulated as an unconstrained mixed (linear and non-linear) least-squares ...

Armstrong, Peter Ross, 1950-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fault Detection and Diagnosis in Building HVAC Systems.  

E-Print Network (OSTI)

??Building HVAC systems account for more than 30% of annual energy consumption in United States. However, it has become apparent that only in a small… (more)

Najafi, Massieh

2010-01-01T23:59:59.000Z

302

Generating analyses for detecting faults in path segments  

Science Conference Proceedings (OSTI)

Although static bug detectors are extensively applied, there is a cost in using them. One challenge is that static analysis often reports a large number of false positives but little diagnostic information. Also, individual bug detectors need to be built ... Keywords: demand-driven, generate analysis, path segment, specification

Wei Le; Mary Lou Soffa

2011-07-01T23:59:59.000Z

303

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

in AHU of VAV system”, Energy Conversion & Management, 30.energy efficient building management system”, Energy Conversionenergy efficient building management system”, Energy Conversion

Najafi, Massieh

2010-01-01T23:59:59.000Z

304

Fault Detection and Diagnosis for Air-Conditioners and Heat ...  

Science Conference Proceedings (OSTI)

... Calculation of the “energetic” metric will include weather data to weight the ... and rooftop units and will promote market implementation of FDD tools. ...

2012-12-17T23:59:59.000Z

305

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

ASME Journal of Solar Energy Engineering, Transactions ofunits”, Journal of solar energy engineering, 2003, vol. 125,

Najafi, Massieh

2010-01-01T23:59:59.000Z

306

Minimally intrusive strategies for fault detection and energy monitoring  

E-Print Network (OSTI)

This thesis addresses the need for automated monitoring systems that rely on minimally intrusive sensor arrays. The monitoring techniques employed in this thesis require fewer sensors because they take a different approach ...

Cox, Robert Williams, 1979-

2006-01-01T23:59:59.000Z

307

A Survey of Outlier Detection Methodologies  

Science Conference Proceedings (OSTI)

Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply ... Keywords: anomaly, detection, deviation, noise, novelty, outlier, recognition

Victoria Hodge; Jim Austin

2004-10-01T23:59:59.000Z

308

Trajectory-Oriented and Fault-Tolerant-Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing; Final Technical Report, 13 May 2002--30 May 2005  

DOE Green Energy (OSTI)

ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.

Simpson, L.; Britt, J.; Birkmire, R.; Vincent, T.

2005-10-01T23:59:59.000Z

309

Combining robust detection and anti-windup compensation for FTC  

Science Conference Proceedings (OSTI)

In this contribution, a method for implementation of AWBT compensation, when the residual signal can not be measured, is presented. The approach consists into estimate the residual signal from a FDI filter. In this case, the residual signal is considered ... Keywords: anti-windup compensation, fault detection, fault-tolerant control, robust control

Addison Rios-Bolivar; Richard Marquez

2006-07-01T23:59:59.000Z

310

Trends in Energy Management Technology - Part 3: State of Practice of Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

are included here. DRS EEMS FDD NMS RF SGML SNMP SOAP TP TSaccess Demand Limiting/Reduction FDD (Fault Detection and

Yee, Gaymond; Webster, Tom

2004-01-01T23:59:59.000Z

311

Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada | Open  

Open Energy Info (EERE)

Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Abstract Precise definition of geometric relationships between individual basins and ranges may help to reveal the mechanical processes of Basin and Range Cenozoic extensional faulting at depth. Previous studies have attempted to identify simple horsts and grabens, tilted crustal blocks with planar faulting, or tilted crustal blocks with listric faulting in the shallow crust. Normal faults defining these crustal blocks may root (1) individually in the ductile lower crust, (2) in regional or local low-angle detachment faults, or (3) in igneous intrusions or decoupling surfaces

312

Synthesis and evaluation of fault-tolerant quantum computer architectures  

E-Print Network (OSTI)

Fault-tolerance is the cornerstone of practical, large-scale quantum computing, pushed into its prominent position with heroic theoretical efforts. The fault-tolerance threshold, which is the component failure probability ...

Cross, Andrew W. (Andrew William), 1979-

2005-01-01T23:59:59.000Z

313

Scalable Distributed Consensus to Support MPI Fault Tolerance  

Science Conference Proceedings (OSTI)

As system sizes increase, the amount of time in which an application can run without experiencing a failure decreases. Exascale applications will need to address fault tolerance. In order to support algorithm-based fault tolerance, communication libraries ...

Darius Buntinas

2012-05-01T23:59:59.000Z

314

Rough neural fault classification for hvdc power systems  

Science Conference Proceedings (OSTI)

This Ph.D. thesis proposes an approach to classify faults that commonly occur in a High Voltage Direct Current (HVDC) power system. These faults are distributed throughout the entire HVDC system. The most recently published techniques for power system ...

Liting Han

2008-01-01T23:59:59.000Z

315

MODELING AND SIMULATION OF HVAC FAULTS IN ENERGYPLUS  

E-Print Network (OSTI)

sensor faults, Energy and Buildings. 42(4). April 2010.faults in buildings. Energy and Buildings. 42(1). Januaryon the DOE-2 model, Energy and Buildings. 21(2). 1994, Pages

Basarkar, Mangesh

2013-01-01T23:59:59.000Z

316

Stability of Distributed Algorithms in the Face of Incessant Faults  

Science Conference Proceedings (OSTI)

For large distributed systems built from inexpensive components, one expects to see incessant failures. This paper proposes two models for such faults and analyzes two well-known self-stabilizing algorithms under these fault models. For a small number ...

Robert E. Lee Deville; Sayan Mitra

2009-11-01T23:59:59.000Z

317

Two-person control administration: preventing administration faults through duplication  

Science Conference Proceedings (OSTI)

Modern computing systems are complex and difficult to administer, making them more prone to system administration faults. Faults can occur simply due to mistakes in the process of administering a complex system. These mistakes can make the system insecure ...

Shaya Potter; Steven M. Bellovin; Jason Nieh

2009-11-01T23:59:59.000Z

318

Neural Network-Based Classification of Single-Phase Distribution Transformer Fault Data  

E-Print Network (OSTI)

The ultimate goal of this research is to develop an online, non-destructive, incipient fault detection system that is able to detect incipient faults in transformers and other electric equipment before the faults become catastrophic. With the condition assessment capability of the detection system, operators are equipped with better information during their decision-making process. Corrective actions are taken prior to transformer and equipment failures to prevent down-time and reduce operating and maintenance costs. Diagnosis of data associated with incipient failures is essential to develop an efficient, non-destructive, and online system. Field testing data were collected from controlled experiment and simulation data from mathematical models are studied. This thesis presents a data-mining approach to analyze field recorded and simulation data to characterize incipient fault data and study its properties. A supervised classifier using neural network (NN) toolbox in Matlab provides an efficient and accurate classification method to separate monitoring signal data into clusters base on their properties. However, raw data collected from the field and simulations will create too many dimensions and inputs to the neural network and make it a complex and over-generalized classification. Therefore, features are extracted from the data set, and these features are formed into feature clusters in order to identify patterns in signals as they are related to various physical behaviors of the system. The similarity between recognized patterns and patterns shown in future monitoring signals will trigger the warning of initializing or developing faults in transformers or equipment. This thesis demonstrates how different features were extracted from the raw data using various analysis techniques in both time domain and time-frequency domain, and the design and implementation of a neural network-based classification method. The classifier outputs are classes of data being separated into groups based on their characteristics and behaviors. Meaning of different classes is also explained in this thesis.

Zhang, Xujia

2006-08-16T23:59:59.000Z

319

ST ATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES RESEARCH CENTER FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ST ATEMENT OF CONSIDERATIONS ST ATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES RESEARCH CENTER FOR AN ADVANCE WAIVER OF THE GOVERNMENT'S DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT DE-EE0003953; DOE WAIVER NO. W(A)2011-013; CH1596 The Petitioner, United Technologies Research Center (UTRC). has requested an Advance Waiver of the Government's domestic and foreign rights to inventions in the above cited research and development contract issued by DOE's National Energy Technology Laboratory (NETL). See attached UTRC's Petition, Answer 1. Subject of the R&D Contract Title: Integrated Whole Building Energy Diagnostics The objective of the contract is to develop and demonstrate a Whole-building energy management system (EMS) that integrated real-time energy fault detection and diagnostics

320

Fault-tolerant Operations for Universal Blind Quantum Computation  

E-Print Network (OSTI)

Blind quantum computation is an appealing use of quantum information technology because it can conceal both the client's data and the algorithm itself from the server. However, problems need to be solved in the practical use of blind quantum computation and fault-tolerance is a major challenge. On an example circuit, the computational cost measured in T gates executed by the client is 97 times more than performing the original computation directly, without using the server, even before applying error correction. (The client still benefits due to drastically reduced memory requirements.) Broadbent et al. proposed running error correction over blind computation, but our first protocol applies one layer of Steane's [[7,1,3

Chia-Hung Chien; Rodney Van Meter; Sy-Yen Kuo

2013-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fault Current Limiters (FCL) Fact Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications An Assessment of Fault Current Limiter Testing Requirements Superconductivity Program Overview Superconductivity for Electric Systems: 2008 Annual Peer Review...

322

Underground Cable Fault Location Reference and Application Guide  

Science Conference Proceedings (OSTI)

This report summarizes underground cable fault location methods and details the application of the methods for transmission and distribution cable systems. It summarizes both terminal location and tracer location methods that can be applied to transmission and distribution cable systems. The report is an update to a summary of fault location methods. It provides practical technical material in the art and science of locating cable faults, including a description of common fault location instruments and p...

2011-12-23T23:59:59.000Z

323

Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources  

SciTech Connect

This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

Keller, J.; Kroposki, B.

2010-01-01T23:59:59.000Z

324

Combustion Turbine Diagnostic Health Monitoring: Combustion Turbine Performance and Fault Diagnostic Module (CTPFDM)  

Science Conference Proceedings (OSTI)

The industry-wide transition to condition-based maintenance strategies has prompted development of sophisticated, automated condition assessment tools. The Combustion Turbine Performance and Fault Diagnostic Module (CTPFDM) presented in this report is the second of a suite of intelligent software tools being developed by EPRI and the U.S. Department of Energy (DOE) National Energy Technology Laboratory as part of the Combustion Turbine Health Management (CTHM) System. The CTHM System will offer a signifi...

2004-03-17T23:59:59.000Z

325

Superlattice-like stacking fault array in ion-irradiated GaN  

SciTech Connect

Controlling defects in crystalline solids is of technological importance for realizing desirable materials properties. Irradiation with energetic particles is useful for designing the spatial distribution and concentration of defects in materials. Here, we performed ion irradiation into hexagonal GaN with the wurtzite structure and demonstrated the spontaneous formation of superlattice-like stacking fault arrays. It was found that the modulation period can be controlled by irradiation conditions and post-irradiation heat treatments.

Ishimaru, Dr. Manabu [Osaka University; Usov, Igor Olegovich [ORNL; Zhang, Yanwen [ORNL; Weber, William J [ORNL

2012-01-01T23:59:59.000Z

326

Combustion Turbine Diagnostic Health Monitoring: Combined Cycle Performance and Fault Diagnostic Module (CCPFDM)  

Science Conference Proceedings (OSTI)

The industry-wide transition to condition-based maintenance strategies has prompted development of sophisticated, automated condition assessment tools. The Combined Cycle Performance and Fault Diagnostic Module (CCPFDM) presented in this report is the third of a suite of intelligent software tools being developed by EPRI and the U.S. Department of Energy (DOE) National Energy Technology Laboratory as part of the Combustion Turbine Health Management (CTHM) System. The CTHM System will offer a significant ...

2004-03-22T23:59:59.000Z

327

Fault Diagnosis of Transformer Based on Probabilistic Neural Network  

Science Conference Proceedings (OSTI)

In order to improve the correct rate of transformer fault diagnosis based on three-ratio method of traditional dissolved gas analysis (DGA), a novel intelligent transformer fault diagnosis method based on both DGA and probabilistic neural network (PNN) ... Keywords: transformer fault diagnosis, probabilistic neural network (PNN), improved three-ratio method

Li Song; Li Xiu-ying; Wang Wen-xu

2011-03-01T23:59:59.000Z

328

New Burnside Anticline: part of Fluorspar area fault complex  

SciTech Connect

Field mapping in the Abbott Formation and examination of topographic lineaments in the Creal Springs, Stonefort, Eddyville, and Harrisburg Quadrangles (southeastern Illinois) reveal the New Burnside anticline and its northeastern extension, the Stonefort anticline to be a single, extensively faulted structure. Interpretation of this evidence also leads to the conclusion that this is a fault-block structure rather than an anticline. Trending notheast-southwest, the structure seems to be the northwesternmost extent of the Fluorspar Area fault complex. The authors found evidence for two episodes of faulting. The first involved northeast-trending, high-angle faults similar to those in the known Fluorspar complex to the southeast. Faults on the northeast (Stonefort antilcine) step down toward the center of the structure, forming a graben. Vertical movement also occurred to the southwest (New Burnside anticline), but the structure in this vicinity is a horst with some blocks tilted. As with other faults in the Fluorspar complex, horizontal slickensides are present locally. The second episode of movement occurred along northwest-southeast-trending strike-slip faults that offset the northeast-trending high-angle faults. This second phase of faulting may correspond with previously reported reactivation of northwest-trending faults elsewhere in the Fluorspar Area fault complex.

Jacobson, R.J.; Trask, C.B.

1983-09-01T23:59:59.000Z

329

Yet Another Fault Injection Technique : by Forward Body Biasing Injection  

E-Print Network (OSTI)

expensive fault injection tech- niques, like clock or voltage glitches, are well taken into accountYet Another Fault Injection Technique : by Forward Body Biasing Injection K. TOBICH1,2, P. MAURINE1 Injection, Electromag- netic Attacks, RSA, Chinese Remainder Theorem 1 Introduction Fault injection

330

Statistical estimation of multiple faults in aircraft gas turbine engines  

E-Print Network (OSTI)

415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

Ray, Asok

331

Collective operations in application-level fault-tolerant MPI  

Science Conference Proceedings (OSTI)

Fault-tolerance is becoming a critical issue on high-performance platforms. Checkpointing techniques make programs fault-tolerant by saving their state periodically and restoring this state after failure. System-level checkpointing saves the state ... Keywords: MPI, application-level checkpointing, collective communication, fault-tolerance, non-FIFO communication, scientific computing

Greg Bronevetsky; Daniel Marques; Keshav Pingali; Paul Stodghill

2003-06-01T23:59:59.000Z

332

A lightweight fault tolerance framework for Web services  

Science Conference Proceedings (OSTI)

In this paper, we present the design and implementation of a lightweight fault tolerance framework for Web services. With our framework, a Web service can be rendered fault tolerant by replicating it across several nodes. A consensus-based algorithm ... Keywords: Fault tolerance, Web services, distributed consensus, reliable messaging, replication

Wenbing Zhao; Honglei Zhang; Hua Chai

2009-08-01T23:59:59.000Z

333

Fault reconnaissance agent for sensor networks  

Science Conference Proceedings (OSTI)

One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system with a problem solving ... Keywords: Management, expectation maximization algorithm, intelligent agents, wireless sensor networks

Elhadi M. Shakshuki; Xinyu Xing; Tarek R. Sheltami

2010-08-01T23:59:59.000Z

334

Optimized Fault Location Final Project Report  

E-Print Network (OSTI)

excessive currents and voltages last long enough to cause equipment damage. CBs have the purpose to connect describes connectivity of the various components in the power system. In order to process retrieved fault, the system topology must be known. Beside the connectivity it is necessary to obtain information about

335

HVAC Maintenance and Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC - HVAC - Maintenance and Technologies Federal Utility Partnership Working Group Meeting Providence, Rhode Island April 15, 2010 BY Ramin Faramarzi, P.E. Technology Test Centers (TTC) Design and Engineering Services Southern California Edison (SCE) www.sce.com/rttc 2 Outline * Introduction to SCE's TTC * Overview of energy challenges in California (CA) * Role of HVAC in CA's energy and demand equations * Factors affecting HVAC performance * Focus on SCE's research on maintenance faults * Next generation of HVAC equipment * HVAC technologies on SCE's TTC radar * Black boxes - do they all work? 3 SCE's Technology Test Centers * SCE applied research facilities located in Irwindale, CA comprised of 3 test beds: * Refrigeration * HVAC * Lighting * Coming Soon! - A new ZNE lab 4 Refrigeration Testing

336

Coordinated Fault Tolerance for High-Performance Computing  

SciTech Connect

Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

Dongarra, Jack; Bosilca, George; et al.

2013-04-08T23:59:59.000Z

337

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

338

Upper crustal faulting in an obliquely extending orogen, structural control  

Open Energy Info (EERE)

faulting in an obliquely extending orogen, structural control faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Upper crustal faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New multifold seismic reflection data from the Coso geothermal field in the central Coso Range, eastern California, image brittle faults and other structures in a zone of localized crustal extension between two major strike-slip faults. The Coso Wash fault, a Quaternary-active normal fault that is a locus of surface geothermal activity, is well-imaged as a

339

Active Fault Segments As Potential Earthquake Sources- Inferences From  

Open Energy Info (EERE)

Active Fault Segments As Potential Earthquake Sources- Inferences From Active Fault Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Active Fault Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic

340

New method for abbreviating the fault tree graphical representation  

SciTech Connect

Fault tree analysis is being widely used for reliability and safety analysis of systems encountered in the nuclear industry and elsewhere. A disadvantage of the fault tree method is the voluminous fault tree graphical representation that conventionally results from analysis of a complex system. Previous methods for shortening the fault tree graphical representation include (1) transfers within the fault tree, and (2) the use of the SAMPLE (K out of N logic) gate, the MATRIX gate, and the SUMMATION gate. The purpose of this presentation is to introduce TABULATION gates as a method to abbreviate the fault tree graphical representation. These new gates reduce the cost of analysis and generally increase the system behavior visibility that is inherent in the fault tree technique. (auth)

Stewart, M.E.; Fussell, J.B.; Crump, R.J.

1974-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Decision-table development for use with the CAT code for the automated fault-tree construction  

SciTech Connect

A library of decision tables to be used in connection with the CAT computer code for the automated construction of fault trees is presented. A decision table is constructed for each component type describing the output of the component in terms of its inputs and its internal states. In addition, a modification of the CAT code that couples it with a fault tree analysis code is presented. This report represents one aspect of a study entitled, 'A General Evaluation Approach to Risk-Benefit for Large Technological Systems, and Its Application to Nuclear Power.'

Wu, J.S.; Salem, S.L.; Apostolakis, G.E.

1977-01-01T23:59:59.000Z

342

Undulator Hall Air Temperature Fault Scenarios  

SciTech Connect

Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

Sevilla, J.

2010-11-17T23:59:59.000Z

343

Calculating the probability of injected carbon dioxide plumes encountering faults  

Science Conference Proceedings (OSTI)

One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

Jordan, P.D.

2011-04-01T23:59:59.000Z

344

Worst-Case and Average-Case Analysis of n-Detection Test Sets  

E-Print Network (OSTI)

Test sets that detect each target fault n times (n-detection test sets) are typically generated for restricted values of n due to the increase in test set size with n. We perform both a worst-case analysis and an average-case analysis to check the effect of restricting n on the unmodeled fault coverage of an (arbitrary) n-detection test set. Our analysis is independent of any particular test set or test generation approach. It is based on a specific set of target faults and a specific set of untargeted faults. It shows that, depending on the circuit, very large values of n may be needed to guarantee the detection of all the untargeted faults. We discuss the implications of these results.

Pomeranz, Irith

2011-01-01T23:59:59.000Z

345

Resource Requirements for Fault-Tolerant Quantum Simulation: The Transverse Ising Model Ground State  

E-Print Network (OSTI)

The cost, in both computational space and time, of calculating the energy of the ground state of the transverse Ising model on a fault-tolerant quantum computer is estimated using the Quantum Logic Array (QLA) architecture model. The QLA is a homogeneous, scalable, tile-based quantum architecture design employing concatenated quantum error correction for the construction of logical qubits and gates, based on experimentally viable ion-trap device technology parameters and components. The error correction requirements for calculating the energy on the QLA architecture are comparable to those for factoring large integers via Shor's quantum factoring algorithm number due to the exponential scaling of the computational timesteps with the precision. As a result, a fault-tolerant QLA-based quantum computer which can factor 1024-bit integers can also be used to calculate the Ising ground-state energy with precision of up to 7 decimal digits.

Clark, Craig R; Metodi, Tzvetan S; Gasster, Samuel D

2008-01-01T23:59:59.000Z

346

A 4000-A HVDC (high-voltage direct-current) circuit breaker with fast fault-clearing capability: Final report  

Science Conference Proceedings (OSTI)

This project is a follow-up of the first development of a 500 kV HVDC airblast circuit breaker (EPRI project 1507-3). The objective was to increase the current interrupting capability from 2200 A to 4000 A and shorten its fault clearing time. A high current 500 kV HVDC circuit breaker has been built using the passive commutation circuit. The breaker is modular in construction and can be designed for a wide variety of system conditions. More than 400 current interruptions were carried out successfully. Tests have shown that this circuit breaker is capable of interrupting more than 4000 A dc. Practical breakers with current interrupting capability of even 5500 A dc could be built. The circuit breaker operation and the fault-clearing process can be materially speeded up if the trip signal is given as soon as the fault is detected and without waiting for the current levels to come down in response to converter control action. The new dc breakers are shown to be capable of withstanding these transient arc currents of 8000 A without affecting its ability to interrupt the direct current that follows the transient. This transient current withstand capability is greater than is likely to occur during dc faults. The fault clearing time of this HVDC circuit breaker is comparable to the fault clearing time of conventional ac breakers for ac faults. The developed HVDC circuit breaker is now commercially available and can be supplied for use in HVDC systems. Its use in such systems is expected to provide flexibility in system design and contribute to system stability. 38 refs., 52 figs., 9 tabs.

Not Available

1988-04-01T23:59:59.000Z

347

Distribution Fault Location: Update on Implementations Platforms that Support Use of Schweitzer Engineering Laboratories (SEL) Relays Data  

Science Conference Proceedings (OSTI)

This report focuses on the use of Schweitzer Engineering Laboratories (SEL) relay based data for the detection and identification of faults within the distribution system. An overview of the detection methods and the data requirements are presented. Recent updates on the status of the implementation approaches of stand-alone systems like PQView are presented. As part of this year’s activity, the project team worked with Grid Protection Alliance (GPA) to further improve its open source platform ...

2013-12-22T23:59:59.000Z

348

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

349

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

350

Active Faulting in the Coso Geothermal Field, Eastern California | Open  

Open Energy Info (EERE)

Faulting in the Coso Geothermal Field, Eastern California Faulting in the Coso Geothermal Field, Eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Active Faulting in the Coso Geothermal Field, Eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults sole into or terminate against the brittle-ductile transition zone (BDT) at a depth of about 4 to 5 km. The BDT is arched upward over a volume of crust

351

Type E: Extensional Tectonic, Fault-Controlled Resource | Open Energy  

Open Energy Info (EERE)

Type E: Extensional Tectonic, Fault-Controlled Resource Type E: Extensional Tectonic, Fault-Controlled Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type E: Extensional Tectonic, Fault-Controlled Resource Dictionary.png Type E: Extensional Tectonic, Fault-Controlled Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Extensional-tectonic, fault-controlled resources typically result from a

352

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

353

Scalable distributed consensus to support MPI fault tolerance.  

Science Conference Proceedings (OSTI)

As system sizes increase, the amount of time in which an application can run without experiencing a failure decreases. Exascale applications will need to address fault tolerance. In order to support algorithm-based fault tolerance, communication libraries will need to provide fault-tolerance features to the application. One important fault-tolerance operation is distributed consensus. This is used, for example, to collectively decide on a set of failed processes. This paper describes a scalable, distributed consensus algorithm that is used to support new MPI fault-tolerance features proposed by the MPI 3 Forum's fault-tolerance working group. The algorithm was implemented and evaluated on a 4,096-core Blue Gene/P. The implementation was able to perform a full-scale distributed consensus in 305 {mu}s and scaled logarithmically.

Buntinas, D. (Mathematics and Computer Science)

2011-01-01T23:59:59.000Z

354

Similarity Matching Techniques for Fault Diagnosis in Automotive Infotainment Electronics  

E-Print Network (OSTI)

Fault diagnosis has become a very important area of research during the last decade due to the advancement of mechanical and electrical systems in industries. The automobile is a crucial field where fault diagnosis is given a special attention. Due to the increasing complexity and newly added features in vehicles, a comprehensive study has to be performed in order to achieve an appropriate diagnosis model. A diagnosis system is capable of identifying the faults of a system by investigating the observable effects (or symptoms). The system categorizes the fault into a diagnosis class and identifies a probable cause based on the supplied fault symptoms. Fault categorization and identification are done using similarity matching techniques. The development of diagnosis classes is done by making use of previous experience, knowledge or information within an application area. The necessary information used may come from several sources of knowledge, such as from system analysis. In this paper similarity matching tec...

Kabir, Mashud

2009-01-01T23:59:59.000Z

355

Testing technology  

SciTech Connect

This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

Not Available

1993-10-01T23:59:59.000Z

356

Timer-based composition of fault-containing self-stabilizing protocols  

Science Conference Proceedings (OSTI)

One of the desired properties of distributed systems is self-adaptability against faults. Self-stabilizing protocols provide autonomous recovery from any finite number of transient faults. However, in practice, catastrophic faults rarely occur, while ... Keywords: Distributed system, Fault tolerance, Fault-containment, Hierarchical composition, Self-adaptability, Self-stabilization, Synchronizer, Timer

Yukiko Yamauchi; Sayaka Kamei; Fukuhito Ooshita; Yoshiaki Katayama; Hirotsugu Kakugawa; Toshimitsu Masuzawa

2010-05-01T23:59:59.000Z

357

Enhancing and Testing Fast Fault Screening (FFS) Methodology  

Science Conference Proceedings (OSTI)

The aim of this multi-year study is to develop a methodology for fast prediction of the most severe three-phase fault locations for transient stability studies and rank them in order of severity. The methodology is called Fast Fault Screening (FFS).  The key advantage of the FFS is the ability to quickly scan through thousands of potential fault locations from transient stability perspective and identify the most severe locations. In the previous efforts, FFS was developed for angular ...

2012-12-31T23:59:59.000Z

358

Impact of Wind Power Integration on Fault Current Management  

Science Conference Proceedings (OSTI)

This report presents a study on the impact of wind power integration on the grid fault current level due to various types of faults that might take place inside or outside of wind farms. Wind power is one of the renewable energy sources that has shown tremendous growth in recent years. The increasing integration of wind energy generation and other distributed renewable energy generation could change grid behavior under fault situations and influence system stability. Specifically, integration of addition...

2010-01-14T23:59:59.000Z

359

Historic Surface Faulting and Paleoseismicity in the Area of...  

Open Energy Info (EERE)

Historic Surface Faulting and Paleoseismicity in the Area of the 1954 Rainbow Mountain-Stillwater Earthquake Sequence, Central Nevada Jump to: navigation, search OpenEI Reference...

360

Upper crustal faulting in an obliquely extending orogen, structural...  

Open Energy Info (EERE)

faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search...

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dynamic analysis and fault diagnosis of a water hydraulic motor.  

E-Print Network (OSTI)

??This research is concerned with condition monitoring and fault diagnosis of the piston of the water hydraulic motor by vibration signal analysis. Vibration signatures are… (more)

Chen, Hanxin.

2008-01-01T23:59:59.000Z

362

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

363

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

364

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below...  

Open Energy Info (EERE)

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie Valley Geothermal Area, Nevada, Inferred from 3d Magnetotelluric Surveying Jump to: navigation, search...

365

CiFTS : Coordinated Infrastructure for Fault Tolerant Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Demos Team News Contact Us Coordinated and Improved Fault Tolerance for High Performance Computing Systems In the next few years SciDAC applications will utilize exascale...

366

Petri net modeling of fault analysis for probabilistic risk assessment.  

E-Print Network (OSTI)

??Fault trees and event trees have been widely accepted as the modeling strategy to perform Probabilistic Risk Assessment (PRA). However, there are several limitations associated… (more)

Lee, Andrew

2013-01-01T23:59:59.000Z

367

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections...  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation,...

368

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...  

Open Energy Info (EERE)

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL...

369

An Assessment of Fault Current Limiter Testing Requirements ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Reliability (OE) is conducting research and development (R&D) on next-generation electricity delivery equipment including fault current limiters (FCLs). Prototype FCL...

370

Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana  

SciTech Connect

The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

1991-06-01T23:59:59.000Z

371

Recent earthquake sequences at Coso: Evidence for conjugate faulting...  

Open Energy Info (EERE)

Recent earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

372

FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR  

Science Conference Proceedings (OSTI)

This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

2012-10-01T23:59:59.000Z

373

Fault Prediction and Fault-Tolerant of Lithium-ion Batteries Temperature Failure for Electric Vehicle  

Science Conference Proceedings (OSTI)

Design and implementation of dual-redundancy was developed to predict Lithium-ion battery failure for electric vehicle. Data fusion unit, prediction unit and determination unit were designed. Outputs from original and redundant sensors were integrated ... Keywords: Lithium-ion battery, dual-redundancy, data fusion, prediction, Fault-tolerant

Hu Chunhua; He Ren; Wang Runcai; Yu Jianbo

2012-07-01T23:59:59.000Z

374

Prototyping a fault-tolerant multiprocessor SoC with run-time fault recovery  

Science Conference Proceedings (OSTI)

Modern integrated circuits (ICs) are becoming increasingly complex. The complexity makes it difficult to design, manufacture and integrate these high performance ICs. The advent of multiprocessor Systems-on-chips (SoCs) makes it even more challenging ... Keywords: fault-tolerance, multiprocessor system, network-on-chip, retargetable simulation, run-time verification, system-on-chip

Xinping Zhu; Wei Qin

2006-07-01T23:59:59.000Z

375

Structural geology of Shawneetown fault zone, Southeastern Illinois  

SciTech Connect

Vertical movements of crustal blocks along the narrow east-west-trending Shawneetown fault zone in southeastern Illinois occurred between Early Permian and Late Cretaceous. The main blocks moved vertically and retured to roughly their orignal positions so that strata now show little relative offset across the fault zone. However, individual faults with displacements up to 3,500 ft (1,070 m) bound narrow slices of steeply tilted or overturned strata resulting in a juxtaposition of Kinderhookian (Lower Mississippian) and Upper Devonian strata with Lower Pennsylvanina strata. The bedrock is intensely fractured, commonly brecciated, and cemented with either silica or calcite. Slickensides and mullion display various orientations within the zone and on individual outcrops. The dominant movement, however, appears to be vertical with no evidence for significant strike-slip movements. Pleistocene deposits do not exhibit offsets across the fault zone, indicating that no tectonic activity has occurred since the beginning of that epoch. The trend of the fault zone changes abruptly from east-west in southern Gallatin and easternmost Saline Counties to south-southwest in southern Saline and northeastern Pope Counties, where it joins the Fluorspar area fault complex. Here the zone widens and develops a braided pattern as the amount of displacement along individual faults decreases. The Shawneetown fault zone and Flourspar area fault complex in part are younger than the Cottage Grove fault system to the northwest and the Wabash Valley fault system to the north. The hope of finding structural traps near the junctions of the fuel systems has spurred recent oil exploration in the area.

Lumm, D.K.; Nelson, W.J.

1983-09-01T23:59:59.000Z

376

Feng shui of supercomputer memory: positional effects in DRAM and SRAM faults  

Science Conference Proceedings (OSTI)

Several recent publications confirm that faults are common in high-performance computing systems. Therefore, further attention to the faults experienced by such computing systems is warranted. In this paper, we present a study of DRAM and SRAM faults ...

Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, Sudhanva Gurumurthi

2013-11-01T23:59:59.000Z

377

Data flow analysis for anomaly detection and identification toward resiliency in extreme scale systems  

Science Conference Proceedings (OSTI)

The increased complexity and scale of high performance computing and future extreme-scale systems have made resilience a key issue, since it is expected that future systems will have various faults during critical operations. It is also expected that ... Keywords: Anomaly, Data analysis, Fault detection and identification, Resilience

Byoung Uk Kim

2012-07-01T23:59:59.000Z

378

First step towards automatic correction of firewall policy faults  

Science Conference Proceedings (OSTI)

Firewalls are critical components of network security and have been widely deployed for protecting private networks. A firewall determines whether to accept or discard a packet that passes through it based on its policy. However, most real-life firewalls ... Keywords: Automatic fault fixing, firewall faults, firewall policy

Fei Chen; Alex X. Liu; Jeehyun Hwang; Tao Xie

2012-07-01T23:59:59.000Z

379

Fault Diagnosis of Transformer Based on Random Forest  

Science Conference Proceedings (OSTI)

Fault diagnosis of transformer in power system is studied in this paper. Considering the excellent performances of Random Forest (RF) in pattern recognition, we apply RF to construct a diagnosis model to predict the situation of transformer. The experiments ... Keywords: Rondom Forest, fault diagnosis of transformer, classification model

Xi Chen; Hongmei Cui; Linkai Luo

2011-03-01T23:59:59.000Z

380

CUDA accelerated fault tree analysis with C-XSC  

Science Conference Proceedings (OSTI)

Fault tree analysis is a widespread mathematical method for determining the failure probability of observed real-life systems. In addition to failure probability defined by wear, the system model has to take into account intrinsic and extrinsic system ... Keywords: C-XSC, CUDA, DSI, fault tree analysis

Gabor Rebner; Michael Beer

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

GPS satellite oscillator faults mimicking ionospheric phase scintillation  

Science Conference Proceedings (OSTI)

It is possible for unreported Global Positioning System satellite faults to cause phase variations mimicking the effect of ionospheric scintillation. A case study of an event on 17 May, 2011 is presented. For approximately 695 s, the L1 signal from the ... Keywords: Anomaly, Fault, Navstar 43, PRN 13, Scintillation, Sigma-phi

Christopher J. Benton; Cathryn N. Mitchell

2012-10-01T23:59:59.000Z

382

Towards Robustness in Neural Network Based Fault Diagnosis  

Science Conference Proceedings (OSTI)

Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural ... Keywords: Dynamic Neural Network, Fault Diagnosis, Gmdh Neural Network, Robustness

Krzysztof Patan; Marcin Witczak; JóZef Korbicz

2008-12-01T23:59:59.000Z

383

COMPLETE FAULT ANALYSIS FOR LONG TRANSMISSION LINE USING  

E-Print Network (OSTI)

Plants and Power Systems Control, Kananaskis, Canada, 2006 #12;Area Measurement System (WAMS) and Phasor variables. Methods based on traveling waves and recently based on fault- generated high-frequency transients of the fault location. This method will be more attractive when the concept of Wide IFAC Symposium on Power

384

Effects of unbalanced faults on transient stability of cogeneration system  

Science Conference Proceedings (OSTI)

This paper evaluates the effects of unbalanced faults on the transient stability of a real cogeneration plant. First, a brief is given for the structure of the cogeneration system. Use of the electromagnetic transient program (EMTP) constructs the cogeneration ... Keywords: CCT curve, EMTP, cogeneration plant, transient stability, unbalanced faults

Wei-Neng Chang; Chia-Han Hsu

2011-10-01T23:59:59.000Z

385

Research on Fault Location of Power Cable with Wavelet Analysis  

Science Conference Proceedings (OSTI)

This article researChes for 10kV transmission cable form the ground substation to the underground central substation in the coal mine. The transient traveLing wave signal of the cable fault is disposed by the wavelet transformation based on the cable ... Keywords: Wavelet analysis, Fault Location, TraveLing wave

Ji-meng Zhang; Shuo Liang

2011-08-01T23:59:59.000Z

386

Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites  

E-Print Network (OSTI)

for Geologic Carbon Sequestration Based on EffectiveFaults at Geologic Carbon Sequestration Sites Yingqi Zhang*,faults at geologic carbon sequestration (GCS) sites is a

Zhang, Yingqi

2009-01-01T23:59:59.000Z

387

Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint  

DOE Green Energy (OSTI)

This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

2008-07-01T23:59:59.000Z

388

Technology Search  

home \\ technologies \\ search. Technologies: Ready-to-Sign Licenses: Software: Patents: Technology Search. ... Operated by Lawrence Livermore National Security, LLC, ...

389

Fault Current Contribution from Single-Phase PV Inverters  

DOE Green Energy (OSTI)

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

390

Dating of major normal fault systems using thermochronology- An example  

Open Energy Info (EERE)

Dating of major normal fault systems using thermochronology- An example Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Details Activities (1) Areas (1) Regions (0) Abstract: Application of thermochronological techniques to major normal fault systems can resolve the timing of initiation and duration of extension, rates of motion on detachment faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we determine

391

Recent earthquake sequences at Coso: Evidence for conjugate faulting and  

Open Energy Info (EERE)

earthquake sequences at Coso: Evidence for conjugate faulting and earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Recent earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Two recent earthquake sequences near the Coso geothermal field show clear evidence of faulting along conjugate planes. We present results from analyzing an earthquake sequence occurring in 1998 and compare it with a similar sequence that occurred in 1996. The two sequences followed mainshocks that occurred on 27 November 1996 and 6 March 1998. Both mainshocks ruptured approximately colocated regions of the same fault

392

Definition: Apex or Salient of Normal Fault | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Apex or Salient of Normal Fault Jump to: navigation, search Dictionary.png Apex or Salient of Normal Fault Normal faults may intersect in the subsurface to form a fault apex or salient. Apices or salients of normal faults account for 3% of structural controls in the Great Basin.[2] View on Wikipedia Wikipedia Definition References ↑ James E. Faulds,Nicholas H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA. In: Transactions. GRC Anual Meeting; 2011/10/23; San Diego, CA. Davis, CA: Geothermal Resources Council; p. 777-783

393

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

394

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 Advanced Fault Tolerance Solutions  

E-Print Network (OSTI)

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 RAS RAS Advanced Fault Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Solutions for High Performance Computing 2/47 · Nation's largest energy laboratory · Nation's largest

Engelmann, Christian

395

Steps toward fault-tolerant quantum chemistry.  

SciTech Connect

Developing quantum chemistry programs on the coming generation of exascale computers will be a difficult task. The programs will need to be fault-tolerant and minimize the use of global operations. This work explores the use a task-based model that uses a data-centric approach to allocate work to different processes as it applies to quantum chemistry. After introducing the key problems that appear when trying to parallelize a complicated quantum chemistry method such as coupled-cluster theory, we discuss the implications of that model as it pertains to the computational kernel of a coupled-cluster program - matrix multiplication. Also, we discuss the extensions that would required to build a full coupled-cluster program using the task-based model. Current programming models for high-performance computing are fault-intolerant and use global operations. Those properties are unsustainable as computers scale to millions of CPUs; instead one must recognize that these systems will be hierarchical in structure, prone to constant faults, and global operations will be infeasible. The FAST-OS HARE project is introducing a scale-free computing model to address these issues. This model is hierarchical and fault-tolerant by design, allows for the clean overlap of computation and communication, reducing the network load, does not require checkpointing, and avoids the complexity of many HPC runtimes. Development of an algorithm within this model requires a change in focus from imperative programming to a data-centric approach. Quantum chemistry (QC) algorithms, in particular electronic structure methods, are an ideal test bed for this computing model. These methods describe the distribution of electrons in a molecule, which determine the properties of the molecule. The computational cost of these methods is high, scaling quartically or higher in the size of the molecule, which is why QC applications are major users of HPC resources. The complexity of these algorithms means that MPI alone is insufficient to achieve parallel scaling; QC developers have been forced to use alternative approaches to achieve scalability and would be receptive to radical shifts in the programming paradigm. Initial work in adapting the simplest QC method, Hartree-Fock, to this the new programming model indicates that the approach is beneficial for QC applications. However, the advantages to being able to scale to exascale computers are greatest for the computationally most expensive algorithms; within QC these are the high-accuracy coupled-cluster (CC) methods. Parallel coupledcluster programs are available, however they are based on the conventional MPI paradigm. Much of the effort is spent handling the complicated data dependencies between the various processors, especially as the size of the problem becomes large. The current paradigm will not survive the move to exascale computers. Here we discuss the initial steps toward designing and implementing a CC method within this model. First, we introduce the general concepts behind a CC method, focusing on the aspects that make these methods difficult to parallelize with conventional techniques. Then we outline what is the computational core of the CC method - a matrix multiply - within the task-based approach that the FAST-OS project is designed to take advantage of. Finally we outline the general setup to implement the simplest CC method in this model, linearized CC doubles (LinCC).

Taube, Andrew Garvin

2010-05-01T23:59:59.000Z

396

Self field triggered superconducting fault current limiter  

DOE Patents (OSTI)

A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

Tekletsadik, Kasegn D. (Rexford, NY)

2008-02-19T23:59:59.000Z

397

Fault tolerant hypercube computer system architecture  

SciTech Connect

This patent describes a fault-tolerant multi-processor computer system of the hypercube type. It comprises: a plurality of first computing nodes; a first network of message conducting path means for interconnecting the first computing nodes as a hypercube. The first network providing a path for message transfer between the first computing nodes; a first watch dog node; and, a second network of message conducting path means for directly connecting each of the first computing nodes to the first watch dog node independent from the first network. The second network providing an independent path for test message and reconfiguration affecting transfers between respective ones of the first computing nodes and the first watch dog node.

Madan, H.S.; Chow, E.

1989-09-19T23:59:59.000Z

398

Wavelet analysis for gas turbine fault diagnostics  

SciTech Connect

The application of wavelet analysis to diagnosing faults in gas turbines is examined in the present paper. Applying the wavelet transform to time signals obtained from sensors placed on an engine gives information in correspondence to their Fourier transform. Diagnostic techniques based on Fourier analysis of signals can therefore be transposed to the wavelet analysis. In the paper the basic properties of wavelets, in relation to the nature of turbomachinery signals, are discussed. The possibilities for extracting diagnostic information by means of wavelets are examined, by studying the applicability to existing data from vibration, unsteady pressure, and acoustic measurements. Advantages offered, with respect to existing methods based on harmonic analysis, are discussed as well as particular requirements related to practical application.

Aretakis, N.; Mathioudakis, K. [National Technical Univ. of Athens (Greece). Lab. of Thermal Turbomachines

1997-10-01T23:59:59.000Z

399

Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security & Defense Homeland Security & Defense Information Technology & Communications Information Technology & Communications Sensors, Electronics &...

400

Technologies - Lawrence Livermore National Laboratory  

Technologies Homeland Security & Defense. 7-MeV Neutron Interrogation: Scanner for Detection of Special Nuclear Material in Cargo Shipments; High Air Volume to Low ...

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia has developed an advanced electrical wiring diagnostic system capable of detecting insulation defects in complex wiring systems.

402

Available Technologies: High Voltage Compatible, Fully ...  

APPLICATIONS OF TECHNOLOGY: Small pixel, scientific CCDs where good point spread function (PSF) is required; High quantum efficiency direct detection ...

403

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

404

A core-based assessment of the spatial relationship of small faults associated with a basement-controlled, large normal fault in the Hickory Sandstone  

E-Print Network (OSTI)

This research characterized a system of small faults (displacement < 0.3 m) in seven closely-spaced continuous 2.4 inch (6.1 cm) diameter cores. Cores were obtained from central Texas, on the western edge of the Llano Uplift. Cores penetrate a dip-slip dominant, normal fault (Nobles Fault) with 18.3 m (60 ft) of stratigraphic throw. The spatial, geometric and kinematic attributes of small faults within the Nobles Fault system were characterized to explore potential cause-and-effect relationships. To quantify spatial distributions, a "density" measure based on individual small fault magnitude was utilized. Approximately half of the small faults in the core possessed no discernible offset markers; thus displacement amount for these faults could not be measured directly. Using a nonparametric method in which an alternating conditional expectation determined optimal transformations for the data, a statistically significant empirical correlation was established for faults with measurable gouge thickness, displacement, protolith mean grain size and sorting. Gouge thickness of small faults was found to be dependant upon the displacement amount of the small fault and the textural characteristics of the host protolith. The role of protolith lithology, proximity to crystalline basement, and structural position relative to the Nobles Fault system were examined to explain observed ubiquitous spatial distribution of small faults. Small faults were found to occur in clusters and the number of faults per foot only weakly correlates to the cumulative displacement of the corresponding faults. The amount of mudstone present is the dominant factor controlling small fault formation. Intervals with only minor quantities of mudstone have the largest number of faults per foot as well as largest associated cumulative displacement per foot. Frequency of occurrence of small faults near the basement is greater when compared to similar lithologies higher in the core. Intensity of small faults do not universally increase with proximity to large faults. To observe an increase in small faults, it is necessary to use a mean global cumulative displacement approach. Zones of greater than average cumulative displacement of small faults in close proximity to large faults were observed in zones that are compatible with faultfault interaction.

Graff, Mitchell C

2006-08-01T23:59:59.000Z

405

Trends Affecting Building Control System Development: Trends in Energy Management Technology  

E-Print Network (OSTI)

opment of commissioning, FDD, and life cycle informationFault detection and diagnosis (FDD) tools have the potentialP R O G R A M ESP ESPC FAS FDD FDM FHSS FTT GenCo HTML HTTP

Collins, Ted; Parker, Steven A.; Webster, Tom

2002-01-01T23:59:59.000Z

406

A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions  

Science Conference Proceedings (OSTI)

Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task ... Keywords: power system reliability, stochastic petri nets, transformer fault diagnosis

P. S. Georgilakis; J. A. Katsigiannis; K. P. Valavanis; A. T. Souflaris

2006-02-01T23:59:59.000Z

407

Analysis of the growth of strike-slip faults using effective medium theory  

SciTech Connect

Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

Aydin, A.; Berryman, J.G.

2009-10-15T23:59:59.000Z

408

Remote detection of fissile material : Cherenkov counters for gamma detection  

E-Print Network (OSTI)

The need for large-size detectors for long-range active interrogation (Al) detection has generated interest in water-based detector technologies. AI is done using external radiation sources to induce fission and to detect, ...

Erickson, Anna S

2011-01-01T23:59:59.000Z

409

Chemically-Functionalized Microcantilevers for Detection of ...  

Chemically-Functionalized Microcantilevers for Detection of Chemical, Biological, and Explosive Material Note: The technology described above is an ...

410

Program on Technology Innovation: Wireless Mesh Sensor Networks for Fossil Plant Monitoring  

Science Conference Proceedings (OSTI)

In a competitive environment, power plants must operate under reduced operations and maintenance budgets while maintaining high reliability and availability. Early detection of equipment faults and subsequent maintenance actions can help reduce costs while maximizing availability. However, detection of equipment faults and subsequent troubleshooting often require information in addition to that provided by traditional process instrumentation. Traditional wired sensors are not cost-effective additions in ...

2009-03-31T23:59:59.000Z

411

Testing and Evaluation of Robust Fault Detection and Identification for a Fault Tolerant Automated Highway System: Final Report  

E-Print Network (OSTI)

Report Robert H. Chen, Hok K. Ng, Jason L. Speyer, D. Lewis4209 Robert H. Chen, Hok K. Ng, Jason L. Speyer and D. Lewis4209 Robert H. Chen, Hok K. Ng, Jason L. Speyer and D. Lewis

Chen, Robert H.; Ng, Hok K.; Speyer, Jason L.; Mingori, D. Lewis

2004-01-01T23:59:59.000Z

412

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley  

Open Energy Info (EERE)

Of Faulting And Neotechtonic Framework In The Dixie Valley Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Details Activities (6) Areas (3) Regions (0) Abstract: We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal

413

Understanding Fault Characteristics And Sediment Depth For Geothermal  

Open Energy Info (EERE)

Understanding Fault Characteristics And Sediment Depth For Geothermal Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Southern Walker Lake Basin, situated in the Walker Lake structural domain, consists of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada showed elevated temperatures. Two recent drill holes reaching downhole depths of more than 4000 ft give some insight to the geologic picture, but more information

414

Fault Mapping At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Fault Mapping At Coso Geothermal Area (1980) Fault Mapping At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fault Mapping Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis To determine the Late Cenozoic volcanism, geochronology, and structure of the Coso Range Notes This system apparently is heated by a reservoir of silicic magma at greater than or equal to 8-km depth, itself produced and sustained through partial melting of crustal rocks by thermal energy contained in mantle-derived basaltic magma that intrudes the crust in repsonse to lithospheric extension. References Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B. (10 May 1980) Late

415

Recency of Faulting and Neotectonic Framework in the Dixie Valley  

Open Energy Info (EERE)

of Faulting and Neotectonic Framework in the Dixie Valley of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Recency of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Abstract We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The

416

Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The  

Open Energy Info (EERE)

Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Details Activities (0) Areas (0) Regions (0) Abstract: Due to activitiy of the Aksaray and Ecemis Faults, volcanic intrusion and westward movement of the Anatolian plate, diapiric salt structures were occurred in the Tuz Golu (Salt Lake) basin in central Anatolia, Turkey. With the collisions of the Arabian and Anatolian plates during the late Cretaceous and Miocene times, prominent ophiolitic

417

Fusing strategies for the dual-voltage fault  

E-Print Network (OSTI)

This thesis focuses on the 42V - 14V fault in a dual voltage system and discusses the possibility of effective fusing. A simple model for the system had been created from technical documentation. Based on the model and the ...

Shrivastava, Rupam, 1981-

2005-01-01T23:59:59.000Z

418

Local discriminant bases in machine fault diagnosis using vibration signals  

Science Conference Proceedings (OSTI)

Wavelets and local discriminant bases (LDB) selection algorithm is applied to vibration signals in a single-cylinder spark ignition engine for feature extraction and fault classification. LDB selects a complete orthogonal basis from a wavelet packet ...

R. Tafreshi; F. Sassani; H. Ahmadi; G. Dumont

2005-04-01T23:59:59.000Z

419

Discretized streams: fault-tolerant streaming computation at scale  

Science Conference Proceedings (OSTI)

Many "big data" applications must act on data in real time. Running these applications at ever-larger scales requires parallel platforms that automatically handle faults and stragglers. Unfortunately, current distributed stream processing models provide ...

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica

2013-11-01T23:59:59.000Z

420

High-Resolution Aeromagnetic Survey to Image Shallow Faults,...  

Open Energy Info (EERE)

Number 02-384 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley...

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Understanding Fault Characteristics And Sediment Depth For Geothermal...  

Open Energy Info (EERE)

of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada...

422

Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint  

SciTech Connect

This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

2007-02-01T23:59:59.000Z

423

CAPRI: A Common Architecture for Distributed Probabilistic Internet Fault Diagnosis  

E-Print Network (OSTI)

This thesis presents a new approach to root cause localization and fault diagnosis in the Internet based on a Common Architecture for Probabilistic Reasoning in the Internet (CAPRI) in which distributed, heterogeneous ...

Lee, George J.

2007-06-04T23:59:59.000Z

424

Dating of major normal fault systems using thermochronology-...  

Open Energy Info (EERE)

River detachment fault and shear zone by study of spatial gradients in 40Ar39 A and fission track cooling ages of footwall rocks and cooling histories and by comparison of...

425

Microgrid Fault Protection Based on Symmetrical and Differential Current Components  

E-Print Network (OSTI)

Microgrid Fault Protection Based on Symmetrical and Differential Current Components Prepared.........................................................................................8 2. AEP CERTS MICROGRID .........................................................................9 ........................................................................67 #12;3 Index of Figures Figure 1: Schematic representation of the AEP CERTS microgrid

426

Transmission Line Fault Inspection and Root Cause Analysis Approach  

Science Conference Proceedings (OSTI)

Transmission lines are designed to transfer electric power from source locations, sometimes over great distances through different terrains and exposed to several influences. These challenges include faulty equipment, misoperation, human errors, and aging of components, as well as meteorological and ecological factors such as storms, lightning, and the effects of plants and animals. A number of techniques are currently used to isolate the faulting line and provide the fault position. Sustained or ...

2013-12-20T23:59:59.000Z

427

Transmission Line Fault Inspection and Root Cause Analysis Approach  

Science Conference Proceedings (OSTI)

Transmission lines are designed to transfer electric power from source locations sometimes over great distances through different terrains and exposed to several influences. These challenges include faulty equipment, misoperation, human errors, and aging of components, and meteorological and ecological factors such as storms, lightning, and the effects of plants and animals. A number of techniques are currently used to isolate the faulting line and provide the fault position. Sustained or permanent ...

2012-12-20T23:59:59.000Z

428

Advanced Technology for Groundwater Protection  

Science Conference Proceedings (OSTI)

This report documents the evaluation of automatic and in situ groundwater monitoring technologies for application at nuclear power plant (NPP) sites. The project studies the state of technology of automatic and in situ groundwater monitoring technologies and assesses whether they can be used to enhance the current groundwater monitoring capabilities at NPPs. Technologies for automatically detecting tritium and technologies that monitor non-radiological groundwater characteristics were explored. The abili...

2012-04-25T23:59:59.000Z

429

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

430

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

431

Faience Technology  

E-Print Network (OSTI)

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

432

Designing fault-tolerant manipulators: How many degrees of freedom?  

SciTech Connect

One of the most important parameters to consider when designing a manipulator is the number of degrees of freedom (DOFs). This article focuses on the question: How many DOFs are necessary and sufficient for fault tolerance, and how should these DOFs be distributed along the length of the manipulator? A manipulator is fault tolerant if it can complete its task even when one of its joints fails and is immobilized. The number of DOFs needed for fault tolerance strongly depends on the knowledge available about the task. In this article, two approaches are explored. First, for the design of a general purpose fault-tolerant manipulator, it is assumed that neither the exact task trajectory nor the redundancy resolution algorithm are known a priori and the manipulator has no joint limits. In this case, two redundant DOFs are necessary and sufficient to sustain one joint failure, as is demonstrated in two design templates for spatial fault-tolerant manipulators. In this second approach, both the Cartesian task path and the redundancy resolution algorithm are assumed to be known. The design of such a task-specific fault-tolerant manipulator requires only one degree of redundancy. 22 refs., 11 figs., 2 tabs.

Paredis, C.J.J.; Khosla, P.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

1996-12-01T23:59:59.000Z

433

Architecting dependable systems with proactive fault management  

Science Conference Proceedings (OSTI)

Management of an ever-growing complexity of computing systems is an everlasting challenge for computer system engineers. We argue that we need to resort to predictive technologies in order to harness the system's complexity and transform a vision of ...

Felix Salfner; Miroslaw Malek

2010-01-01T23:59:59.000Z

434

Fault-tolerance for exascale systems.  

Science Conference Proceedings (OSTI)

Periodic, coordinated, checkpointing to disk is the most prevalent fault tolerance method used in modern large-scale, capability class, high-performance computing (HPC) systems. Previous work has shown that as the system grows in size, the inherent synchronization of coordinated checkpoint/restart (CR) limits application scalability; at large node counts the application spends most of its time checkpointing instead of executing useful work. Furthermore, a single component failure forces an application restart from the last correct checkpoint. Suggested alternatives to coordinated CR include uncoordinated CR with message logging, redundant computation, and RAID-inspired, in-memory distributed checkpointing schemes. Each of these alternatives have differing overheads that are dependent on both the scale and communication characteristics of the application. In this work, using the Structural Simulation Toolkit (SST) simulator, we compare the performance characteristics of each of these resilience methods for a number of HPC application patterns on a number of proposed exascale machines. The result of this work provides valuable guidance on the most efficient resilience methods for exascale systems.

Riesen, Rolf E.; Varela, Maria Ruiz (University of Delaware); Ferreira, Kurt Brian

2010-08-01T23:59:59.000Z

435

Original article: An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults  

Science Conference Proceedings (OSTI)

This paper proposes an original simplified model aimed to simulate, an easy way, inter turns short circuit fault, phase to phase fault and phase to ground fault. In this model, the stator is considered as six magnetically coupled windings and the rotor ... Keywords: Fault diagnosis, Inter turns short circuit fault, Phase to ground fault, Phase to phase fault, Symmetrical components

M. Bouzid, G. Champenois

2013-04-01T23:59:59.000Z

436

Palaeoseismology of the North Anatolian Fault near the Marmara Sea: implications for fault segmentation and seismic hazard  

E-Print Network (OSTI)

Diego, CA 92182, USA 2 Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt, New fault to the city of Istanbul, one of the largest cities in the Middle East. Across the 1912 rupture

Klinger, Yann

437

Evaluation of faulting characteristics and ground acceleration associated with recent movement along the Meers Fault, Southwestern Oklahoma  

E-Print Network (OSTI)

Recent studies have shown that a 27 km section of the Meers Fault was reactivated during Holocene time. Although these studies have proven the occurrence of recent fault activity, many basic characteristics of the faulting remain unresolved, For instance, the issue of whether recent deformation was dominantly vertical or laterally oriented is still a source of disagreement among many researchers. The number of events associated with recent movement is another area of uncertainty, with I to 4 events being cited as responsible for the Meers Fault scarp. Earthquakes of magnitude 7 to 8 occurring in conjunction with recent reactivation of the fault have been calculated. However, evidence found within the Wichita Mountains just south of the fault exhibits strong evidence against large recent earthquake events. Investigation of stream channel pathways where they cross the fault revealed that many streams previously identified as left-laterally offset are instead left-laterally deflected by folding on the upthrown block. These streams are in every case deflected much farther than any true lateral displacement recognized on the fault. Inclusion of the streams in past studies has apparently contributed to over-estimation of the recent component of left-lateral displacement. Exposure development into the Meers Fault scarp revealed deformed units and colluvial wedges that indicate 4 recent movements produced a total of 1.46 m of brittle deformation and another 1.04 m of monoclinal warping. A previously unidentified conglomerate uncovered in the exposure exhibits evidence for a lateral component of displacement during possible Late Pleistocene deformation. subsequent events identified in the exposure. Reconnaissance of the Wichita Mountains granitic terrain just south of the Meers Fault resulted in the identification of 27 precariously balanced rocks (tors). These geomorphic features lie within 18 km of the fault and have apparently been sitting in their present positions on the order of thousands of years. Quantitative analysis of the tors indicates that most could not have withstood the ground accelerations generated by magnitude 7 or above earthquakes estimated to have occurred with recent deformation.

Burrell, Richard Dennis

1997-01-01T23:59:59.000Z

438

Technology Search Results | Brookhaven Technology ...  

There are no technology records available that match the search query. Find a Technology. Search our technologies by categories or by keywords.

439

Combined expert system/neural networks method for process fault diagnosis  

DOE Patents (OSTI)

A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

Reifman, J.; Wei, T.Y.C.

1995-08-15T23:59:59.000Z

440

Combined expert system/neural networks method for process fault diagnosis  

DOE Patents (OSTI)

A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

Reifman, Jaques (Westchester, IL); Wei, Thomas Y. C. (Downers Grove, IL)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Automatic detection and diagnosis of problems in drilling geothermal wells  

DOE Green Energy (OSTI)

Sandia National Laboratories and Tracor Applied Sciences have developed a proof-of-concept Expert System for the automatic detection and diagnosis of several important problems in geothermal drilling. The system is designed to detect loss of circulation, influx, loss of pump efficiency, and sensor problems. Data from flow sensors (including the rolling float meter), the pump stroke counter and other sensors are processed and examined for deviations from expected patterns. The deviations from expected patterns. The deviations are transformed into evidence for a Bayesian Network (a probabilistic reasoning tool), which estimates the probability of each fault. The results are displayed by a Graphical User Interface, which also allows the user to see data related to a specific fault. The prototype was tested on real data, and successfully detected and diagnosed faults.

Harmse, J.E.; Wallace, R.D.; Mansure, A.J.; Glowka, D.A.

1997-11-01T23:59:59.000Z

442

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

443

Variability management of safety and reliability models: an intermediate model towards systematic reuse of component fault trees  

Science Conference Proceedings (OSTI)

Reuse of fault trees helps in reducing costs and effort when conducting Fault Tree Analyses (FTAs) for a set of similar systems. Some approaches have been proposed for the systematic reuse of fault trees along with the development of a product line of ... Keywords: component fault trees, fault tree analysis, product line engineering, safety and reliability, variability management

Carolina Gómez; Peter Liggesmeyer; Ariane Sutor

2010-09-01T23:59:59.000Z

444

Fault Oblivious eXascale Whitepaper  

Science Conference Proceedings (OSTI)

In this paper we present a software system which supports dynamic, irregular, adaptive applications. Data objects are created and structured in a hierarchical manner, with replication as needed to provide a high degree of redundancy. The data objects can contain data, code, tasks (work descriptors with references to data, code, and other tasks) and higher level structures such as work queues. The higher level structures benefit from the properties of the data objects: redundant storage to support resiliency in the face of hardware failure; hierarchical structure to optimize use of the HPC system; and a presence of object names, available in the per-user file system name space, which allows any application, not just specially written HPC applications, to make use of the data even while it is on the HPC system. Our use of hierarchy will make the runtime scalable to very large systems. Our use of redundancy will allow programs to be written in a fault-oblivious manner, eliminating the need for system-level checkpointing. Putting data object names into the file system name space allows for interactive use of the system by users. With this approach, we will be able to finally leave the batch era behind, a half-century after the invention of time sharing. We will be able to stop bounding program through- put by the checkpoint interval. Application data will be accessible at any time, not hidden behind opaque 128-bit pointers or MPI ranks, but given a name that is visible everywhere. Programmers can stop laying out data, and thinking about where the data is, and the code is, and the nodes are, and stick with the problem of what the application is supposed to be doing. This work, if it succeeds, will enable scientific computing to scale to the next generation of machines.

Minnich, Ronald G.; Janssen, Curtis L.; Krishnamoorthy, Sriram; Marquez, Andres; Gokhale, Maya; Sadayappan, Ponnuswamy; Van Hensbergen, Eric; McKie, Jim; Appavoo, Jonathan

2011-06-01T23:59:59.000Z

445

Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications  

SciTech Connect

This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

2012-07-17T23:59:59.000Z

446

High energy arcing fault fires in switchgear equipment : a literature review.  

SciTech Connect

In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

2008-10-01T23:59:59.000Z

447

Technology Search Results | Brookhaven Technology ...  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

448

Technology Search Results | Brookhaven Technology ...  

Non-Noble Metal Water Electrolysis Catalysts; Find a Technology. Search our technologies by categories or by keywords. Search ...

449

Technology Search Results | Brookhaven Technology ...  

BSA 08-04: High Temperature Interfacial Superconductivity; Find a Technology. Search our technologies by categories or by keywords. Search ...

450

Technology Search Results | Brookhaven Technology ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe »

451

Risking fault seal in the Gulf Coast: A joint industry study  

SciTech Connect

Analysis of more than 200 faults in a joint-industry study of the Gulf Coast provides a database of actual fault seal behavior in producing fields. This empirical database demonstrates that fault seal behavior is predictable rather than random and that faults are more important than is commonly thought in controlling hydrocarbon accumulations. Quantitative fault seal analysis demonstrates that seal behavior is empirically related to the amount of sand and shale incorporated in the fault zone. Faults with sand-rich gouge leak. Faults with shale-rich gouge seal. An empirically defined threshold allows prediction of fault seal behavior with a high degree of confidence. Fewer than 10% of the faults in the Gulf Coast are exceptions to the rule. Exceptions are a result of other factors including low permeability and high displacement pressure sands, and thin-bedded sand/shale sequences. Examples from these Gulf Coast fields demonstrate the fundamental importance of faults in controlling hydrocarbon accumulations. Faults and fault seal behavior control the presence or absence of hydrocarbons, percent fill, hydrocarbon column heights, entrapment of oil versus gas, and high-side and low-side trap risk. Faults control the lateral distribution of hydrocarbon within fault compartments as well as the vertical distribution of hydrocarbon among stacked sands. Faults control fluid flow during both field development and hydrocarbon migration. Bypassed residual accumulations and unnecessary production wells result from neglecting routine fault seal analysis during field development. Dry holes and mistaken reserves assessments result from neglecting routine fault seal analysis during exploration.

Skerlec, G.M. (PetroQuest International Inc., Franklin, PA (United States))

1996-01-01T23:59:59.000Z

452

New approach to the fault location problem using synchronized sampling  

E-Print Network (OSTI)

This thesis presents a new approach to solving the problem of fault location on a transmission line using synchronized data from both ends of the line. The synchronized phase voltage and current samples taken during the fault transient are used to calculate the location of the fault. Time domain models of lines are used as a basis for derivation of two different algorithms. One algorithm is developed using the RL line model and the other one is developed using the traveling wave based line model. The main idea of the fault location concept is based on the general characteristics of any transmission line. At any location along the unfaulted line, the instantaneous values of voltage and current signals are related to the instantaneous values of the corresponding values of voltage and current signals at both ends of the line, line parameters, and distance between that particular location and each of the line ends. This enables the derivation of the generic fault location equation of the following form: [ ] where Lv is the linear operator, VA, t'A, VB, z'B are vectors of voltage and current samples at line ends, d is the length of the line, and x is the unknown distance to the fault point. For a particular transmission line, the generic equation has a unique form that determines the way it is solved. In any case, the Minimum Square Error Estimation Method is used since an overspecified system of linear equations needs to be solved. The performance evaluation of both algorithms was done using the Electromagnetic Transient Program (EMTP) generated data [1]. Obtained results indicate the high accuracy of the approach and its robustness regarding various fault conditions. The following are the conclusions based on the results presented in this thesis: The error of the approach is rather small and almost invariant to the various fault conditions and, hence, the technique provides a robust solution to the fault location problem. The new approach has high accuracy while the computational burden is still kept relatively low. The synchronized sampling technique required for this approach is emerging as a reliable and cost effective practice.

Mrkic, Jasna

1994-01-01T23:59:59.000Z

453

Accident Fault Trees for Defense Waste Processing Facility  

Science Conference Proceedings (OSTI)

The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

Sarrack, A.G.

1999-06-22T23:59:59.000Z

454

Call for Papers IEEE Transactions on Vehicular Technology  

E-Print Network (OSTI)

and energy conservation are growing concerns, the development of electric vehicles (EV) and hybrid vehicles in vehicular technology (electric, hybrid electric, fuel cell and plug-in hybrid electric vehicle powertrains and Fault Accommodation in Electric and Hybrid Propulsion Systems In a world where environment protection

Fang, Yuguang "Michael"

455

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

456

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.  

Science Conference Proceedings (OSTI)

Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

2011-06-01T23:59:59.000Z

457

Adiabatic Quantum Programming: Minor Embedding With Hard Faults  

SciTech Connect

Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.

Klymko, Christine F [ORNL] [ORNL; Sullivan, Blair D [ORNL] [ORNL; Humble, Travis S [ORNL] [ORNL

2013-01-01T23:59:59.000Z

458

Introduction On the Fault Resilience Metric  

E-Print Network (OSTI)

, Fl´avia Maristela2, Ver^onica Lima3 gmlima@ufba.br, flaviamsn@ifba.edu.br, cadena@ufba.br 1Department of Computer Science ­ Distributed Systems Lab (UFBA) 2Department Technology in Electro-electronics (IFBA) 3 and Real-time Systems George Lima, Fl´avia Maristela, Ver^onica Lima gmlima@ufba.br, flaviamsn@ifba

Lipari, Giuseppe

459

New Limits on Fault-Tolerant Quantum Computation  

E-Print Network (OSTI)

We show that quantum circuits cannot be made fault-tolerant against a depolarizing noise level of approximately 45%, thereby improving on a previous bound of 50% (due to Razborov). Our precise quantum circuit model enables perfect gates from the Clifford group (CNOT, Hadamard, S, X, Y, Z) and arbitrary additional one-qubit gates that are subject to that much depolarizing noise. We prove that this set of gates cannot be universal for arbitrary (even classical) computation, from which the upper bound on the noise threshold for fault-tolerant quantum computation follows.

Harry Buhrman; Richard Cleve; Monique Laurent; Noah Linden; Alexander Schrijver; Falk Unger

2006-04-19T23:59:59.000Z

460

Fault-Tolerant Average Execution Time Optimization for General-Purpose Multi-Processor System-On-Chips, Design  

E-Print Network (OSTI)

Abstract 1 Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET. I.

Mikael Väyrynen; Virendra Singh; Erik Larsson

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The dynamics of oceanic transform faults : constraints from geophysical, geochemical, and geodynamical modeling  

E-Print Network (OSTI)

Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault ...

Gregg, Patricia Michelle Marie

2008-01-01T23:59:59.000Z

462

Sherlock—a system for diagnosing power distribution ring network faults  

Science Conference Proceedings (OSTI)

This paper reports the development of a software system, SHERLOCK, for fault diagnosis in power distribution ring networks. The system consists of a fault diagnosis subsystem implemented using Prolog and a user interface subsystem developed in the SmallTalk ...

Kit Po Wong; Chi Ping Tsang; Wan Yee Chan

1988-06-01T23:59:59.000Z

463

FERRARI: A Flexible Software-Based Fault and Error Injection System  

Science Conference Proceedings (OSTI)

Abstract¿A major step toward the development offault-tolerant computer systems is the validation of the dependability properties of these systems. Fault/error injection has been recognized as a powerful approach to validate the fault tolerance mechanisms ...

Ghani A. Kanawati; Nasser A. Kanawati; Jacob A. Abraham

1995-02-01T23:59:59.000Z

464

Slip on ridge transform faults : insights from earthquakes and laboratory experiments  

E-Print Network (OSTI)

The relatively simple tectonic environment of mid-ocean ridge transform fault (RTF) seismicity provides a unique opportunity for investigation of earthquake and faulting processes. We develop a scaling model that is complete ...

Boettcher, Margaret S

2005-01-01T23:59:59.000Z

465

Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system  

E-Print Network (OSTI)

lat- ter would imply subsidence to the east of the fault.indicate uplift, rather subsidence, to the east of the faultlikely involves ground subsidence to the west of the fault.

Fialko, Y

2006-01-01T23:59:59.000Z

466

Nail-it-down: nailing and fixing configuration faults in cloud environments  

Science Conference Proceedings (OSTI)

Faults due to configuration of resources account for majority of errors in distributed software systems. Yet, the problem of identifying faulty configuration remains at large. Current approaches for fault identification are focused on event correlation ...

Kalapriya Kannan; Anuradha Bhamidipaty

2013-05-01T23:59:59.000Z

467

Wetland Loss Is Not The Fault of Any One Company | America's ...  

U.S. Energy Information Administration (EIA)

Wetland Loss Is Not The Fault of Any One Company. By: Berwick Duvall II, Houma Courrier | 9.28.2007 September 28, 2007 Wetlands loss is not the fault ...

468

A COTS Wrapping Toolkit for Fault Tolerant Applications under Windows NT  

Science Conference Proceedings (OSTI)

This paper presents a software toolkit that allows enhancing the fault tolerant characteristics of a user application running under a Windows NT platform through sets of interchangeable and customizable Fault Tolerant Interposition Agents (FTI Agents). ...

Alfredo Benso; Silvia Chiusano; Paolo Prinetto

2000-07-01T23:59:59.000Z

469

Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site  

SciTech Connect

Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

2009-03-30T23:59:59.000Z

470

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

We provide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

471

Available Technologies  

The technology’s subnanometer resolution is a result of superior ... Additional R&D will be required ... U.S. DEPARTMENT OF ENERGY • OFFICE OF SCIENCE ...

472

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

473

A general method for calculating co-seismic gravity changes in complex fault systems  

Science Conference Proceedings (OSTI)

A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within ... Keywords: 91.10.-v, 91.10.Kg, 91.10.Op, 91.30.Px, Alaska, California, Fault network, Time-variable gravity

T. J. Hayes; K. F. Tiampo; J. B. Rundle; J. Fernández

2008-11-01T23:59:59.000Z

474

A model for the evaluation of fault tolerance in the FERMI system  

Science Conference Proceedings (OSTI)

Experiments of high energy physics planned at the Large Hadron Collider (LHC) at CERN (CH) require digital data acquisition systems with high throughput. Such systems need also be fault tolerant to the permanent and transient faults induced by radiation, ... Keywords: FERMI microsystem, Large Hadron Collider, VLSI, VLSI devices, data acquisition, digital data acquisition system, fault tolerance, fault tolerant computing, high energy physics, high energy physics instrumentation computing, model, nuclear electronics, radiation effects

A. Antola; L. Breveglieri

1995-11-01T23:59:59.000Z

475

Fault analysis of a semisubmersible's ballast control system  

SciTech Connect

This paper presents a practical ballast system for a twinhull design semisubmersible as an answer to the problems which could result from faults both interior and exterior to the system. The design presented is then examined through a fault analysis technique common to other industries and applicable to the life-sustaining ballast system. This examination confirms the design philosophy that a single fault or reasonable multiple faults should not lead to destabilization of the vessel.

Hock, C.J.; Balaban, E.G.

1984-05-01T23:59:59.000Z

476

Computer Aided Fault Tree Analysis System (CAFTA), Version 6.0 Demo  

Science Conference Proceedings (OSTI)

CAFTA is a computer software program used for developing reliability models of large complex systems, using fault tree and event tree methodology.DescriptionCAFTA is designed to meet the many needs of reliability analysts while performing fault tree/event tree analysis on a system or group of systems.  It includes:Fault Tree Editor for building, updating and printing fault tree modelsEvent Tree Editor for building, ...

2013-02-18T23:59:59.000Z

477

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

478

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

479

Distributed Optical Sensor for CO2 Leak Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

on the technology "Distributed Optical Sensor for CO 2 Leak Detection," for which a Patent Application has been filed. This technology is available for licensing andor further...

480

Fault diagnosis of regenerative water heater based-on multi-class support vector machines  

Science Conference Proceedings (OSTI)

The main idea of multi-class support vector machines (SVMs) is described. a multi-class model for regenerative water heater fault diagnosis is presented combining the fuzzy logic and SVMs. The typical faults set of regenerative water heater is built ... Keywords: fault diagnosis, fuzzy rules, regenerative water heater, steam turbine, support vector machines

Lei Wang; Rui-Qing Zhang

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fault detection technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ant Colony Clustering Procedure Used in Vibration Fault Diagnosis of Beam Pumping Unit  

Science Conference Proceedings (OSTI)

The study of vibration fault diagnosis of beam pumping unit is an important task to reasonable production, scientific management and improvement of the oil recovery. The vibration fault diagnosis is a good method with direct result. In view of measurement ... Keywords: ant colony algorithm, clustering procedure, beam pumping unit, fault, diagnosis

Wuguang Li; Shenglai Yang; Ranran Xu; Xiaoxu Sun; Xing Zhang

2011-10-01T23:59:59.000Z

482

Modeling and experimental validation of internal faults in salient pole synchronous machines including space harmonics  

Science Conference Proceedings (OSTI)

Considering the space harmonics caused by the faulted windings, a simulation model of internal faults in salient pole synchronous machines is proposed in this paper. The model is based on the winding function approach, which makes no assumption for sinusoidal ... Keywords: Internal faults, Space harmonics, Synchronous machines, Winding function

X. Tu; L. -A. Dessaint; M. El Kahel; A. Barry

2006-06-01T23:59:59.000Z

483

Automatic fault diagnosis of internal combustion engine based on spectrogram and artificial neural network  

Science Conference Proceedings (OSTI)

This paper presents a signal analysis technique for internal combustion (IC) engine fault diagnosis based on the spectrogram and artificial neural network (ANN). Condition monitoring and fault diagnosis of IC engine through acoustic signal analysis is ... Keywords: acoustic analysis, fault diagnosis, internal combustion engine

Sandeep Kumar Yadav; Prem Kumar Kalra

2010-04-01T23:59:59.000Z

484

A systematic review of design diversity-based solutions for fault-tolerant SOAs  

Science Conference Proceedings (OSTI)

Context: Over recent years, software developers have been evaluating the benefits of both Service-Oriented Architecture and software fault tolerance techniques based on design diversity by creating fault-tolerant composite services that leverage ... Keywords: SLR, SOA, composite services, fault tolerance

Amanda S. Nascimento; Cecília M. F. Rubira; Rachel Burrows; Fernando Castor

2013-04-01T23:59:59.000Z

485

A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor  

Science Conference Proceedings (OSTI)

In this paper, a new approach of fault diagnosis in analog circuits, which employs the Fractional Wavelet Transform (FWT) to extract fault features and adopts a fuzzy multi-classifier based on the Support Vector Data Description (SVDD) to diagnose circuit ... Keywords: Analog circuit, Fault diagnosis, Feature extraction, Fractional wavelet transform, KFCM, SVDD

Hui Luo; Youren Wang, Jiang Cui

2011-08-01T23:59:59.000Z

486

Current Practice and a Direction Forward in Checkpoint/Restart Implementations for Fault Tolerance  

Science Conference Proceedings (OSTI)

Checkpoint/restart is a general idea for which particular implementations enable various functionalities in computer systems, including process migration, gang scheduling, hibernation, and fault tolerance. For fault tolerance, in current practice, implementations ... Keywords: Fault tolerance, checkpoint/restart, autonomic computing, Linux

Jose Carlos Sancho; Fabrizio Petrini; Kei Davis; Roberto Gioiosa; Song Jiang

2005-04-01T23:59:59.000Z