National Library of Energy BETA

Sample records for faster charging rates

  1. Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faster Battery Charging, Discharging Technology available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery ...

  2. Innovative Cathode Coating Enables Faster Battery Charging, Discharging |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Innovative Cathode Coating Enables Faster Battery Charging, Discharging Technology available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery performance Provides two coating processes that yield surface-treated, electro-active materials for a variety of applications, such as in a rechargeable lithium battery in both processes, and primary and secondary lithium battery applications in another process.

  3. Building Better Batteries for Long-Distance Driving and Faster-Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics | Department of Energy Better Batteries for Long-Distance Driving and Faster-Charging Electronics Building Better Batteries for Long-Distance Driving and Faster-Charging Electronics March 2, 2016 - 10:07am Addthis The colors show the uneven distribution of chemical elements on this particle's surface, which is key to its improved performance in batteries. | Courtesy of Brookhaven National Laboratory and SLAC National Accelerator Laboratory. Karen McNulty Walsh Brookhaven National

  4. A Step Towards New, Faster-Charging, and Safer Batteries | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) A Step Towards New, Faster-Charging, and Safer Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 12.14.15 A Step Towards

  5. How to find fees, taxes, and other charges built into rate in...

    Open Energy Info (EERE)

    and other charges built into rate in different locations Home > Groups > Utility Rate Hi, I am looking to find the rate charges beyond demand, generation, and transmission that...

  6. Electrochemical cell with high discharge/charge rate capability

    DOE Patents [OSTI]

    Redey, Laszlo

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  7. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect (OSTI)

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-04-08

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  8. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; et al

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  9. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Pages using the property "OpenEIUtilityRateDemandChargePeriod1"...

  10. Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 1 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth1"...

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy...

    Open Energy Info (EERE)

    1 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 11 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth11" Showing 2...

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 2 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth2"...

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 3 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth3"...

  14. Property:OpenEI/UtilityRate/FixedDemandChargeMonth6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 6 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth6"...

  15. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 8 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth8"...

  16. Property:OpenEI/UtilityRate/FixedDemandChargeMonth7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 7 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth7"...

  17. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 9 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth9"...

  18. Property:OpenEI/UtilityRate/FixedDemandChargeMonth5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 5 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth5"...

  19. Property:OpenEI/UtilityRate/FixedDemandChargeMonth4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 4 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth4"...

  20. Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy...

    Open Energy Info (EERE)

    2 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 12 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth12" Showing 2...

  1. Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy...

    Open Energy Info (EERE)

    0 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 10 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth10" Showing 2...

  2. Property:OpenEI/UtilityRate/DemandChargeWeekdaySchedule | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Text. Name: Demand Charge Weekday Schedule Pages using the property "OpenEIUtilityRate...

  3. Edison is Back and Faster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Faster Edison is Back and Faster January 16, 2015 by Richard Gerber Edison's New Memory Edison is back, now with all 28,000 memory DIMs replaced and upclocked from 1600 MHz...

  4. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  5. Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  6. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  7. Optimization Notice Get Faster Code Faster! Intel® Advisor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copyright © 2016, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice Get Faster Code Faster! Intel® Advisor Vectorization Optimization Have you:  Recompiled for AVX2 with little gain  Wondered where to vectorize?  Recoded intrinsics for new arch.?  Struggled with compiler reports? Data Driven Vectorization:  What vectorization will pay off most?  What's blocking vectorization? Why?  Are my loops

  8. Edison is Back and Faster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison is Back and Faster Edison is Back and Faster January 17, 2015 by Richard Gerber Edison is Back and Faster Subscribe via RSS Subscribe Browse by Date August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015 December 2014 November 2014 October 2014 August 2014 June 2014 May 2014 April 2014 March 2014 January 2014 December 2013 November 2013 October 2013 September 2013 August 2013

  9. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect (OSTI)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  10. AC Resonant charger with charge rate unrelated to primary power frequency

    DOE Patents [OSTI]

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  11. Ac resonant charger with charge rate unrelated to preimary power requency

    DOE Patents [OSTI]

    Not Available

    1979-12-07

    An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  12. Faster plant growth in a safe, economical way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faster plant growth in a safe, economical way Faster plant growth in a safe, economical way When applied to plants, Take-Off(tm) speeds crop emergence, increases growth rates and yields, improves stress tolerance and nutrient value, and reduces need for nitrogen fertilizers. April 3, 2012 Farmer in wheat field inspecting wheat Biagro Western offers Take-Off(tm), a metabolic plant stimulant that will allow farmers to increase crop carbon fixation and thereby increase nitrate uptake and nitrogen

  13. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  14. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Boolean. Name: Enable Demand Charge Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  15. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  16. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  17. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  18. Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  19. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  20. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  1. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  2. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  3. Property:OpenEI/UtilityRate/DemandChargePeriod1FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  4. Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  5. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  6. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  7. Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  8. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect (OSTI)

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  9. California PG&E E-19 Rate Structure -- demand charge structure...

    Open Energy Info (EERE)

    Utility Rate Allandaly's picture Submitted by Allandaly(24) Member 13 May, 2014 - 11:49 Hi again, I feel like the squeaky wheel here ... apologies for that ... but I am trying to...

  10. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Office of Energy Efficiency and Renewable Energy (EERE)

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  11. Compressing bitmap indexes for faster search operations

    SciTech Connect (OSTI)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-04-25

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed.

  12. New Algorithm Enables Faster Simulations of Ultrafast Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm Enables Faster Simulations of Ultrafast Processes New Algorithm Enables Faster ... Academy of Sciences, have developed a new real-time time-dependent density function ...

  13. Fast Physics Testbed for the FASTER Project

    SciTech Connect (OSTI)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  14. 10Charge Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Dallas, Texas Zip: 75001 Product: Developer of patented technology for faster battery charging time which also extends battery lifetime. Coordinates: 32.778155,...

  15. CHARGE IMBALANCE

    SciTech Connect (OSTI)

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  16. The Digital Road to Scientific Knowledge Diffusion; A Faster...

    Office of Scientific and Technical Information (OSTI)

    The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? Citation Details In-Document Search Title: The Digital Road to Scientific Knowledge ...

  17. Building Science Solutions … Faster and Better | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions … Faster and Better Building Science Solutions … Faster and Better This webinar provides an overview of the DOE Building America Solution Center„a digital communication tool designed to serve building industry professionals, researchers, and market transformation programs by making world-class building science research and information quickly and easily accessible. solution_center_beta_demo_10_17_2012.pdf (4.34 MB) More Documents & Publications DOE ZERH Resources: Building

  18. New Algorithm Enables Faster Simulations of Ultrafast Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm Enables Faster Simulations of Ultrafast Processes New Algorithm Enables Faster Simulations of Ultrafast Processes Opens the Door for Real-Time Simulations in Atomic-Level Materials Research February 20, 2015 Contact: Rachel Berkowitz, 510-486-7254, rberkowitz@lbl.gov femtosecondalgorithm copy Model of ion (Cl) collision with atomically thin semiconductor (MoSe2). Collision region is shown in blue and zoomed in; red points show initial positions of Cl. The simulation calculates the

  19. Building America Expert Meeting: Delivering Better, Cheaper, and Faster

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofits through Stakeholder-focused Research | Department of Energy Delivering Better, Cheaper, and Faster Retrofits through Stakeholder-focused Research Building America Expert Meeting: Delivering Better, Cheaper, and Faster Retrofits through Stakeholder-focused Research This expert meeting was conducted by Building America Industrialized Housing Partnership and Gas Technology Institute on November 16, 2010, in Chicago, Illinois. Meeting objectives included: * Review Building America's

  20. Faster Tracks for Particle Accelerators Promoted by ODU Physicists (Inside

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ODU) | Jefferson Lab Faster Tracks for Particle Accelerators Promoted by ODU Physicists (Inside ODU) External Link: http://ww2.odu.edu/ao/ia/insideodu/20120426/topstory2.html By jlab_admin on Thu, 2012-04-2

  1. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  2. Making the perfect recipe just got faster: NNSA research accelerates

    National Nuclear Security Administration (NNSA)

    materials science | National Nuclear Security Administration | (NNSA) Making the perfect recipe just got faster: NNSA research accelerates materials science Thursday, May 19, 2016 - 11:01am The Trinity supercomputer at Los Alamos National Laboratory. In a recent paper published in Nature Communications, NNSA researchers at Los Alamos National Laboratory (LANL) recently demonstrated ways to accelerate materials science. Why is this innovation so noteworthy to NNSA's mission, as well as other

  3. Crowdsource: How do we make computers faster? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This article was published in the spring 2016 issue of Argonne Now, the laboratory science magazine. Click for the rest of the issue. Crowdsource: How do we make computers faster? By Louise Lerner * March 7, 2016 Tweet EmailPrint This article was originally published in the spring 2016 issue of Argonne Now, the laboratory's science magazine. CROWDSOURCE asks Argonne scientists from different disciplines to each provide a perspective on a complex question facing society. Today we're asking:

  4. Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finds Ways to Remove K-25 Faster, Cheaper Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper February 1, 2012 - 12:00pm Addthis Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper ...

  5. Multi-purpose two- and three-dimensional momentum imaging of charged particles for attosecond experiments at 1 kHz repetition rate

    SciTech Connect (OSTI)

    Mnsson, Erik P. Sorensen, Stacey L.; Gisselbrecht, Mathieu; Arnold, Cord L.; Kroon, David; Gunot, Diego; Fordell, Thomas; Johnsson, Per; LHuillier, Anne; Lpine, Franck

    2014-12-15

    We report on the versatile design and operation of a two-sided spectrometer for the imaging of charged-particle momenta in two dimensions (2D) and three dimensions (3D). The benefits of 3D detection are to discern particles of different mass and to study correlations between fragments from multi-ionization processes, while 2D detectors are more efficient for single-ionization applications. Combining these detector types in one instrument allows us to detect positive and negative particles simultaneously and to reduce acquisition times by using the 2D detector at a higher ionization rate when the third dimension is not required. The combined access to electronic and nuclear dynamics available when both sides are used together is important for studying photoreactions in samples of increasing complexity. The possibilities and limitations of 3D momentum imaging of electrons or ions in the same spectrometer geometry are investigated analytically and three different modes of operation demonstrated experimentally, with infrared or extreme ultraviolet light and an atomic/molecular beam.

  6. Utility rate change propagation is now much faster | OpenEI Community

    Open Energy Info (EERE)

    this page checks jobs in OpenEI's queue. I'd suggest doing a refresh of the page (Ctrl+F5 Windows or Shift+Command+R Mac) if you want to watch the number of jobs change in...

  7. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    SciTech Connect (OSTI)

    Maj, Piotr; Grybos, P.; Szczgiel, R.; Kmon, P.; Drozd, A.; Deptuch, G.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 ?m. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e? rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largest charge deposition. The chip architecture and preliminary measurements are reported.

  8. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their ...

  9. Managing Increased Charging Demand

    Broader source: Energy.gov (indexed) [DOE]

    Would you be willing to pay a fee for charging? Workplace Charging Challenge How many charging stations does my worksite need? 3 Workplace Charging Challenge Workplace Charging ...

  10. Next-gen RF MEMS Switch for a Smarter, Faster Internet of Things...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RF MEMS Switch for a Smarter, Faster Internet of Things Karen Lightman 2014.03.28 Big Data. Internet of Things. Quantified Self. Connected Home. Connected City. These...

  11. Measurement of the charge-transfer rate of Fe{sup 3+}-ion coefficients with H{sub 2} and N{sub 2} at electron-volt energy

    SciTech Connect (OSTI)

    Gao Kelin; Nie Zongxiu; Li Jiaomei; Jiang Yurong

    2003-02-01

    The charge-transfer rate coefficients of Fe{sup 3+} with H{sub 2} and N{sub 2} are measured by using a laser-ablation ion source and a quadrupole radio-frequency ion trap with the mean collision energy of about 5.1 eV. The rate coefficients for Fe{sup 3+} with H{sub 2} at the equivalent temperature 1.7x10{sup 3} K and Fe{sup 3+} with N{sub 2} at 1.3x10{sup 4} K are 1.64(0.22)x10{sup -10} cm{sup 3} s{sup -1} and 4.36(0.46)x10{sup -9} cm{sup 3} s{sup -1}, respectively. The measured values are of the same order as the Langevin rate coefficient.

  12. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV ...

  13. The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to

    Office of Scientific and Technical Information (OSTI)

    Scientific Progress? (Journal Article) | SciTech Connect Journal Article: The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? Citation Details In-Document Search Title: The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on

  14. Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than Average Used Light Vehicle Price | Department of Energy 4: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price In 2011 the average used light vehicle price was 36% higher than in 1990, while the average new light vehicle price was 67% higher than it was in 1990. The average price of a used vehicle had been between $6,000 and

  15. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  16. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  17. Custom data support for the FAst -physics System Testbed and Research (FASTER) Project

    SciTech Connect (OSTI)

    Toto, T.; Jensen, M.; Vogelmann, A.; Wagener, R.; Liu, Y.; Lin, W.

    2010-03-15

    The multi-institution FAst -physics System Testbed and Research (FASTER) project, funded by the DOE Earth System Modeling program, aims to evaluate and improve the parameterizations of fast processes (those involving clouds, precipitation and aerosols) in global climate models, using a combination of numerical prediction models, single column models, cloud resolving models, large-eddy simulations, full global climate model output and ARM active and passive remote sensing and in-situ data. This poster presents the Custom Data Support effort for the FASTER project. The effort will provide tailored datasets, statistics, best estimates and quality control data, as needed and defined by FASTER participants, for use in evaluating and improving parameterizations of fast processes in GCMs. The data support will include custom gridding and averaging, for the model of interest, using high time resolution and pixel level data from continuous ARM observations and complementary datasets. In addition to the FASTER team, these datasets will be made available to the ARM Science Team. Initial efforts with respect to data product development, priorities, availability and distribution are summarized here with an emphasis on cloud, atmospheric state and aerosol properties as observed during the Spring 2000 Cloud IOP and the Spring 2003 Aerosol IOP at the ARM Southern Great Plains site.

  18. NREL's CelA Catalyzes Plant Cell Walls Faster - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's CelA Catalyzes Plant Cell Walls Faster January 12, 2015 Close-up photo of a scientist in safety glasses examining small items in plastic containers. NREL Senior Scientist Roman Brunecky examines the molecular weight of the enzyme CelA on a gel in the Protein Chemistry Lab in the Field Test Laboratory Building on NREL's Golden, Colorado, campus. Photo by Dennis Schroeder Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) have developed an enzyme that could

  19. Genome Databases Get Faster, Bigger, Stronger | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Genome Databases Get Faster, Bigger, Stronger Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  20. FASTER: A new DOE effort to bridge ESM and ASR sciences

    SciTech Connect (OSTI)

    Liu, Y.

    2010-03-15

    In order to better use the long-term ARM measurements to evaluate parameterizations of fast processes used in global climate models --- mainly those related to clouds, precipitation and aerosols, the DOE Earth System Modeling (ESM) program funds a new multi-institution project led by the Brookhaven National Laboratory, FAst -physics System Testbed and Research (FASTER). This poster will present an overview of this new project and its scientific relationships to the ASR sciences and ARM measurements.

  1. Workplace Charging Challenge: Promote Charging at Work

    Broader source: Energy.gov [DOE]

    Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that...

  2. Workplace Charging Challenge: Sample Workplace Charging Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review the policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully.

  3. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  4. Quick spacecraft charging primer

    SciTech Connect (OSTI)

    Larsen, Brian Arthur

    2014-03-12

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  5. Electric Vehicle Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    for annual capital fleet purchases 10 of 17 locations currently have charging stations Agreement with employees to provide workplace charging Ultimate goal is ...

  6. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  7. Utilities and Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    for workplace charging Aid in forecasting similar workplace charging needs with ... of plug-in vehicle technology, costs, and benefits? 50% 40% 30% 20% 10% 0% 1 2 ...

  8. Dynamic Wireless Charging

    SciTech Connect (OSTI)

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  9. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  10. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  11. They all like it hot: faster cleanup of contaminated soil and groundwater

    SciTech Connect (OSTI)

    Newmark, R., LLNL

    1998-03-01

    Clean up a greasy kitchen spill with cold water and the going is slow. Us hot water instead and progress improves markedly. So it makes sense that cleanup of greasy underground contaminants such as gasoline might go faster if hot water or steam were somehow added to the process. The Environmental Protection Agency named hundreds of sites to the Superfund list - sites that have been contaminated with petroleum products or petroleum products or solvents. Elsewhere across the country, thousands of properties not identified on federal cleanup lists are contaminated as well. Given that under current regulations, underground accumulations of solvent and hydrocarbon contaminants (the most serious cause of groundwater pollution) must be cleaned up, finding a rapid and effective method of removing them is imperative. In the early 1990`s, in collaboration with the School of Engineering at the University of California at Berkeley, Lawrence Livermore developed dynamic underground stripping. This method for treating underground contaminants with heat is much faster and more effective than traditional treatment methods.

  12. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how

  13. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  14. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    SciTech Connect (OSTI)

    Cazzato, Roberto Luigi Battistuzzi, Jean-Benoit Catena, Vittorio; Grasso, Rosario Francesco Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier Palussiere, Jean

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  15. Workplace Charging Challenge: Install and Manage PEV Charging | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Install and Manage PEV Charging Workplace Charging Challenge: Install and Manage PEV Charging pev_workplace_charging_hosts_150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. The PEV Handbook for Workplace Charging Hosts is particularly helpful for employers deciding if and how to install charging stations to ensure a successful workplace charging program. PEVs and Charging

  16. Charged pion production in $\

    SciTech Connect (OSTI)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energy from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.

  17. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  18. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  19. Workplace Charging Presentation

    Broader source: Energy.gov [DOE]

    Educate employers about plug-in electric vehicles and workplace charging using this sample presentation. The presentation covers the basics of PEVs and workplace charging as well as the benefit of...

  20. Workplace Charging Challenge: Install and Manage PEV Charging...

    Office of Environmental Management (EM)

    Charging - Evaluate whether your workplace is right for solar assisted charging stations. ... Charging Equipment and Installation Costs - Review typical price ranges and factors ...

  1. Workplace Charging Challenge: Higher Education PEV Charging Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Higher Education PEV Charging Webinar Workplace Charging Challenge: Higher Education PEV Charging Webinar Review the slides from our webinar which highlighted workplace ...

  2. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  3. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOE Patents [OSTI]

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  4. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOE Patents [OSTI]

    Hanson, Gregory R.; Bingham, Philip R.

    2006-10-03

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  5. Workplace Charging Challenge: Signage Guidance

    Broader source: Energy.gov [DOE]

    Signage for plug-in electric vehicle (PEV) charging stations is an important consideration at workplaces that offer access to charging. Appropriate charging station signage can:

  6. Workplace Charging Program and Initiatives

    Broader source: Energy.gov (indexed) [DOE]

    NYPA's Workplace Charging Pilot Program Employee charging stations installed at the Authority's White Plains office NYPA joined the US DOE's Workplace Charging Challenge ...

  7. Workplace Charging Challenge 2014 Agenda

    Broader source: Energy.gov (indexed) [DOE]

    Track A (Plaza Ballroom I): Promoting your workplace charging program A robust workplace charging program doesn't conclude once the charging stations are in the ground. Many ...

  8. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  9. Workplace Charging: Safety and Management Policy For Level 1 Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receptacles | Department of Energy Charging: Safety and Management Policy For Level 1 Charging Receptacles Workplace Charging: Safety and Management Policy For Level 1 Charging Receptacles Organizations offering plug-in electric vehicle (PEV) charging at Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the following safety and management policies below. More helpful tips on workplace charging administration,

  10. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    SciTech Connect (OSTI)

    Piel, Alexander Schmidt, Christian

    2015-05-15

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed.

  11. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  12. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  13. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  14. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  15. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  17. Workplace Charging Challenge

    Broader source: Energy.gov (indexed) [DOE]

    ... Interactive map available at electricvehicles.energy.gov. lynda.com's PEV charging stations are part of the company's larger commuting program designed to alleviate the impact from ...

  18. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  19. System Benefits Charge

    Broader source: Energy.gov [DOE]

    New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy efficiency programs and energy assistance programs for...

  20. Head-Tail Modes for Strong Space Charge

    SciTech Connect (OSTI)

    Burov, Alexey

    2008-12-01

    Head-tail modes are described here for the space charge tune shift significantly exceeding the synchrotron tune. General equation for the modes is derived. Spatial shapes of the modes, their frequencies, and coherent growth rates are explored. The Landau damping rates are also found. Suppression of the transverse mode coupling instability by the space charge is explained.

  1. Workplace Charging Challenge: Promote Charging at Work | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that states, cities and other organizations can encourage PEV adoption in their communities. Use the material below to engage and educate employers about the

  2. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  3. Workplace Charging Challenge: Install and Manage PEV Charging...

    Office of Environmental Management (EM)

    ...vworkplacecharginghosts150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. ...

  4. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Environmental Management (EM)

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  5. Automakers and Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    Maryland 8 Connecticut 2 Kentucky 12 Georgia 2 New York 51 Ohio 44 Michigan 299 Indiana 8 Illinois 4 Kansas 2 Arizona 2 Texas 3 California 32 473 GM WORKPLACE CHARGING STATIONS ...

  6. Trends in Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    *Based on Energy Charges Only using an average annual electricity consumption for a U.S. residential utility customer of 11,496 kWh (EIA http:www.eia.gov). (WASHINGTON, ...

  7. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  8. Societal Benefits Charge

    Broader source: Energy.gov [DOE]

    During 2011 and 2012 several minor changes were made to the originally enacted SBC law. In 2011 a section was added prohibiting gas utilities from imposing an SBC charge (or several other types o...

  9. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  10. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * ...

  11. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  12. System and method for charging electrochemical cells in series

    DOE Patents [OSTI]

    DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.

    1980-01-01

    A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.

  13. Workplace Charging Challenge Progress Update 2014

    Broader source: Energy.gov (indexed) [DOE]

    Locations with Charging Workplace Charging Challenge 6 Installing & Planned Charging Stations Almost Doubled in the Last 2 Years Workplace Charging Challenge 7 Partner plans ...

  14. Vehicle Technologies Office: Workplace Charging Challenge Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In ...

  15. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  16. Frequency dependence of charge imbalance relaxation

    SciTech Connect (OSTI)

    Entin-Wohlman, O.; Orbach, R.

    1980-06-01

    A frequency-dependent charge imbalance relaxation rate near T/sub c/ is calculated in the presence of magnetic impurities in the gap regime (..delta.. >> GAMMA, where GAMMA is the pair-breaking rate) and in the gapless regime (..delta.. << GAMMA). In the former regime without magnetic impurities the results reduce to those of Artemenko, Volkov, and Zaitsev, and of Kadin. We show that their result can conveniently be derived from a Boltzmann equation for the quasiparticles.

  17. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  18. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries

    SciTech Connect (OSTI)

    Rowlette, J.J.

    1981-01-15

    Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  19. ION PRODUCING MECHANISM (CHARGE CUPS)

    DOE Patents [OSTI]

    Brobeck, W.W.

    1959-04-21

    The problems of confining a charge material in a calutron and uniformly distributing heat to the charge is described. The charge is held in a cup of thermally conductive material removably disposed within the charge chamber of the ion source block. A central thermally conducting stem is incorporated within the cup for conducting heat to the central portion of the charge contained within the cup.

  20. electricity rates for military bases | OpenEI Community

    Open Energy Info (EERE)

    electricity rates for military bases Home > Groups > Utility Rate Hi, I was hoping to find rates for military bases, but have been unable to find anything. Are they just charged as...

  1. Solar Smarter Faster

    Broader source: Energy.gov [DOE]

    As part of the SunShot Initiative, U.S. Department of Energy Secretary Steven Chu announced on April 15th the selection of up to $112.5 million over five years for funding to support the...

  2. Solar Smarter Faster

    ScienceCinema (OSTI)

    Armbrust, Dan; Haldar, Pradeep; Kaloyeros, Alain; Holladay, Dan

    2013-05-29

    As part of the SunShot Initiative, U.S. Department of Energy Secretary Steven Chu announced on April 15th the selection of up to $112.5 million over five years for funding to support the development of advanced solar photovoltaic (PV)-related manufacturing processes throughout the United States. The effort is led by Sematech, with a proven track record in breathing life back into the US semiconduster industry, and in partnership with CNSE, The College of Nanoscale Science and Engineering, who supplies world class R&D experts and facilities.

  3. Demand charge schedule data | OpenEI Community

    Open Energy Info (EERE)

    Demand charge schedule data Home > Groups > Utility Rate Hi, I'm a new user of this database,so first, thanks for creating it, and apologies if this question is answered in...

  4. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  5. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov [DOE]

    Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy.

  6. Distributed charging of electrical assets

    DOE Patents [OSTI]

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  7. Charging Your Time - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Exposition Charging Your Time About Us Hanford Cultural Resources Charging Your Time Committee Members Contact Us Electronic Registration Form Exhibitor and Vendor Information EXPO 2016 Sponsors EXPO Award Criteria How to Get to TRAC Special Events What is EXPO Why Should I Participate in EXPO Charging Your Time Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size How Do I Charge My Time Spent at EXPO? Each Hanford Prime Contractor may have

  8. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    SciTech Connect (OSTI)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trend can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.

  9. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trendmore » can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.« less

  10. Workplace Charging Challenge Partner: OSRAM SYLVANIA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ChargePoint and SYLVANIA Lighting Services Announce Reseller Agreement for Electric Vehicle Charging Stations in United States Campbell, CA and Danvers, MA - ChargePoint, the ...

  11. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group,...

  12. Workplace Charging Challenge Summit 2014: Agenda | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Workplace Charging Challenge Summit 2014: Agenda Final Agenda for the 2014 Workplace Charging Challenge Summit PDF icon 2014 Workplace Charging Challenge Summit Agenda More ...

  13. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  14. High resolution printing of charge

    DOE Patents [OSTI]

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  15. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  16. PULSE RATE DIVIDER

    DOE Patents [OSTI]

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  17. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  18. Visualization of Charge Distribution in a Lithium Battery Electrode

    SciTech Connect (OSTI)

    Liu, Jun; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Richardson, Thomas J.

    2010-07-02

    We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode.

  19. Radiation dose-rate meter using an energy-sensitive counter

    DOE Patents [OSTI]

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  20. Workplace Charging: Tips to Install Charging Stations at your...

    Broader source: Energy.gov (indexed) [DOE]

    by choosing progressive facilities that offer state-of-the-art technologies such as plug-in electric vehicle (PEV) charging stations (or electric vehicle supply equipment). ...

  1. Workplace Charging Challenge: Higher Education PEV Charging Webinar

    Broader source: Energy.gov [DOE]

    Review the slides from our webinar which highlighted workplace charging on higher education campuses across the country.

  2. AVTA: ChargePoint America Recovery Act Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory. ...

  3. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Broader source: Energy.gov [DOE]

    The Workplace Charging Challenge Progress Update 2014 highlights the progress of the Challenge and its partners as determined through the annual partner survey.

  4. Surface charge compensation for a highly charged Ion emissionmicroscope

    SciTech Connect (OSTI)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-04-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed.

  5. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa ...

  6. Workplace Charging Challenge Partner: Southern California Edison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Edison Workplace Charging Challenge Partner: Southern California Edison Workplace Charging Challenge Partner: Southern California Edison Joined the Challenge: February ...

  7. ADA Requirements for Workplace Charging Installation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ADA Requirements for Workplace Charging Installation More Documents & Publications Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Workplace Charging...

  8. Battery charging stations

    SciTech Connect (OSTI)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  9. Explosive bulk charge

    SciTech Connect (OSTI)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  10. General Groves takes charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groves had fixed all the major problems holding up progress. He had obtained the highest credit rating possible, purchased Site X and secured the needed uranium ore. Next he began...

  11. High dynamic range charge measurements

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  12. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W.H.

    1999-03-09

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.

  13. Flag rates for deletion? | OpenEI Community

    Open Energy Info (EERE)

    some "rates" that don't belong; they are one-time connection fees instead of rates (e.g. with a 2,500 connection fee as a "fixed monthly charge"). Is there some way to flag...

  14. Jeans instability of a dusty plasma with dust charge variations

    SciTech Connect (OSTI)

    Hakimi Pajouh, H. Afshari, N.

    2015-09-15

    The effect of the dust charge variations on the stability of a self-gravitating dusty plasma has been theoretically investigated. The dispersion relation for the dust-acoustic waves in a self-gravitating dusty plasma is obtained. It is shown that the dust charge variations have significant effects. It increases the growth rate of instability and the instability cutoff wavenumbers. It is found that by increasing the value of the ions temperature and the absolute value of the equilibrium dust charge, the cutoff wavenumber decreases and the stability region is extended.

  15. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  16. Workplace Charging Toolkit: Example Events

    Broader source: Energy.gov [DOE]

    This section provides links to previous successful workplace charging events. These link directly to the organization’s website and contain event agendas and presentation materials.

  17. Persistent State-of-Charge Heterogeneity in Fully Relaxed Battery Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particles | Stanford Synchrotron Radiation Lightsource Persistent State-of-Charge Heterogeneity in Fully Relaxed Battery Electrode Particles Friday, July 29, 2016 Figure. A transmission x-ray micrograph of an individual secondary particle charged to 30% global SOC at a 100 h rate, showing overcharged (green) domains even at this slow charging rate. Lithium ion batteries are used ubiquitously for portable energy storage in today's modern electronic devices and have served in that capacity for

  18. Differential flow rates of petroleum and water in fine-grained sediments

    SciTech Connect (OSTI)

    Clayton, C. )

    1993-09-01

    During and after generation, petroleum migrates through fine-grained water-wet rocks into more permeable carrier beds. While the mechanics of this process are well established, little is know of the absolute rates of the process. In addition, it is know that in some area (such as the deep-water Gulf of Mexico) oil is able to pass freely from the source rock through highly overpressured sediments in which the water is retained. This indicates that the apparent permeability to oil is one to two orders of magnitude greater than for water, too much to account for by the additional buoyancy of the oil or conventional relative permeability arguments. Part of the problem may be caused by the state of water in mudrocks, most of which is bound to clays and thus immobile. By assuming Poiseuille flow of oil through the pore network of shales, it is shown that this indeed is the case. Modeled flow rates for oil are about two orders of magnitude faster than for water. This implies that only a small percentage of the water can be considered mobile, consistent with free/bound water ratios measured in the laboratory. Such calculations have important implications for estimating the time it takes for petroleum to charge distant reservoirs and also for the longevity of oil and gas fields following seal failure.

  19. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; Tsouris, Costas

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequentmore » effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.« less

  20. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  1. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  2. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  3. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  4. Determination of surface electric charge profile in pyroelectric crystals

    SciTech Connect (OSTI)

    Ghaderi, R.; Davani, F. Abbasi

    2014-12-08

    Pyroelectric crystals are used to produce high energy self-focused electron beams. Here, an experimental analysis in combination with simulation studies will be reported to investigate possible sources of this effect. In the experiments, the surface of crystal was divided into six separated parts and the rate of surface electric charge production was measured accordingly. A non-steady and spatially non-uniform distribution of the surface charge generation was observed, in which it tends to a uniform distribution in the course of experiment. The obtained surface electric charges from the experiments were used to simulate the electric field and potential around the crystal by COMSOL Multiphysics. It was observed that emitted electrons from the crystal surface were focused, and the non-uniformity in spatial charge is responsible for this phenomenon.

  5. Electrokinetic concentration of charged molecules

    DOE Patents [OSTI]

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  6. Measurements of W Charge Asymmetry

    SciTech Connect (OSTI)

    Holzbauer, J. L.

    2015-10-06

    We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$\\eta$| $\\le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.

  7. Workplace Charging Management Policies: Pricing

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, sharing, and pricing to...

  8. Workplace Charging Equipment and Installation Costs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 (300-1,500) and Level 2 (400-6,500) charging stations are ...

  9. Workplace Charging Challenge Partner: American Lung Association...

    Energy Savers [EERE]

    The ALAC was the first organization to install a charging station through the Charge Ahead Colorado grant program in 2013. The ALAC offers two charging stations to employees and ...

  10. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  11. AVTA: Bidirectional Fast Charging Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  12. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workplace Charging Challenge Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More

  13. Workplace Charging Challenge Partner: Caltech | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    other parking structures on campus. Meet Challenge Partners More Information Caltech Adaptive Charging Network Dashboard Caltech Electric Charging Stations Caltech Sustainability

  14. Workplace Charging Challenge Partner: University of Maryland...

    Energy Savers [EERE]

    The PEV charging stations help UM BWMC to encourage its employees and visitors to adopt "green" lifestyle habits. Meet Challenge Partners Worplace Charging Challenge Committed ...

  15. Workplace Charging Management Policies: Administration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    workplace charging administration is to designate a responsible individual or group for ongoing operation and maintenance issues of the charging stations and any related costs. ...

  16. Workplace Charging Challenge Partner: NRG Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRG offers workplace charging to its employees, alongside a corporate incentive for employees to drive plug-in electric vehicles (PEVs). NRG employee charging stations are ...

  17. Workplace Charging Challenge Partner: Argonne National Laboratory...

    Energy Savers [EERE]

    Argonne provides its employees with access to electric vehicle charging stations for a nominal fee. Program participants are able to reserve charging time at plug-in stations ...

  18. Distributed Solar Photovoltaics for Electric Vehicle Charging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Controlled charging technology can be employed in the absence of solar, as well as when EV charging stations are combined with distributed solar technology. Modeling and limited ...

  19. Workplace Charging Challenge Partner: University of Wisconsin...

    Energy Savers [EERE]

    Responding to increased requests for plug-in electric charging stations from parking customers, UW-Madison Transportation Services installed dual level, charging stations in Lots ...

  20. Workplace Charging Challenge Partner: Purchase College, State...

    Energy Savers [EERE]

    Purchase College, State University of New York can accommodate six vehicles at four charging stations throughout campus. In addition to the two charging stations installed in 2012, ...

  1. Workplace Charging Challenge Partner: Dominion Resources, Inc...

    Broader source: Energy.gov (indexed) [DOE]

    Dominion's employee workplace charging pilot program furthers its commitment to alternative fuels. The pilot currently consists of two lockable Level 1 charging stations, with ...

  2. Workplace Charging Challenge Partner: Bloomberg LP | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bloomberg currently has two charging stations available and has upgraded the facility's electrical service to accommodate additional charging stations when employee demand ...

  3. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, ...

  4. Workplace Charging Challenge Partner: Legrand | Department of...

    Energy Savers [EERE]

    to its Fairfield, NJ, and Syracuse, NY locations. Legrand has installed six PEV charging stations to date. Multimedia Watch a video about Workplace Charging Partner Legrand. ...

  5. Workplace Charging Challenge: Ambassadors | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Energy's Website Charging Stations Next Steps - Explore the steps businesses can take to promote and manage their newly installed charging station. Employer Case Studies: ...

  6. Workplace Charging Challenge Partner: Baxter International Inc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At its Illinois locations, Baxter has installed four duel head Level 2 plug-in electric vehicle (PEV) charging stations, capable of charging eight vehicles simultaneously. With ...

  7. workplace Charging Challenge Partner: Advanced Micro Devices...

    Energy Savers [EERE]

    its commuter benefits to include workplace plug-in electric vehicle (PEV) charging, making AMD the first company in Austin, Texas to install multiple PEV charging stations. ...

  8. Workplace Charging Challenge Partner: Lewis & Clark Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lewis & Clark views plug-in electric vehicle workplace charging as a key component of reducing commuter emissions. The College has installed two charging stations at its main ...

  9. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the ...

  10. PosiCharge | Open Energy Information

    Open Energy Info (EERE)

    Product: PosiCharge brings to market a next-generation intelligent rapid charging battery system for industrial and other electric vehicle applications. References:...

  11. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  12. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    and manufacturers to test different types and several different models of EVSE in the laboratory, including AC Level 1, AC Level 2, DC fast charging, and wireless charging. ...

  13. Workplace Charging Toolkit: Workshop Outreach Presentation Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Presentation Template Workplace Charging Toolkit: Workshop Outreach Presentation Template Educate workshop attendees and employers about the benefits of workplace charging ...

  14. Spacecraft surface charging within geosynchronous orbit observed...

    Office of Scientific and Technical Information (OSTI)

    Title: Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes: SPACECRAFT CHARGING ON VAN ALLEN PROBES Authors: Sarno-Smith, Lois K. 1 ; Larsen, ...

  15. Sample Employee Survey for Workplace Charging Planning

    Broader source: Energy.gov (indexed) [DOE]

    WORKPLACE CHARGING CHALLENGE Sample Employee Survey for Workplace Charging Planning ... Your responses to this survey will be used to determine employee interest in this benefit. ...

  16. Workplace Charging Toolkit: Workshop Invitation Template | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invitation Template Workplace Charging Toolkit: Workshop Invitation Template Engage possible workplace charging event attendees with this template invitation. File General Workshop ...

  17. Workplace Charging Challenge: 2016 Annual Survey Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the Workplace Charging Challenge, the U.S. Department of Energy (DOE) aims to provide employers with specialized resources, expertise, and support to incorporate workplace charging programs...

  18. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging workshops * Other community events 10 Shannon.shea@ee.doe.gov http:energy.goveerevehiclesvehicle-technologies-office-ev-everywhere- workplace-charging-challenge 11...

  19. Workplace Charging Challenge Partner: Pepco Holdings, Inc. |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through the Workplace Charging Challenge, PHI is evaluating its employees charging needs. Meet Challenge Partners More Information PHI's Sustainability and Corporate Citizenship ...

  20. Workplace Charging Toolkit: Press Release Template

    Broader source: Energy.gov [DOE]

    Raise the profile of employers in the community who are offering workplace charging and encourage the adoption of workplace charging among other employers through this press release template.

  1. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect (OSTI)

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  2. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  3. On coagulation mechanisms of charged nanoparticles produced by combustion of hydrocarbon and metallized fuels

    SciTech Connect (OSTI)

    Savel'ev, A. M.; Starik, A. M.

    2009-02-15

    The contributions of van der Waals, Coulomb, and polarization interactions between nanometersized particles to the particle coagulation rate in both free-molecular and continuum regimes are analyzed for particle charges of various magnitudes and signs. Analytical expressions are obtained for the coagulation rate constant between particles whose interaction in the free-molecular regime is described by a singular potential. It is shown that van der Waals and polarization forces significantly increase the coagulation rate between a neutral and a charged particle (by a factor of up to 10) and can even suppress the Coulomb repulsion between like-charged particles of widely different sizes.

  4. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect (OSTI)

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  5. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  6. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  7. Alternator control for battery charging

    SciTech Connect (OSTI)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  8. Charge amplifier with bias compensation

    DOE Patents [OSTI]

    Johnson, Gary W.

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  9. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  10. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect (OSTI)

    John Smart

    2013-09-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  11. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    SciTech Connect (OSTI)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    are the following: • Photo-excitation of the donor (or the acceptor). • Charge transfer with holes in the donor domain and electrons in the acceptor domain. • Sweep-out to electrodes prior to recombination by the internal electric field. • Energy delivered to the external circuit. Each of these four steps was studied in detail using a wide variety of organic semiconductors with different molecular structures. This UC Santa Barbara group was the first to clarify the origin and the mechanism involved in the ultrafast charge transfer process. The ultrafast charge transfer (time scale approximately 100 times faster than the first step in the photo-synthesis of green plants) is the fundamental reason for the potential for high power conversion efficiency of sunlight to electricity from plastic solar cells. The UCSB group was the first to emphasize, clarify and demonstrate the need for sweep-out to electrodes prior to recombination by the internal electric field. The UCSB group was the first to synthesize small molecule organic semiconductors capable of high power conversion efficiencies. The results of this research were published in high impact peer-reviewed journals. Our published papers (40 in number) provide answers to fundamental questions that have been heavily discussed and debated in the field of Bulk Heterojunction Solar Cells; scientific questions that must be resolved before this technology can be ready for commercialization in large scale for production of renewable energy. Of the forty publications listed, nineteen were co-authored by two or more of the PIs, consistent with the multi-investigator approach described in the original proposal. The specific advantages of this “plastic” solar cell technology are the following: a. Manufacturing by low-cost printing technology using soluble organic semiconductors; this approach can be implemented in large scale by roll-to-roll printing on plastic substrates. b. Low energy cost in manufacturing; all steps

  12. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Workplace Charging Challenge: Partners Use the interactive map and list below to learn more about employers who have joined the U.S. Department of Energy's Workplace Charging Challenge. These employers are providing workplace charging for their employees who drive plug-in electric vehicles. Partners receive assistance from DOE to help them establish and expand workplace charging while ambassador organizations work to promote and support partners' workplace charging efforts across the

  13. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  14. EVSE Features LED Charge Indicator Cellular Modem EVSE Specifcations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charge Indicator Cellular Modem EVSE Specifcations Grid connection Dual NEMA 6-50P Cordsets Connector type J1772 Approximate size (H x W x D inches) 16 x 24 x 6 Charge level AC Level 2 Input voltage 208 / 240 VAC Maximum input current 32 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 12/5/2013 Nominal supply voltage (Vrms) 208.6 Supply frequency (Hz) 60.00 Initial ambient temperature (°F) 8 Test Vehicle 1,3 Make and model 2012 Chevrolet Volt Battery type Li-ion Steady state

  15. Channeling problem for charged particles produced by confining environment

    SciTech Connect (OSTI)

    Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.

    2009-05-15

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  16. Stability of charged thin shells

    SciTech Connect (OSTI)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-05-15

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  17. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  18. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  19. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  20. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  1. How are flat demand charges based on the highest peak over the...

    Open Energy Info (EERE)

    How are flat demand charges based on the highest peak over the past 12 months designated in the database (LADWP does this) Home > Groups > Utility Rate Submitted by Marcroper on 11...

  2. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  3. Workplace Charging: Safety and Management Policy For AC Level 1 Charging Receptacles

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at AC Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the...

  4. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  5. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Plan June 2005 M.A. Miller Brookhaven National Laboratory Earth System ... (M. Jensen and A. Vogelmann at Brookhaven National Laboratory provided this ...

  6. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. SUMMARY OF ACRF INFRASTRUCTURE REVIEW PANEL COMMENTS...... 3 2.1 ... of Energy Review of the ACRF: Review Panel ......C.1 iii DOE...

  7. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): Summary of Recommendations January 2001 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DOE/SC-ARM-0001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): Summary of Recommendations The Atmospheric Radiation Measurement (ARM) Program Infrastructure Review committee feels that the organization of the ARM

  8. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Mixed-Phase Cloud Microphysics for Global Climate Models First Quarter 2007 ARM Metric Report January 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Liu and S.J. Ghan, DOE/SC-ARM-0701 iii Summary Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The partitioning of condensed water into liquid

  9. Charge symmetry at the partonic level

    SciTech Connect (OSTI)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  10. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Vehicle Charging EV Everywhere: Vehicle Charging The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. To get the most out of your plug-in electric